1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM code to machine code.  This has two
11 /// main components:
12 ///
13 ///  1. Which ValueTypes are natively supported by the target.
14 ///  2. Which operations are supported for supported ValueTypes.
15 ///  3. Cost thresholds for alternative implementations of certain operations.
16 ///
17 /// In addition it has a few other components, like information about FP
18 /// immediates.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
24 
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/CodeGen/DAGCombine.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/MachineValueType.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetCallingConv.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/Support/Alignment.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <climits>
56 #include <cstdint>
57 #include <iterator>
58 #include <map>
59 #include <string>
60 #include <utility>
61 #include <vector>
62 
63 namespace llvm {
64 
65 class AssumptionCache;
66 class CCState;
67 class CCValAssign;
68 enum class ComplexDeinterleavingOperation;
69 enum class ComplexDeinterleavingRotation;
70 class Constant;
71 class FastISel;
72 class FunctionLoweringInfo;
73 class GlobalValue;
74 class Loop;
75 class GISelKnownBits;
76 class IntrinsicInst;
77 class IRBuilderBase;
78 struct KnownBits;
79 class LLVMContext;
80 class MachineBasicBlock;
81 class MachineFunction;
82 class MachineInstr;
83 class MachineJumpTableInfo;
84 class MachineLoop;
85 class MachineRegisterInfo;
86 class MCContext;
87 class MCExpr;
88 class Module;
89 class ProfileSummaryInfo;
90 class TargetLibraryInfo;
91 class TargetMachine;
92 class TargetRegisterClass;
93 class TargetRegisterInfo;
94 class TargetTransformInfo;
95 class Value;
96 
97 namespace Sched {
98 
99 enum Preference {
100   None,        // No preference
101   Source,      // Follow source order.
102   RegPressure, // Scheduling for lowest register pressure.
103   Hybrid,      // Scheduling for both latency and register pressure.
104   ILP,         // Scheduling for ILP in low register pressure mode.
105   VLIW,        // Scheduling for VLIW targets.
106   Fast,        // Fast suboptimal list scheduling
107   Linearize    // Linearize DAG, no scheduling
108 };
109 
110 } // end namespace Sched
111 
112 // MemOp models a memory operation, either memset or memcpy/memmove.
113 struct MemOp {
114 private:
115   // Shared
116   uint64_t Size;
117   bool DstAlignCanChange; // true if destination alignment can satisfy any
118                           // constraint.
119   Align DstAlign;         // Specified alignment of the memory operation.
120 
121   bool AllowOverlap;
122   // memset only
123   bool IsMemset;   // If setthis memory operation is a memset.
124   bool ZeroMemset; // If set clears out memory with zeros.
125   // memcpy only
126   bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
127                      // constant so it does not need to be loaded.
128   Align SrcAlign;    // Inferred alignment of the source or default value if the
129                      // memory operation does not need to load the value.
130 public:
131   static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
132                     Align SrcAlign, bool IsVolatile,
133                     bool MemcpyStrSrc = false) {
134     MemOp Op;
135     Op.Size = Size;
136     Op.DstAlignCanChange = DstAlignCanChange;
137     Op.DstAlign = DstAlign;
138     Op.AllowOverlap = !IsVolatile;
139     Op.IsMemset = false;
140     Op.ZeroMemset = false;
141     Op.MemcpyStrSrc = MemcpyStrSrc;
142     Op.SrcAlign = SrcAlign;
143     return Op;
144   }
145 
SetMemOp146   static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
147                    bool IsZeroMemset, bool IsVolatile) {
148     MemOp Op;
149     Op.Size = Size;
150     Op.DstAlignCanChange = DstAlignCanChange;
151     Op.DstAlign = DstAlign;
152     Op.AllowOverlap = !IsVolatile;
153     Op.IsMemset = true;
154     Op.ZeroMemset = IsZeroMemset;
155     Op.MemcpyStrSrc = false;
156     return Op;
157   }
158 
sizeMemOp159   uint64_t size() const { return Size; }
getDstAlignMemOp160   Align getDstAlign() const {
161     assert(!DstAlignCanChange);
162     return DstAlign;
163   }
isFixedDstAlignMemOp164   bool isFixedDstAlign() const { return !DstAlignCanChange; }
allowOverlapMemOp165   bool allowOverlap() const { return AllowOverlap; }
isMemsetMemOp166   bool isMemset() const { return IsMemset; }
isMemcpyMemOp167   bool isMemcpy() const { return !IsMemset; }
isMemcpyWithFixedDstAlignMemOp168   bool isMemcpyWithFixedDstAlign() const {
169     return isMemcpy() && !DstAlignCanChange;
170   }
isZeroMemsetMemOp171   bool isZeroMemset() const { return isMemset() && ZeroMemset; }
isMemcpyStrSrcMemOp172   bool isMemcpyStrSrc() const {
173     assert(isMemcpy() && "Must be a memcpy");
174     return MemcpyStrSrc;
175   }
getSrcAlignMemOp176   Align getSrcAlign() const {
177     assert(isMemcpy() && "Must be a memcpy");
178     return SrcAlign;
179   }
isSrcAlignedMemOp180   bool isSrcAligned(Align AlignCheck) const {
181     return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
182   }
isDstAlignedMemOp183   bool isDstAligned(Align AlignCheck) const {
184     return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
185   }
isAlignedMemOp186   bool isAligned(Align AlignCheck) const {
187     return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
188   }
189 };
190 
191 /// This base class for TargetLowering contains the SelectionDAG-independent
192 /// parts that can be used from the rest of CodeGen.
193 class TargetLoweringBase {
194 public:
195   /// This enum indicates whether operations are valid for a target, and if not,
196   /// what action should be used to make them valid.
197   enum LegalizeAction : uint8_t {
198     Legal,      // The target natively supports this operation.
199     Promote,    // This operation should be executed in a larger type.
200     Expand,     // Try to expand this to other ops, otherwise use a libcall.
201     LibCall,    // Don't try to expand this to other ops, always use a libcall.
202     Custom      // Use the LowerOperation hook to implement custom lowering.
203   };
204 
205   /// This enum indicates whether a types are legal for a target, and if not,
206   /// what action should be used to make them valid.
207   enum LegalizeTypeAction : uint8_t {
208     TypeLegal,           // The target natively supports this type.
209     TypePromoteInteger,  // Replace this integer with a larger one.
210     TypeExpandInteger,   // Split this integer into two of half the size.
211     TypeSoftenFloat,     // Convert this float to a same size integer type.
212     TypeExpandFloat,     // Split this float into two of half the size.
213     TypeScalarizeVector, // Replace this one-element vector with its element.
214     TypeSplitVector,     // Split this vector into two of half the size.
215     TypeWidenVector,     // This vector should be widened into a larger vector.
216     TypePromoteFloat,    // Replace this float with a larger one.
217     TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
218     TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
219                                  // While it is theoretically possible to
220                                  // legalize operations on scalable types with a
221                                  // loop that handles the vscale * #lanes of the
222                                  // vector, this is non-trivial at SelectionDAG
223                                  // level and these types are better to be
224                                  // widened or promoted.
225   };
226 
227   /// LegalizeKind holds the legalization kind that needs to happen to EVT
228   /// in order to type-legalize it.
229   using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
230 
231   /// Enum that describes how the target represents true/false values.
232   enum BooleanContent {
233     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
234     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
235     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
236   };
237 
238   /// Enum that describes what type of support for selects the target has.
239   enum SelectSupportKind {
240     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
241     ScalarCondVectorVal,  // The target supports selects with a scalar condition
242                           // and vector values (ex: cmov).
243     VectorMaskSelect      // The target supports vector selects with a vector
244                           // mask (ex: x86 blends).
245   };
246 
247   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
248   /// to, if at all. Exists because different targets have different levels of
249   /// support for these atomic instructions, and also have different options
250   /// w.r.t. what they should expand to.
251   enum class AtomicExpansionKind {
252     None,    // Don't expand the instruction.
253     CastToInteger,    // Cast the atomic instruction to another type, e.g. from
254                       // floating-point to integer type.
255     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
256              // by ARM/AArch64.
257     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
258              // greater atomic guarantees than a normal load.
259     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
260     MaskedIntrinsic,  // Use a target-specific intrinsic for the LL/SC loop.
261     BitTestIntrinsic, // Use a target-specific intrinsic for special bit
262                       // operations; used by X86.
263     CmpArithIntrinsic,// Use a target-specific intrinsic for special compare
264                       // operations; used by X86.
265     Expand,           // Generic expansion in terms of other atomic operations.
266 
267     // Rewrite to a non-atomic form for use in a known non-preemptible
268     // environment.
269     NotAtomic
270   };
271 
272   /// Enum that specifies when a multiplication should be expanded.
273   enum class MulExpansionKind {
274     Always,            // Always expand the instruction.
275     OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
276                        // or custom.
277   };
278 
279   /// Enum that specifies when a float negation is beneficial.
280   enum class NegatibleCost {
281     Cheaper = 0,    // Negated expression is cheaper.
282     Neutral = 1,    // Negated expression has the same cost.
283     Expensive = 2   // Negated expression is more expensive.
284   };
285 
286   /// Enum of different potentially desirable ways to fold (and/or (setcc ...),
287   /// (setcc ...)).
