1 //===-- llvm/CodeGen/TargetFrameLowering.h ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Interface to describe the layout of a stack frame on the target machine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETFRAMELOWERING_H
14 #define LLVM_CODEGEN_TARGETFRAMELOWERING_H
15 
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/Support/TypeSize.h"
18 #include <vector>
19 
20 namespace llvm {
21   class BitVector;
22   class CalleeSavedInfo;
23   class MachineFunction;
24   class RegScavenger;
25 
26 namespace TargetStackID {
27 enum Value {
28   Default = 0,
29   SGPRSpill = 1,
30   ScalableVector = 2,
31   WasmLocal = 3,
32   NoAlloc = 255
33 };
34 }
35 
36 /// Information about stack frame layout on the target.  It holds the direction
37 /// of stack growth, the known stack alignment on entry to each function, and
38 /// the offset to the locals area.
39 ///
40 /// The offset to the local area is the offset from the stack pointer on
41 /// function entry to the first location where function data (local variables,
42 /// spill locations) can be stored.
43 class TargetFrameLowering {
44 public:
45   enum StackDirection {
46     StackGrowsUp,        // Adding to the stack increases the stack address
47     StackGrowsDown       // Adding to the stack decreases the stack address
48   };
49 
50   // Maps a callee saved register to a stack slot with a fixed offset.
51   struct SpillSlot {
52     unsigned Reg;
53     int Offset; // Offset relative to stack pointer on function entry.
54   };
55 
56   struct DwarfFrameBase {
57     // The frame base may be either a register (the default), the CFA with an
58     // offset, or a WebAssembly-specific location description.
59     enum FrameBaseKind { Register, CFA, WasmFrameBase } Kind;
60     struct WasmFrameBase {
61       unsigned Kind; // Wasm local, global, or value stack
62       unsigned Index;
63     };
64     union {
65       // Used with FrameBaseKind::Register.
66       unsigned Reg;
67       // Used with FrameBaseKind::CFA.
68       int Offset;
69       struct WasmFrameBase WasmLoc;
70     } Location;
71   };
72 
73 private:
74   StackDirection StackDir;
75   Align StackAlignment;
76   Align TransientStackAlignment;
77   int LocalAreaOffset;
78   bool StackRealignable;
79 public:
80   TargetFrameLowering(StackDirection D, Align StackAl, int LAO,
81                       Align TransAl = Align(1), bool StackReal = true)
82       : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
83         LocalAreaOffset(LAO), StackRealignable(StackReal) {}
84 
85   virtual ~TargetFrameLowering();
86 
87   // These methods return information that describes the abstract stack layout
88   // of the target machine.
89 
90   /// getStackGrowthDirection - Return the direction the stack grows
91   ///
92   StackDirection getStackGrowthDirection() const { return StackDir; }
93 
94   /// getStackAlignment - This method returns the number of bytes to which the
95   /// stack pointer must be aligned on entry to a function.  Typically, this
96   /// is the largest alignment for any data object in the target.
97   ///
98   unsigned getStackAlignment() const { return StackAlignment.value(); }
99   /// getStackAlignment - This method returns the number of bytes to which the
100   /// stack pointer must be aligned on entry to a function.  Typically, this
101   /// is the largest alignment for any data object in the target.
102   ///
103   Align getStackAlign() const { return StackAlignment; }
104 
105   /// alignSPAdjust - This method aligns the stack adjustment to the correct
106   /// alignment.
107   ///
108   int alignSPAdjust(int SPAdj) const {
109     if (SPAdj < 0) {
110       SPAdj = -alignTo(-SPAdj, StackAlignment);
111     } else {
112       SPAdj = alignTo(SPAdj, StackAlignment);
113     }
114     return SPAdj;
115   }
116 
117   /// getTransientStackAlignment - This method returns the number of bytes to
118   /// which the stack pointer must be aligned at all times, even between
119   /// calls.
120   ///
121   Align getTransientStackAlign() const { return TransientStackAlignment; }
122 
123   /// isStackRealignable - This method returns whether the stack can be
124   /// realigned.
125   bool isStackRealignable() const {
126     return StackRealignable;
127   }
128 
129   /// This method returns whether or not it is safe for an object with the
130   /// given stack id to be bundled into the local area.
131   virtual bool isStackIdSafeForLocalArea(unsigned StackId) const {
132     return true;
133   }
134 
135   /// getOffsetOfLocalArea - This method returns the offset of the local area
136   /// from the stack pointer on entrance to a function.
137   ///
138   int getOffsetOfLocalArea() const { return LocalAreaOffset; }
139 
140   /// Control the placement of special register scavenging spill slots when
141   /// allocating a stack frame.
