1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/ArrayRecycler.h"
31 #include "llvm/Support/TrailingObjects.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <utility>
36 
37 namespace llvm {
38 
39 class AAResults;
40 template <typename T> class ArrayRef;
41 class DIExpression;
42 class DILocalVariable;
43 class MachineBasicBlock;
44 class MachineFunction;
45 class MachineRegisterInfo;
46 class ModuleSlotTracker;
47 class raw_ostream;
48 template <typename T> class SmallVectorImpl;
49 class SmallBitVector;
50 class StringRef;
51 class TargetInstrInfo;
52 class TargetRegisterClass;
53 class TargetRegisterInfo;
54 
55 //===----------------------------------------------------------------------===//
56 /// Representation of each machine instruction.
57 ///
58 /// This class isn't a POD type, but it must have a trivial destructor. When a
59 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
60 /// without having their destructor called.
61 ///
62 class MachineInstr
63     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
64                                     ilist_sentinel_tracking<true>> {
65 public:
66   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
67 
68   /// Flags to specify different kinds of comments to output in
69   /// assembly code.  These flags carry semantic information not
70   /// otherwise easily derivable from the IR text.
71   ///
72   enum CommentFlag {
73     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
74     NoSchedComment = 0x2,
75     TAsmComments = 0x4    // Target Asm comments should start from this value.
76   };
77 
78   enum MIFlag {
79     NoFlags      = 0,
80     FrameSetup   = 1 << 0,              // Instruction is used as a part of
81                                         // function frame setup code.
82     FrameDestroy = 1 << 1,              // Instruction is used as a part of
83                                         // function frame destruction code.
84     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
85     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
86     FmNoNans     = 1 << 4,              // Instruction does not support Fast
87                                         // math nan values.
88     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
89                                         // math infinity values.
90     FmNsz        = 1 << 6,              // Instruction is not required to retain
91                                         // signed zero values.
92     FmArcp       = 1 << 7,              // Instruction supports Fast math
93                                         // reciprocal approximations.
94     FmContract   = 1 << 8,              // Instruction supports Fast math
95                                         // contraction operations like fma.
96     FmAfn        = 1 << 9,              // Instruction may map to Fast math
97                                         // instrinsic approximation.
98     FmReassoc    = 1 << 10,             // Instruction supports Fast math
99                                         // reassociation of operand order.
100     NoUWrap      = 1 << 11,             // Instruction supports binary operator
101                                         // no unsigned wrap.
102     NoSWrap      = 1 << 12,             // Instruction supports binary operator
103                                         // no signed wrap.
104     IsExact      = 1 << 13,             // Instruction supports division is
105                                         // known to be exact.
106     NoFPExcept   = 1 << 14,             // Instruction does not raise
107                                         // floatint-point exceptions.
108     NoMerge      = 1 << 15,             // Passes that drop source location info
109                                         // (e.g. branch folding) should skip
110                                         // this instruction.
111   };
112 
113 private:
114   const MCInstrDesc *MCID;              // Instruction descriptor.
115   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
116 
117   // Operands are allocated by an ArrayRecycler.
118   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
119   unsigned NumOperands = 0;             // Number of operands on instruction.
120 
121   uint16_t Flags = 0;                   // Various bits of additional
122                                         // information about machine
123                                         // instruction.
124 
125   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
126                                         // the AsmPrinter to emit helpful
127                                         // comments.  This is *not* semantic
128                                         // information.  Do not use this for
129                                         // anything other than to convey comment
130                                         // information to AsmPrinter.
131 
132   // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
133   // to properly pack.
134   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
135   OperandCapacity CapOperands;          // Capacity of the Operands array.
136 
137   /// Internal implementation detail class that provides out-of-line storage for
138   /// extra info used by the machine instruction when this info cannot be stored
139   /// in-line within the instruction itself.
140   ///
141   /// This has to be defined eagerly due to the implementation constraints of
142   /// `PointerSumType` where it is used.
143   class ExtraInfo final
144       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
145   public:
146     static ExtraInfo *create(BumpPtrAllocator &Allocator,
147                              ArrayRef<MachineMemOperand *> MMOs,
148                              MCSymbol *PreInstrSymbol = nullptr,
149                              MCSymbol *PostInstrSymbol = nullptr,
150                              MDNode *HeapAllocMarker = nullptr) {
151       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
152       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
153       bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
154       auto *Result = new (Allocator.Allocate(
155           totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
156               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
157               HasHeapAllocMarker),
158           alignof(ExtraInfo)))
159           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
160                     HasHeapAllocMarker);
161 
162       // Copy the actual data into the trailing objects.
163       std::copy(MMOs.begin(), MMOs.end(),
164                 Result->getTrailingObjects<MachineMemOperand *>());
165 
166       if (HasPreInstrSymbol)
167         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
168       if (HasPostInstrSymbol)
169         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
170             PostInstrSymbol;
171       if (HasHeapAllocMarker)
172         Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
173 
174       return Result;
175     }
176 
177     ArrayRef<MachineMemOperand *> getMMOs() const {
178       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
179     }
180 
181     MCSymbol *getPreInstrSymbol() const {
182       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
183     }
184 
185     MCSymbol *getPostInstrSymbol() const {
186       return HasPostInstrSymbol
187                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
188                  : nullptr;
189     }
190 
191     MDNode *getHeapAllocMarker() const {
192       return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
193     }
194 
195   private:
196     friend TrailingObjects;
197 
198     // Description of the extra info, used to interpret the actual optional
199     // data appended.
200     //
201     // Note that this is not terribly space optimized. This leaves a great deal
202     // of flexibility to fit more in here later.
203     const int NumMMOs;
204     const bool HasPreInstrSymbol;
205     const bool HasPostInstrSymbol;
206     const bool HasHeapAllocMarker;
207 
208     // Implement the `TrailingObjects` internal API.
209     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
210       return NumMMOs;
211     }
212     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
213       return HasPreInstrSymbol + HasPostInstrSymbol;
214     }
215     size_t numTrailingObjects(OverloadToken<MDNode *>) const {
216       return HasHeapAllocMarker;
217     }
218 
219     // Just a boring constructor to allow us to initialize the sizes. Always use
220     // the `create` routine above.
221     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
222               bool HasHeapAllocMarker)
223         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
224           HasPostInstrSymbol(HasPostInstrSymbol),
225           HasHeapAllocMarker(HasHeapAllocMarker) {}
226   };
227 
228   /// Enumeration of the kinds of inline extra info available. It is important
229   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
230   /// it accessible as an `ArrayRef`.
231   enum ExtraInfoInlineKinds {
232     EIIK_MMO = 0,
233     EIIK_PreInstrSymbol,
234     EIIK_PostInstrSymbol,
235     EIIK_OutOfLine
236   };
237 
238   // We store extra information about the instruction here. The common case is
239   // expected to be nothing or a single pointer (typically a MMO or a symbol).
240   // We work to optimize this common case by storing it inline here rather than
241   // requiring a separate allocation, but we fall back to an allocation when
242   // multiple pointers are needed.
243   PointerSumType<ExtraInfoInlineKinds,
244                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
245                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
246                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
247                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
248       Info;
249 
250   DebugLoc debugLoc;                    // Source line information.
251 
252   /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
253   /// defined by this instruction.
254   unsigned DebugInstrNum;
255 
256   // Intrusive list support
257   friend struct ilist_traits<MachineInstr>;
258   friend struct ilist_callback_traits<MachineBasicBlock>;
259   void setParent(MachineBasicBlock *P) { Parent = P; }
260 
261   /// This constructor creates a copy of the given
262   /// MachineInstr in the given MachineFunction.
263   MachineInstr(MachineFunction &, const MachineInstr &);
264 
265   /// This constructor create a MachineInstr and add the implicit operands.
266   /// It reserves space for number of operands specified by
267   /// MCInstrDesc.  An explicit DebugLoc is supplied.
268   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
269                bool NoImp = false);
270 
271   // MachineInstrs are pool-allocated and owned by MachineFunction.
272   friend class MachineFunction;
273 
274   void
275   dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
276             SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
277 
278 public:
279   MachineInstr(const MachineInstr &) = delete;
280   MachineInstr &operator=(const MachineInstr &) = delete;
281   // Use MachineFunction::DeleteMachineInstr() instead.