288   enum AndOrSETCCFoldKind : uint8_t {
289     None = 0,   // No fold is preferable.
290     AddAnd = 1, // Fold with `Add` op and `And` op is preferable.
291     NotAnd = 2, // Fold with `Not` op and `And` op is preferable.
292     ABS = 4,    // Fold with `llvm.abs` op is preferable.
293   };
294 
295   class ArgListEntry {
296   public:
297     Value *Val = nullptr;
298     SDValue Node = SDValue();
299     Type *Ty = nullptr;
300     bool IsSExt : 1;
301     bool IsZExt : 1;
302     bool IsInReg : 1;
303     bool IsSRet : 1;
304     bool IsNest : 1;
305     bool IsByVal : 1;
306     bool IsByRef : 1;
307     bool IsInAlloca : 1;
308     bool IsPreallocated : 1;
309     bool IsReturned : 1;
310     bool IsSwiftSelf : 1;
311     bool IsSwiftAsync : 1;
312     bool IsSwiftError : 1;
313     bool IsCFGuardTarget : 1;
314     MaybeAlign Alignment = std::nullopt;
315     Type *IndirectType = nullptr;
316 
ArgListEntry()317     ArgListEntry()
318         : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
319           IsNest(false), IsByVal(false), IsByRef(false), IsInAlloca(false),
320           IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
321           IsSwiftAsync(false), IsSwiftError(false), IsCFGuardTarget(false) {}
322 
323     void setAttributes(const CallBase *Call, unsigned ArgIdx);
324   };
325   using ArgListTy = std::vector<ArgListEntry>;
326 
markLibCallAttributes(MachineFunction * MF,unsigned CC,ArgListTy & Args)327   virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
328                                      ArgListTy &Args) const {};
329 
getExtendForContent(BooleanContent Content)330   static ISD::NodeType getExtendForContent(BooleanContent Content) {
331     switch (Content) {
332     case UndefinedBooleanContent:
333       // Extend by adding rubbish bits.
334       return ISD::ANY_EXTEND;
335     case ZeroOrOneBooleanContent:
336       // Extend by adding zero bits.
337       return ISD::ZERO_EXTEND;
338     case ZeroOrNegativeOneBooleanContent:
339       // Extend by copying the sign bit.
340       return ISD::SIGN_EXTEND;
341     }
342     llvm_unreachable("Invalid content kind");
343   }
344 
345   explicit TargetLoweringBase(const TargetMachine &TM);
346   TargetLoweringBase(const TargetLoweringBase &) = delete;
347   TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
348   virtual ~TargetLoweringBase() = default;
349 
350   /// Return true if the target support strict float operation
isStrictFPEnabled()351   bool isStrictFPEnabled() const {
352     return IsStrictFPEnabled;
353   }
354 
355 protected:
356   /// Initialize all of the actions to default values.
357   void initActions();
358 
359 public:
getTargetMachine()360   const TargetMachine &getTargetMachine() const { return TM; }
361 
useSoftFloat()362   virtual bool useSoftFloat() const { return false; }
363 
364   /// Return the pointer type for the given address space, defaults to
365   /// the pointer type from the data layout.
366   /// FIXME: The default needs to be removed once all the code is updated.
367   virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
368     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
369   }
370 
371   /// Return the in-memory pointer type for the given address space, defaults to
372   /// the pointer type from the data layout.
373   /// FIXME: The default needs to be removed once all the code is updated.
374   virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
375     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
376   }
377 
378   /// Return the type for frame index, which is determined by
379   /// the alloca address space specified through the data layout.
getFrameIndexTy(const DataLayout & DL)380   MVT getFrameIndexTy(const DataLayout &DL) const {
381     return getPointerTy(DL, DL.getAllocaAddrSpace());
382   }
383 
384   /// Return the type for code pointers, which is determined by the program
385   /// address space specified through the data layout.
getProgramPointerTy(const DataLayout & DL)386   MVT getProgramPointerTy(const DataLayout &DL) const {
387     return getPointerTy(DL, DL.getProgramAddressSpace());
388   }
389 
390   /// Return the type for operands of fence.
391   /// TODO: Let fence operands be of i32 type and remove this.
getFenceOperandTy(const DataLayout & DL)392   virtual MVT getFenceOperandTy(const DataLayout &DL) const {
393     return getPointerTy(DL);
394   }
395 
396   /// Return the type to use for a scalar shift opcode, given the shifted amount
397   /// type. Targets should return a legal type if the input type is legal.
398   /// Targets can return a type that is too small if the input type is illegal.
399   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
400 
401   /// Returns the type for the shift amount of a shift opcode. For vectors,
402   /// returns the input type. For scalars, behavior depends on \p LegalTypes. If
403   /// \p LegalTypes is true, calls getScalarShiftAmountTy, otherwise uses
404   /// pointer type. If getScalarShiftAmountTy or pointer type cannot represent
405   /// all possible shift amounts, returns MVT::i32. In general, \p LegalTypes
406   /// should be set to true for calls during type legalization and after type
407   /// legalization has been completed.
408   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
409                        bool LegalTypes = true) const;
410 
411   /// Return the preferred type to use for a shift opcode, given the shifted
412   /// amount type is \p ShiftValueTy.
413   LLVM_READONLY
getPreferredShiftAmountTy(LLT ShiftValueTy)414   virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
415     return ShiftValueTy;
416   }
417 
418   /// Returns the type to be used for the index operand of:
419   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
420   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
getVectorIdxTy(const DataLayout & DL)421   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
422     return getPointerTy(DL);
423   }
424 
425   /// Returns the type to be used for the EVL/AVL operand of VP nodes:
426   /// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
427   /// and must be at least as large as i32. The EVL is implicitly zero-extended
428   /// to any larger type.
getVPExplicitVectorLengthTy()429   virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
430 
431   /// This callback is used to inspect load/store instructions and add
432   /// target-specific MachineMemOperand flags to them.  The default
433   /// implementation does nothing.
getTargetMMOFlags(const Instruction & I)434   virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
435     return MachineMemOperand::MONone;
436   }
437 
438   /// This callback is used to inspect load/store SDNode.
439   /// The default implementation does nothing.
440   virtual MachineMemOperand::Flags
getTargetMMOFlags(const MemSDNode & Node)441   getTargetMMOFlags(const MemSDNode &Node) const {
442     return MachineMemOperand::MONone;
443   }
444 
445   MachineMemOperand::Flags
446   getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL,
447                          AssumptionCache *AC = nullptr,
448                          const TargetLibraryInfo *LibInfo = nullptr) const;
449   MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
450                                                    const DataLayout &DL) const;
451   MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
452                                                     const DataLayout &DL) const;
453 
isSelectSupported(SelectSupportKind)454   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
455     return true;
456   }
457 
458   /// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
459   /// using generic code in SelectionDAGBuilder.
shouldExpandGetActiveLaneMask(EVT VT,EVT OpVT)460   virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
461     return true;
462   }
463 
shouldExpandGetVectorLength(EVT CountVT,unsigned VF,bool IsScalable)464   virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF,
465                                            bool IsScalable) const {
466     return true;
467   }
468 
469   /// Return true if the @llvm.experimental.cttz.elts intrinsic should be
470   /// expanded using generic code in SelectionDAGBuilder.
shouldExpandCttzElements(EVT VT)471   virtual bool shouldExpandCttzElements(EVT VT) const { return true; }
472 
473   // Return true if op(vecreduce(x), vecreduce(y)) should be reassociated to
474   // vecreduce(op(x, y)) for the reduction opcode RedOpc.
shouldReassociateReduction(unsigned RedOpc,EVT VT)475   virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const {
476     return true;
477   }
478 
479   /// Return true if it is profitable to convert a select of FP constants into
480   /// a constant pool load whose address depends on the select condition. The
481   /// parameter may be used to differentiate a select with FP compare from
482   /// integer compare.
reduceSelectOfFPConstantLoads(EVT CmpOpVT)483   virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
484     return true;
485   }
486 
487   /// Return true if multiple condition registers are available.
hasMultipleConditionRegisters()488   bool hasMultipleConditionRegisters() const {
489     return HasMultipleConditionRegisters;
490   }
491 
492   /// Return true if the target has BitExtract instructions.
hasExtractBitsInsn()493   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
494 
495   /// Return the preferred vector type legalization action.
496   virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT)497   getPreferredVectorAction(MVT VT) const {
498     // The default action for one element vectors is to scalarize
499     if (VT.getVectorElementCount().isScalar())
500       return TypeScalarizeVector;
501     // The default action for an odd-width vector is to widen.
502     if (!VT.isPow2VectorType())
503       return TypeWidenVector;
504     // The default action for other vectors is to promote
505     return TypePromoteInteger;
506   }
507 
508   // Return true if the half type should be passed around as i16, but promoted
509   // to float around arithmetic. The default behavior is to pass around as
510   // float and convert around loads/stores/bitcasts and other places where
511   // the size matters.
softPromoteHalfType()512   virtual bool softPromoteHalfType() const { return false; }
513 
514   // There are two general methods for expanding a BUILD_VECTOR node:
515   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
516   //     them together.
517   //  2. Build the vector on the stack and then load it.
518   // If this function returns true, then method (1) will be used, subject to
519   // the constraint that all of the necessary shuffles are legal (as determined
520   // by isShuffleMaskLegal). If this function returns false, then method (2) is
521   // always used. The vector type, and the number of defined values, are
522   // provided.
523   virtual bool
shouldExpandBuildVectorWithShuffles(EVT,unsigned DefinedValues)524   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
525                                       unsigned DefinedValues) const {
526     return DefinedValues < 3;
527   }
528 
529   /// Return true if integer divide is usually cheaper than a sequence of
530   /// several shifts, adds, and multiplies for this target.
531   /// The definition of "cheaper" may depend on whether we're optimizing
532   /// for speed or for size.
isIntDivCheap(EVT VT,AttributeList Attr)533   virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
534 
535   /// Return true if the target can handle a standalone remainder operation.
hasStandaloneRem(EVT VT)536   virtual bool hasStandaloneRem(EVT VT) const {
537     return true;
538   }
539 
540   /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
isFsqrtCheap(SDValue X,SelectionDAG & DAG)541   virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
542     // Default behavior is to replace SQRT(X) with X*RSQRT(X).
543     return false;
544   }
545 
546   /// Reciprocal estimate status values used by the functions below.
547   enum ReciprocalEstimate : int {
548     Unspecified = -1,
549     Disabled = 0,
550     Enabled = 1
551   };
552 
553   /// Return a ReciprocalEstimate enum value for a square root of the given type
554   /// based on the function's attributes. If the operation is not overridden by
555   /// the function's attributes, "Unspecified" is returned and target defaults
556   /// are expected to be used for instruction selection.
