1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/ArrayRecycler.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/TrailingObjects.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <utility>
37 
38 namespace llvm {
39 
40 class DILabel;
41 class Instruction;
42 class MDNode;
43 class AAResults;
44 template <typename T> class ArrayRef;
45 class DIExpression;
46 class DILocalVariable;
47 class MachineBasicBlock;
48 class MachineFunction;
49 class MachineRegisterInfo;
50 class ModuleSlotTracker;
51 class raw_ostream;
52 template <typename T> class SmallVectorImpl;
53 class SmallBitVector;
54 class StringRef;
55 class TargetInstrInfo;
56 class TargetRegisterClass;
57 class TargetRegisterInfo;
58 
59 //===----------------------------------------------------------------------===//
60 /// Representation of each machine instruction.
61 ///
62 /// This class isn't a POD type, but it must have a trivial destructor. When a
63 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
64 /// without having their destructor called.
65 ///
66 class MachineInstr
67     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
68                                     ilist_sentinel_tracking<true>> {
69 public:
70   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
71 
72   /// Flags to specify different kinds of comments to output in
73   /// assembly code.  These flags carry semantic information not
74   /// otherwise easily derivable from the IR text.
75   ///
76   enum CommentFlag {
77     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
78     NoSchedComment = 0x2,
79     TAsmComments = 0x4    // Target Asm comments should start from this value.
80   };
81 
82   enum MIFlag {
83     NoFlags = 0,
84     FrameSetup = 1 << 0,     // Instruction is used as a part of
85                              // function frame setup code.
86     FrameDestroy = 1 << 1,   // Instruction is used as a part of
87                              // function frame destruction code.
88     BundledPred = 1 << 2,    // Instruction has bundled predecessors.
89     BundledSucc = 1 << 3,    // Instruction has bundled successors.
90     FmNoNans = 1 << 4,       // Instruction does not support Fast
91                              // math nan values.
92     FmNoInfs = 1 << 5,       // Instruction does not support Fast
93                              // math infinity values.
94     FmNsz = 1 << 6,          // Instruction is not required to retain
95                              // signed zero values.
96     FmArcp = 1 << 7,         // Instruction supports Fast math
97                              // reciprocal approximations.
98     FmContract = 1 << 8,     // Instruction supports Fast math
99                              // contraction operations like fma.
100     FmAfn = 1 << 9,          // Instruction may map to Fast math
101                              // intrinsic approximation.
102     FmReassoc = 1 << 10,     // Instruction supports Fast math
103                              // reassociation of operand order.
104     NoUWrap = 1 << 11,       // Instruction supports binary operator
105                              // no unsigned wrap.
106     NoSWrap = 1 << 12,       // Instruction supports binary operator
107                              // no signed wrap.
108     IsExact = 1 << 13,       // Instruction supports division is
109                              // known to be exact.
110     NoFPExcept = 1 << 14,    // Instruction does not raise
111                              // floatint-point exceptions.
112     NoMerge = 1 << 15,       // Passes that drop source location info
113                              // (e.g. branch folding) should skip
114                              // this instruction.
115     Unpredictable = 1 << 16, // Instruction with unpredictable condition.
116     NoConvergent = 1 << 17,  // Call does not require convergence guarantees.
117   };
118 
119 private:
120   const MCInstrDesc *MCID;              // Instruction descriptor.
121   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
122 
123   // Operands are allocated by an ArrayRecycler.
124   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
125 
126 #define LLVM_MI_NUMOPERANDS_BITS 24
127 #define LLVM_MI_FLAGS_BITS 24
128 #define LLVM_MI_ASMPRINTERFLAGS_BITS 8
129 
130   /// Number of operands on instruction.
131   uint32_t NumOperands : LLVM_MI_NUMOPERANDS_BITS;
132 
133   // OperandCapacity has uint8_t size, so it should be next to NumOperands
134   // to properly pack.
135   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
136   OperandCapacity CapOperands;          // Capacity of the Operands array.
137 
138   /// Various bits of additional information about the machine instruction.
139   uint32_t Flags : LLVM_MI_FLAGS_BITS;
140 
141   /// Various bits of information used by the AsmPrinter to emit helpful
142   /// comments.  This is *not* semantic information.  Do not use this for
143   /// anything other than to convey comment information to AsmPrinter.
144   uint8_t AsmPrinterFlags : LLVM_MI_ASMPRINTERFLAGS_BITS;
145 
146   /// Internal implementation detail class that provides out-of-line storage for
147   /// extra info used by the machine instruction when this info cannot be stored
148   /// in-line within the instruction itself.
149   ///
150   /// This has to be defined eagerly due to the implementation constraints of
151   /// `PointerSumType` where it is used.
152   class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *,
153                                           MCSymbol *, MDNode *, uint32_t> {
154   public:
155     static ExtraInfo *create(BumpPtrAllocator &Allocator,
156                              ArrayRef<MachineMemOperand *> MMOs,
157                              MCSymbol *PreInstrSymbol = nullptr,
158                              MCSymbol *PostInstrSymbol = nullptr,
159                              MDNode *HeapAllocMarker = nullptr,
160                              MDNode *PCSections = nullptr,
161                              uint32_t CFIType = 0) {
162       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
163       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
164       bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
165       bool HasCFIType = CFIType != 0;
166       bool HasPCSections = PCSections != nullptr;
167       auto *Result = new (Allocator.Allocate(
168           totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>(
169               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
170               HasHeapAllocMarker + HasPCSections, HasCFIType),
171           alignof(ExtraInfo)))
172           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
173                     HasHeapAllocMarker, HasPCSections, HasCFIType);
174 
175       // Copy the actual data into the trailing objects.
176       std::copy(MMOs.begin(), MMOs.end(),
177                 Result->getTrailingObjects<MachineMemOperand *>());
178 
179       if (HasPreInstrSymbol)
180         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
181       if (HasPostInstrSymbol)
182         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
183             PostInstrSymbol;
184       if (HasHeapAllocMarker)
185         Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
186       if (HasPCSections)
187         Result->getTrailingObjects<MDNode *>()[HasHeapAllocMarker] =
188             PCSections;
189       if (HasCFIType)
190         Result->getTrailingObjects<uint32_t>()[0] = CFIType;
191 
192       return Result;
193     }
194 
getMMOs()195     ArrayRef<MachineMemOperand *> getMMOs() const {
196       return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
197     }
198 
getPreInstrSymbol()199     MCSymbol *getPreInstrSymbol() const {
200       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
201     }
202 
getPostInstrSymbol()203     MCSymbol *getPostInstrSymbol() const {
204       return HasPostInstrSymbol
205                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
206                  : nullptr;
207     }
208 
getHeapAllocMarker()209     MDNode *getHeapAllocMarker() const {
210       return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
211     }
212 
getPCSections()213     MDNode *getPCSections() const {
214       return HasPCSections
215                  ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker]
216                  : nullptr;
217     }
218 
getCFIType()219     uint32_t getCFIType() const {
220       return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0;
221     }
222 
223   private:
224     friend TrailingObjects;
225 
226     // Description of the extra info, used to interpret the actual optional
227     // data appended.
228     //
229     // Note that this is not terribly space optimized. This leaves a great deal
230     // of flexibility to fit more in here later.
231     const int NumMMOs;
232     const bool HasPreInstrSymbol;
233     const bool HasPostInstrSymbol;
234     const bool HasHeapAllocMarker;
235     const bool HasPCSections;
236     const bool HasCFIType;
237 
238     // Implement the `TrailingObjects` internal API.
numTrailingObjects(OverloadToken<MachineMemOperand * >)239     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
240       return NumMMOs;
241     }
numTrailingObjects(OverloadToken<MCSymbol * >)242     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
243       return HasPreInstrSymbol + HasPostInstrSymbol;
244     }
numTrailingObjects(OverloadToken<MDNode * >)245     size_t numTrailingObjects(OverloadToken<MDNode *>) const {
246       return HasHeapAllocMarker + HasPCSections;
247     }
numTrailingObjects(OverloadToken<uint32_t>)248     size_t numTrailingObjects(OverloadToken<uint32_t>) const {
249       return HasCFIType;
250     }
251 
252     // Just a boring constructor to allow us to initialize the sizes. Always use
253     // the `create` routine above.
ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker,bool HasPCSections,bool HasCFIType)254     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
255               bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType)
256         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
257           HasPostInstrSymbol(HasPostInstrSymbol),
258           HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections),
259           HasCFIType(HasCFIType) {}
260   };
261 
262   /// Enumeration of the kinds of inline extra info available. It is important
263   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
264   /// it accessible as an `ArrayRef`.
265   enum ExtraInfoInlineKinds {
266     EIIK_MMO = 0,
267     EIIK_PreInstrSymbol,
268     EIIK_PostInstrSymbol,
269     EIIK_OutOfLine
270   };
271 
272   // We store extra information about the instruction here. The common case is
273   // expected to be nothing or a single pointer (typically a MMO or a symbol).
274   // We work to optimize this common case by storing it inline here rather than
275   // requiring a separate allocation, but we fall back to an allocation when
276   // multiple pointers are needed.
277   PointerSumType<ExtraInfoInlineKinds,
278                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
279                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
280                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
281                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
282       Info;
283 
284   DebugLoc DbgLoc; // Source line information.
285 
286   /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
287   /// defined by this instruction.