142   ///
143   /// If this returns true, the frame indexes used by the RegScavenger will be
144   /// allocated closest to the incoming stack pointer.
145   virtual bool allocateScavengingFrameIndexesNearIncomingSP(
146     const MachineFunction &MF) const;
147 
148   /// assignCalleeSavedSpillSlots - Allows target to override spill slot
149   /// assignment logic.  If implemented, assignCalleeSavedSpillSlots() should
150   /// assign frame slots to all CSI entries and return true.  If this method
151   /// returns false, spill slots will be assigned using generic implementation.
152   /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of
153   /// CSI.
154   virtual bool assignCalleeSavedSpillSlots(MachineFunction &MF,
155                                            const TargetRegisterInfo *TRI,
156                                            std::vector<CalleeSavedInfo> &CSI,
157                                            unsigned &MinCSFrameIndex,
158                                            unsigned &MaxCSFrameIndex) const {
159     return assignCalleeSavedSpillSlots(MF, TRI, CSI);
160   }
161 
162   virtual bool
163   assignCalleeSavedSpillSlots(MachineFunction &MF,
164                               const TargetRegisterInfo *TRI,
165                               std::vector<CalleeSavedInfo> &CSI) const {
166     return false;
167   }
168 
169   /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
170   /// pairs, that contains an entry for each callee saved register that must be
171   /// spilled to a particular stack location if it is spilled.
172   ///
173   /// Each entry in this array contains a <register,offset> pair, indicating the
174   /// fixed offset from the incoming stack pointer that each register should be
175   /// spilled at. If a register is not listed here, the code generator is
176   /// allowed to spill it anywhere it chooses.
177   ///
178   virtual const SpillSlot *
179   getCalleeSavedSpillSlots(unsigned &NumEntries) const {
180     NumEntries = 0;
181     return nullptr;
182   }
183 
184   /// targetHandlesStackFrameRounding - Returns true if the target is
185   /// responsible for rounding up the stack frame (probably at emitPrologue
186   /// time).
187   virtual bool targetHandlesStackFrameRounding() const {
188     return false;
189   }
190 
191   /// Returns true if the target will correctly handle shrink wrapping.
192   virtual bool enableShrinkWrapping(const MachineFunction &MF) const {
193     return false;
194   }
195 
196   /// Returns true if the stack slot holes in the fixed and callee-save stack
197   /// area should be used when allocating other stack locations to reduce stack
198   /// size.
199   virtual bool enableStackSlotScavenging(const MachineFunction &MF) const {
200     return false;
201   }
202 
203   /// Returns true if the target can safely skip saving callee-saved registers
204   /// for noreturn nounwind functions.
205   virtual bool enableCalleeSaveSkip(const MachineFunction &MF) const;
206 
207   /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
208   /// the function.
209   virtual void emitPrologue(MachineFunction &MF,
210                             MachineBasicBlock &MBB) const = 0;
211   virtual void emitEpilogue(MachineFunction &MF,
212                             MachineBasicBlock &MBB) const = 0;
213 
214   /// emitZeroCallUsedRegs - Zeros out call used registers.
215   virtual void emitZeroCallUsedRegs(BitVector RegsToZero,
216                                     MachineBasicBlock &MBB) const {}
217 
218   /// With basic block sections, emit callee saved frame moves for basic blocks
219   /// that are in a different section.
220   virtual void
221   emitCalleeSavedFrameMovesFullCFA(MachineBasicBlock &MBB,
222                                    MachineBasicBlock::iterator MBBI) const {}
223 
224   /// Returns true if we may need to fix the unwind information for the
225   /// function.
226   virtual bool enableCFIFixup(MachineFunction &MF) const;
227 
228   /// Emit CFI instructions that recreate the state of the unwind information
229   /// upon fucntion entry.
230   virtual void resetCFIToInitialState(MachineBasicBlock &MBB) const {}
231 
232   /// Replace a StackProbe stub (if any) with the actual probe code inline
233   virtual void inlineStackProbe(MachineFunction &MF,
234                                 MachineBasicBlock &PrologueMBB) const {}
235 
236   /// Does the stack probe function call return with a modified stack pointer?
237   virtual bool stackProbeFunctionModifiesSP() const { return false; }
238 
239   /// Adjust the prologue to have the function use segmented stacks. This works
240   /// by adding a check even before the "normal" function prologue.
241   virtual void adjustForSegmentedStacks(MachineFunction &MF,
242                                         MachineBasicBlock &PrologueMBB) const {}
243 
244   /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
245   /// the assembly prologue to explicitly handle the stack.