557   int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
558 
559   /// Return a ReciprocalEstimate enum value for a division of the given type
560   /// based on the function's attributes. If the operation is not overridden by
561   /// the function's attributes, "Unspecified" is returned and target defaults
562   /// are expected to be used for instruction selection.
563   int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
564 
565   /// Return the refinement step count for a square root of the given type based
566   /// on the function's attributes. If the operation is not overridden by
567   /// the function's attributes, "Unspecified" is returned and target defaults
568   /// are expected to be used for instruction selection.
569   int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
570 
571   /// Return the refinement step count for a division of the given type based
572   /// on the function's attributes. If the operation is not overridden by
573   /// the function's attributes, "Unspecified" is returned and target defaults
574   /// are expected to be used for instruction selection.
575   int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
576 
577   /// Returns true if target has indicated at least one type should be bypassed.
isSlowDivBypassed()578   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
579 
580   /// Returns map of slow types for division or remainder with corresponding
581   /// fast types
getBypassSlowDivWidths()582   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
583     return BypassSlowDivWidths;
584   }
585 
586   /// Return true only if vscale must be a power of two.
isVScaleKnownToBeAPowerOfTwo()587   virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
588 
589   /// Return true if Flow Control is an expensive operation that should be
590   /// avoided.
isJumpExpensive()591   bool isJumpExpensive() const { return JumpIsExpensive; }
592 
593   /// Return true if selects are only cheaper than branches if the branch is
594   /// unlikely to be predicted right.
isPredictableSelectExpensive()595   bool isPredictableSelectExpensive() const {
596     return PredictableSelectIsExpensive;
597   }
598 
fallBackToDAGISel(const Instruction & Inst)599   virtual bool fallBackToDAGISel(const Instruction &Inst) const {
600     return false;
601   }
602 
603   /// Return true if the following transform is beneficial:
604   /// fold (conv (load x)) -> (load (conv*)x)
605   /// On architectures that don't natively support some vector loads
606   /// efficiently, casting the load to a smaller vector of larger types and
607   /// loading is more efficient, however, this can be undone by optimizations in
608   /// dag combiner.
609   virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
610                                        const SelectionDAG &DAG,
611                                        const MachineMemOperand &MMO) const;
612 
613   /// Return true if the following transform is beneficial:
614   /// (store (y (conv x)), y*)) -> (store x, (x*))
isStoreBitCastBeneficial(EVT StoreVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)615   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
616                                         const SelectionDAG &DAG,
617                                         const MachineMemOperand &MMO) const {
618     // Default to the same logic as loads.
619     return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
620   }
621 
622   /// Return true if it is expected to be cheaper to do a store of vector
623   /// constant with the given size and type for the address space than to
624   /// store the individual scalar element constants.
storeOfVectorConstantIsCheap(bool IsZero,EVT MemVT,unsigned NumElem,unsigned AddrSpace)625   virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT,
626                                             unsigned NumElem,
627                                             unsigned AddrSpace) const {
628     return IsZero;
629   }
630 
631   /// Allow store merging for the specified type after legalization in addition
632   /// to before legalization. This may transform stores that do not exist
633   /// earlier (for example, stores created from intrinsics).
mergeStoresAfterLegalization(EVT MemVT)634   virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
635     return true;
636   }
637 
638   /// Returns if it's reasonable to merge stores to MemVT size.
canMergeStoresTo(unsigned AS,EVT MemVT,const MachineFunction & MF)639   virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
640                                 const MachineFunction &MF) const {
641     return true;
642   }
643 
644   /// Return true if it is cheap to speculate a call to intrinsic cttz.
isCheapToSpeculateCttz(Type * Ty)645   virtual bool isCheapToSpeculateCttz(Type *Ty) const {
646     return false;
647   }
648 
649   /// Return true if it is cheap to speculate a call to intrinsic ctlz.
isCheapToSpeculateCtlz(Type * Ty)650   virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
651     return false;
652   }
653 
654   /// Return true if ctlz instruction is fast.
isCtlzFast()655   virtual bool isCtlzFast() const {
656     return false;
657   }
658 
659   /// Return true if ctpop instruction is fast.
isCtpopFast(EVT VT)660   virtual bool isCtpopFast(EVT VT) const {
661     return isOperationLegal(ISD::CTPOP, VT);
662   }
663 
664   /// Return the maximum number of "x & (x - 1)" operations that can be done
665   /// instead of deferring to a custom CTPOP.
getCustomCtpopCost(EVT VT,ISD::CondCode Cond)666   virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
667     return 1;
668   }
669 
670   /// Return true if instruction generated for equality comparison is folded
671   /// with instruction generated for signed comparison.
isEqualityCmpFoldedWithSignedCmp()672   virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
673 
674   /// Return true if the heuristic to prefer icmp eq zero should be used in code
675   /// gen prepare.
preferZeroCompareBranch()676   virtual bool preferZeroCompareBranch() const { return false; }
677 
678   /// Return true if it is cheaper to split the store of a merged int val
679   /// from a pair of smaller values into multiple stores.
isMultiStoresCheaperThanBitsMerge(EVT LTy,EVT HTy)680   virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
681     return false;
682   }
683 
684   /// Return if the target supports combining a
685   /// chain like:
686   /// \code
687   ///   %andResult = and %val1, #mask
688   ///   %icmpResult = icmp %andResult, 0
689   /// \endcode
690   /// into a single machine instruction of a form like:
691   /// \code
692   ///   cc = test %register, #mask
693   /// \endcode
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI)694   virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
695     return false;
696   }
697 
698   /// Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
699   virtual bool
areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode & NodeX,const MemSDNode & NodeY)700   areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX,
701                                       const MemSDNode &NodeY) const {
702     return true;
703   }
704 
705   /// Use bitwise logic to make pairs of compares more efficient. For example:
706   /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
707   /// This should be true when it takes more than one instruction to lower
708   /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
709   /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
convertSetCCLogicToBitwiseLogic(EVT VT)710   virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
711     return false;
712   }
713 
714   /// Return the preferred operand type if the target has a quick way to compare
715   /// integer values of the given size. Assume that any legal integer type can
716   /// be compared efficiently. Targets may override this to allow illegal wide
717   /// types to return a vector type if there is support to compare that type.
hasFastEqualityCompare(unsigned NumBits)718   virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
719     MVT VT = MVT::getIntegerVT(NumBits);
720     return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
721   }
722 
723   /// Return true if the target should transform:
724   /// (X & Y) == Y ---> (~X & Y) == 0
725   /// (X & Y) != Y ---> (~X & Y) != 0
726   ///
727   /// This may be profitable if the target has a bitwise and-not operation that
728   /// sets comparison flags. A target may want to limit the transformation based
729   /// on the type of Y or if Y is a constant.
730   ///
731   /// Note that the transform will not occur if Y is known to be a power-of-2
732   /// because a mask and compare of a single bit can be handled by inverting the
733   /// predicate, for example:
734   /// (X & 8) == 8 ---> (X & 8) != 0
hasAndNotCompare(SDValue Y)735   virtual bool hasAndNotCompare(SDValue Y) const {
736     return false;
737   }
738 
739   /// Return true if the target has a bitwise and-not operation:
740   /// X = ~A & B
741   /// This can be used to simplify select or other instructions.
hasAndNot(SDValue X)742   virtual bool hasAndNot(SDValue X) const {
743     // If the target has the more complex version of this operation, assume that
744     // it has this operation too.
745     return hasAndNotCompare(X);
746   }
747 
748   /// Return true if the target has a bit-test instruction:
749   ///   (X & (1 << Y)) ==/!= 0
750   /// This knowledge can be used to prevent breaking the pattern,
751   /// or creating it if it could be recognized.
hasBitTest(SDValue X,SDValue Y)752   virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
753 
754   /// There are two ways to clear extreme bits (either low or high):
755   /// Mask:    x &  (-1 << y)  (the instcombine canonical form)
756   /// Shifts:  x >> y << y
757   /// Return true if the variant with 2 variable shifts is preferred.
758   /// Return false if there is no preference.
shouldFoldMaskToVariableShiftPair(SDValue X)759   virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
760     // By default, let's assume that no one prefers shifts.
761     return false;
762   }
763 
764   /// Return true if it is profitable to fold a pair of shifts into a mask.
765   /// This is usually true on most targets. But some targets, like Thumb1,
766   /// have immediate shift instructions, but no immediate "and" instruction;
767   /// this makes the fold unprofitable.
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level)768   virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
769                                                  CombineLevel Level) const {
770     return true;
771   }
772 
773   /// Should we tranform the IR-optimal check for whether given truncation
774   /// down into KeptBits would be truncating or not:
775   ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
776   /// Into it's more traditional form:
777   ///   ((%x << C) a>> C) dstcond %x
778   /// Return true if we should transform.
779   /// Return false if there is no preference.
shouldTransformSignedTruncationCheck(EVT XVT,unsigned KeptBits)780   virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
781                                                     unsigned KeptBits) const {
782     // By default, let's assume that no one prefers shifts.
783     return false;
784   }
785 
786   /// Given the pattern
787   ///   (X & (C l>>/<< Y)) ==/!= 0
788   /// return true if it should be transformed into:
789   ///   ((X <</l>> Y) & C) ==/!= 0
790   /// WARNING: if 'X' is a constant, the fold may deadlock!
791   /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
792   ///        here because it can end up being not linked in.
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X,ConstantSDNode * XC,ConstantSDNode * CC,SDValue Y,unsigned OldShiftOpcode,unsigned NewShiftOpcode,SelectionDAG & DAG)793   virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
794       SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
795       unsigned OldShiftOpcode, unsigned NewShiftOpcode,
796       SelectionDAG &DAG) const {
797     if (hasBitTest(X, Y)) {
798       // One interesting pattern that we'd want to form is 'bit test':
799       //   ((1 << Y) & C) ==/!= 0
800       // But we also need to be careful not to try to reverse that fold.