288   unsigned DebugInstrNum;
289 
290   // Intrusive list support
291   friend struct ilist_traits<MachineInstr>;
292   friend struct ilist_callback_traits<MachineBasicBlock>;
293   void setParent(MachineBasicBlock *P) { Parent = P; }
294 
295   /// This constructor creates a copy of the given
296   /// MachineInstr in the given MachineFunction.
297   MachineInstr(MachineFunction &, const MachineInstr &);
298 
299   /// This constructor create a MachineInstr and add the implicit operands.
300   /// It reserves space for number of operands specified by
301   /// MCInstrDesc.  An explicit DebugLoc is supplied.
302   MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL,
303                bool NoImp = false);
304 
305   // MachineInstrs are pool-allocated and owned by MachineFunction.
306   friend class MachineFunction;
307 
308   void
309   dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
310             SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
311 
312   static bool opIsRegDef(const MachineOperand &Op) {
313     return Op.isReg() && Op.isDef();
314   }
315 
316   static bool opIsRegUse(const MachineOperand &Op) {
317     return Op.isReg() && Op.isUse();
318   }
319 
320 public:
321   MachineInstr(const MachineInstr &) = delete;
322   MachineInstr &operator=(const MachineInstr &) = delete;
323   // Use MachineFunction::DeleteMachineInstr() instead.
324   ~MachineInstr() = delete;
325 
326   const MachineBasicBlock* getParent() const { return Parent; }
327   MachineBasicBlock* getParent() { return Parent; }
328 
329   /// Move the instruction before \p MovePos.
330   void moveBefore(MachineInstr *MovePos);
331 
332   /// Return the function that contains the basic block that this instruction
333   /// belongs to.
334   ///
335   /// Note: this is undefined behaviour if the instruction does not have a
336   /// parent.
337   const MachineFunction *getMF() const;
338   MachineFunction *getMF() {
339     return const_cast<MachineFunction *>(
340         static_cast<const MachineInstr *>(this)->getMF());
341   }
342 
343   /// Return the asm printer flags bitvector.
344   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
345 
346   /// Clear the AsmPrinter bitvector.
347   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
348 
349   /// Return whether an AsmPrinter flag is set.
350   bool getAsmPrinterFlag(CommentFlag Flag) const {
351     assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) &&
352            "Flag is out of range for the AsmPrinterFlags field");
353     return AsmPrinterFlags & Flag;
354   }
355 
356   /// Set a flag for the AsmPrinter.
357   void setAsmPrinterFlag(uint8_t Flag) {
358     assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) &&
359            "Flag is out of range for the AsmPrinterFlags field");
360     AsmPrinterFlags |= Flag;
361   }
362 
363   /// Clear specific AsmPrinter flags.
364   void clearAsmPrinterFlag(CommentFlag Flag) {
365     assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) &&
366            "Flag is out of range for the AsmPrinterFlags field");
367     AsmPrinterFlags &= ~Flag;
368   }
369 
370   /// Return the MI flags bitvector.
371   uint32_t getFlags() const {
372     return Flags;
373   }
374 
375   /// Return whether an MI flag is set.
376   bool getFlag(MIFlag Flag) const {
377     assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
378            "Flag is out of range for the Flags field");
379     return Flags & Flag;
380   }
381 
382   /// Set a MI flag.
383   void setFlag(MIFlag Flag) {
384     assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
385            "Flag is out of range for the Flags field");
386     Flags |= (uint32_t)Flag;
387   }
388 
389   void setFlags(unsigned flags) {
390     assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) &&
391            "flags to be set are out of range for the Flags field");
392     // Filter out the automatically maintained flags.
393     unsigned Mask = BundledPred | BundledSucc;
394     Flags = (Flags & Mask) | (flags & ~Mask);
395   }
396 
397   /// clearFlag - Clear a MI flag.
398   void clearFlag(MIFlag Flag) {
399     assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
400            "Flag to clear is out of range for the Flags field");
401     Flags &= ~((uint32_t)Flag);
402   }
403 
404   /// Return true if MI is in a bundle (but not the first MI in a bundle).
405   ///
406   /// A bundle looks like this before it's finalized:
407   ///   ----------------
408   ///   |      MI      |
409   ///   ----------------
410   ///          |
411   ///   ----------------
412   ///   |      MI    * |
413   ///   ----------------
414   ///          |
415   ///   ----------------
416   ///   |      MI    * |
417   ///   ----------------
418   /// In this case, the first MI starts a bundle but is not inside a bundle, the
419   /// next 2 MIs are considered "inside" the bundle.
420   ///
421   /// After a bundle is finalized, it looks like this:
422   ///   ----------------
423   ///   |    Bundle    |
424   ///   ----------------
425   ///          |
426   ///   ----------------
427   ///   |      MI    * |
428   ///   ----------------
429   ///          |
430   ///   ----------------
431   ///   |      MI    * |
432   ///   ----------------
433   ///          |
434   ///   ----------------
435   ///   |      MI    * |
436   ///   ----------------
437   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
438   /// a bundle, but the next three MIs are.
439   bool isInsideBundle() const {
440     return getFlag(BundledPred);
441   }
442 
443   /// Return true if this instruction part of a bundle. This is true
444   /// if either itself or its following instruction is marked "InsideBundle".
445   bool isBundled() const {
446     return isBundledWithPred() || isBundledWithSucc();
447   }
448 
449   /// Return true if this instruction is part of a bundle, and it is not the
450   /// first instruction in the bundle.
451   bool isBundledWithPred() const { return getFlag(BundledPred); }
452 
453   /// Return true if this instruction is part of a bundle, and it is not the
454   /// last instruction in the bundle.
455   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
456 
457   /// Bundle this instruction with its predecessor. This can be an unbundled
458   /// instruction, or it can be the first instruction in a bundle.
459   void bundleWithPred();
460 
461   /// Bundle this instruction with its successor. This can be an unbundled
462   /// instruction, or it can be the last instruction in a bundle.
463   void bundleWithSucc();
464 
465   /// Break bundle above this instruction.
466   void unbundleFromPred();
467 
468   /// Break bundle below this instruction.
469   void unbundleFromSucc();
470 
471   /// Returns the debug location id of this MachineInstr.
472   const DebugLoc &getDebugLoc() const { return DbgLoc; }
473 
474   /// Return the operand containing the offset to be used if this DBG_VALUE
475   /// instruction is indirect; will be an invalid register if this value is
476   /// not indirect, and an immediate with value 0 otherwise.
477   const MachineOperand &getDebugOffset() const {
478     assert(isNonListDebugValue() && "not a DBG_VALUE");
479     return getOperand(1);
480   }
481   MachineOperand &getDebugOffset() {
482     assert(isNonListDebugValue() && "not a DBG_VALUE");
483     return getOperand(1);
484   }
485 
486   /// Return the operand for the debug variable referenced by
487   /// this DBG_VALUE instruction.
488   const MachineOperand &getDebugVariableOp() const;
489   MachineOperand &getDebugVariableOp();
490 
491   /// Return the debug variable referenced by
492   /// this DBG_VALUE instruction.
493   const DILocalVariable *getDebugVariable() const;
494 
495   /// Return the operand for the complex address expression referenced by
496   /// this DBG_VALUE instruction.
497   const MachineOperand &getDebugExpressionOp() const;
498   MachineOperand &getDebugExpressionOp();
499 
500   /// Return the complex address expression referenced by
501   /// this DBG_VALUE instruction.
502   const DIExpression *getDebugExpression() const;
503 
504   /// Return the debug label referenced by
505   /// this DBG_LABEL instruction.
506   const DILabel *getDebugLabel() const;
507 
508   /// Fetch the instruction number of this MachineInstr. If it does not have
509   /// one already, a new and unique number will be assigned.
510   unsigned getDebugInstrNum();
511 
512   /// Fetch instruction number of this MachineInstr -- but before it's inserted
513   /// into \p MF. Needed for transformations that create an instruction but
514   /// don't immediately insert them.
515   unsigned getDebugInstrNum(MachineFunction &MF);
516 
517   /// Examine the instruction number of this MachineInstr. May be zero if
518   /// it hasn't been assigned a number yet.
519   unsigned peekDebugInstrNum() const { return DebugInstrNum; }
520 
521   /// Set instruction number of this MachineInstr. Avoid using unless you're
522   /// deserializing this information.
523   void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
524 
525   /// Drop any variable location debugging information associated with this
526   /// instruction. Use when an instruction is modified in such a way that it no
527   /// longer defines the value it used to. Variable locations using that value
528   /// will be dropped.
529   void dropDebugNumber() { DebugInstrNum = 0; }
530 
531   /// Emit an error referring to the source location of this instruction.
532   /// This should only be used for inline assembly that is somehow
533   /// impossible to compile. Other errors should have been handled much
534   /// earlier.
535   ///
536   /// If this method returns, the caller should try to recover from the error.
537   void emitError(StringRef Msg) const;
538 
539   /// Returns the target instruction descriptor of this MachineInstr.
540   const MCInstrDesc &getDesc() const { return *MCID; }
541 
542   /// Returns the opcode of this MachineInstr.
543   unsigned getOpcode() const { return MCID->Opcode; }
544 
545   /// Retuns the total number of operands.
546   unsigned getNumOperands() const { return NumOperands; }
547 
548   /// Returns the total number of operands which are debug locations.