282   ~MachineInstr() = delete;
283 
284   const MachineBasicBlock* getParent() const { return Parent; }
285   MachineBasicBlock* getParent() { return Parent; }
286 
287   /// Move the instruction before \p MovePos.
288   void moveBefore(MachineInstr *MovePos);
289 
290   /// Return the function that contains the basic block that this instruction
291   /// belongs to.
292   ///
293   /// Note: this is undefined behaviour if the instruction does not have a
294   /// parent.
295   const MachineFunction *getMF() const;
296   MachineFunction *getMF() {
297     return const_cast<MachineFunction *>(
298         static_cast<const MachineInstr *>(this)->getMF());
299   }
300 
301   /// Return the asm printer flags bitvector.
302   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
303 
304   /// Clear the AsmPrinter bitvector.
305   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
306 
307   /// Return whether an AsmPrinter flag is set.
308   bool getAsmPrinterFlag(CommentFlag Flag) const {
309     return AsmPrinterFlags & Flag;
310   }
311 
312   /// Set a flag for the AsmPrinter.
313   void setAsmPrinterFlag(uint8_t Flag) {
314     AsmPrinterFlags |= Flag;
315   }
316 
317   /// Clear specific AsmPrinter flags.
318   void clearAsmPrinterFlag(CommentFlag Flag) {
319     AsmPrinterFlags &= ~Flag;
320   }
321 
322   /// Return the MI flags bitvector.
323   uint16_t getFlags() const {
324     return Flags;
325   }
326 
327   /// Return whether an MI flag is set.
328   bool getFlag(MIFlag Flag) const {
329     return Flags & Flag;
330   }
331 
332   /// Set a MI flag.
333   void setFlag(MIFlag Flag) {
334     Flags |= (uint16_t)Flag;
335   }
336 
337   void setFlags(unsigned flags) {
338     // Filter out the automatically maintained flags.
339     unsigned Mask = BundledPred | BundledSucc;
340     Flags = (Flags & Mask) | (flags & ~Mask);
341   }
342 
343   /// clearFlag - Clear a MI flag.
344   void clearFlag(MIFlag Flag) {
345     Flags &= ~((uint16_t)Flag);
346   }
347 
348   /// Return true if MI is in a bundle (but not the first MI in a bundle).
349   ///
350   /// A bundle looks like this before it's finalized:
351   ///   ----------------
352   ///   |      MI      |
353   ///   ----------------
354   ///          |
355   ///   ----------------
356   ///   |      MI    * |
357   ///   ----------------
358   ///          |
359   ///   ----------------
360   ///   |      MI    * |
361   ///   ----------------
362   /// In this case, the first MI starts a bundle but is not inside a bundle, the
363   /// next 2 MIs are considered "inside" the bundle.
364   ///
365   /// After a bundle is finalized, it looks like this:
366   ///   ----------------
367   ///   |    Bundle    |
368   ///   ----------------
369   ///          |
370   ///   ----------------
371   ///   |      MI    * |
372   ///   ----------------
373   ///          |
374   ///   ----------------
375   ///   |      MI    * |
376   ///   ----------------
377   ///          |
378   ///   ----------------
379   ///   |      MI    * |
380   ///   ----------------
381   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
382   /// a bundle, but the next three MIs are.
383   bool isInsideBundle() const {
384     return getFlag(BundledPred);
385   }
386 
387   /// Return true if this instruction part of a bundle. This is true
388   /// if either itself or its following instruction is marked "InsideBundle".
389   bool isBundled() const {
390     return isBundledWithPred() || isBundledWithSucc();
391   }
392 
393   /// Return true if this instruction is part of a bundle, and it is not the
394   /// first instruction in the bundle.
395   bool isBundledWithPred() const { return getFlag(BundledPred); }
396 
397   /// Return true if this instruction is part of a bundle, and it is not the
398   /// last instruction in the bundle.
399   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
400 
401   /// Bundle this instruction with its predecessor. This can be an unbundled
402   /// instruction, or it can be the first instruction in a bundle.
403   void bundleWithPred();
404 
405   /// Bundle this instruction with its successor. This can be an unbundled
406   /// instruction, or it can be the last instruction in a bundle.
407   void bundleWithSucc();
408 
409   /// Break bundle above this instruction.
410   void unbundleFromPred();
411 
412   /// Break bundle below this instruction.
413   void unbundleFromSucc();
414 
415   /// Returns the debug location id of this MachineInstr.
416   const DebugLoc &getDebugLoc() const { return debugLoc; }
417 
418   /// Return the operand containing the offset to be used if this DBG_VALUE
419   /// instruction is indirect; will be an invalid register if this value is
420   /// not indirect, and an immediate with value 0 otherwise.
421   const MachineOperand &getDebugOffset() const {
422     assert(isDebugValue() && "not a DBG_VALUE");
423     return getOperand(1);
424   }
425   MachineOperand &getDebugOffset() {
426     assert(isDebugValue() && "not a DBG_VALUE");
427     return getOperand(1);
428   }
429 
430   /// Return the operand for the debug variable referenced by
431   /// this DBG_VALUE instruction.
432   const MachineOperand &getDebugVariableOp() const;
433   MachineOperand &getDebugVariableOp();
434 
435   /// Return the debug variable referenced by
436   /// this DBG_VALUE instruction.
437   const DILocalVariable *getDebugVariable() const;
438 
439   /// Return the operand for the complex address expression referenced by
440   /// this DBG_VALUE instruction.
441   MachineOperand &getDebugExpressionOp();
442 
443   /// Return the complex address expression referenced by
444   /// this DBG_VALUE instruction.
445   const DIExpression *getDebugExpression() const;
446 
447   /// Return the debug label referenced by
448   /// this DBG_LABEL instruction.
449   const DILabel *getDebugLabel() const;
450 
451   /// Fetch the instruction number of this MachineInstr. If it does not have
452   /// one already, a new and unique number will be assigned.
453   unsigned getDebugInstrNum();
454 
455   /// Examine the instruction number of this MachineInstr. May be zero if
456   /// it hasn't been assigned a number yet.
457   unsigned peekDebugInstrNum() const { return DebugInstrNum; }
458 
459   /// Set instruction number of this MachineInstr. Avoid using unless you're
460   /// deserializing this information.
461   void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
462 
463   /// Emit an error referring to the source location of this instruction.
464   /// This should only be used for inline assembly that is somehow
465   /// impossible to compile. Other errors should have been handled much
466   /// earlier.
467   ///
468   /// If this method returns, the caller should try to recover from the error.
469   void emitError(StringRef Msg) const;
470 
471   /// Returns the target instruction descriptor of this MachineInstr.
472   const MCInstrDesc &getDesc() const { return *MCID; }
473 
474   /// Returns the opcode of this MachineInstr.
475   unsigned getOpcode() const { return MCID->Opcode; }
476 
477   /// Retuns the total number of operands.
478   unsigned getNumOperands() const { return NumOperands; }
479 
480   /// Returns the total number of operands which are debug locations.
481   unsigned getNumDebugOperands() const {
482     return std::distance(debug_operands().begin(), debug_operands().end());
483   }
484 
485   const MachineOperand& getOperand(unsigned i) const {
486     assert(i < getNumOperands() && "getOperand() out of range!");
487     return Operands[i];
488   }
489   MachineOperand& getOperand(unsigned i) {
490     assert(i < getNumOperands() && "getOperand() out of range!");
491     return Operands[i];
492   }
493 
494   MachineOperand &getDebugOperand(unsigned Index) {
495     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
496     return *(debug_operands().begin() + Index);
497   }
498   const MachineOperand &getDebugOperand(unsigned Index) const {
499     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
500     return *(debug_operands().begin() + Index);
501   }
502 
503   /// Returns a pointer to the operand corresponding to a debug use of Reg, or
504   /// nullptr if Reg is not used in any debug operand.