801 
802       // Is this '1 << Y' ?
803       if (OldShiftOpcode == ISD::SHL && CC->isOne())
804         return false; // Keep the 'bit test' pattern.
805 
806       // Will it be '1 << Y' after the transform ?
807       if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
808         return true; // Do form the 'bit test' pattern.
809     }
810 
811     // If 'X' is a constant, and we transform, then we will immediately
812     // try to undo the fold, thus causing endless combine loop.
813     // So by default, let's assume everyone prefers the fold
814     // iff 'X' is not a constant.
815     return !XC;
816   }
817 
818   // Return true if its desirable to perform the following transform:
819   // (fmul C, (uitofp Pow2))
820   //     -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
821   // (fdiv C, (uitofp Pow2))
822   //     -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
823   //
824   // This is only queried after we have verified the transform will be bitwise
825   // equals.
826   //
827   // SDNode *N      : The FDiv/FMul node we want to transform.
828   // SDValue FPConst: The Float constant operand in `N`.
829   // SDValue IntPow2: The Integer power of 2 operand in `N`.
optimizeFMulOrFDivAsShiftAddBitcast(SDNode * N,SDValue FPConst,SDValue IntPow2)830   virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst,
831                                                    SDValue IntPow2) const {
832     // Default to avoiding fdiv which is often very expensive.
833     return N->getOpcode() == ISD::FDIV;
834   }
835 
836   // Given:
837   //    (icmp eq/ne (and X, C0), (shift X, C1))
838   // or
839   //    (icmp eq/ne X, (rotate X, CPow2))
840 
841   // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
842   // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
843   // Do we prefer the shift to be shift-right, shift-left, or rotate.
844   // Note: Its only valid to convert the rotate version to the shift version iff
845   // the shift-amt (`C1`) is a power of 2 (including 0).
846   // If ShiftOpc (current Opcode) is returned, do nothing.
preferedOpcodeForCmpEqPiecesOfOperand(EVT VT,unsigned ShiftOpc,bool MayTransformRotate,const APInt & ShiftOrRotateAmt,const std::optional<APInt> & AndMask)847   virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(
848       EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
849       const APInt &ShiftOrRotateAmt,
850       const std::optional<APInt> &AndMask) const {
851     return ShiftOpc;
852   }
853 
854   /// These two forms are equivalent:
855   ///   sub %y, (xor %x, -1)
856   ///   add (add %x, 1), %y
857   /// The variant with two add's is IR-canonical.
858   /// Some targets may prefer one to the other.
preferIncOfAddToSubOfNot(EVT VT)859   virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
860     // By default, let's assume that everyone prefers the form with two add's.
861     return true;
862   }
863 
864   // By default prefer folding (abs (sub nsw x, y)) -> abds(x, y). Some targets
865   // may want to avoid this to prevent loss of sub_nsw pattern.
preferABDSToABSWithNSW(EVT VT)866   virtual bool preferABDSToABSWithNSW(EVT VT) const {
867     return true;
868   }
869 
870   // Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
preferScalarizeSplat(SDNode * N)871   virtual bool preferScalarizeSplat(SDNode *N) const { return true; }
872 
873   // Return true if the target wants to transform:
874   // (TruncVT truncate(sext_in_reg(VT X, ExtVT))
875   //  -> (TruncVT sext_in_reg(truncate(VT X), ExtVT))
876   // Some targets might prefer pre-sextinreg to improve truncation/saturation.
preferSextInRegOfTruncate(EVT TruncVT,EVT VT,EVT ExtVT)877   virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const {
878     return true;
879   }
880 
881   /// Return true if the target wants to use the optimization that
882   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
883   /// promotedInst1(...(promotedInstN(ext(load)))).
enableExtLdPromotion()884   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
885 
886   /// Return true if the target can combine store(extractelement VectorTy,
887   /// Idx).
888   /// \p Cost[out] gives the cost of that transformation when this is true.
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost)889   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
890                                          unsigned &Cost) const {
891     return false;
892   }
893 
894   /// Return true if the target shall perform extract vector element and store
895   /// given that the vector is known to be splat of constant.
896   /// \p Index[out] gives the index of the vector element to be extracted when
897   /// this is true.
shallExtractConstSplatVectorElementToStore(Type * VectorTy,unsigned ElemSizeInBits,unsigned & Index)898   virtual bool shallExtractConstSplatVectorElementToStore(
899       Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const {
900     return false;
901   }
902 
903   /// Return true if inserting a scalar into a variable element of an undef
904   /// vector is more efficiently handled by splatting the scalar instead.
shouldSplatInsEltVarIndex(EVT)905   virtual bool shouldSplatInsEltVarIndex(EVT) const {
906     return false;
907   }
908 
909   /// Return true if target always benefits from combining into FMA for a
910   /// given value type. This must typically return false on targets where FMA
911   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(EVT VT)912   virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
913 
914   /// Return true if target always benefits from combining into FMA for a
915   /// given value type. This must typically return false on targets where FMA
916   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(LLT Ty)917   virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
918 
919   /// Return the ValueType of the result of SETCC operations.
920   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
921                                  EVT VT) const;
922 
923   /// Return the ValueType for comparison libcalls. Comparison libcalls include
924   /// floating point comparison calls, and Ordered/Unordered check calls on
925   /// floating point numbers.
926   virtual
927   MVT::SimpleValueType getCmpLibcallReturnType() const;
928 
929   /// For targets without i1 registers, this gives the nature of the high-bits
930   /// of boolean values held in types wider than i1.
931   ///
932   /// "Boolean values" are special true/false values produced by nodes like
933   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
934   /// Not to be confused with general values promoted from i1.  Some cpus
935   /// distinguish between vectors of boolean and scalars; the isVec parameter
936   /// selects between the two kinds.  For example on X86 a scalar boolean should
937   /// be zero extended from i1, while the elements of a vector of booleans
938   /// should be sign extended from i1.
939   ///
940   /// Some cpus also treat floating point types the same way as they treat
941   /// vectors instead of the way they treat scalars.
getBooleanContents(bool isVec,bool isFloat)942   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
943     if (isVec)
944       return BooleanVectorContents;
945     return isFloat ? BooleanFloatContents : BooleanContents;
946   }
947 
getBooleanContents(EVT Type)948   BooleanContent getBooleanContents(EVT Type) const {
949     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
950   }
951 
952   /// Promote the given target boolean to a target boolean of the given type.
953   /// A target boolean is an integer value, not necessarily of type i1, the bits
954   /// of which conform to getBooleanContents.
955   ///
956   /// ValVT is the type of values that produced the boolean.
promoteTargetBoolean(SelectionDAG & DAG,SDValue Bool,EVT ValVT)957   SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool,
958                                EVT ValVT) const {
959     SDLoc dl(Bool);
960     EVT BoolVT =
961         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
962     ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(ValVT));
963     return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
964   }
965 
966   /// Return target scheduling preference.
getSchedulingPreference()967   Sched::Preference getSchedulingPreference() const {
968     return SchedPreferenceInfo;
969   }
970 
971   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
972   /// for different nodes. This function returns the preference (or none) for
973   /// the given node.
getSchedulingPreference(SDNode *)974   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
975     return Sched::None;
976   }
977 
978   /// Return the register class that should be used for the specified value
979   /// type.
980   virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
981     (void)isDivergent;
982     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
983     assert(RC && "This value type is not natively supported!");
984     return RC;
985   }
986 
987   /// Allows target to decide about the register class of the
988   /// specific value that is live outside the defining block.
989   /// Returns true if the value needs uniform register class.
requiresUniformRegister(MachineFunction & MF,const Value *)990   virtual bool requiresUniformRegister(MachineFunction &MF,
991                                        const Value *) const {
992     return false;
993   }
994 
995   /// Return the 'representative' register class for the specified value
996   /// type.
997   ///
998   /// The 'representative' register class is the largest legal super-reg
999   /// register class for the register class of the value type.  For example, on
1000   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
1001   /// register class is GR64 on x86_64.
getRepRegClassFor(MVT VT)1002   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
1003     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
1004     return RC;
1005   }
1006 
1007   /// Return the cost of the 'representative' register class for the specified
1008   /// value type.
getRepRegClassCostFor(MVT VT)1009   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
1010     return RepRegClassCostForVT[VT.SimpleTy];
1011   }
1012 
1013   /// Return the preferred strategy to legalize tihs SHIFT instruction, with
1014   /// \p ExpansionFactor being the recursion depth - how many expansion needed.
1015   enum class ShiftLegalizationStrategy {
1016     ExpandToParts,
1017     ExpandThroughStack,
1018     LowerToLibcall
1019   };
1020   virtual ShiftLegalizationStrategy
preferredShiftLegalizationStrategy(SelectionDAG & DAG,SDNode * N,unsigned ExpansionFactor)1021   preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N,
1022                                      unsigned ExpansionFactor) const {
1023     if (ExpansionFactor == 1)
1024       return ShiftLegalizationStrategy::ExpandToParts;
1025     return ShiftLegalizationStrategy::ExpandThroughStack;
1026   }
1027 
1028   /// Return true if the target has native support for the specified value type.
1029   /// This means that it has a register that directly holds it without
1030   /// promotions or expansions.
isTypeLegal(EVT VT)1031   bool isTypeLegal(EVT VT) const {
1032     assert(!VT.isSimple() ||
1033            (unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
1034     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
1035   }
1036 
1037   class ValueTypeActionImpl {
1038     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
1039     /// that indicates how instruction selection should deal with the type.