549   unsigned getNumDebugOperands() const {
550     return std::distance(debug_operands().begin(), debug_operands().end());
551   }
552 
553   const MachineOperand& getOperand(unsigned i) const {
554     assert(i < getNumOperands() && "getOperand() out of range!");
555     return Operands[i];
556   }
557   MachineOperand& getOperand(unsigned i) {
558     assert(i < getNumOperands() && "getOperand() out of range!");
559     return Operands[i];
560   }
561 
562   MachineOperand &getDebugOperand(unsigned Index) {
563     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
564     return *(debug_operands().begin() + Index);
565   }
566   const MachineOperand &getDebugOperand(unsigned Index) const {
567     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
568     return *(debug_operands().begin() + Index);
569   }
570 
571   /// Returns whether this debug value has at least one debug operand with the
572   /// register \p Reg.
573   bool hasDebugOperandForReg(Register Reg) const {
574     return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
575       return Op.isReg() && Op.getReg() == Reg;
576     });
577   }
578 
579   /// Returns a range of all of the operands that correspond to a debug use of
580   /// \p Reg.
581   template <typename Operand, typename Instruction>
582   static iterator_range<
583       filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
584   getDebugOperandsForReg(Instruction *MI, Register Reg) {
585     std::function<bool(Operand & Op)> OpUsesReg(
586         [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
587     return make_filter_range(MI->debug_operands(), OpUsesReg);
588   }
589   iterator_range<filter_iterator<const MachineOperand *,
590                                  std::function<bool(const MachineOperand &Op)>>>
591   getDebugOperandsForReg(Register Reg) const {
592     return MachineInstr::getDebugOperandsForReg<const MachineOperand,
593                                                 const MachineInstr>(this, Reg);
594   }
595   iterator_range<filter_iterator<MachineOperand *,
596                                  std::function<bool(MachineOperand &Op)>>>
597   getDebugOperandsForReg(Register Reg) {
598     return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
599         this, Reg);
600   }
601 
602   bool isDebugOperand(const MachineOperand *Op) const {
603     return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
604   }
605 
606   unsigned getDebugOperandIndex(const MachineOperand *Op) const {
607     assert(isDebugOperand(Op) && "Expected a debug operand.");
608     return std::distance(adl_begin(debug_operands()), Op);
609   }
610 
611   /// Returns the total number of definitions.
612   unsigned getNumDefs() const {
613     return getNumExplicitDefs() + MCID->implicit_defs().size();
614   }
615 
616   /// Returns true if the instruction has implicit definition.
617   bool hasImplicitDef() const {
618     for (const MachineOperand &MO : implicit_operands())
619       if (MO.isDef() && MO.isImplicit())
620         return true;
621     return false;
622   }
623 
624   /// Returns the implicit operands number.
625   unsigned getNumImplicitOperands() const {
626     return getNumOperands() - getNumExplicitOperands();
627   }
628 
629   /// Return true if operand \p OpIdx is a subregister index.
630   bool isOperandSubregIdx(unsigned OpIdx) const {
631     assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type.");
632     if (isExtractSubreg() && OpIdx == 2)
633       return true;
634     if (isInsertSubreg() && OpIdx == 3)
635       return true;
636     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
637       return true;
638     if (isSubregToReg() && OpIdx == 3)
639       return true;
640     return false;
641   }
642 
643   /// Returns the number of non-implicit operands.
644   unsigned getNumExplicitOperands() const;
645 
646   /// Returns the number of non-implicit definitions.
647   unsigned getNumExplicitDefs() const;
648 
649   /// iterator/begin/end - Iterate over all operands of a machine instruction.
650   using mop_iterator = MachineOperand *;
651   using const_mop_iterator = const MachineOperand *;
652 
653   mop_iterator operands_begin() { return Operands; }
654   mop_iterator operands_end() { return Operands + NumOperands; }
655 
656   const_mop_iterator operands_begin() const { return Operands; }
657   const_mop_iterator operands_end() const { return Operands + NumOperands; }
658 
659   iterator_range<mop_iterator> operands() {
660     return make_range(operands_begin(), operands_end());
661   }
662   iterator_range<const_mop_iterator> operands() const {
663     return make_range(operands_begin(), operands_end());
664   }
665   iterator_range<mop_iterator> explicit_operands() {
666     return make_range(operands_begin(),
667                       operands_begin() + getNumExplicitOperands());
668   }
669   iterator_range<const_mop_iterator> explicit_operands() const {
670     return make_range(operands_begin(),
671                       operands_begin() + getNumExplicitOperands());
672   }
673   iterator_range<mop_iterator> implicit_operands() {
674     return make_range(explicit_operands().end(), operands_end());
675   }
676   iterator_range<const_mop_iterator> implicit_operands() const {
677     return make_range(explicit_operands().end(), operands_end());
678   }
679   /// Returns a range over all operands that are used to determine the variable
680   /// location for this DBG_VALUE instruction.
681   iterator_range<mop_iterator> debug_operands() {
682     assert((isDebugValueLike()) && "Must be a debug value instruction.");
683     return isNonListDebugValue()
684                ? make_range(operands_begin(), operands_begin() + 1)
685                : make_range(operands_begin() + 2, operands_end());
686   }
687   /// \copydoc debug_operands()
688   iterator_range<const_mop_iterator> debug_operands() const {
689     assert((isDebugValueLike()) && "Must be a debug value instruction.");
690     return isNonListDebugValue()
691                ? make_range(operands_begin(), operands_begin() + 1)
692                : make_range(operands_begin() + 2, operands_end());
693   }
694   /// Returns a range over all explicit operands that are register definitions.
695   /// Implicit definition are not included!
696   iterator_range<mop_iterator> defs() {
697     return make_range(operands_begin(),
698                       operands_begin() + getNumExplicitDefs());
699   }
700   /// \copydoc defs()
701   iterator_range<const_mop_iterator> defs() const {
702     return make_range(operands_begin(),
703                       operands_begin() + getNumExplicitDefs());
704   }
705   /// Returns a range that includes all operands that are register uses.
706   /// This may include unrelated operands which are not register uses.
707   iterator_range<mop_iterator> uses() {
708     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
709   }
710   /// \copydoc uses()
711   iterator_range<const_mop_iterator> uses() const {
712     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
713   }
714   iterator_range<mop_iterator> explicit_uses() {
715     return make_range(operands_begin() + getNumExplicitDefs(),
716                       operands_begin() + getNumExplicitOperands());
717   }
718   iterator_range<const_mop_iterator> explicit_uses() const {
719     return make_range(operands_begin() + getNumExplicitDefs(),
720                       operands_begin() + getNumExplicitOperands());
721   }
722 
723   using filtered_mop_iterator =
724       filter_iterator<mop_iterator, bool (*)(const MachineOperand &)>;
725   using filtered_const_mop_iterator =
726       filter_iterator<const_mop_iterator, bool (*)(const MachineOperand &)>;
727 
728   /// Returns an iterator range over all operands that are (explicit or
729   /// implicit) register defs.
730   iterator_range<filtered_mop_iterator> all_defs() {
731     return make_filter_range(operands(), opIsRegDef);
732   }
733   /// \copydoc all_defs()
734   iterator_range<filtered_const_mop_iterator> all_defs() const {
735     return make_filter_range(operands(), opIsRegDef);
736   }
737 
738   /// Returns an iterator range over all operands that are (explicit or
739   /// implicit) register uses.
740   iterator_range<filtered_mop_iterator> all_uses() {
741     return make_filter_range(uses(), opIsRegUse);
742   }
743   /// \copydoc all_uses()
744   iterator_range<filtered_const_mop_iterator> all_uses() const {
745     return make_filter_range(uses(), opIsRegUse);
746   }
747 
748   /// Returns the number of the operand iterator \p I points to.
749   unsigned getOperandNo(const_mop_iterator I) const {
750     return I - operands_begin();
751   }
752 
753   /// Access to memory operands of the instruction. If there are none, that does
754   /// not imply anything about whether the function accesses memory. Instead,
755   /// the caller must behave conservatively.
756   ArrayRef<MachineMemOperand *> memoperands() const {
757     if (!Info)
758       return {};
759 
760     if (Info.is<EIIK_MMO>())
761       return ArrayRef(Info.getAddrOfZeroTagPointer(), 1);
762 
763     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
764       return EI->getMMOs();
765 
766     return {};
767   }
768 
769   /// Access to memory operands of the instruction.
770   ///
771   /// If `memoperands_begin() == memoperands_end()`, that does not imply
772   /// anything about whether the function accesses memory. Instead, the caller
773   /// must behave conservatively.
774   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
775 
776   /// Access to memory operands of the instruction.
777   ///
778   /// If `memoperands_begin() == memoperands_end()`, that does not imply
779   /// anything about whether the function accesses memory. Instead, the caller
780   /// must behave conservatively.
781   mmo_iterator memoperands_end() const { return memoperands().end(); }
782 
783   /// Return true if we don't have any memory operands which described the
784   /// memory access done by this instruction.  If this is true, calling code
785   /// must be conservative.
786   bool memoperands_empty() const { return memoperands().empty(); }
787 
788   /// Return true if this instruction has exactly one MachineMemOperand.
789   bool hasOneMemOperand() const { return memoperands().size() == 1; }
790 
791   /// Return the number of memory operands.
792   unsigned getNumMemOperands() const { return memoperands().size(); }
793 
794   /// Helper to extract a pre-instruction symbol if one has been added.