505   const MachineOperand *getDebugOperandForReg(Register Reg) const {
506     const MachineOperand *RegOp =
507         find_if(debug_operands(), [Reg](const MachineOperand &Op) {
508           return Op.isReg() && Op.getReg() == Reg;
509         });
510     return RegOp == adl_end(debug_operands()) ? nullptr : RegOp;
511   }
512   MachineOperand *getDebugOperandForReg(Register Reg) {
513     MachineOperand *RegOp =
514         find_if(debug_operands(), [Reg](const MachineOperand &Op) {
515           return Op.isReg() && Op.getReg() == Reg;
516         });
517     return RegOp == adl_end(debug_operands()) ? nullptr : RegOp;
518   }
519 
520   unsigned getDebugOperandIndex(const MachineOperand *Op) const {
521     assert(Op >= adl_begin(debug_operands()) &&
522            Op <= adl_end(debug_operands()) && "Expected a debug operand.");
523     return std::distance(adl_begin(debug_operands()), Op);
524   }
525 
526   /// Returns the total number of definitions.
527   unsigned getNumDefs() const {
528     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
529   }
530 
531   /// Returns true if the instruction has implicit definition.
532   bool hasImplicitDef() const {
533     for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
534       I != E; ++I) {
535       const MachineOperand &MO = getOperand(I);
536       if (MO.isDef() && MO.isImplicit())
537         return true;
538     }
539     return false;
540   }
541 
542   /// Returns the implicit operands number.
543   unsigned getNumImplicitOperands() const {
544     return getNumOperands() - getNumExplicitOperands();
545   }
546 
547   /// Return true if operand \p OpIdx is a subregister index.
548   bool isOperandSubregIdx(unsigned OpIdx) const {
549     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
550            "Expected MO_Immediate operand type.");
551     if (isExtractSubreg() && OpIdx == 2)
552       return true;
553     if (isInsertSubreg() && OpIdx == 3)
554       return true;
555     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
556       return true;
557     if (isSubregToReg() && OpIdx == 3)
558       return true;
559     return false;
560   }
561 
562   /// Returns the number of non-implicit operands.
563   unsigned getNumExplicitOperands() const;
564 
565   /// Returns the number of non-implicit definitions.
566   unsigned getNumExplicitDefs() const;
567 
568   /// iterator/begin/end - Iterate over all operands of a machine instruction.
569   using mop_iterator = MachineOperand *;
570   using const_mop_iterator = const MachineOperand *;
571 
572   mop_iterator operands_begin() { return Operands; }
573   mop_iterator operands_end() { return Operands + NumOperands; }
574 
575   const_mop_iterator operands_begin() const { return Operands; }
576   const_mop_iterator operands_end() const { return Operands + NumOperands; }
577 
578   iterator_range<mop_iterator> operands() {
579     return make_range(operands_begin(), operands_end());
580   }
581   iterator_range<const_mop_iterator> operands() const {
582     return make_range(operands_begin(), operands_end());
583   }
584   iterator_range<mop_iterator> explicit_operands() {
585     return make_range(operands_begin(),
586                       operands_begin() + getNumExplicitOperands());
587   }
588   iterator_range<const_mop_iterator> explicit_operands() const {
589     return make_range(operands_begin(),
590                       operands_begin() + getNumExplicitOperands());
591   }
592   iterator_range<mop_iterator> implicit_operands() {
593     return make_range(explicit_operands().end(), operands_end());
594   }
595   iterator_range<const_mop_iterator> implicit_operands() const {
596     return make_range(explicit_operands().end(), operands_end());
597   }
598   /// Returns a range over all operands that are used to determine the variable
599   /// location for this DBG_VALUE instruction.
600   iterator_range<mop_iterator> debug_operands() {
601     assert(isDebugValue() && "Must be a debug value instruction.");
602     return make_range(operands_begin(), operands_begin() + 1);
603   }
604   /// \copydoc debug_operands()
605   iterator_range<const_mop_iterator> debug_operands() const {
606     assert(isDebugValue() && "Must be a debug value instruction.");
607     return make_range(operands_begin(), operands_begin() + 1);
608   }
609   /// Returns a range over all explicit operands that are register definitions.
610   /// Implicit definition are not included!
611   iterator_range<mop_iterator> defs() {
612     return make_range(operands_begin(),
613                       operands_begin() + getNumExplicitDefs());
614   }
615   /// \copydoc defs()
616   iterator_range<const_mop_iterator> defs() const {
617     return make_range(operands_begin(),
618                       operands_begin() + getNumExplicitDefs());
619   }
620   /// Returns a range that includes all operands that are register uses.
621   /// This may include unrelated operands which are not register uses.
622   iterator_range<mop_iterator> uses() {
623     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
624   }
625   /// \copydoc uses()
626   iterator_range<const_mop_iterator> uses() const {
627     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
628   }
629   iterator_range<mop_iterator> explicit_uses() {
630     return make_range(operands_begin() + getNumExplicitDefs(),
631                       operands_begin() + getNumExplicitOperands());
632   }
633   iterator_range<const_mop_iterator> explicit_uses() const {
634     return make_range(operands_begin() + getNumExplicitDefs(),
635                       operands_begin() + getNumExplicitOperands());
636   }
637 
638   /// Returns the number of the operand iterator \p I points to.
639   unsigned getOperandNo(const_mop_iterator I) const {
640     return I - operands_begin();
641   }
642 
643   /// Access to memory operands of the instruction. If there are none, that does
644   /// not imply anything about whether the function accesses memory. Instead,
645   /// the caller must behave conservatively.
646   ArrayRef<MachineMemOperand *> memoperands() const {
647     if (!Info)
648       return {};
649 
650     if (Info.is<EIIK_MMO>())
651       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
652 
653     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
654       return EI->getMMOs();
655 
656     return {};
657   }
658 
659   /// Access to memory operands of the instruction.
660   ///
661   /// If `memoperands_begin() == memoperands_end()`, that does not imply
662   /// anything about whether the function accesses memory. Instead, the caller
663   /// must behave conservatively.
664   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
665 
666   /// Access to memory operands of the instruction.
667   ///
668   /// If `memoperands_begin() == memoperands_end()`, that does not imply
669   /// anything about whether the function accesses memory. Instead, the caller
670   /// must behave conservatively.
671   mmo_iterator memoperands_end() const { return memoperands().end(); }
672 
673   /// Return true if we don't have any memory operands which described the
674   /// memory access done by this instruction.  If this is true, calling code
675   /// must be conservative.
676   bool memoperands_empty() const { return memoperands().empty(); }
677 
678   /// Return true if this instruction has exactly one MachineMemOperand.
679   bool hasOneMemOperand() const { return memoperands().size() == 1; }
680 
681   /// Return the number of memory operands.
682   unsigned getNumMemOperands() const { return memoperands().size(); }
683 
684   /// Helper to extract a pre-instruction symbol if one has been added.
685   MCSymbol *getPreInstrSymbol() const {
686     if (!Info)
687       return nullptr;
688     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
689       return S;
690     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
691       return EI->getPreInstrSymbol();
692 
693     return nullptr;
694   }
695 
696   /// Helper to extract a post-instruction symbol if one has been added.
697   MCSymbol *getPostInstrSymbol() const {
698     if (!Info)
699       return nullptr;
700     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
701       return S;
702     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
703       return EI->getPostInstrSymbol();
704 
705     return nullptr;
706   }
707 
708   /// Helper to extract a heap alloc marker if one has been added.
709   MDNode *getHeapAllocMarker() const {
710     if (!Info)
711       return nullptr;
712     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
713       return EI->getHeapAllocMarker();
714 
715     return nullptr;
716   }
717 
718   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
719   /// queries but they are bundle aware.
720 
721   enum QueryType {
722     IgnoreBundle,    // Ignore bundles
723     AnyInBundle,     // Return true if any instruction in bundle has property
724     AllInBundle      // Return true if all instructions in bundle have property
725   };
726 
727   /// Return true if the instruction (or in the case of a bundle,
728   /// the instructions inside the bundle) has the specified property.
729   /// The first argument is the property being queried.
730   /// The second argument indicates whether the query should look inside
731   /// instruction bundles.
732   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
733     assert(MCFlag < 64 &&
734            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
735     // Inline the fast path for unbundled or bundle-internal instructions.
736     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
737       return getDesc().getFlags() & (1ULL << MCFlag);
738 
739     // If this is the first instruction in a bundle, take the slow path.
740     return hasPropertyInBundle(1ULL << MCFlag, Type);
741   }
742 
743   /// Return true if this is an instruction that should go through the usual
744   /// legalization steps.
745   bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
746     return hasProperty(MCID::PreISelOpcode, Type);
747   }
748 
749   /// Return true if this instruction can have a variable number of operands.
750   /// In this case, the variable operands will be after the normal
751   /// operands but before the implicit definitions and uses (if any are
752   /// present).