1040     LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
1041 
1042   public:
ValueTypeActionImpl()1043     ValueTypeActionImpl() {
1044       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
1045                 TypeLegal);
1046     }
1047 
getTypeAction(MVT VT)1048     LegalizeTypeAction getTypeAction(MVT VT) const {
1049       return ValueTypeActions[VT.SimpleTy];
1050     }
1051 
setTypeAction(MVT VT,LegalizeTypeAction Action)1052     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
1053       ValueTypeActions[VT.SimpleTy] = Action;
1054     }
1055   };
1056 
getValueTypeActions()1057   const ValueTypeActionImpl &getValueTypeActions() const {
1058     return ValueTypeActions;
1059   }
1060 
1061   /// Return pair that represents the legalization kind (first) that needs to
1062   /// happen to EVT (second) in order to type-legalize it.
1063   ///
1064   /// First: how we should legalize values of this type, either it is already
1065   /// legal (return 'Legal') or we need to promote it to a larger type (return
1066   /// 'Promote'), or we need to expand it into multiple registers of smaller
1067   /// integer type (return 'Expand').  'Custom' is not an option.
1068   ///
1069   /// Second: for types supported by the target, this is an identity function.
1070   /// For types that must be promoted to larger types, this returns the larger
1071   /// type to promote to.  For integer types that are larger than the largest
1072   /// integer register, this contains one step in the expansion to get to the
1073   /// smaller register. For illegal floating point types, this returns the
1074   /// integer type to transform to.
1075   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1076 
1077   /// Return how we should legalize values of this type, either it is already
1078   /// legal (return 'Legal') or we need to promote it to a larger type (return
1079   /// 'Promote'), or we need to expand it into multiple registers of smaller
1080   /// integer type (return 'Expand').  'Custom' is not an option.
getTypeAction(LLVMContext & Context,EVT VT)1081   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
1082     return getTypeConversion(Context, VT).first;
1083   }
getTypeAction(MVT VT)1084   LegalizeTypeAction getTypeAction(MVT VT) const {
1085     return ValueTypeActions.getTypeAction(VT);
1086   }
1087 
1088   /// For types supported by the target, this is an identity function.  For
1089   /// types that must be promoted to larger types, this returns the larger type
1090   /// to promote to.  For integer types that are larger than the largest integer
1091   /// register, this contains one step in the expansion to get to the smaller
1092   /// register. For illegal floating point types, this returns the integer type
1093   /// to transform to.
getTypeToTransformTo(LLVMContext & Context,EVT VT)1094   virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
1095     return getTypeConversion(Context, VT).second;
1096   }
1097 
1098   /// For types supported by the target, this is an identity function.  For
1099   /// types that must be expanded (i.e. integer types that are larger than the
1100   /// largest integer register or illegal floating point types), this returns
1101   /// the largest legal type it will be expanded to.
getTypeToExpandTo(LLVMContext & Context,EVT VT)1102   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
1103     assert(!VT.isVector());
1104     while (true) {
1105       switch (getTypeAction(Context, VT)) {
1106       case TypeLegal:
1107         return VT;
1108       case TypeExpandInteger:
1109         VT = getTypeToTransformTo(Context, VT);
1110         break;
1111       default:
1112         llvm_unreachable("Type is not legal nor is it to be expanded!");
1113       }
1114     }
1115   }
1116 
1117   /// Vector types are broken down into some number of legal first class types.
1118   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
1119   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
1120   /// turns into 4 EVT::i32 values with both PPC and X86.
1121   ///
1122   /// This method returns the number of registers needed, and the VT for each
1123   /// register.  It also returns the VT and quantity of the intermediate values
1124   /// before they are promoted/expanded.
1125   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1126                                   EVT &IntermediateVT,
1127                                   unsigned &NumIntermediates,
1128                                   MVT &RegisterVT) const;
1129 
1130   /// Certain targets such as MIPS require that some types such as vectors are
1131   /// always broken down into scalars in some contexts. This occurs even if the
1132   /// vector type is legal.
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT)1133   virtual unsigned getVectorTypeBreakdownForCallingConv(
1134       LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1135       unsigned &NumIntermediates, MVT &RegisterVT) const {
1136     return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
1137                                   RegisterVT);
1138   }
1139 
1140   struct IntrinsicInfo {
1141     unsigned     opc = 0;          // target opcode
1142     EVT          memVT;            // memory VT
1143 
1144     // value representing memory location
1145     PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
1146 
1147     // Fallback address space for use if ptrVal is nullptr. std::nullopt means
1148     // unknown address space.
1149     std::optional<unsigned> fallbackAddressSpace;
1150 
1151     int          offset = 0;       // offset off of ptrVal
1152     uint64_t     size = 0;         // the size of the memory location
1153                                    // (taken from memVT if zero)
1154     MaybeAlign align = Align(1);   // alignment
1155 
1156     MachineMemOperand::Flags flags = MachineMemOperand::MONone;
1157     IntrinsicInfo() = default;
1158   };
1159 
1160   /// Given an intrinsic, checks if on the target the intrinsic will need to map
1161   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1162   /// true and store the intrinsic information into the IntrinsicInfo that was
1163   /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo &,const CallInst &,MachineFunction &,unsigned)1164   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
1165                                   MachineFunction &,
1166                                   unsigned /*Intrinsic*/) const {
1167     return false;
1168   }
1169 
1170   /// Returns true if the target can instruction select the specified FP
1171   /// immediate natively. If false, the legalizer will materialize the FP
1172   /// immediate as a load from a constant pool.
1173   virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1174                             bool ForCodeSize = false) const {
1175     return false;
1176   }
1177 
1178   /// Targets can use this to indicate that they only support *some*
1179   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
1180   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1181   /// legal.
isShuffleMaskLegal(ArrayRef<int>,EVT)1182   virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1183     return true;
1184   }
1185 
1186   /// Returns true if the operation can trap for the value type.
1187   ///
1188   /// VT must be a legal type. By default, we optimistically assume most
1189   /// operations don't trap except for integer divide and remainder.
1190   virtual bool canOpTrap(unsigned Op, EVT VT) const;
1191 
1192   /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1193   /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1194   /// constant pool entry.
isVectorClearMaskLegal(ArrayRef<int>,EVT)1195   virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
1196                                       EVT /*VT*/) const {
1197     return false;
1198   }
1199 
1200   /// How to legalize this custom operation?
getCustomOperationAction(SDNode & Op)1201   virtual LegalizeAction getCustomOperationAction(SDNode &Op) const {
1202     return Legal;
1203   }
1204 
1205   /// Return how this operation should be treated: either it is legal, needs to
1206   /// be promoted to a larger size, needs to be expanded to some other code
1207   /// sequence, or the target has a custom expander for it.
getOperationAction(unsigned Op,EVT VT)1208   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
1209     if (VT.isExtended()) return Expand;
1210     // If a target-specific SDNode requires legalization, require the target
1211     // to provide custom legalization for it.
1212     if (Op >= std::size(OpActions[0]))
1213       return Custom;
1214     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1215   }
1216 
1217   /// Custom method defined by each target to indicate if an operation which
1218   /// may require a scale is supported natively by the target.
1219   /// If not, the operation is illegal.
isSupportedFixedPointOperation(unsigned Op,EVT VT,unsigned Scale)1220   virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1221                                               unsigned Scale) const {
1222     return false;
1223   }
1224 
1225   /// Some fixed point operations may be natively supported by the target but
1226   /// only for specific scales. This method allows for checking
1227   /// if the width is supported by the target for a given operation that may
1228   /// depend on scale.
getFixedPointOperationAction(unsigned Op,EVT VT,unsigned Scale)1229   LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
1230                                               unsigned Scale) const {
1231     auto Action = getOperationAction(Op, VT);
1232     if (Action != Legal)
1233       return Action;
1234 
1235     // This operation is supported in this type but may only work on specific
1236     // scales.
1237     bool Supported;
1238     switch (Op) {
1239     default:
1240       llvm_unreachable("Unexpected fixed point operation.");
1241     case ISD::SMULFIX:
1242     case ISD::SMULFIXSAT:
1243     case ISD::UMULFIX:
1244     case ISD::UMULFIXSAT:
1245     case ISD::SDIVFIX:
1246     case ISD::SDIVFIXSAT:
1247     case ISD::UDIVFIX:
1248     case ISD::UDIVFIXSAT:
1249       Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1250       break;
1251     }
1252 
1253     return Supported ? Action : Expand;
1254   }
1255 
1256   // If Op is a strict floating-point operation, return the result
1257   // of getOperationAction for the equivalent non-strict operation.
getStrictFPOperationAction(unsigned Op,EVT VT)1258   LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
1259     unsigned EqOpc;
1260     switch (Op) {
1261       default: llvm_unreachable("Unexpected FP pseudo-opcode");
1262 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1263       case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1264 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1265       case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1266 #include "llvm/IR/ConstrainedOps.def"
1267     }
1268 
1269     return getOperationAction(EqOpc, VT);
1270   }
1271 
1272   /// Return true if the specified operation is legal on this target or can be
1273   /// made legal with custom lowering. This is used to help guide high-level
1274   /// lowering decisions. LegalOnly is an optional convenience for code paths
1275   /// traversed pre and post legalisation.
1276   bool isOperationLegalOrCustom(unsigned Op, EVT VT,
1277                                 bool LegalOnly = false) const {
1278     if (LegalOnly)
1279       return isOperationLegal(Op, VT);
1280 
1281     return (VT == MVT::Other || isTypeLegal(VT)) &&
1282       (getOperationAction(Op, VT) == Legal ||
1283        getOperationAction(Op, VT) == Custom);
1284   }
1285 
1286   /// Return true if the specified operation is legal on this target or can be
1287   /// made legal using promotion. This is used to help guide high-level lowering
1288   /// decisions. LegalOnly is an optional convenience for code paths traversed
1289   /// pre and post legalisation.
1290   bool isOperationLegalOrPromote(unsigned Op, EVT VT,
1291                                  bool LegalOnly = false) const {
1292     if (LegalOnly)
1293       return isOperationLegal(Op, VT);
1294 
1295     return (VT == MVT::Other || isTypeLegal(VT)) &&
1296       (getOperationAction(Op, VT) == Legal ||
1297        getOperationAction(Op, VT) == Promote);
1298   }
1299 
1300   /// Return true if the specified operation is legal on this target or can be
1301   /// made legal with custom lowering or using promotion. This is used to help
1302   /// guide high-level lowering decisions. LegalOnly is an optional convenience
1303   /// for code paths traversed pre and post legalisation.