795   MCSymbol *getPreInstrSymbol() const {
796     if (!Info)
797       return nullptr;
798     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
799       return S;
800     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
801       return EI->getPreInstrSymbol();
802 
803     return nullptr;
804   }
805 
806   /// Helper to extract a post-instruction symbol if one has been added.
807   MCSymbol *getPostInstrSymbol() const {
808     if (!Info)
809       return nullptr;
810     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
811       return S;
812     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
813       return EI->getPostInstrSymbol();
814 
815     return nullptr;
816   }
817 
818   /// Helper to extract a heap alloc marker if one has been added.
819   MDNode *getHeapAllocMarker() const {
820     if (!Info)
821       return nullptr;
822     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
823       return EI->getHeapAllocMarker();
824 
825     return nullptr;
826   }
827 
828   /// Helper to extract PCSections metadata target sections.
829   MDNode *getPCSections() const {
830     if (!Info)
831       return nullptr;
832     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
833       return EI->getPCSections();
834 
835     return nullptr;
836   }
837 
838   /// Helper to extract a CFI type hash if one has been added.
839   uint32_t getCFIType() const {
840     if (!Info)
841       return 0;
842     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
843       return EI->getCFIType();
844 
845     return 0;
846   }
847 
848   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
849   /// queries but they are bundle aware.
850 
851   enum QueryType {
852     IgnoreBundle,    // Ignore bundles
853     AnyInBundle,     // Return true if any instruction in bundle has property
854     AllInBundle      // Return true if all instructions in bundle have property
855   };
856 
857   /// Return true if the instruction (or in the case of a bundle,
858   /// the instructions inside the bundle) has the specified property.
859   /// The first argument is the property being queried.
860   /// The second argument indicates whether the query should look inside
861   /// instruction bundles.
862   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
863     assert(MCFlag < 64 &&
864            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
865     // Inline the fast path for unbundled or bundle-internal instructions.
866     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
867       return getDesc().getFlags() & (1ULL << MCFlag);
868 
869     // If this is the first instruction in a bundle, take the slow path.
870     return hasPropertyInBundle(1ULL << MCFlag, Type);
871   }
872 
873   /// Return true if this is an instruction that should go through the usual
874   /// legalization steps.
875   bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
876     return hasProperty(MCID::PreISelOpcode, Type);
877   }
878 
879   /// Return true if this instruction can have a variable number of operands.
880   /// In this case, the variable operands will be after the normal
881   /// operands but before the implicit definitions and uses (if any are
882   /// present).
883   bool isVariadic(QueryType Type = IgnoreBundle) const {
884     return hasProperty(MCID::Variadic, Type);
885   }
886 
887   /// Set if this instruction has an optional definition, e.g.
888   /// ARM instructions which can set condition code if 's' bit is set.
889   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
890     return hasProperty(MCID::HasOptionalDef, Type);
891   }
892 
893   /// Return true if this is a pseudo instruction that doesn't
894   /// correspond to a real machine instruction.
895   bool isPseudo(QueryType Type = IgnoreBundle) const {
896     return hasProperty(MCID::Pseudo, Type);
897   }
898 
899   /// Return true if this instruction doesn't produce any output in the form of
900   /// executable instructions.
901   bool isMetaInstruction(QueryType Type = IgnoreBundle) const {
902     return hasProperty(MCID::Meta, Type);
903   }
904 
905   bool isReturn(QueryType Type = AnyInBundle) const {
906     return hasProperty(MCID::Return, Type);
907   }
908 
909   /// Return true if this is an instruction that marks the end of an EH scope,
910   /// i.e., a catchpad or a cleanuppad instruction.
911   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
912     return hasProperty(MCID::EHScopeReturn, Type);
913   }
914 
915   bool isCall(QueryType Type = AnyInBundle) const {
916     return hasProperty(MCID::Call, Type);
917   }
918 
919   /// Return true if this is a call instruction that may have an associated
920   /// call site entry in the debug info.
921   bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
922   /// Return true if copying, moving, or erasing this instruction requires
923   /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
924   /// \ref eraseCallSiteInfo).
925   bool shouldUpdateCallSiteInfo() const;
926 
927   /// Returns true if the specified instruction stops control flow
928   /// from executing the instruction immediately following it.  Examples include
929   /// unconditional branches and return instructions.
930   bool isBarrier(QueryType Type = AnyInBundle) const {
931     return hasProperty(MCID::Barrier, Type);
932   }
933 
934   /// Returns true if this instruction part of the terminator for a basic block.
935   /// Typically this is things like return and branch instructions.
936   ///
937   /// Various passes use this to insert code into the bottom of a basic block,
938   /// but before control flow occurs.
939   bool isTerminator(QueryType Type = AnyInBundle) const {
940     return hasProperty(MCID::Terminator, Type);
941   }
942 
943   /// Returns true if this is a conditional, unconditional, or indirect branch.
944   /// Predicates below can be used to discriminate between
945   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
946   /// get more information.
947   bool isBranch(QueryType Type = AnyInBundle) const {
948     return hasProperty(MCID::Branch, Type);
949   }
950 
951   /// Return true if this is an indirect branch, such as a
952   /// branch through a register.
953   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
954     return hasProperty(MCID::IndirectBranch, Type);
955   }
956 
957   /// Return true if this is a branch which may fall
958   /// through to the next instruction or may transfer control flow to some other
959   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
960   /// information about this branch.
961   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
962     return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
963   }
964 
965   /// Return true if this is a branch which always
966   /// transfers control flow to some other block.  The
967   /// TargetInstrInfo::analyzeBranch method can be used to get more information
968   /// about this branch.
969   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
970     return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
971   }
972 
973   /// Return true if this instruction has a predicate operand that
974   /// controls execution.  It may be set to 'always', or may be set to other
975   /// values.   There are various methods in TargetInstrInfo that can be used to
976   /// control and modify the predicate in this instruction.
977   bool isPredicable(QueryType Type = AllInBundle) const {
978     // If it's a bundle than all bundled instructions must be predicable for this
979     // to return true.
980     return hasProperty(MCID::Predicable, Type);
981   }
982 
983   /// Return true if this instruction is a comparison.
984   bool isCompare(QueryType Type = IgnoreBundle) const {
985     return hasProperty(MCID::Compare, Type);
986   }
987 
988   /// Return true if this instruction is a move immediate
989   /// (including conditional moves) instruction.
990   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
991     return hasProperty(MCID::MoveImm, Type);
992   }
993 
994   /// Return true if this instruction is a register move.
995   /// (including moving values from subreg to reg)
996   bool isMoveReg(QueryType Type = IgnoreBundle) const {
997     return hasProperty(MCID::MoveReg, Type);
998   }
999 
1000   /// Return true if this instruction is a bitcast instruction.
1001   bool isBitcast(QueryType Type = IgnoreBundle) const {
1002     return hasProperty(MCID::Bitcast, Type);
1003   }
1004 
1005   /// Return true if this instruction is a select instruction.
1006   bool isSelect(QueryType Type = IgnoreBundle) const {
1007     return hasProperty(MCID::Select, Type);
1008   }
1009 
1010   /// Return true if this instruction cannot be safely duplicated.
1011   /// For example, if the instruction has a unique labels attached
1012   /// to it, duplicating it would cause multiple definition errors.
1013   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
1014     if (getPreInstrSymbol() || getPostInstrSymbol())
1015       return true;
1016     return hasProperty(MCID::NotDuplicable, Type);
1017   }
1018 
1019   /// Return true if this instruction is convergent.
1020   /// Convergent instructions can not be made control-dependent on any
1021   /// additional values.
1022   bool isConvergent(QueryType Type = AnyInBundle) const {
1023     if (isInlineAsm()) {
1024       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1025       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1026         return true;
1027     }
1028     if (getFlag(NoConvergent))
1029       return false;
1030     return hasProperty(MCID::Convergent, Type);
1031   }
1032 
1033   /// Returns true if the specified instruction has a delay slot
1034   /// which must be filled by the code generator.
1035   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
1036     return hasProperty(MCID::DelaySlot, Type);
1037   }
1038 
1039   /// Return true for instructions that can be folded as
1040   /// memory operands in other instructions. The most common use for this
1041   /// is instructions that are simple loads from memory that don't modify
1042   /// the loaded value in any way, but it can also be used for instructions
1043   /// that can be expressed as constant-pool loads, such as V_SETALLONES
1044   /// on x86, to allow them to be folded when it is beneficial.
1045   /// This should only be set on instructions that return a value in their
1046   /// only virtual register definition.
1047   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
1048     return hasProperty(MCID::FoldableAsLoad, Type);
1049   }
1050 
1051   /// Return true if this instruction behaves
1052   /// the same way as the generic REG_SEQUENCE instructions.
1053   /// E.g., on ARM,
1054   /// dX VMOVDRR rY, rZ
1055   /// is equivalent to
1056   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
1057   ///
1058   /// Note that for the optimizers to be able to take advantage of
1059   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
1060   /// override accordingly.
1061   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
1062     return hasProperty(MCID::RegSequence, Type);
1063   }
1064 
1065   /// Return true if this instruction behaves
1066   /// the same way as the generic EXTRACT_SUBREG instructions.