753   bool isVariadic(QueryType Type = IgnoreBundle) const {
754     return hasProperty(MCID::Variadic, Type);
755   }
756 
757   /// Set if this instruction has an optional definition, e.g.
758   /// ARM instructions which can set condition code if 's' bit is set.
759   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
760     return hasProperty(MCID::HasOptionalDef, Type);
761   }
762 
763   /// Return true if this is a pseudo instruction that doesn't
764   /// correspond to a real machine instruction.
765   bool isPseudo(QueryType Type = IgnoreBundle) const {
766     return hasProperty(MCID::Pseudo, Type);
767   }
768 
769   bool isReturn(QueryType Type = AnyInBundle) const {
770     return hasProperty(MCID::Return, Type);
771   }
772 
773   /// Return true if this is an instruction that marks the end of an EH scope,
774   /// i.e., a catchpad or a cleanuppad instruction.
775   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
776     return hasProperty(MCID::EHScopeReturn, Type);
777   }
778 
779   bool isCall(QueryType Type = AnyInBundle) const {
780     return hasProperty(MCID::Call, Type);
781   }
782 
783   /// Return true if this is a call instruction that may have an associated
784   /// call site entry in the debug info.
785   bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
786   /// Return true if copying, moving, or erasing this instruction requires
787   /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
788   /// \ref eraseCallSiteInfo).
789   bool shouldUpdateCallSiteInfo() const;
790 
791   /// Returns true if the specified instruction stops control flow
792   /// from executing the instruction immediately following it.  Examples include
793   /// unconditional branches and return instructions.
794   bool isBarrier(QueryType Type = AnyInBundle) const {
795     return hasProperty(MCID::Barrier, Type);
796   }
797 
798   /// Returns true if this instruction part of the terminator for a basic block.
799   /// Typically this is things like return and branch instructions.
800   ///
801   /// Various passes use this to insert code into the bottom of a basic block,
802   /// but before control flow occurs.
803   bool isTerminator(QueryType Type = AnyInBundle) const {
804     return hasProperty(MCID::Terminator, Type);
805   }
806 
807   /// Returns true if this is a conditional, unconditional, or indirect branch.
808   /// Predicates below can be used to discriminate between
809   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
810   /// get more information.
811   bool isBranch(QueryType Type = AnyInBundle) const {
812     return hasProperty(MCID::Branch, Type);
813   }
814 
815   /// Return true if this is an indirect branch, such as a
816   /// branch through a register.
817   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
818     return hasProperty(MCID::IndirectBranch, Type);
819   }
820 
821   /// Return true if this is a branch which may fall
822   /// through to the next instruction or may transfer control flow to some other
823   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
824   /// information about this branch.
825   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
826     return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
827   }
828 
829   /// Return true if this is a branch which always
830   /// transfers control flow to some other block.  The
831   /// TargetInstrInfo::analyzeBranch method can be used to get more information
832   /// about this branch.
833   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
834     return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
835   }
836 
837   /// Return true if this instruction has a predicate operand that
838   /// controls execution.  It may be set to 'always', or may be set to other
839   /// values.   There are various methods in TargetInstrInfo that can be used to
840   /// control and modify the predicate in this instruction.
841   bool isPredicable(QueryType Type = AllInBundle) const {
842     // If it's a bundle than all bundled instructions must be predicable for this
843     // to return true.
844     return hasProperty(MCID::Predicable, Type);
845   }
846 
847   /// Return true if this instruction is a comparison.
848   bool isCompare(QueryType Type = IgnoreBundle) const {
849     return hasProperty(MCID::Compare, Type);
850   }
851 
852   /// Return true if this instruction is a move immediate
853   /// (including conditional moves) instruction.
854   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
855     return hasProperty(MCID::MoveImm, Type);
856   }
857 
858   /// Return true if this instruction is a register move.
859   /// (including moving values from subreg to reg)
860   bool isMoveReg(QueryType Type = IgnoreBundle) const {
861     return hasProperty(MCID::MoveReg, Type);
862   }
863 
864   /// Return true if this instruction is a bitcast instruction.
865   bool isBitcast(QueryType Type = IgnoreBundle) const {
866     return hasProperty(MCID::Bitcast, Type);
867   }
868 
869   /// Return true if this instruction is a select instruction.
870   bool isSelect(QueryType Type = IgnoreBundle) const {
871     return hasProperty(MCID::Select, Type);
872   }
873 
874   /// Return true if this instruction cannot be safely duplicated.
875   /// For example, if the instruction has a unique labels attached
876   /// to it, duplicating it would cause multiple definition errors.
877   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
878     return hasProperty(MCID::NotDuplicable, Type);
879   }
880 
881   /// Return true if this instruction is convergent.
882   /// Convergent instructions can not be made control-dependent on any
883   /// additional values.
884   bool isConvergent(QueryType Type = AnyInBundle) const {
885     if (isInlineAsm()) {
886       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
887       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
888         return true;
889     }
890     return hasProperty(MCID::Convergent, Type);
891   }
892 
893   /// Returns true if the specified instruction has a delay slot
894   /// which must be filled by the code generator.
895   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
896     return hasProperty(MCID::DelaySlot, Type);
897   }
898 
899   /// Return true for instructions that can be folded as
900   /// memory operands in other instructions. The most common use for this
901   /// is instructions that are simple loads from memory that don't modify
902   /// the loaded value in any way, but it can also be used for instructions
903   /// that can be expressed as constant-pool loads, such as V_SETALLONES
904   /// on x86, to allow them to be folded when it is beneficial.
905   /// This should only be set on instructions that return a value in their
906   /// only virtual register definition.
907   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
908     return hasProperty(MCID::FoldableAsLoad, Type);
909   }
910 
911   /// Return true if this instruction behaves
912   /// the same way as the generic REG_SEQUENCE instructions.
913   /// E.g., on ARM,
914   /// dX VMOVDRR rY, rZ
915   /// is equivalent to
916   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
917   ///
918   /// Note that for the optimizers to be able to take advantage of
919   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
920   /// override accordingly.
921   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
922     return hasProperty(MCID::RegSequence, Type);
923   }
924 
925   /// Return true if this instruction behaves
926   /// the same way as the generic EXTRACT_SUBREG instructions.
927   /// E.g., on ARM,
928   /// rX, rY VMOVRRD dZ
929   /// is equivalent to two EXTRACT_SUBREG:
930   /// rX = EXTRACT_SUBREG dZ, ssub_0
931   /// rY = EXTRACT_SUBREG dZ, ssub_1
932   ///
933   /// Note that for the optimizers to be able to take advantage of
934   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
935   /// override accordingly.
936   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
937     return hasProperty(MCID::ExtractSubreg, Type);
938   }
939 
940   /// Return true if this instruction behaves
941   /// the same way as the generic INSERT_SUBREG instructions.
942   /// E.g., on ARM,
943   /// dX = VSETLNi32 dY, rZ, Imm
944   /// is equivalent to a INSERT_SUBREG:
945   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
946   ///
947   /// Note that for the optimizers to be able to take advantage of
948   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
949   /// override accordingly.
950   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
951     return hasProperty(MCID::InsertSubreg, Type);
952   }
953 
954   //===--------------------------------------------------------------------===//
955   // Side Effect Analysis
956   //===--------------------------------------------------------------------===//
957 
958   /// Return true if this instruction could possibly read memory.
959   /// Instructions with this flag set are not necessarily simple load
960   /// instructions, they may load a value and modify it, for example.
961   bool mayLoad(QueryType Type = AnyInBundle) const {
962     if (isInlineAsm()) {
963       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
964       if (ExtraInfo & InlineAsm::Extra_MayLoad)
965         return true;
966     }
967     return hasProperty(MCID::MayLoad, Type);
968   }
969 
970   /// Return true if this instruction could possibly modify memory.
971   /// Instructions with this flag set are not necessarily simple store
972   /// instructions, they may store a modified value based on their operands, or
973   /// may not actually modify anything, for example.
974   bool mayStore(QueryType Type = AnyInBundle) const {
975     if (isInlineAsm()) {
976       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
977       if (ExtraInfo & InlineAsm::Extra_MayStore)
978         return true;
979     }
980     return hasProperty(MCID::MayStore, Type);
981   }
982 
983   /// Return true if this instruction could possibly read or modify memory.