1304   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT,
1305                                          bool LegalOnly = false) const {
1306     if (LegalOnly)
1307       return isOperationLegal(Op, VT);
1308 
1309     return (VT == MVT::Other || isTypeLegal(VT)) &&
1310       (getOperationAction(Op, VT) == Legal ||
1311        getOperationAction(Op, VT) == Custom ||
1312        getOperationAction(Op, VT) == Promote);
1313   }
1314 
1315   /// Return true if the operation uses custom lowering, regardless of whether
1316   /// the type is legal or not.
isOperationCustom(unsigned Op,EVT VT)1317   bool isOperationCustom(unsigned Op, EVT VT) const {
1318     return getOperationAction(Op, VT) == Custom;
1319   }
1320 
1321   /// Return true if lowering to a jump table is allowed.
areJTsAllowed(const Function * Fn)1322   virtual bool areJTsAllowed(const Function *Fn) const {
1323     if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
1324       return false;
1325 
1326     return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1327            isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1328   }
1329 
1330   /// Check whether the range [Low,High] fits in a machine word.
rangeFitsInWord(const APInt & Low,const APInt & High,const DataLayout & DL)1331   bool rangeFitsInWord(const APInt &Low, const APInt &High,
1332                        const DataLayout &DL) const {
1333     // FIXME: Using the pointer type doesn't seem ideal.
1334     uint64_t BW = DL.getIndexSizeInBits(0u);
1335     uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1336     return Range <= BW;
1337   }
1338 
1339   /// Return true if lowering to a jump table is suitable for a set of case
1340   /// clusters which may contain \p NumCases cases, \p Range range of values.
1341   virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1342                                       uint64_t Range, ProfileSummaryInfo *PSI,
1343                                       BlockFrequencyInfo *BFI) const;
1344 
1345   /// Returns preferred type for switch condition.
1346   virtual MVT getPreferredSwitchConditionType(LLVMContext &Context,
1347                                               EVT ConditionVT) const;
1348 
1349   /// Return true if lowering to a bit test is suitable for a set of case
1350   /// clusters which contains \p NumDests unique destinations, \p Low and
1351   /// \p High as its lowest and highest case values, and expects \p NumCmps
1352   /// case value comparisons. Check if the number of destinations, comparison
1353   /// metric, and range are all suitable.
isSuitableForBitTests(unsigned NumDests,unsigned NumCmps,const APInt & Low,const APInt & High,const DataLayout & DL)1354   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1355                              const APInt &Low, const APInt &High,
1356                              const DataLayout &DL) const {
1357     // FIXME: I don't think NumCmps is the correct metric: a single case and a
1358     // range of cases both require only one branch to lower. Just looking at the
1359     // number of clusters and destinations should be enough to decide whether to
1360     // build bit tests.
1361 
1362     // To lower a range with bit tests, the range must fit the bitwidth of a
1363     // machine word.
1364     if (!rangeFitsInWord(Low, High, DL))
1365       return false;
1366 
1367     // Decide whether it's profitable to lower this range with bit tests. Each
1368     // destination requires a bit test and branch, and there is an overall range
1369     // check branch. For a small number of clusters, separate comparisons might
1370     // be cheaper, and for many destinations, splitting the range might be
1371     // better.
1372     return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1373            (NumDests == 3 && NumCmps >= 6);
1374   }
1375 
1376   /// Return true if the specified operation is illegal on this target or
1377   /// unlikely to be made legal with custom lowering. This is used to help guide
1378   /// high-level lowering decisions.
isOperationExpand(unsigned Op,EVT VT)1379   bool isOperationExpand(unsigned Op, EVT VT) const {
1380     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1381   }
1382 
1383   /// Return true if the specified operation is legal on this target.
isOperationLegal(unsigned Op,EVT VT)1384   bool isOperationLegal(unsigned Op, EVT VT) const {
1385     return (VT == MVT::Other || isTypeLegal(VT)) &&
1386            getOperationAction(Op, VT) == Legal;
1387   }
1388 
1389   /// Return how this load with extension should be treated: either it is legal,
1390   /// needs to be promoted to a larger size, needs to be expanded to some other
1391   /// code sequence, or the target has a custom expander for it.
getLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)1392   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1393                                   EVT MemVT) const {
1394     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1395     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1396     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1397     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::VALUETYPE_SIZE &&
1398            MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1399     unsigned Shift = 4 * ExtType;
1400     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1401   }
1402 
1403   /// Return true if the specified load with extension is legal on this target.
isLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)1404   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1405     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1406   }
1407 
1408   /// Return true if the specified load with extension is legal or custom
1409   /// on this target.
isLoadExtLegalOrCustom(unsigned ExtType,EVT ValVT,EVT MemVT)1410   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1411     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1412            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1413   }
1414 
1415   /// Return how this store with truncation should be treated: either it is
1416   /// legal, needs to be promoted to a larger size, needs to be expanded to some
1417   /// other code sequence, or the target has a custom expander for it.
getTruncStoreAction(EVT ValVT,EVT MemVT)1418   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1419     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1420     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1421     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1422     assert(ValI < MVT::VALUETYPE_SIZE && MemI < MVT::VALUETYPE_SIZE &&
1423            "Table isn't big enough!");
1424     return TruncStoreActions[ValI][MemI];
1425   }
1426 
1427   /// Return true if the specified store with truncation is legal on this
1428   /// target.
isTruncStoreLegal(EVT ValVT,EVT MemVT)1429   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1430     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1431   }
1432 
1433   /// Return true if the specified store with truncation has solution on this
1434   /// target.
isTruncStoreLegalOrCustom(EVT ValVT,EVT MemVT)1435   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1436     return isTypeLegal(ValVT) &&
1437       (getTruncStoreAction(ValVT, MemVT) == Legal ||
1438        getTruncStoreAction(ValVT, MemVT) == Custom);
1439   }
1440 
canCombineTruncStore(EVT ValVT,EVT MemVT,bool LegalOnly)1441   virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
1442                                     bool LegalOnly) const {
1443     if (LegalOnly)
1444       return isTruncStoreLegal(ValVT, MemVT);
1445 
1446     return isTruncStoreLegalOrCustom(ValVT, MemVT);
1447   }
1448 
1449   /// Return how the indexed load should be treated: either it is legal, needs
1450   /// to be promoted to a larger size, needs to be expanded to some other code
1451   /// sequence, or the target has a custom expander for it.
getIndexedLoadAction(unsigned IdxMode,MVT VT)1452   LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1453     return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1454   }
1455 
1456   /// Return true if the specified indexed load is legal on this target.
isIndexedLoadLegal(unsigned IdxMode,EVT VT)1457   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1458     return VT.isSimple() &&
1459       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1460        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1461   }
1462 
1463   /// Return how the indexed store should be treated: either it is legal, needs
1464   /// to be promoted to a larger size, needs to be expanded to some other code
1465   /// sequence, or the target has a custom expander for it.
getIndexedStoreAction(unsigned IdxMode,MVT VT)1466   LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1467     return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1468   }
1469 
1470   /// Return true if the specified indexed load is legal on this target.
isIndexedStoreLegal(unsigned IdxMode,EVT VT)1471   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1472     return VT.isSimple() &&
1473       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1474        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1475   }
1476 
1477   /// Return how the indexed load should be treated: either it is legal, needs
1478   /// to be promoted to a larger size, needs to be expanded to some other code
1479   /// sequence, or the target has a custom expander for it.
getIndexedMaskedLoadAction(unsigned IdxMode,MVT VT)1480   LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1481     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1482   }
1483 
1484   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedLoadLegal(unsigned IdxMode,EVT VT)1485   bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1486     return VT.isSimple() &&
1487            (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1488             getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1489   }
1490 
1491   /// Return how the indexed store should be treated: either it is legal, needs
1492   /// to be promoted to a larger size, needs to be expanded to some other code
1493   /// sequence, or the target has a custom expander for it.
getIndexedMaskedStoreAction(unsigned IdxMode,MVT VT)1494   LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1495     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1496   }
1497 
1498   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedStoreLegal(unsigned IdxMode,EVT VT)1499   bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1500     return VT.isSimple() &&
1501            (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1502             getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1503   }
1504 
1505   /// Returns true if the index type for a masked gather/scatter requires
1506   /// extending
shouldExtendGSIndex(EVT VT,EVT & EltTy)1507   virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
1508 
1509   // Returns true if Extend can be folded into the index of a masked gathers/scatters
1510   // on this target.
shouldRemoveExtendFromGSIndex(SDValue Extend,EVT DataVT)1511   virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const {
1512     return false;
1513   }
1514 
1515   // Return true if the target supports a scatter/gather instruction with
1516   // indices which are scaled by the particular value.  Note that all targets
1517   // must by definition support scale of 1.
isLegalScaleForGatherScatter(uint64_t Scale,uint64_t ElemSize)1518   virtual bool isLegalScaleForGatherScatter(uint64_t Scale,
1519                                             uint64_t ElemSize) const {
1520     // MGATHER/MSCATTER are only required to support scaling by one or by the
1521     // element size.
1522     if (Scale != ElemSize && Scale != 1)
1523       return false;
1524     return true;
1525   }
1526 
1527   /// Return how the condition code should be treated: either it is legal, needs
1528   /// to be expanded to some other code sequence, or the target has a custom
1529   /// expander for it.
1530   LegalizeAction
getCondCodeAction(ISD::CondCode CC,MVT VT)1531   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1532     assert((unsigned)CC < std::size(CondCodeActions) &&
1533            ((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
1534            "Table isn't big enough!");
1535     // See setCondCodeAction for how this is encoded.