1067   /// E.g., on ARM,
1068   /// rX, rY VMOVRRD dZ
1069   /// is equivalent to two EXTRACT_SUBREG:
1070   /// rX = EXTRACT_SUBREG dZ, ssub_0
1071   /// rY = EXTRACT_SUBREG dZ, ssub_1
1072   ///
1073   /// Note that for the optimizers to be able to take advantage of
1074   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
1075   /// override accordingly.
1076   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
1077     return hasProperty(MCID::ExtractSubreg, Type);
1078   }
1079 
1080   /// Return true if this instruction behaves
1081   /// the same way as the generic INSERT_SUBREG instructions.
1082   /// E.g., on ARM,
1083   /// dX = VSETLNi32 dY, rZ, Imm
1084   /// is equivalent to a INSERT_SUBREG:
1085   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
1086   ///
1087   /// Note that for the optimizers to be able to take advantage of
1088   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
1089   /// override accordingly.
1090   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
1091     return hasProperty(MCID::InsertSubreg, Type);
1092   }
1093 
1094   //===--------------------------------------------------------------------===//
1095   // Side Effect Analysis
1096   //===--------------------------------------------------------------------===//
1097 
1098   /// Return true if this instruction could possibly read memory.
1099   /// Instructions with this flag set are not necessarily simple load
1100   /// instructions, they may load a value and modify it, for example.
1101   bool mayLoad(QueryType Type = AnyInBundle) const {
1102     if (isInlineAsm()) {
1103       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1104       if (ExtraInfo & InlineAsm::Extra_MayLoad)
1105         return true;
1106     }
1107     return hasProperty(MCID::MayLoad, Type);
1108   }
1109 
1110   /// Return true if this instruction could possibly modify memory.
1111   /// Instructions with this flag set are not necessarily simple store
1112   /// instructions, they may store a modified value based on their operands, or
1113   /// may not actually modify anything, for example.
1114   bool mayStore(QueryType Type = AnyInBundle) const {
1115     if (isInlineAsm()) {
1116       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1117       if (ExtraInfo & InlineAsm::Extra_MayStore)
1118         return true;
1119     }
1120     return hasProperty(MCID::MayStore, Type);
1121   }
1122 
1123   /// Return true if this instruction could possibly read or modify memory.
1124   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1125     return mayLoad(Type) || mayStore(Type);
1126   }
1127 
1128   /// Return true if this instruction could possibly raise a floating-point
1129   /// exception.  This is the case if the instruction is a floating-point
1130   /// instruction that can in principle raise an exception, as indicated
1131   /// by the MCID::MayRaiseFPException property, *and* at the same time,
1132   /// the instruction is used in a context where we expect floating-point
1133   /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1134   bool mayRaiseFPException() const {
1135     return hasProperty(MCID::MayRaiseFPException) &&
1136            !getFlag(MachineInstr::MIFlag::NoFPExcept);
1137   }
1138 
1139   //===--------------------------------------------------------------------===//
1140   // Flags that indicate whether an instruction can be modified by a method.
1141   //===--------------------------------------------------------------------===//
1142 
1143   /// Return true if this may be a 2- or 3-address
1144   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1145   /// result if Y and Z are exchanged.  If this flag is set, then the
1146   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1147   /// instruction.
1148   ///
1149   /// Note that this flag may be set on instructions that are only commutable
1150   /// sometimes.  In these cases, the call to commuteInstruction will fail.
1151   /// Also note that some instructions require non-trivial modification to
1152   /// commute them.
1153   bool isCommutable(QueryType Type = IgnoreBundle) const {
1154     return hasProperty(MCID::Commutable, Type);
1155   }
1156 
1157   /// Return true if this is a 2-address instruction
1158   /// which can be changed into a 3-address instruction if needed.  Doing this
1159   /// transformation can be profitable in the register allocator, because it
1160   /// means that the instruction can use a 2-address form if possible, but
1161   /// degrade into a less efficient form if the source and dest register cannot
1162   /// be assigned to the same register.  For example, this allows the x86
1163   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1164   /// is the same speed as the shift but has bigger code size.
1165   ///
1166   /// If this returns true, then the target must implement the
1167   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1168   /// is allowed to fail if the transformation isn't valid for this specific
1169   /// instruction (e.g. shl reg, 4 on x86).
1170   ///
1171   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1172     return hasProperty(MCID::ConvertibleTo3Addr, Type);
1173   }
1174 
1175   /// Return true if this instruction requires
1176   /// custom insertion support when the DAG scheduler is inserting it into a
1177   /// machine basic block.  If this is true for the instruction, it basically
1178   /// means that it is a pseudo instruction used at SelectionDAG time that is
1179   /// expanded out into magic code by the target when MachineInstrs are formed.
1180   ///
1181   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1182   /// is used to insert this into the MachineBasicBlock.
1183   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1184     return hasProperty(MCID::UsesCustomInserter, Type);
1185   }
1186 
1187   /// Return true if this instruction requires *adjustment*
1188   /// after instruction selection by calling a target hook. For example, this
1189   /// can be used to fill in ARM 's' optional operand depending on whether
1190   /// the conditional flag register is used.
1191   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1192     return hasProperty(MCID::HasPostISelHook, Type);
1193   }
1194 
1195   /// Returns true if this instruction is a candidate for remat.
1196   /// This flag is deprecated, please don't use it anymore.  If this
1197   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1198   /// verify the instruction is really rematerializable.
1199   bool isRematerializable(QueryType Type = AllInBundle) const {
1200     // It's only possible to re-mat a bundle if all bundled instructions are
1201     // re-materializable.
1202     return hasProperty(MCID::Rematerializable, Type);
1203   }
1204 
1205   /// Returns true if this instruction has the same cost (or less) than a move
1206   /// instruction. This is useful during certain types of optimizations
1207   /// (e.g., remat during two-address conversion or machine licm)
1208   /// where we would like to remat or hoist the instruction, but not if it costs
1209   /// more than moving the instruction into the appropriate register. Note, we
1210   /// are not marking copies from and to the same register class with this flag.
1211   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1212     // Only returns true for a bundle if all bundled instructions are cheap.
1213     return hasProperty(MCID::CheapAsAMove, Type);
1214   }
1215 
1216   /// Returns true if this instruction source operands
1217   /// have special register allocation requirements that are not captured by the
1218   /// operand register classes. e.g. ARM::STRD's two source registers must be an
1219   /// even / odd pair, ARM::STM registers have to be in ascending order.
1220   /// Post-register allocation passes should not attempt to change allocations
1221   /// for sources of instructions with this flag.
1222   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1223     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1224   }
1225 
1226   /// Returns true if this instruction def operands
1227   /// have special register allocation requirements that are not captured by the
1228   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1229   /// even / odd pair, ARM::LDM registers have to be in ascending order.
1230   /// Post-register allocation passes should not attempt to change allocations
1231   /// for definitions of instructions with this flag.
1232   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1233     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1234   }
1235 
1236   enum MICheckType {
1237     CheckDefs,      // Check all operands for equality
1238     CheckKillDead,  // Check all operands including kill / dead markers
1239     IgnoreDefs,     // Ignore all definitions
1240     IgnoreVRegDefs  // Ignore virtual register definitions
1241   };
1242 
1243   /// Return true if this instruction is identical to \p Other.
1244   /// Two instructions are identical if they have the same opcode and all their
1245   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1246   /// Note that this means liveness related flags (dead, undef, kill) do not
1247   /// affect the notion of identical.
1248   bool isIdenticalTo(const MachineInstr &Other,
1249                      MICheckType Check = CheckDefs) const;
1250 
1251   /// Returns true if this instruction is a debug instruction that represents an
1252   /// identical debug value to \p Other.
1253   /// This function considers these debug instructions equivalent if they have
1254   /// identical variables, debug locations, and debug operands, and if the
1255   /// DIExpressions combined with the directness flags are equivalent.
1256   bool isEquivalentDbgInstr(const MachineInstr &Other) const;
1257 
1258   /// Unlink 'this' from the containing basic block, and return it without
1259   /// deleting it.
1260   ///
1261   /// This function can not be used on bundled instructions, use
1262   /// removeFromBundle() to remove individual instructions from a bundle.
1263   MachineInstr *removeFromParent();
1264 
1265   /// Unlink this instruction from its basic block and return it without
1266   /// deleting it.
1267   ///
1268   /// If the instruction is part of a bundle, the other instructions in the
1269   /// bundle remain bundled.
1270   MachineInstr *removeFromBundle();
1271 
1272   /// Unlink 'this' from the containing basic block and delete it.
1273   ///
1274   /// If this instruction is the header of a bundle, the whole bundle is erased.
1275   /// This function can not be used for instructions inside a bundle, use
1276   /// eraseFromBundle() to erase individual bundled instructions.
1277   void eraseFromParent();
1278 
1279   /// Unlink 'this' from its basic block and delete it.
1280   ///
1281   /// If the instruction is part of a bundle, the other instructions in the
1282   /// bundle remain bundled.
1283   void eraseFromBundle();
1284 
1285   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1286   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1287   bool isAnnotationLabel() const {
1288     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1289   }
1290 
1291   /// Returns true if the MachineInstr represents a label.
1292   bool isLabel() const {
1293     return isEHLabel() || isGCLabel() || isAnnotationLabel();
1294   }
1295 
1296   bool isCFIInstruction() const {
1297     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1298   }
1299 
1300   bool isPseudoProbe() const {
1301     return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1302   }
1303 
1304   // True if the instruction represents a position in the function.