984   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
985     return mayLoad(Type) || mayStore(Type);
986   }
987 
988   /// Return true if this instruction could possibly raise a floating-point
989   /// exception.  This is the case if the instruction is a floating-point
990   /// instruction that can in principle raise an exception, as indicated
991   /// by the MCID::MayRaiseFPException property, *and* at the same time,
992   /// the instruction is used in a context where we expect floating-point
993   /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
994   bool mayRaiseFPException() const {
995     return hasProperty(MCID::MayRaiseFPException) &&
996            !getFlag(MachineInstr::MIFlag::NoFPExcept);
997   }
998 
999   //===--------------------------------------------------------------------===//
1000   // Flags that indicate whether an instruction can be modified by a method.
1001   //===--------------------------------------------------------------------===//
1002 
1003   /// Return true if this may be a 2- or 3-address
1004   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1005   /// result if Y and Z are exchanged.  If this flag is set, then the
1006   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1007   /// instruction.
1008   ///
1009   /// Note that this flag may be set on instructions that are only commutable
1010   /// sometimes.  In these cases, the call to commuteInstruction will fail.
1011   /// Also note that some instructions require non-trivial modification to
1012   /// commute them.
1013   bool isCommutable(QueryType Type = IgnoreBundle) const {
1014     return hasProperty(MCID::Commutable, Type);
1015   }
1016 
1017   /// Return true if this is a 2-address instruction
1018   /// which can be changed into a 3-address instruction if needed.  Doing this
1019   /// transformation can be profitable in the register allocator, because it
1020   /// means that the instruction can use a 2-address form if possible, but
1021   /// degrade into a less efficient form if the source and dest register cannot
1022   /// be assigned to the same register.  For example, this allows the x86
1023   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1024   /// is the same speed as the shift but has bigger code size.
1025   ///
1026   /// If this returns true, then the target must implement the
1027   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1028   /// is allowed to fail if the transformation isn't valid for this specific
1029   /// instruction (e.g. shl reg, 4 on x86).
1030   ///
1031   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1032     return hasProperty(MCID::ConvertibleTo3Addr, Type);
1033   }
1034 
1035   /// Return true if this instruction requires
1036   /// custom insertion support when the DAG scheduler is inserting it into a
1037   /// machine basic block.  If this is true for the instruction, it basically
1038   /// means that it is a pseudo instruction used at SelectionDAG time that is
1039   /// expanded out into magic code by the target when MachineInstrs are formed.
1040   ///
1041   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1042   /// is used to insert this into the MachineBasicBlock.
1043   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1044     return hasProperty(MCID::UsesCustomInserter, Type);
1045   }
1046 
1047   /// Return true if this instruction requires *adjustment*
1048   /// after instruction selection by calling a target hook. For example, this
1049   /// can be used to fill in ARM 's' optional operand depending on whether
1050   /// the conditional flag register is used.
1051   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1052     return hasProperty(MCID::HasPostISelHook, Type);
1053   }
1054 
1055   /// Returns true if this instruction is a candidate for remat.
1056   /// This flag is deprecated, please don't use it anymore.  If this
1057   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1058   /// verify the instruction is really rematable.
1059   bool isRematerializable(QueryType Type = AllInBundle) const {
1060     // It's only possible to re-mat a bundle if all bundled instructions are
1061     // re-materializable.
1062     return hasProperty(MCID::Rematerializable, Type);
1063   }
1064 
1065   /// Returns true if this instruction has the same cost (or less) than a move
1066   /// instruction. This is useful during certain types of optimizations
1067   /// (e.g., remat during two-address conversion or machine licm)
1068   /// where we would like to remat or hoist the instruction, but not if it costs
1069   /// more than moving the instruction into the appropriate register. Note, we
1070   /// are not marking copies from and to the same register class with this flag.
1071   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1072     // Only returns true for a bundle if all bundled instructions are cheap.
1073     return hasProperty(MCID::CheapAsAMove, Type);
1074   }
1075 
1076   /// Returns true if this instruction source operands
1077   /// have special register allocation requirements that are not captured by the
1078   /// operand register classes. e.g. ARM::STRD's two source registers must be an
1079   /// even / odd pair, ARM::STM registers have to be in ascending order.
1080   /// Post-register allocation passes should not attempt to change allocations
1081   /// for sources of instructions with this flag.
1082   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1083     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1084   }
1085 
1086   /// Returns true if this instruction def operands
1087   /// have special register allocation requirements that are not captured by the
1088   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1089   /// even / odd pair, ARM::LDM registers have to be in ascending order.
1090   /// Post-register allocation passes should not attempt to change allocations
1091   /// for definitions of instructions with this flag.
1092   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1093     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1094   }
1095 
1096   enum MICheckType {
1097     CheckDefs,      // Check all operands for equality
1098     CheckKillDead,  // Check all operands including kill / dead markers
1099     IgnoreDefs,     // Ignore all definitions
1100     IgnoreVRegDefs  // Ignore virtual register definitions
1101   };
1102 
1103   /// Return true if this instruction is identical to \p Other.
1104   /// Two instructions are identical if they have the same opcode and all their
1105   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1106   /// Note that this means liveness related flags (dead, undef, kill) do not
1107   /// affect the notion of identical.
1108   bool isIdenticalTo(const MachineInstr &Other,
1109                      MICheckType Check = CheckDefs) const;
1110 
1111   /// Unlink 'this' from the containing basic block, and return it without
1112   /// deleting it.
1113   ///
1114   /// This function can not be used on bundled instructions, use
1115   /// removeFromBundle() to remove individual instructions from a bundle.
1116   MachineInstr *removeFromParent();
1117 
1118   /// Unlink this instruction from its basic block and return it without
1119   /// deleting it.
1120   ///
1121   /// If the instruction is part of a bundle, the other instructions in the
1122   /// bundle remain bundled.
1123   MachineInstr *removeFromBundle();
1124 
1125   /// Unlink 'this' from the containing basic block and delete it.
1126   ///
1127   /// If this instruction is the header of a bundle, the whole bundle is erased.
1128   /// This function can not be used for instructions inside a bundle, use
1129   /// eraseFromBundle() to erase individual bundled instructions.
1130   void eraseFromParent();
1131 
1132   /// Unlink 'this' from the containing basic block and delete it.
1133   ///
1134   /// For all definitions mark their uses in DBG_VALUE nodes
1135   /// as undefined. Otherwise like eraseFromParent().
1136   void eraseFromParentAndMarkDBGValuesForRemoval();
1137 
1138   /// Unlink 'this' form its basic block and delete it.
1139   ///
1140   /// If the instruction is part of a bundle, the other instructions in the
1141   /// bundle remain bundled.
1142   void eraseFromBundle();
1143 
1144   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1145   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1146   bool isAnnotationLabel() const {
1147     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1148   }
1149 
1150   /// Returns true if the MachineInstr represents a label.
1151   bool isLabel() const {
1152     return isEHLabel() || isGCLabel() || isAnnotationLabel();
1153   }
1154 
1155   bool isCFIInstruction() const {
1156     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1157   }
1158 
1159   bool isPseudoProbe() const {
1160     return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1161   }
1162 
1163   // True if the instruction represents a position in the function.
1164   bool isPosition() const { return isLabel() || isCFIInstruction(); }
1165 
1166   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
1167   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1168   bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1169   bool isDebugInstr() const {
1170     return isDebugValue() || isDebugLabel() || isDebugRef();
1171   }
1172   bool isDebugOrPseudoInstr() const {
1173     return isDebugInstr() || isPseudoProbe();
1174   }
1175 
1176   bool isDebugOffsetImm() const { return getDebugOffset().isImm(); }
1177 
1178   /// A DBG_VALUE is indirect iff the location operand is a register and
1179   /// the offset operand is an immediate.
1180   bool isIndirectDebugValue() const {
1181     return isDebugValue() && getDebugOperand(0).isReg() && isDebugOffsetImm();
1182   }
1183 
1184   /// A DBG_VALUE is an entry value iff its debug expression contains the
1185   /// DW_OP_LLVM_entry_value operation.
1186   bool isDebugEntryValue() const;
1187 
1188   /// Return true if the instruction is a debug value which describes a part of
1189   /// a variable as unavailable.