1536     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1537     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1538     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1539     assert(Action != Promote && "Can't promote condition code!");
1540     return Action;
1541   }
1542 
1543   /// Return true if the specified condition code is legal on this target.
isCondCodeLegal(ISD::CondCode CC,MVT VT)1544   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1545     return getCondCodeAction(CC, VT) == Legal;
1546   }
1547 
1548   /// Return true if the specified condition code is legal or custom on this
1549   /// target.
isCondCodeLegalOrCustom(ISD::CondCode CC,MVT VT)1550   bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1551     return getCondCodeAction(CC, VT) == Legal ||
1552            getCondCodeAction(CC, VT) == Custom;
1553   }
1554 
1555   /// If the action for this operation is to promote, this method returns the
1556   /// ValueType to promote to.
getTypeToPromoteTo(unsigned Op,MVT VT)1557   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1558     assert(getOperationAction(Op, VT) == Promote &&
1559            "This operation isn't promoted!");
1560 
1561     // See if this has an explicit type specified.
1562     std::map<std::pair<unsigned, MVT::SimpleValueType>,
1563              MVT::SimpleValueType>::const_iterator PTTI =
1564       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1565     if (PTTI != PromoteToType.end()) return PTTI->second;
1566 
1567     assert((VT.isInteger() || VT.isFloatingPoint()) &&
1568            "Cannot autopromote this type, add it with AddPromotedToType.");
1569 
1570     MVT NVT = VT;
1571     do {
1572       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1573       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1574              "Didn't find type to promote to!");
1575     } while (!isTypeLegal(NVT) ||
1576               getOperationAction(Op, NVT) == Promote);
1577     return NVT;
1578   }
1579 
1580   virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty,
1581                                      bool AllowUnknown = false) const {
1582     return getValueType(DL, Ty, AllowUnknown);
1583   }
1584 
1585   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
1586   /// operations except for the pointer size.  If AllowUnknown is true, this
1587   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1588   /// otherwise it will assert.
1589   EVT getValueType(const DataLayout &DL, Type *Ty,
1590                    bool AllowUnknown = false) const {
1591     // Lower scalar pointers to native pointer types.
1592     if (auto *PTy = dyn_cast<PointerType>(Ty))
1593       return getPointerTy(DL, PTy->getAddressSpace());
1594 
1595     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1596       Type *EltTy = VTy->getElementType();
1597       // Lower vectors of pointers to native pointer types.
1598       if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1599         EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1600         EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1601       }
1602       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1603                               VTy->getElementCount());
1604     }
1605 
1606     return EVT::getEVT(Ty, AllowUnknown);
1607   }
1608 
1609   EVT getMemValueType(const DataLayout &DL, Type *Ty,
1610                       bool AllowUnknown = false) const {
1611     // Lower scalar pointers to native pointer types.
1612     if (auto *PTy = dyn_cast<PointerType>(Ty))
1613       return getPointerMemTy(DL, PTy->getAddressSpace());
1614 
1615     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1616       Type *EltTy = VTy->getElementType();
1617       if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1618         EVT PointerTy(getPointerMemTy(DL, PTy->getAddressSpace()));
1619         EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1620       }
1621       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1622                               VTy->getElementCount());
1623     }
1624 
1625     return getValueType(DL, Ty, AllowUnknown);
1626   }
1627 
1628 
1629   /// Return the MVT corresponding to this LLVM type. See getValueType.
1630   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1631                          bool AllowUnknown = false) const {
1632     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1633   }
1634 
1635   /// Return the desired alignment for ByVal or InAlloca aggregate function
1636   /// arguments in the caller parameter area.  This is the actual alignment, not
1637   /// its logarithm.
1638   virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1639 
1640   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(MVT VT)1641   MVT getRegisterType(MVT VT) const {
1642     assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
1643     return RegisterTypeForVT[VT.SimpleTy];
1644   }
1645 
1646   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(LLVMContext & Context,EVT VT)1647   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1648     if (VT.isSimple())
1649       return getRegisterType(VT.getSimpleVT());
1650     if (VT.isVector()) {
1651       EVT VT1;
1652       MVT RegisterVT;
1653       unsigned NumIntermediates;
1654       (void)getVectorTypeBreakdown(Context, VT, VT1,
1655                                    NumIntermediates, RegisterVT);
1656       return RegisterVT;
1657     }
1658     if (VT.isInteger()) {
1659       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1660     }
1661     llvm_unreachable("Unsupported extended type!");
1662   }
1663 
1664   /// Return the number of registers that this ValueType will eventually
1665   /// require.
1666   ///
1667   /// This is one for any types promoted to live in larger registers, but may be
1668   /// more than one for types (like i64) that are split into pieces.  For types
1669   /// like i140, which are first promoted then expanded, it is the number of
1670   /// registers needed to hold all the bits of the original type.  For an i140
1671   /// on a 32 bit machine this means 5 registers.
1672   ///
1673   /// RegisterVT may be passed as a way to override the default settings, for
1674   /// instance with i128 inline assembly operands on SystemZ.
1675   virtual unsigned
1676   getNumRegisters(LLVMContext &Context, EVT VT,
1677                   std::optional<MVT> RegisterVT = std::nullopt) const {
1678     if (VT.isSimple()) {
1679       assert((unsigned)VT.getSimpleVT().SimpleTy <
1680              std::size(NumRegistersForVT));
1681       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1682     }
1683     if (VT.isVector()) {
1684       EVT VT1;
1685       MVT VT2;
1686       unsigned NumIntermediates;
1687       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1688     }
1689     if (VT.isInteger()) {
1690       unsigned BitWidth = VT.getSizeInBits();
1691       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1692       return (BitWidth + RegWidth - 1) / RegWidth;
1693     }
1694     llvm_unreachable("Unsupported extended type!");
1695   }
1696 
1697   /// Certain combinations of ABIs, Targets and features require that types
1698   /// are legal for some operations and not for other operations.
1699   /// For MIPS all vector types must be passed through the integer register set.
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1700   virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
1701                                             CallingConv::ID CC, EVT VT) const {
1702     return getRegisterType(Context, VT);
1703   }
1704 
1705   /// Certain targets require unusual breakdowns of certain types. For MIPS,
1706   /// this occurs when a vector type is used, as vector are passed through the
1707   /// integer register set.
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1708   virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1709                                                  CallingConv::ID CC,
1710                                                  EVT VT) const {
1711     return getNumRegisters(Context, VT);
1712   }
1713 
1714   /// Certain targets have context sensitive alignment requirements, where one
1715   /// type has the alignment requirement of another type.
getABIAlignmentForCallingConv(Type * ArgTy,const DataLayout & DL)1716   virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
1717                                               const DataLayout &DL) const {
1718     return DL.getABITypeAlign(ArgTy);
1719   }
1720 
1721   /// If true, then instruction selection should seek to shrink the FP constant
1722   /// of the specified type to a smaller type in order to save space and / or
1723   /// reduce runtime.
ShouldShrinkFPConstant(EVT)1724   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1725 
1726   /// Return true if it is profitable to reduce a load to a smaller type.
1727   /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT)1728   virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1729                                      EVT NewVT) const {
1730     // By default, assume that it is cheaper to extract a subvector from a wide
1731     // vector load rather than creating multiple narrow vector loads.
1732     if (NewVT.isVector() && !Load->hasOneUse())
1733       return false;
1734 
1735     return true;
1736   }
1737 
1738   /// Return true (the default) if it is profitable to remove a sext_inreg(x)
1739   /// where the sext is redundant, and use x directly.
shouldRemoveRedundantExtend(SDValue Op)1740   virtual bool shouldRemoveRedundantExtend(SDValue Op) const { return true; }
1741 
1742   /// When splitting a value of the specified type into parts, does the Lo
1743   /// or Hi part come first?  This usually follows the endianness, except
1744   /// for ppcf128, where the Hi part always comes first.
hasBigEndianPartOrdering(EVT VT,const DataLayout & DL)1745   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1746     return DL.isBigEndian() || VT == MVT::ppcf128;
1747   }
1748 
1749   /// If true, the target has custom DAG combine transformations that it can
1750   /// perform for the specified node.
hasTargetDAGCombine(ISD::NodeType NT)1751   bool hasTargetDAGCombine(ISD::NodeType NT) const {
1752     assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
1753     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1754   }
1755 
getGatherAllAliasesMaxDepth()1756   unsigned getGatherAllAliasesMaxDepth() const {
1757     return GatherAllAliasesMaxDepth;
1758   }
1759 
1760   /// Returns the size of the platform's va_list object.
getVaListSizeInBits(const DataLayout & DL)1761   virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1762     return getPointerTy(DL).getSizeInBits();
1763   }
1764 
1765   /// Get maximum # of store operations permitted for llvm.memset
1766   ///
1767   /// This function returns the maximum number of store operations permitted
1768   /// to replace a call to llvm.memset. The value is set by the target at the
1769   /// performance threshold for such a replacement. If OptSize is true,
1770   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemset(bool OptSize)1771   unsigned getMaxStoresPerMemset(bool OptSize) const {
1772     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1773   }
1774 
1775   /// Get maximum # of store operations permitted for llvm.memcpy
1776   ///
1777   /// This function returns the maximum number of store operations permitted
1778   /// to replace a call to llvm.memcpy. The value is set by the target at the
1779   /// performance threshold for such a replacement. If OptSize is true,
1780   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemcpy(bool OptSize)1781   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1782     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1783   }
1784 
1785   /// \brief Get maximum # of store operations to be glued together
1786   ///
1787   /// This function returns the maximum number of store operations permitted
1788   /// to glue together during lowering of llvm.memcpy. The value is set by
1789   //  the target at the performance threshold for such a replacement.
getMaxGluedStoresPerMemcpy()1790   virtual unsigned getMaxGluedStoresPerMemcpy() const {
1791     return MaxGluedStoresPerMemcpy;
1792   }
1793 
1794   /// Get maximum # of load operations permitted for memcmp
1795   ///
1796   /// This function returns the maximum number of load operations permitted
1797   /// to replace a call to memcmp. The value is set by the target at the
1798   /// performance threshold for such a replacement. If OptSize is true,
1799   /// return the limit for functions that have OptSize attribute.
getMaxExpandSizeMemcmp(bool OptSize)1800   unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1801     return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1802   }
1803 
1804   /// Get maximum # of store operations permitted for llvm.memmove
1805   ///
1806   /// This function returns the maximum number of store operations permitted
1807   /// to replace a call to llvm.memmove. The value is set by the target at the
1808   /// performance threshold for such a replacement. If OptSize is true,
1809   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemmove(bool OptSize)1810   unsigned getMaxStoresPerMemmove(bool OptSize) const {
1811     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1812   }
1813 
1814   /// Determine if the target supports unaligned memory accesses.