246   virtual void adjustForHiPEPrologue(MachineFunction &MF,
247                                      MachineBasicBlock &PrologueMBB) const {}
248 
249   /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
250   /// saved registers and returns true if it isn't possible / profitable to do
251   /// so by issuing a series of store instructions via
252   /// storeRegToStackSlot(). Returns false otherwise.
253   virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
254                                          MachineBasicBlock::iterator MI,
255                                          ArrayRef<CalleeSavedInfo> CSI,
256                                          const TargetRegisterInfo *TRI) const {
257     return false;
258   }
259 
260   /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
261   /// saved registers and returns true if it isn't possible / profitable to do
262   /// so by issuing a series of load instructions via loadRegToStackSlot().
263   /// If it returns true, and any of the registers in CSI is not restored,
264   /// it sets the corresponding Restored flag in CSI to false.
265   /// Returns false otherwise.
266   virtual bool
267   restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
268                               MachineBasicBlock::iterator MI,
269                               MutableArrayRef<CalleeSavedInfo> CSI,
270                               const TargetRegisterInfo *TRI) const {
271     return false;
272   }
273 
274   /// Return true if the target wants to keep the frame pointer regardless of
275   /// the function attribute "frame-pointer".
276   virtual bool keepFramePointer(const MachineFunction &MF) const {
277     return false;
278   }
279 
280   /// hasFP - Return true if the specified function should have a dedicated
281   /// frame pointer register. For most targets this is true only if the function
282   /// has variable sized allocas or if frame pointer elimination is disabled.
283   virtual bool hasFP(const MachineFunction &MF) const = 0;
284 
285   /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
286   /// not required, we reserve argument space for call sites in the function
287   /// immediately on entry to the current function. This eliminates the need for
288   /// add/sub sp brackets around call sites. Returns true if the call frame is
289   /// included as part of the stack frame.
290   virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
291     return !hasFP(MF);
292   }
293 
294   /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
295   /// call frame pseudo ops before doing frame index elimination. This is
296   /// possible only when frame index references between the pseudos won't
297   /// need adjusting for the call frame adjustments. Normally, that's true
298   /// if the function has a reserved call frame or a frame pointer. Some
299   /// targets (Thumb2, for example) may have more complicated criteria,
300   /// however, and can override this behavior.
301   virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
302     return hasReservedCallFrame(MF) || hasFP(MF);
303   }
304 
305   // needsFrameIndexResolution - Do we need to perform FI resolution for
306   // this function. Normally, this is required only when the function
307   // has any stack objects. However, targets may want to override this.
308   virtual bool needsFrameIndexResolution(const MachineFunction &MF) const;
309 
310   /// getFrameIndexReference - This method should return the base register
311   /// and offset used to reference a frame index location. The offset is
312   /// returned directly, and the base register is returned via FrameReg.
313   virtual StackOffset getFrameIndexReference(const MachineFunction &MF, int FI,
314                                              Register &FrameReg) const;
315 
316   /// Same as \c getFrameIndexReference, except that the stack pointer (as
317   /// opposed to the frame pointer) will be the preferred value for \p
318   /// FrameReg. This is generally used for emitting statepoint or EH tables that
319   /// use offsets from RSP.  If \p IgnoreSPUpdates is true, the returned
320   /// offset is only guaranteed to be valid with respect to the value of SP at
321   /// the end of the prologue.
322   virtual StackOffset
323   getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI,
324                                  Register &FrameReg,
325                                  bool IgnoreSPUpdates) const {
326     // Always safe to dispatch to getFrameIndexReference.
327     return getFrameIndexReference(MF, FI, FrameReg);
328   }
329 
330   /// getNonLocalFrameIndexReference - This method returns the offset used to
331   /// reference a frame index location. The offset can be from either FP/BP/SP
332   /// based on which base register is returned by llvm.localaddress.
333   virtual StackOffset getNonLocalFrameIndexReference(const MachineFunction &MF,
334                                                      int FI) const {
335     // By default, dispatch to getFrameIndexReference. Interested targets can
336     // override this.
337     Register FrameReg;
338     return getFrameIndexReference(MF, FI, FrameReg);
339   }
340 
341   /// Returns the callee-saved registers as computed by determineCalleeSaves
342   /// in the BitVector \p SavedRegs.
343   virtual void getCalleeSaves(const MachineFunction &MF,
344                                   BitVector &SavedRegs) const;
345 
346   /// This method determines which of the registers reported by
347   /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved.
348   /// The default implementation checks populates the \p SavedRegs bitset with
349   /// all registers which are modified in the function, targets may override
350   /// this function to save additional registers.