1190   bool isUndefDebugValue() const {
1191     return isDebugValue() && getDebugOperand(0).isReg() &&
1192            !getDebugOperand(0).getReg().isValid();
1193   }
1194 
1195   bool isPHI() const {
1196     return getOpcode() == TargetOpcode::PHI ||
1197            getOpcode() == TargetOpcode::G_PHI;
1198   }
1199   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1200   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1201   bool isInlineAsm() const {
1202     return getOpcode() == TargetOpcode::INLINEASM ||
1203            getOpcode() == TargetOpcode::INLINEASM_BR;
1204   }
1205 
1206   /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1207   /// specific, be attached to a generic MachineInstr.
1208   bool isMSInlineAsm() const {
1209     return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1210   }
1211 
1212   bool isStackAligningInlineAsm() const;
1213   InlineAsm::AsmDialect getInlineAsmDialect() const;
1214 
1215   bool isInsertSubreg() const {
1216     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1217   }
1218 
1219   bool isSubregToReg() const {
1220     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1221   }
1222 
1223   bool isRegSequence() const {
1224     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1225   }
1226 
1227   bool isBundle() const {
1228     return getOpcode() == TargetOpcode::BUNDLE;
1229   }
1230 
1231   bool isCopy() const {
1232     return getOpcode() == TargetOpcode::COPY;
1233   }
1234 
1235   bool isFullCopy() const {
1236     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1237   }
1238 
1239   bool isExtractSubreg() const {
1240     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1241   }
1242 
1243   /// Return true if the instruction behaves like a copy.
1244   /// This does not include native copy instructions.
1245   bool isCopyLike() const {
1246     return isCopy() || isSubregToReg();
1247   }
1248 
1249   /// Return true is the instruction is an identity copy.
1250   bool isIdentityCopy() const {
1251     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1252       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1253   }
1254 
1255   /// Return true if this instruction doesn't produce any output in the form of
1256   /// executable instructions.
1257   bool isMetaInstruction() const {
1258     switch (getOpcode()) {
1259     default:
1260       return false;
1261     case TargetOpcode::IMPLICIT_DEF:
1262     case TargetOpcode::KILL:
1263     case TargetOpcode::CFI_INSTRUCTION:
1264     case TargetOpcode::EH_LABEL:
1265     case TargetOpcode::GC_LABEL:
1266     case TargetOpcode::DBG_VALUE:
1267     case TargetOpcode::DBG_INSTR_REF:
1268     case TargetOpcode::DBG_LABEL:
1269     case TargetOpcode::LIFETIME_START:
1270     case TargetOpcode::LIFETIME_END:
1271     case TargetOpcode::PSEUDO_PROBE:
1272       return true;
1273     }
1274   }
1275 
1276   /// Return true if this is a transient instruction that is either very likely
1277   /// to be eliminated during register allocation (such as copy-like
1278   /// instructions), or if this instruction doesn't have an execution-time cost.
1279   bool isTransient() const {
1280     switch (getOpcode()) {
1281     default:
1282       return isMetaInstruction();
1283     // Copy-like instructions are usually eliminated during register allocation.
1284     case TargetOpcode::PHI:
1285     case TargetOpcode::G_PHI:
1286     case TargetOpcode::COPY:
1287     case TargetOpcode::INSERT_SUBREG:
1288     case TargetOpcode::SUBREG_TO_REG:
1289     case TargetOpcode::REG_SEQUENCE:
1290       return true;
1291     }
1292   }
1293 
1294   /// Return the number of instructions inside the MI bundle, excluding the
1295   /// bundle header.
1296   ///
1297   /// This is the number of instructions that MachineBasicBlock::iterator
1298   /// skips, 0 for unbundled instructions.
1299   unsigned getBundleSize() const;
1300 
1301   /// Return true if the MachineInstr reads the specified register.
1302   /// If TargetRegisterInfo is passed, then it also checks if there
1303   /// is a read of a super-register.
1304   /// This does not count partial redefines of virtual registers as reads:
1305   ///   %reg1024:6 = OP.
1306   bool readsRegister(Register Reg,
1307                      const TargetRegisterInfo *TRI = nullptr) const {
1308     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1309   }
1310 
1311   /// Return true if the MachineInstr reads the specified virtual register.
1312   /// Take into account that a partial define is a
1313   /// read-modify-write operation.
1314   bool readsVirtualRegister(Register Reg) const {
1315     return readsWritesVirtualRegister(Reg).first;
1316   }
1317 
1318   /// Return a pair of bools (reads, writes) indicating if this instruction
1319   /// reads or writes Reg. This also considers partial defines.
1320   /// If Ops is not null, all operand indices for Reg are added.
1321   std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1322                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1323 
1324   /// Return true if the MachineInstr kills the specified register.
1325   /// If TargetRegisterInfo is passed, then it also checks if there is
1326   /// a kill of a super-register.
1327   bool killsRegister(Register Reg,
1328                      const TargetRegisterInfo *TRI = nullptr) const {
1329     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1330   }
1331 
1332   /// Return true if the MachineInstr fully defines the specified register.
1333   /// If TargetRegisterInfo is passed, then it also checks
1334   /// if there is a def of a super-register.
1335   /// NOTE: It's ignoring subreg indices on virtual registers.
1336   bool definesRegister(Register Reg,
1337                        const TargetRegisterInfo *TRI = nullptr) const {
1338     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1339   }
1340 
1341   /// Return true if the MachineInstr modifies (fully define or partially
1342   /// define) the specified register.
1343   /// NOTE: It's ignoring subreg indices on virtual registers.
1344   bool modifiesRegister(Register Reg,
1345                         const TargetRegisterInfo *TRI = nullptr) const {
1346     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1347   }
1348 
1349   /// Returns true if the register is dead in this machine instruction.
1350   /// If TargetRegisterInfo is passed, then it also checks
1351   /// if there is a dead def of a super-register.
1352   bool registerDefIsDead(Register Reg,
1353                          const TargetRegisterInfo *TRI = nullptr) const {
1354     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1355   }
1356 
1357   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1358   /// the given register (not considering sub/super-registers).
1359   bool hasRegisterImplicitUseOperand(Register Reg) const;
1360 
1361   /// Returns the operand index that is a use of the specific register or -1
1362   /// if it is not found. It further tightens the search criteria to a use
1363   /// that kills the register if isKill is true.
1364   int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1365                                 const TargetRegisterInfo *TRI = nullptr) const;
1366 
1367   /// Wrapper for findRegisterUseOperandIdx, it returns
1368   /// a pointer to the MachineOperand rather than an index.
1369   MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1370                                       const TargetRegisterInfo *TRI = nullptr) {
1371     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1372     return (Idx == -1) ? nullptr : &getOperand(Idx);
1373   }
1374 
1375   const MachineOperand *findRegisterUseOperand(
1376     Register Reg, bool isKill = false,
1377     const TargetRegisterInfo *TRI = nullptr) const {
1378     return const_cast<MachineInstr *>(this)->
1379       findRegisterUseOperand(Reg, isKill, TRI);
1380   }
1381 
1382   /// Returns the operand index that is a def of the specified register or
1383   /// -1 if it is not found. If isDead is true, defs that are not dead are
1384   /// skipped. If Overlap is true, then it also looks for defs that merely
1385   /// overlap the specified register. If TargetRegisterInfo is non-null,
1386   /// then it also checks if there is a def of a super-register.
1387   /// This may also return a register mask operand when Overlap is true.
1388   int findRegisterDefOperandIdx(Register Reg,
1389                                 bool isDead = false, bool Overlap = false,
1390                                 const TargetRegisterInfo *TRI = nullptr) const;
1391 
1392   /// Wrapper for findRegisterDefOperandIdx, it returns
1393   /// a pointer to the MachineOperand rather than an index.
1394   MachineOperand *
1395   findRegisterDefOperand(Register Reg, bool isDead = false,
1396                          bool Overlap = false,
1397                          const TargetRegisterInfo *TRI = nullptr) {
1398     int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1399     return (Idx == -1) ? nullptr : &getOperand(Idx);
1400   }
1401 
1402   const MachineOperand *
1403   findRegisterDefOperand(Register Reg, bool isDead = false,
1404                          bool Overlap = false,
1405                          const TargetRegisterInfo *TRI = nullptr) const {
1406     return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1407         Reg, isDead, Overlap, TRI);
1408   }
1409 
1410   /// Find the index of the first operand in the
1411   /// operand list that is used to represent the predicate. It returns -1 if
1412   /// none is found.