1305   bool isPosition() const { return isLabel() || isCFIInstruction(); }
1306 
1307   bool isNonListDebugValue() const {
1308     return getOpcode() == TargetOpcode::DBG_VALUE;
1309   }
1310   bool isDebugValueList() const {
1311     return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1312   }
1313   bool isDebugValue() const {
1314     return isNonListDebugValue() || isDebugValueList();
1315   }
1316   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1317   bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1318   bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); }
1319   bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1320   bool isDebugInstr() const {
1321     return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1322   }
1323   bool isDebugOrPseudoInstr() const {
1324     return isDebugInstr() || isPseudoProbe();
1325   }
1326 
1327   bool isDebugOffsetImm() const {
1328     return isNonListDebugValue() && getDebugOffset().isImm();
1329   }
1330 
1331   /// A DBG_VALUE is indirect iff the location operand is a register and
1332   /// the offset operand is an immediate.
1333   bool isIndirectDebugValue() const {
1334     return isDebugOffsetImm() && getDebugOperand(0).isReg();
1335   }
1336 
1337   /// A DBG_VALUE is an entry value iff its debug expression contains the
1338   /// DW_OP_LLVM_entry_value operation.
1339   bool isDebugEntryValue() const;
1340 
1341   /// Return true if the instruction is a debug value which describes a part of
1342   /// a variable as unavailable.
1343   bool isUndefDebugValue() const {
1344     if (!isDebugValue())
1345       return false;
1346     // If any $noreg locations are given, this DV is undef.
1347     for (const MachineOperand &Op : debug_operands())
1348       if (Op.isReg() && !Op.getReg().isValid())
1349         return true;
1350     return false;
1351   }
1352 
1353   bool isJumpTableDebugInfo() const {
1354     return getOpcode() == TargetOpcode::JUMP_TABLE_DEBUG_INFO;
1355   }
1356 
1357   bool isPHI() const {
1358     return getOpcode() == TargetOpcode::PHI ||
1359            getOpcode() == TargetOpcode::G_PHI;
1360   }
1361   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1362   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1363   bool isInlineAsm() const {
1364     return getOpcode() == TargetOpcode::INLINEASM ||
1365            getOpcode() == TargetOpcode::INLINEASM_BR;
1366   }
1367   /// Returns true if the register operand can be folded with a load or store
1368   /// into a frame index. Does so by checking the InlineAsm::Flag immediate
1369   /// operand at OpId - 1.
1370   bool mayFoldInlineAsmRegOp(unsigned OpId) const;
1371 
1372   bool isStackAligningInlineAsm() const;
1373   InlineAsm::AsmDialect getInlineAsmDialect() const;
1374 
1375   bool isInsertSubreg() const {
1376     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1377   }
1378 
1379   bool isSubregToReg() const {
1380     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1381   }
1382 
1383   bool isRegSequence() const {
1384     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1385   }
1386 
1387   bool isBundle() const {
1388     return getOpcode() == TargetOpcode::BUNDLE;
1389   }
1390 
1391   bool isCopy() const {
1392     return getOpcode() == TargetOpcode::COPY;
1393   }
1394 
1395   bool isFullCopy() const {
1396     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1397   }
1398 
1399   bool isExtractSubreg() const {
1400     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1401   }
1402 
1403   /// Return true if the instruction behaves like a copy.
1404   /// This does not include native copy instructions.
1405   bool isCopyLike() const {
1406     return isCopy() || isSubregToReg();
1407   }
1408 
1409   /// Return true is the instruction is an identity copy.
1410   bool isIdentityCopy() const {
1411     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1412       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1413   }
1414 
1415   /// Return true if this is a transient instruction that is either very likely
1416   /// to be eliminated during register allocation (such as copy-like
1417   /// instructions), or if this instruction doesn't have an execution-time cost.
1418   bool isTransient() const {
1419     switch (getOpcode()) {
1420     default:
1421       return isMetaInstruction();
1422     // Copy-like instructions are usually eliminated during register allocation.
1423     case TargetOpcode::PHI:
1424     case TargetOpcode::G_PHI:
1425     case TargetOpcode::COPY:
1426     case TargetOpcode::INSERT_SUBREG:
1427     case TargetOpcode::SUBREG_TO_REG:
1428     case TargetOpcode::REG_SEQUENCE:
1429       return true;
1430     }
1431   }
1432 
1433   /// Return the number of instructions inside the MI bundle, excluding the
1434   /// bundle header.
1435   ///
1436   /// This is the number of instructions that MachineBasicBlock::iterator
1437   /// skips, 0 for unbundled instructions.
1438   unsigned getBundleSize() const;
1439 
1440   /// Return true if the MachineInstr reads the specified register.
1441   /// If TargetRegisterInfo is passed, then it also checks if there
1442   /// is a read of a super-register.
1443   /// This does not count partial redefines of virtual registers as reads:
1444   ///   %reg1024:6 = OP.
1445   bool readsRegister(Register Reg,
1446                      const TargetRegisterInfo *TRI = nullptr) const {
1447     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1448   }
1449 
1450   /// Return true if the MachineInstr reads the specified virtual register.
1451   /// Take into account that a partial define is a
1452   /// read-modify-write operation.
1453   bool readsVirtualRegister(Register Reg) const {
1454     return readsWritesVirtualRegister(Reg).first;
1455   }
1456 
1457   /// Return a pair of bools (reads, writes) indicating if this instruction
1458   /// reads or writes Reg. This also considers partial defines.
1459   /// If Ops is not null, all operand indices for Reg are added.
1460   std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1461                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1462 
1463   /// Return true if the MachineInstr kills the specified register.
1464   /// If TargetRegisterInfo is passed, then it also checks if there is
1465   /// a kill of a super-register.
1466   bool killsRegister(Register Reg,
1467                      const TargetRegisterInfo *TRI = nullptr) const {
1468     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1469   }
1470 
1471   /// Return true if the MachineInstr fully defines the specified register.
1472   /// If TargetRegisterInfo is passed, then it also checks
1473   /// if there is a def of a super-register.
1474   /// NOTE: It's ignoring subreg indices on virtual registers.
1475   bool definesRegister(Register Reg,
1476                        const TargetRegisterInfo *TRI = nullptr) const {
1477     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1478   }
1479 
1480   /// Return true if the MachineInstr modifies (fully define or partially
1481   /// define) the specified register.
1482   /// NOTE: It's ignoring subreg indices on virtual registers.
1483   bool modifiesRegister(Register Reg,
1484                         const TargetRegisterInfo *TRI = nullptr) const {
1485     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1486   }
1487 
1488   /// Returns true if the register is dead in this machine instruction.
1489   /// If TargetRegisterInfo is passed, then it also checks
1490   /// if there is a dead def of a super-register.
1491   bool registerDefIsDead(Register Reg,
1492                          const TargetRegisterInfo *TRI = nullptr) const {
1493     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1494   }
1495 
1496   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1497   /// the given register (not considering sub/super-registers).
1498   bool hasRegisterImplicitUseOperand(Register Reg) const;
1499 
1500   /// Returns the operand index that is a use of the specific register or -1
1501   /// if it is not found. It further tightens the search criteria to a use
1502   /// that kills the register if isKill is true.
1503   int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1504                                 const TargetRegisterInfo *TRI = nullptr) const;
1505 
1506   /// Wrapper for findRegisterUseOperandIdx, it returns
1507   /// a pointer to the MachineOperand rather than an index.
1508   MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1509                                       const TargetRegisterInfo *TRI = nullptr) {
1510     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1511     return (Idx == -1) ? nullptr : &getOperand(Idx);
1512   }
1513 
1514   const MachineOperand *findRegisterUseOperand(
1515     Register Reg, bool isKill = false,
1516     const TargetRegisterInfo *TRI = nullptr) const {
1517     return const_cast<MachineInstr *>(this)->
1518       findRegisterUseOperand(Reg, isKill, TRI);
1519   }
1520 
1521   /// Returns the operand index that is a def of the specified register or
1522   /// -1 if it is not found. If isDead is true, defs that are not dead are
1523   /// skipped. If Overlap is true, then it also looks for defs that merely
1524   /// overlap the specified register. If TargetRegisterInfo is non-null,
1525   /// then it also checks if there is a def of a super-register.
1526   /// This may also return a register mask operand when Overlap is true.
1527   int findRegisterDefOperandIdx(Register Reg,
1528                                 bool isDead = false, bool Overlap = false,
1529                                 const TargetRegisterInfo *TRI = nullptr) const;
1530 
1531   /// Wrapper for findRegisterDefOperandIdx, it returns
1532   /// a pointer to the MachineOperand rather than an index.
1533   MachineOperand *
1534   findRegisterDefOperand(Register Reg, bool isDead = false,
1535                          bool Overlap = false,
1536                          const TargetRegisterInfo *TRI = nullptr) {
1537     int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1538     return (Idx == -1) ? nullptr : &getOperand(Idx);
1539   }
1540 
1541   const MachineOperand *
1542   findRegisterDefOperand(Register Reg, bool isDead = false,
1543                          bool Overlap = false,
1544                          const TargetRegisterInfo *TRI = nullptr) const {
1545     return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1546         Reg, isDead, Overlap, TRI);
1547   }
1548 
1549   /// Find the index of the first operand in the
1550   /// operand list that is used to represent the predicate. It returns -1 if
1551   /// none is found.