351   /// This method also sets up the register scavenger ensuring there is a free
352   /// register or a frameindex available.
353   /// This method should not be called by any passes outside of PEI, because
354   /// it may change state passed in by \p MF and \p RS. The preferred
355   /// interface outside PEI is getCalleeSaves.
356   virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs,
357                                     RegScavenger *RS = nullptr) const;
358 
359   /// processFunctionBeforeFrameFinalized - This method is called immediately
360   /// before the specified function's frame layout (MF.getFrameInfo()) is
361   /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
362   /// replaced with direct constants.  This method is optional.
363   ///
364   virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
365                                              RegScavenger *RS = nullptr) const {
366   }
367 
368   /// processFunctionBeforeFrameIndicesReplaced - This method is called
369   /// immediately before MO_FrameIndex operands are eliminated, but after the
370   /// frame is finalized. This method is optional.
371   virtual void
372   processFunctionBeforeFrameIndicesReplaced(MachineFunction &MF,
373                                             RegScavenger *RS = nullptr) const {}
374 
375   virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const {
376     report_fatal_error("WinEH not implemented for this target");
377   }
378 
379   /// This method is called during prolog/epilog code insertion to eliminate
380   /// call frame setup and destroy pseudo instructions (but only if the Target
381   /// is using them).  It is responsible for eliminating these instructions,
382   /// replacing them with concrete instructions.  This method need only be
383   /// implemented if using call frame setup/destroy pseudo instructions.
384   /// Returns an iterator pointing to the instruction after the replaced one.
385   virtual MachineBasicBlock::iterator
386   eliminateCallFramePseudoInstr(MachineFunction &MF,
387                                 MachineBasicBlock &MBB,
388                                 MachineBasicBlock::iterator MI) const {
389     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
390                      "target!");
391   }
392 
393 
394   /// Order the symbols in the local stack frame.
395   /// The list of objects that we want to order is in \p objectsToAllocate as
396   /// indices into the MachineFrameInfo. The array can be reordered in any way
397   /// upon return. The contents of the array, however, may not be modified (i.e.
398   /// only their order may be changed).
399   /// By default, just maintain the original order.
400   virtual void
401   orderFrameObjects(const MachineFunction &MF,
402                     SmallVectorImpl<int> &objectsToAllocate) const {
403   }
404 
405   /// Check whether or not the given \p MBB can be used as a prologue
406   /// for the target.
407   /// The prologue will be inserted first in this basic block.
408   /// This method is used by the shrink-wrapping pass to decide if
409   /// \p MBB will be correctly handled by the target.
410   /// As soon as the target enable shrink-wrapping without overriding
411   /// this method, we assume that each basic block is a valid
412   /// prologue.
413   virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const {
414     return true;
415   }
416 
417   /// Check whether or not the given \p MBB can be used as a epilogue
418   /// for the target.
419   /// The epilogue will be inserted before the first terminator of that block.
420   /// This method is used by the shrink-wrapping pass to decide if
421   /// \p MBB will be correctly handled by the target.
422   /// As soon as the target enable shrink-wrapping without overriding
423   /// this method, we assume that each basic block is a valid
424   /// epilogue.
425   virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const {
426     return true;
427   }
428 
429   /// Returns the StackID that scalable vectors should be associated with.
430   virtual TargetStackID::Value getStackIDForScalableVectors() const {
431     return TargetStackID::Default;
432   }
433 
434   virtual bool isSupportedStackID(TargetStackID::Value ID) const {
435     switch (ID) {
436     default:
437       return false;
438     case TargetStackID::Default:
439     case TargetStackID::NoAlloc:
440       return true;
441     }
442   }
443 
444   /// Check if given function is safe for not having callee saved registers.
445   /// This is used when interprocedural register allocation is enabled.
446   static bool isSafeForNoCSROpt(const Function &F);
447 
448   /// Check if the no-CSR optimisation is profitable for the given function.
449   virtual bool isProfitableForNoCSROpt(const Function &F) const {
450     return true;
451   }
452 
453   /// Return initial CFA offset value i.e. the one valid at the beginning of the
454   /// function (before any stack operations).
455   virtual int getInitialCFAOffset(const MachineFunction &MF) const;
456 
457   /// Return initial CFA register value i.e. the one valid at the beginning of
458   /// the function (before any stack operations).
459   virtual Register getInitialCFARegister(const MachineFunction &MF) const;
460 
461   /// Return the frame base information to be encoded in the DWARF subprogram
462   /// debug info.
463   virtual DwarfFrameBase getDwarfFrameBase(const MachineFunction &MF) const;
464 };
465 
466 } // End llvm namespace
467 
468 #endif
469