1413   int findFirstPredOperandIdx() const;
1414 
1415   /// Find the index of the flag word operand that
1416   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1417   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1418   ///
1419   /// If GroupNo is not NULL, it will receive the number of the operand group
1420   /// containing OpIdx.
1421   ///
1422   /// The flag operand is an immediate that can be decoded with methods like
1423   /// InlineAsm::hasRegClassConstraint().
1424   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1425 
1426   /// Compute the static register class constraint for operand OpIdx.
1427   /// For normal instructions, this is derived from the MCInstrDesc.
1428   /// For inline assembly it is derived from the flag words.
1429   ///
1430   /// Returns NULL if the static register class constraint cannot be
1431   /// determined.
1432   const TargetRegisterClass*
1433   getRegClassConstraint(unsigned OpIdx,
1434                         const TargetInstrInfo *TII,
1435                         const TargetRegisterInfo *TRI) const;
1436 
1437   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1438   /// the given \p CurRC.
1439   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1440   /// instructions inside the bundle will be taken into account. In other words,
1441   /// this method accumulates all the constraints of the operand of this MI and
1442   /// the related bundle if MI is a bundle or inside a bundle.
1443   ///
1444   /// Returns the register class that satisfies both \p CurRC and the
1445   /// constraints set by MI. Returns NULL if such a register class does not
1446   /// exist.
1447   ///
1448   /// \pre CurRC must not be NULL.
1449   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1450       Register Reg, const TargetRegisterClass *CurRC,
1451       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1452       bool ExploreBundle = false) const;
1453 
1454   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1455   /// to the given \p CurRC.
1456   ///
1457   /// Returns the register class that satisfies both \p CurRC and the
1458   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1459   /// does not exist.
1460   ///
1461   /// \pre CurRC must not be NULL.
1462   /// \pre The operand at \p OpIdx must be a register.
1463   const TargetRegisterClass *
1464   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1465                               const TargetInstrInfo *TII,
1466                               const TargetRegisterInfo *TRI) const;
1467 
1468   /// Add a tie between the register operands at DefIdx and UseIdx.
1469   /// The tie will cause the register allocator to ensure that the two
1470   /// operands are assigned the same physical register.
1471   ///
1472   /// Tied operands are managed automatically for explicit operands in the
1473   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1474   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1475 
1476   /// Given the index of a tied register operand, find the
1477   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1478   /// index of the tied operand which must exist.
1479   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1480 
1481   /// Given the index of a register def operand,
1482   /// check if the register def is tied to a source operand, due to either
1483   /// two-address elimination or inline assembly constraints. Returns the
1484   /// first tied use operand index by reference if UseOpIdx is not null.
1485   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1486                              unsigned *UseOpIdx = nullptr) const {
1487     const MachineOperand &MO = getOperand(DefOpIdx);
1488     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1489       return false;
1490     if (UseOpIdx)
1491       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1492     return true;
1493   }
1494 
1495   /// Return true if the use operand of the specified index is tied to a def
1496   /// operand. It also returns the def operand index by reference if DefOpIdx
1497   /// is not null.
1498   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1499                              unsigned *DefOpIdx = nullptr) const {
1500     const MachineOperand &MO = getOperand(UseOpIdx);
1501     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1502       return false;
1503     if (DefOpIdx)
1504       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1505     return true;
1506   }
1507 
1508   /// Clears kill flags on all operands.
1509   void clearKillInfo();
1510 
1511   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1512   /// properly composing subreg indices where necessary.
1513   void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1514                           const TargetRegisterInfo &RegInfo);
1515 
1516   /// We have determined MI kills a register. Look for the
1517   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1518   /// add a implicit operand if it's not found. Returns true if the operand
1519   /// exists / is added.
1520   bool addRegisterKilled(Register IncomingReg,
1521                          const TargetRegisterInfo *RegInfo,
1522                          bool AddIfNotFound = false);
1523 
1524   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1525   /// all aliasing registers.
1526   void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1527 
1528   /// We have determined MI defined a register without a use.
1529   /// Look for the operand that defines it and mark it as IsDead. If
1530   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1531   /// true if the operand exists / is added.
1532   bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1533                        bool AddIfNotFound = false);
1534 
1535   /// Clear all dead flags on operands defining register @p Reg.
1536   void clearRegisterDeads(Register Reg);
1537 
1538   /// Mark all subregister defs of register @p Reg with the undef flag.
1539   /// This function is used when we determined to have a subregister def in an
1540   /// otherwise undefined super register.
1541   void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1542 
1543   /// We have determined MI defines a register. Make sure there is an operand
1544   /// defining Reg.
1545   void addRegisterDefined(Register Reg,
1546                           const TargetRegisterInfo *RegInfo = nullptr);
1547 
1548   /// Mark every physreg used by this instruction as
1549   /// dead except those in the UsedRegs list.
1550   ///
1551   /// On instructions with register mask operands, also add implicit-def
1552   /// operands for all registers in UsedRegs.
1553   void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1554                              const TargetRegisterInfo &TRI);
1555 
1556   /// Return true if it is safe to move this instruction. If
1557   /// SawStore is set to true, it means that there is a store (or call) between
1558   /// the instruction's location and its intended destination.
1559   bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1560 
1561   /// Returns true if this instruction's memory access aliases the memory
1562   /// access of Other.
1563   //
1564   /// Assumes any physical registers used to compute addresses
1565   /// have the same value for both instructions.  Returns false if neither
1566   /// instruction writes to memory.
1567   ///
1568   /// @param AA Optional alias analysis, used to compare memory operands.
1569   /// @param Other MachineInstr to check aliasing against.
1570   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1571   bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1572 
1573   /// Return true if this instruction may have an ordered
1574   /// or volatile memory reference, or if the information describing the memory
1575   /// reference is not available. Return false if it is known to have no
1576   /// ordered or volatile memory references.
1577   bool hasOrderedMemoryRef() const;
1578 
1579   /// Return true if this load instruction never traps and points to a memory
1580   /// location whose value doesn't change during the execution of this function.
1581   ///
1582   /// Examples include loading a value from the constant pool or from the
1583   /// argument area of a function (if it does not change).  If the instruction
1584   /// does multiple loads, this returns true only if all of the loads are
1585   /// dereferenceable and invariant.
1586   bool isDereferenceableInvariantLoad(AAResults *AA) const;
1587 
1588   /// If the specified instruction is a PHI that always merges together the
1589   /// same virtual register, return the register, otherwise return 0.
1590   unsigned isConstantValuePHI() const;
1591 
1592   /// Return true if this instruction has side effects that are not modeled
1593   /// by mayLoad / mayStore, etc.
1594   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1595   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1596   /// INLINEASM instruction, in which case the side effect property is encoded
1597   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1598   ///
1599   bool hasUnmodeledSideEffects() const;
1600 
1601   /// Returns true if it is illegal to fold a load across this instruction.
1602   bool isLoadFoldBarrier() const;
1603 
1604   /// Return true if all the defs of this instruction are dead.
1605   bool allDefsAreDead() const;
1606 
1607   /// Return a valid size if the instruction is a spill instruction.
1608   Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1609 
1610   /// Return a valid size if the instruction is a folded spill instruction.
1611   Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1612 
1613   /// Return a valid size if the instruction is a restore instruction.
1614   Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1615 
1616   /// Return a valid size if the instruction is a folded restore instruction.
1617   Optional<unsigned>
1618   getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1619 
1620   /// Copy implicit register operands from specified
1621   /// instruction to this instruction.
1622   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1623 
1624   /// Debugging support
1625   /// @{
1626   /// Determine the generic type to be printed (if needed) on uses and defs.
1627   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1628                      const MachineRegisterInfo &MRI) const;
1629 
1630   /// Return true when an instruction has tied register that can't be determined
1631   /// by the instruction's descriptor. This is useful for MIR printing, to
1632   /// determine whether we need to print the ties or not.
1633   bool hasComplexRegisterTies() const;
1634 
1635   /// Print this MI to \p OS.
1636   /// Don't print information that can be inferred from other instructions if
1637   /// \p IsStandalone is false. It is usually true when only a fragment of the
1638   /// function is printed.
1639   /// Only print the defs and the opcode if \p SkipOpers is true.