1552   int findFirstPredOperandIdx() const;
1553 
1554   /// Find the index of the flag word operand that
1555   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1556   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1557   ///
1558   /// If GroupNo is not NULL, it will receive the number of the operand group
1559   /// containing OpIdx.
1560   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1561 
1562   /// Compute the static register class constraint for operand OpIdx.
1563   /// For normal instructions, this is derived from the MCInstrDesc.
1564   /// For inline assembly it is derived from the flag words.
1565   ///
1566   /// Returns NULL if the static register class constraint cannot be
1567   /// determined.
1568   const TargetRegisterClass*
1569   getRegClassConstraint(unsigned OpIdx,
1570                         const TargetInstrInfo *TII,
1571                         const TargetRegisterInfo *TRI) const;
1572 
1573   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1574   /// the given \p CurRC.
1575   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1576   /// instructions inside the bundle will be taken into account. In other words,
1577   /// this method accumulates all the constraints of the operand of this MI and
1578   /// the related bundle if MI is a bundle or inside a bundle.
1579   ///
1580   /// Returns the register class that satisfies both \p CurRC and the
1581   /// constraints set by MI. Returns NULL if such a register class does not
1582   /// exist.
1583   ///
1584   /// \pre CurRC must not be NULL.
1585   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1586       Register Reg, const TargetRegisterClass *CurRC,
1587       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1588       bool ExploreBundle = false) const;
1589 
1590   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1591   /// to the given \p CurRC.
1592   ///
1593   /// Returns the register class that satisfies both \p CurRC and the
1594   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1595   /// does not exist.
1596   ///
1597   /// \pre CurRC must not be NULL.
1598   /// \pre The operand at \p OpIdx must be a register.
1599   const TargetRegisterClass *
1600   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1601                               const TargetInstrInfo *TII,
1602                               const TargetRegisterInfo *TRI) const;
1603 
1604   /// Add a tie between the register operands at DefIdx and UseIdx.
1605   /// The tie will cause the register allocator to ensure that the two
1606   /// operands are assigned the same physical register.
1607   ///
1608   /// Tied operands are managed automatically for explicit operands in the
1609   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1610   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1611 
1612   /// Given the index of a tied register operand, find the
1613   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1614   /// index of the tied operand which must exist.
1615   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1616 
1617   /// Given the index of a register def operand,
1618   /// check if the register def is tied to a source operand, due to either
1619   /// two-address elimination or inline assembly constraints. Returns the
1620   /// first tied use operand index by reference if UseOpIdx is not null.
1621   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1622                              unsigned *UseOpIdx = nullptr) const {
1623     const MachineOperand &MO = getOperand(DefOpIdx);
1624     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1625       return false;
1626     if (UseOpIdx)
1627       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1628     return true;
1629   }
1630 
1631   /// Return true if the use operand of the specified index is tied to a def
1632   /// operand. It also returns the def operand index by reference if DefOpIdx
1633   /// is not null.
1634   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1635                              unsigned *DefOpIdx = nullptr) const {
1636     const MachineOperand &MO = getOperand(UseOpIdx);
1637     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1638       return false;
1639     if (DefOpIdx)
1640       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1641     return true;
1642   }
1643 
1644   /// Clears kill flags on all operands.
1645   void clearKillInfo();
1646 
1647   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1648   /// properly composing subreg indices where necessary.
1649   void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1650                           const TargetRegisterInfo &RegInfo);
1651 
1652   /// We have determined MI kills a register. Look for the
1653   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1654   /// add a implicit operand if it's not found. Returns true if the operand
1655   /// exists / is added.
1656   bool addRegisterKilled(Register IncomingReg,
1657                          const TargetRegisterInfo *RegInfo,
1658                          bool AddIfNotFound = false);
1659 
1660   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1661   /// all aliasing registers.
1662   void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1663 
1664   /// We have determined MI defined a register without a use.
1665   /// Look for the operand that defines it and mark it as IsDead. If
1666   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1667   /// true if the operand exists / is added.
1668   bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1669                        bool AddIfNotFound = false);
1670 
1671   /// Clear all dead flags on operands defining register @p Reg.
1672   void clearRegisterDeads(Register Reg);
1673 
1674   /// Mark all subregister defs of register @p Reg with the undef flag.
1675   /// This function is used when we determined to have a subregister def in an
1676   /// otherwise undefined super register.
1677   void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1678 
1679   /// We have determined MI defines a register. Make sure there is an operand
1680   /// defining Reg.
1681   void addRegisterDefined(Register Reg,
1682                           const TargetRegisterInfo *RegInfo = nullptr);
1683 
1684   /// Mark every physreg used by this instruction as
1685   /// dead except those in the UsedRegs list.
1686   ///
1687   /// On instructions with register mask operands, also add implicit-def
1688   /// operands for all registers in UsedRegs.
1689   void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1690                              const TargetRegisterInfo &TRI);
1691 
1692   /// Return true if it is safe to move this instruction. If
1693   /// SawStore is set to true, it means that there is a store (or call) between
1694   /// the instruction's location and its intended destination.
1695   bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1696 
1697   /// Returns true if this instruction's memory access aliases the memory
1698   /// access of Other.
1699   //
1700   /// Assumes any physical registers used to compute addresses
1701   /// have the same value for both instructions.  Returns false if neither
1702   /// instruction writes to memory.
1703   ///
1704   /// @param AA Optional alias analysis, used to compare memory operands.
1705   /// @param Other MachineInstr to check aliasing against.
1706   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1707   bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1708 
1709   /// Return true if this instruction may have an ordered
1710   /// or volatile memory reference, or if the information describing the memory
1711   /// reference is not available. Return false if it is known to have no
1712   /// ordered or volatile memory references.
1713   bool hasOrderedMemoryRef() const;
1714 
1715   /// Return true if this load instruction never traps and points to a memory
1716   /// location whose value doesn't change during the execution of this function.
1717   ///
1718   /// Examples include loading a value from the constant pool or from the
1719   /// argument area of a function (if it does not change).  If the instruction
1720   /// does multiple loads, this returns true only if all of the loads are
1721   /// dereferenceable and invariant.
1722   bool isDereferenceableInvariantLoad() const;
1723 
1724   /// If the specified instruction is a PHI that always merges together the
1725   /// same virtual register, return the register, otherwise return 0.
1726   unsigned isConstantValuePHI() const;
1727 
1728   /// Return true if this instruction has side effects that are not modeled
1729   /// by mayLoad / mayStore, etc.
1730   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1731   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1732   /// INLINEASM instruction, in which case the side effect property is encoded
1733   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1734   ///
1735   bool hasUnmodeledSideEffects() const;
1736 
1737   /// Returns true if it is illegal to fold a load across this instruction.
1738   bool isLoadFoldBarrier() const;
1739 
1740   /// Return true if all the defs of this instruction are dead.
1741   bool allDefsAreDead() const;
1742 
1743   /// Return true if all the implicit defs of this instruction are dead.
1744   bool allImplicitDefsAreDead() const;
1745 
1746   /// Return a valid size if the instruction is a spill instruction.
1747   std::optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1748 
1749   /// Return a valid size if the instruction is a folded spill instruction.
1750   std::optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1751 
1752   /// Return a valid size if the instruction is a restore instruction.
1753   std::optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1754 
1755   /// Return a valid size if the instruction is a folded restore instruction.
1756   std::optional<unsigned>
1757   getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1758 
1759   /// Copy implicit register operands from specified
1760   /// instruction to this instruction.
1761   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1762 
1763   /// Debugging support
1764   /// @{
1765   /// Determine the generic type to be printed (if needed) on uses and defs.
1766   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1767                      const MachineRegisterInfo &MRI) const;
1768 
1769   /// Return true when an instruction has tied register that can't be determined
1770   /// by the instruction's descriptor. This is useful for MIR printing, to
1771   /// determine whether we need to print the ties or not.
1772   bool hasComplexRegisterTies() const;
1773 
1774   /// Print this MI to \p OS.
1775   /// Don't print information that can be inferred from other instructions if
1776   /// \p IsStandalone is false. It is usually true when only a fragment of the
1777   /// function is printed.
1778   /// Only print the defs and the opcode if \p SkipOpers is true.
1779   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1780   /// Otherwise, also print the debug loc, with a terminating newline.
1781   /// \p TII is used to print the opcode name.  If it's not present, but the
1782   /// MI is in a function, the opcode will be printed using the function's TII.
1783   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1784              bool SkipDebugLoc = false, bool AddNewLine = true,
1785              const TargetInstrInfo *TII = nullptr) const;
1786   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1787              bool SkipOpers = false, bool SkipDebugLoc = false,
1788              bool AddNewLine = true,
1789              const TargetInstrInfo *TII = nullptr) const;
1790   void dump() const;
1791   /// Print on dbgs() the current instruction and the instructions defining its
1792   /// operands and so on until we reach \p MaxDepth.
1793   void dumpr(const MachineRegisterInfo &MRI,
1794              unsigned MaxDepth = UINT_MAX) const;
1795   /// @}
1796 
1797   //===--------------------------------------------------------------------===//
1798   // Accessors used to build up machine instructions.
1799 
1800   /// Add the specified operand to the instruction.  If it is an implicit
1801   /// operand, it is added to the end of the operand list.  If it is an
1802   /// explicit operand it is added at the end of the explicit operand list
1803   /// (before the first implicit operand).
1804   ///
1805   /// MF must be the machine function that was used to allocate this
1806   /// instruction.
1807   ///
1808   /// MachineInstrBuilder provides a more convenient interface for creating
1809   /// instructions and adding operands.
1810   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1811 
1812   /// Add an operand without providing an MF reference. This only works for
1813   /// instructions that are inserted in a basic block.
1814   ///
1815   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1816   /// preferred.
1817   void addOperand(const MachineOperand &Op);
1818 
1819   /// Inserts Ops BEFORE It. Can untie/retie tied operands.
1820   void insert(mop_iterator InsertBefore, ArrayRef<MachineOperand> Ops);
1821 
1822   /// Replace the instruction descriptor (thus opcode) of
1823   /// the current instruction with a new one.
1824   void setDesc(const MCInstrDesc &TID);
1825 
1826   /// Replace current source information with new such.
1827   /// Avoid using this, the constructor argument is preferable.
1828   void setDebugLoc(DebugLoc DL) {
1829     DbgLoc = std::move(DL);
1830     assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
1831   }
1832 
1833   /// Erase an operand from an instruction, leaving it with one
1834   /// fewer operand than it started with.
1835   void removeOperand(unsigned OpNo);
1836 
1837   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1838   /// the memrefs to their most conservative state.  This should be used only
1839   /// as a last resort since it greatly pessimizes our knowledge of the memory
1840   /// access performed by the instruction.
1841   void dropMemRefs(MachineFunction &MF);
1842 
1843   /// Assign this MachineInstr's memory reference descriptor list.
1844   ///
1845   /// Unlike other methods, this *will* allocate them into a new array
1846   /// associated with the provided `MachineFunction`.
1847   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1848 
1849   /// Add a MachineMemOperand to the machine instruction.
1850   /// This function should be used only occasionally. The setMemRefs function
1851   /// is the primary method for setting up a MachineInstr's MemRefs list.
1852   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1853 
1854   /// Clone another MachineInstr's memory reference descriptor list and replace
1855   /// ours with it.
1856   ///
1857   /// Note that `*this` may be the incoming MI!
1858   ///
1859   /// Prefer this API whenever possible as it can avoid allocations in common
1860   /// cases.
1861   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1862 
1863   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1864   /// list and replace ours with it.
1865   ///
1866   /// Note that `*this` may be one of the incoming MIs!
1867   ///
1868   /// Prefer this API whenever possible as it can avoid allocations in common
1869   /// cases.
1870   void cloneMergedMemRefs(MachineFunction &MF,
1871                           ArrayRef<const MachineInstr *> MIs);
1872 
1873   /// Set a symbol that will be emitted just prior to the instruction itself.
1874   ///
1875   /// Setting this to a null pointer will remove any such symbol.
1876   ///
1877   /// FIXME: This is not fully implemented yet.
1878   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1879 
1880   /// Set a symbol that will be emitted just after the instruction itself.
1881   ///
1882   /// Setting this to a null pointer will remove any such symbol.
1883   ///
1884   /// FIXME: This is not fully implemented yet.
1885   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1886 
1887   /// Clone another MachineInstr's pre- and post- instruction symbols and
1888   /// replace ours with it.
1889   void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1890 
1891   /// Set a marker on instructions that denotes where we should create and emit
1892   /// heap alloc site labels. This waits until after instruction selection and
1893   /// optimizations to create the label, so it should still work if the
1894   /// instruction is removed or duplicated.
1895   void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1896 
1897   // Set metadata on instructions that say which sections to emit instruction
1898   // addresses into.
1899   void setPCSections(MachineFunction &MF, MDNode *MD);
1900 
1901   /// Set the CFI type for the instruction.
1902   void setCFIType(MachineFunction &MF, uint32_t Type);
1903 
1904   /// Return the MIFlags which represent both MachineInstrs. This
1905   /// should be used when merging two MachineInstrs into one. This routine does
1906   /// not modify the MIFlags of this MachineInstr.
1907   uint32_t mergeFlagsWith(const MachineInstr& Other) const;
1908 
1909   static uint32_t copyFlagsFromInstruction(const Instruction &I);
1910 
1911   /// Copy all flags to MachineInst MIFlags
1912   void copyIRFlags(const Instruction &I);
1913 
1914   /// Break any tie involving OpIdx.
1915   void untieRegOperand(unsigned OpIdx) {
1916     MachineOperand &MO = getOperand(OpIdx);
1917     if (MO.isReg() && MO.isTied()) {
1918       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1919       MO.TiedTo = 0;
1920     }
1921   }
1922 
1923   /// Add all implicit def and use operands to this instruction.
1924   void addImplicitDefUseOperands(MachineFunction &MF);
1925 
1926   /// Scan instructions immediately following MI and collect any matching
1927   /// DBG_VALUEs.
1928   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1929 
1930   /// Find all DBG_VALUEs that point to the register def in this instruction
1931   /// and point them to \p Reg instead.
1932   void changeDebugValuesDefReg(Register Reg);
1933 
1934   /// Sets all register debug operands in this debug value instruction to be
1935   /// undef.
1936   void setDebugValueUndef() {
1937     assert(isDebugValue() && "Must be a debug value instruction.");
1938     for (MachineOperand &MO : debug_operands()) {
1939       if (MO.isReg()) {
1940         MO.setReg(0);
1941         MO.setSubReg(0);
1942       }
1943     }
1944   }
1945 
1946   std::tuple<Register, Register> getFirst2Regs() const {
1947     return std::tuple(getOperand(0).getReg(), getOperand(1).getReg());
1948   }
1949 
1950   std::tuple<Register, Register, Register> getFirst3Regs() const {
1951     return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(),
1952                       getOperand(2).getReg());
1953   }
1954 
1955   std::tuple<Register, Register, Register, Register> getFirst4Regs() const {
1956     return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(),
1957                       getOperand(2).getReg(), getOperand(3).getReg());
1958   }
1959 
1960   std::tuple<Register, Register, Register, Register, Register>
1961   getFirst5Regs() const {
1962     return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(),
1963                       getOperand(2).getReg(), getOperand(3).getReg(),
1964                       getOperand(4).getReg());
1965   }
1966 
1967   std::tuple<LLT, LLT> getFirst2LLTs() const;
1968   std::tuple<LLT, LLT, LLT> getFirst3LLTs() const;
1969   std::tuple<LLT, LLT, LLT, LLT> getFirst4LLTs() const;
1970   std::tuple<LLT, LLT, LLT, LLT, LLT> getFirst5LLTs() const;
1971 
1972   std::tuple<Register, LLT, Register, LLT> getFirst2RegLLTs() const;
1973   std::tuple<Register, LLT, Register, LLT, Register, LLT>
1974   getFirst3RegLLTs() const;
1975   std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
1976   getFirst4RegLLTs() const;
1977   std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT,
1978              Register, LLT>
1979   getFirst5RegLLTs() const;
1980 
1981 private:
1982   /// If this instruction is embedded into a MachineFunction, return the
1983   /// MachineRegisterInfo object for the current function, otherwise
1984   /// return null.
1985   MachineRegisterInfo *getRegInfo();
1986   const MachineRegisterInfo *getRegInfo() const;
1987 
1988   /// Unlink all of the register operands in this instruction from their
1989   /// respective use lists.  This requires that the operands already be on their
1990   /// use lists.
1991   void removeRegOperandsFromUseLists(MachineRegisterInfo&);
1992 
1993   /// Add all of the register operands in this instruction from their
1994   /// respective use lists.  This requires that the operands not be on their
1995   /// use lists yet.
1996   void addRegOperandsToUseLists(MachineRegisterInfo&);
1997 
1998   /// Slow path for hasProperty when we're dealing with a bundle.
1999   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
2000 
2001   /// Implements the logic of getRegClassConstraintEffectForVReg for the
2002   /// this MI and the given operand index \p OpIdx.
2003   /// If the related operand does not constrained Reg, this returns CurRC.
2004   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
2005       unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
2006       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
2007 
2008   /// Stores extra instruction information inline or allocates as ExtraInfo
2009   /// based on the number of pointers.
2010   void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
2011                     MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
2012                     MDNode *HeapAllocMarker, MDNode *PCSections,
2013                     uint32_t CFIType);
2014 };
2015 
2016 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
2017 /// instruction rather than by pointer value.
2018 /// The hashing and equality testing functions ignore definitions so this is
2019 /// useful for CSE, etc.
2020 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
2021   static inline MachineInstr *getEmptyKey() {
2022     return nullptr;
2023   }
2024 
2025   static inline MachineInstr *getTombstoneKey() {
2026     return reinterpret_cast<MachineInstr*>(-1);
2027   }
2028 
2029   static unsigned getHashValue(const MachineInstr* const &MI);
2030 
2031   static bool isEqual(const MachineInstr* const &LHS,
2032                       const MachineInstr* const &RHS) {
2033     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
2034         LHS == getEmptyKey() || LHS == getTombstoneKey())
2035       return LHS == RHS;
2036     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
2037   }
2038 };
2039 
2040 //===----------------------------------------------------------------------===//
2041 // Debugging Support
2042 
2043 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
2044   MI.print(OS);
2045   return OS;
2046 }
2047 
2048 } // end namespace llvm
2049 
2050 #endif // LLVM_CODEGEN_MACHINEINSTR_H
2051