1640   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1641   /// Otherwise, also print the debug loc, with a terminating newline.
1642   /// \p TII is used to print the opcode name.  If it's not present, but the
1643   /// MI is in a function, the opcode will be printed using the function's TII.
1644   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1645              bool SkipDebugLoc = false, bool AddNewLine = true,
1646              const TargetInstrInfo *TII = nullptr) const;
1647   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1648              bool SkipOpers = false, bool SkipDebugLoc = false,
1649              bool AddNewLine = true,
1650              const TargetInstrInfo *TII = nullptr) const;
1651   void dump() const;
1652   /// Print on dbgs() the current instruction and the instructions defining its
1653   /// operands and so on until we reach \p MaxDepth.
1654   void dumpr(const MachineRegisterInfo &MRI,
1655              unsigned MaxDepth = UINT_MAX) const;
1656   /// @}
1657 
1658   //===--------------------------------------------------------------------===//
1659   // Accessors used to build up machine instructions.
1660 
1661   /// Add the specified operand to the instruction.  If it is an implicit
1662   /// operand, it is added to the end of the operand list.  If it is an
1663   /// explicit operand it is added at the end of the explicit operand list
1664   /// (before the first implicit operand).
1665   ///
1666   /// MF must be the machine function that was used to allocate this
1667   /// instruction.
1668   ///
1669   /// MachineInstrBuilder provides a more convenient interface for creating
1670   /// instructions and adding operands.
1671   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1672 
1673   /// Add an operand without providing an MF reference. This only works for
1674   /// instructions that are inserted in a basic block.
1675   ///
1676   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1677   /// preferred.
1678   void addOperand(const MachineOperand &Op);
1679 
1680   /// Replace the instruction descriptor (thus opcode) of
1681   /// the current instruction with a new one.
1682   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1683 
1684   /// Replace current source information with new such.
1685   /// Avoid using this, the constructor argument is preferable.
1686   void setDebugLoc(DebugLoc dl) {
1687     debugLoc = std::move(dl);
1688     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1689   }
1690 
1691   /// Erase an operand from an instruction, leaving it with one
1692   /// fewer operand than it started with.
1693   void RemoveOperand(unsigned OpNo);
1694 
1695   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1696   /// the memrefs to their most conservative state.  This should be used only
1697   /// as a last resort since it greatly pessimizes our knowledge of the memory
1698   /// access performed by the instruction.
1699   void dropMemRefs(MachineFunction &MF);
1700 
1701   /// Assign this MachineInstr's memory reference descriptor list.
1702   ///
1703   /// Unlike other methods, this *will* allocate them into a new array
1704   /// associated with the provided `MachineFunction`.
1705   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1706 
1707   /// Add a MachineMemOperand to the machine instruction.
1708   /// This function should be used only occasionally. The setMemRefs function
1709   /// is the primary method for setting up a MachineInstr's MemRefs list.
1710   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1711 
1712   /// Clone another MachineInstr's memory reference descriptor list and replace
1713   /// ours with it.
1714   ///
1715   /// Note that `*this` may be the incoming MI!
1716   ///
1717   /// Prefer this API whenever possible as it can avoid allocations in common
1718   /// cases.
1719   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1720 
1721   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1722   /// list and replace ours with it.
1723   ///
1724   /// Note that `*this` may be one of the incoming MIs!
1725   ///
1726   /// Prefer this API whenever possible as it can avoid allocations in common
1727   /// cases.
1728   void cloneMergedMemRefs(MachineFunction &MF,
1729                           ArrayRef<const MachineInstr *> MIs);
1730 
1731   /// Set a symbol that will be emitted just prior to the instruction itself.
1732   ///
1733   /// Setting this to a null pointer will remove any such symbol.
1734   ///
1735   /// FIXME: This is not fully implemented yet.
1736   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1737 
1738   /// Set a symbol that will be emitted just after the instruction itself.
1739   ///
1740   /// Setting this to a null pointer will remove any such symbol.
1741   ///
1742   /// FIXME: This is not fully implemented yet.
1743   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1744 
1745   /// Clone another MachineInstr's pre- and post- instruction symbols and
1746   /// replace ours with it.
1747   void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1748 
1749   /// Set a marker on instructions that denotes where we should create and emit
1750   /// heap alloc site labels. This waits until after instruction selection and
1751   /// optimizations to create the label, so it should still work if the
1752   /// instruction is removed or duplicated.
1753   void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1754 
1755   /// Return the MIFlags which represent both MachineInstrs. This
1756   /// should be used when merging two MachineInstrs into one. This routine does
1757   /// not modify the MIFlags of this MachineInstr.
1758   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1759 
1760   static uint16_t copyFlagsFromInstruction(const Instruction &I);
1761 
1762   /// Copy all flags to MachineInst MIFlags
1763   void copyIRFlags(const Instruction &I);
1764 
1765   /// Break any tie involving OpIdx.
1766   void untieRegOperand(unsigned OpIdx) {
1767     MachineOperand &MO = getOperand(OpIdx);
1768     if (MO.isReg() && MO.isTied()) {
1769       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1770       MO.TiedTo = 0;
1771     }
1772   }
1773 
1774   /// Add all implicit def and use operands to this instruction.
1775   void addImplicitDefUseOperands(MachineFunction &MF);
1776 
1777   /// Scan instructions immediately following MI and collect any matching
1778   /// DBG_VALUEs.
1779   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1780 
1781   /// Find all DBG_VALUEs that point to the register def in this instruction
1782   /// and point them to \p Reg instead.
1783   void changeDebugValuesDefReg(Register Reg);
1784 
1785   /// Returns the Intrinsic::ID for this instruction.
1786   /// \pre Must have an intrinsic ID operand.
1787   unsigned getIntrinsicID() const {
1788     return getOperand(getNumExplicitDefs()).getIntrinsicID();
1789   }
1790 
1791   /// Sets all register debug operands in this debug value instruction to be
1792   /// undef.
1793   void setDebugValueUndef() {
1794     assert(isDebugValue() && "Must be a debug value instruction.");
1795     for (MachineOperand &MO : debug_operands()) {
1796       if (MO.isReg()) {
1797         MO.setReg(0);
1798         MO.setSubReg(0);
1799       }
1800     }
1801   }
1802 
1803 private:
1804   /// If this instruction is embedded into a MachineFunction, return the
1805   /// MachineRegisterInfo object for the current function, otherwise
1806   /// return null.
1807   MachineRegisterInfo *getRegInfo();
1808 
1809   /// Unlink all of the register operands in this instruction from their
1810   /// respective use lists.  This requires that the operands already be on their
1811   /// use lists.
1812   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1813 
1814   /// Add all of the register operands in this instruction from their
1815   /// respective use lists.  This requires that the operands not be on their
1816   /// use lists yet.
1817   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1818 
1819   /// Slow path for hasProperty when we're dealing with a bundle.
1820   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1821 
1822   /// Implements the logic of getRegClassConstraintEffectForVReg for the
1823   /// this MI and the given operand index \p OpIdx.
1824   /// If the related operand does not constrained Reg, this returns CurRC.
1825   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1826       unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1827       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1828 
1829   /// Stores extra instruction information inline or allocates as ExtraInfo
1830   /// based on the number of pointers.
1831   void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1832                     MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1833                     MDNode *HeapAllocMarker);
1834 };
1835 
1836 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1837 /// instruction rather than by pointer value.
1838 /// The hashing and equality testing functions ignore definitions so this is
1839 /// useful for CSE, etc.
1840 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1841   static inline MachineInstr *getEmptyKey() {
1842     return nullptr;
1843   }
1844 
1845   static inline MachineInstr *getTombstoneKey() {
1846     return reinterpret_cast<MachineInstr*>(-1);
1847   }
1848 
1849   static unsigned getHashValue(const MachineInstr* const &MI);
1850 
1851   static bool isEqual(const MachineInstr* const &LHS,
1852                       const MachineInstr* const &RHS) {
1853     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1854         LHS == getEmptyKey() || LHS == getTombstoneKey())
1855       return LHS == RHS;
1856     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1857   }
1858 };
1859 
1860 //===----------------------------------------------------------------------===//
1861 // Debugging Support
1862 
1863 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1864   MI.print(OS);
1865   return OS;
1866 }
1867 
1868 } // end namespace llvm
1869 
1870 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1871