1815   ///
1816   /// This function returns true if the target allows unaligned memory accesses
1817   /// of the specified type in the given address space. If true, it also returns
1818   /// a relative speed of the unaligned memory access in the last argument by
1819   /// reference. The higher the speed number the faster the operation comparing
1820   /// to a number returned by another such call. This is used, for example, in
1821   /// situations where an array copy/move/set is converted to a sequence of
1822   /// store operations. Its use helps to ensure that such replacements don't
1823   /// generate code that causes an alignment error (trap) on the target machine.
1824   virtual bool allowsMisalignedMemoryAccesses(
1825       EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1826       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1827       unsigned * /*Fast*/ = nullptr) const {
1828     return false;
1829   }
1830 
1831   /// LLT handling variant.
1832   virtual bool allowsMisalignedMemoryAccesses(
1833       LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1834       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1835       unsigned * /*Fast*/ = nullptr) const {
1836     return false;
1837   }
1838 
1839   /// This function returns true if the memory access is aligned or if the
1840   /// target allows this specific unaligned memory access. If the access is
1841   /// allowed, the optional final parameter returns a relative speed of the
1842   /// access (as defined by the target).
1843   bool allowsMemoryAccessForAlignment(
1844       LLVMContext &Context, const DataLayout &DL, EVT VT,
1845       unsigned AddrSpace = 0, Align Alignment = Align(1),
1846       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1847       unsigned *Fast = nullptr) const;
1848 
1849   /// Return true if the memory access of this type is aligned or if the target
1850   /// allows this specific unaligned access for the given MachineMemOperand.
1851   /// If the access is allowed, the optional final parameter returns a relative
1852   /// speed of the access (as defined by the target).
1853   bool allowsMemoryAccessForAlignment(LLVMContext &Context,
1854                                       const DataLayout &DL, EVT VT,
1855                                       const MachineMemOperand &MMO,
1856                                       unsigned *Fast = nullptr) const;
1857 
1858   /// Return true if the target supports a memory access of this type for the
1859   /// given address space and alignment. If the access is allowed, the optional
1860   /// final parameter returns the relative speed of the access (as defined by
1861   /// the target).
1862   virtual bool
1863   allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1864                      unsigned AddrSpace = 0, Align Alignment = Align(1),
1865                      MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1866                      unsigned *Fast = nullptr) const;
1867 
1868   /// Return true if the target supports a memory access of this type for the
1869   /// given MachineMemOperand. If the access is allowed, the optional
1870   /// final parameter returns the relative access speed (as defined by the
1871   /// target).
1872   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1873                           const MachineMemOperand &MMO,
1874                           unsigned *Fast = nullptr) const;
1875 
1876   /// LLT handling variant.
1877   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
1878                           const MachineMemOperand &MMO,
1879                           unsigned *Fast = nullptr) const;
1880 
1881   /// Returns the target specific optimal type for load and store operations as
1882   /// a result of memset, memcpy, and memmove lowering.
1883   /// It returns EVT::Other if the type should be determined using generic
1884   /// target-independent logic.
1885   virtual EVT
getOptimalMemOpType(const MemOp & Op,const AttributeList &)1886   getOptimalMemOpType(const MemOp &Op,
1887                       const AttributeList & /*FuncAttributes*/) const {
1888     return MVT::Other;
1889   }
1890 
1891   /// LLT returning variant.
1892   virtual LLT
getOptimalMemOpLLT(const MemOp & Op,const AttributeList &)1893   getOptimalMemOpLLT(const MemOp &Op,
1894                      const AttributeList & /*FuncAttributes*/) const {
1895     return LLT();
1896   }
1897 
1898   /// Returns true if it's safe to use load / store of the specified type to
1899   /// expand memcpy / memset inline.
1900   ///
1901   /// This is mostly true for all types except for some special cases. For
1902   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1903   /// fstpl which also does type conversion. Note the specified type doesn't
1904   /// have to be legal as the hook is used before type legalization.
isSafeMemOpType(MVT)1905   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1906 
1907   /// Return lower limit for number of blocks in a jump table.
1908   virtual unsigned getMinimumJumpTableEntries() const;
1909 
1910   /// Return lower limit of the density in a jump table.
1911   unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1912 
1913   /// Return upper limit for number of entries in a jump table.
1914   /// Zero if no limit.
1915   unsigned getMaximumJumpTableSize() const;
1916 
1917   virtual bool isJumpTableRelative() const;
1918 
1919   /// If a physical register, this specifies the register that
1920   /// llvm.savestack/llvm.restorestack should save and restore.
getStackPointerRegisterToSaveRestore()1921   Register getStackPointerRegisterToSaveRestore() const {
1922     return StackPointerRegisterToSaveRestore;
1923   }
1924 
1925   /// If a physical register, this returns the register that receives the
1926   /// exception address on entry to an EH pad.
1927   virtual Register
getExceptionPointerRegister(const Constant * PersonalityFn)1928   getExceptionPointerRegister(const Constant *PersonalityFn) const {
1929     return Register();
1930   }
1931 
1932   /// If a physical register, this returns the register that receives the
1933   /// exception typeid on entry to a landing pad.
1934   virtual Register
getExceptionSelectorRegister(const Constant * PersonalityFn)1935   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1936     return Register();
1937   }
1938 
needsFixedCatchObjects()1939   virtual bool needsFixedCatchObjects() const {
1940     report_fatal_error("Funclet EH is not implemented for this target");
1941   }
1942 
1943   /// Return the minimum stack alignment of an argument.
getMinStackArgumentAlignment()1944   Align getMinStackArgumentAlignment() const {
1945     return MinStackArgumentAlignment;
1946   }
1947 
1948   /// Return the minimum function alignment.
getMinFunctionAlignment()1949   Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
1950 
1951   /// Return the preferred function alignment.
getPrefFunctionAlignment()1952   Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
1953 
1954   /// Return the preferred loop alignment.
1955   virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
1956 
1957   /// Return the maximum amount of bytes allowed to be emitted when padding for
1958   /// alignment
1959   virtual unsigned
1960   getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const;
1961 
1962   /// Should loops be aligned even when the function is marked OptSize (but not
1963   /// MinSize).
alignLoopsWithOptSize()1964   virtual bool alignLoopsWithOptSize() const { return false; }
1965 
1966   /// If the target has a standard location for the stack protector guard,
1967   /// returns the address of that location. Otherwise, returns nullptr.
1968   /// DEPRECATED: please override useLoadStackGuardNode and customize
1969   ///             LOAD_STACK_GUARD, or customize \@llvm.stackguard().
1970   virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
1971 
1972   /// Inserts necessary declarations for SSP (stack protection) purpose.
1973   /// Should be used only when getIRStackGuard returns nullptr.
1974   virtual void insertSSPDeclarations(Module &M) const;
1975 
1976   /// Return the variable that's previously inserted by insertSSPDeclarations,
1977   /// if any, otherwise return nullptr. Should be used only when
1978   /// getIRStackGuard returns nullptr.
1979   virtual Value *getSDagStackGuard(const Module &M) const;
1980 
1981   /// If this function returns true, stack protection checks should XOR the
1982   /// frame pointer (or whichever pointer is used to address locals) into the
1983   /// stack guard value before checking it. getIRStackGuard must return nullptr
1984   /// if this returns true.
useStackGuardXorFP()1985   virtual bool useStackGuardXorFP() const { return false; }
1986 
1987   /// If the target has a standard stack protection check function that
1988   /// performs validation and error handling, returns the function. Otherwise,
1989   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1990   /// Should be used only when getIRStackGuard returns nullptr.
1991   virtual Function *getSSPStackGuardCheck(const Module &M) const;
1992 
1993 protected:
1994   Value *getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1995                                             bool UseTLS) const;
1996 
1997 public:
1998   /// Returns the target-specific address of the unsafe stack pointer.
1999   virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
2000 
2001   /// Returns the name of the symbol used to emit stack probes or the empty
2002   /// string if not applicable.
hasStackProbeSymbol(const MachineFunction & MF)2003   virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
2004 
hasInlineStackProbe(const MachineFunction & MF)2005   virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
2006 
getStackProbeSymbolName(const MachineFunction & MF)2007   virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const {
2008     return "";
2009   }
2010 
2011   /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
2012   /// are happy to sink it into basic blocks. A cast may be free, but not
2013   /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
2014   virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
2015 
2016   /// Return true if the pointer arguments to CI should be aligned by aligning
2017   /// the object whose address is being passed. If so then MinSize is set to the
2018   /// minimum size the object must be to be aligned and PrefAlign is set to the
2019   /// preferred alignment.
shouldAlignPointerArgs(CallInst *,unsigned &,Align &)2020   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
2021                                       Align & /*PrefAlign*/) const {
2022     return false;
2023   }
2024 
2025   //===--------------------------------------------------------------------===//
2026   /// \name Helpers for TargetTransformInfo implementations
2027   /// @{
2028 
2029   /// Get the ISD node that corresponds to the Instruction class opcode.
2030   int InstructionOpcodeToISD(unsigned Opcode) const;
2031 
2032   /// @}
2033 
2034   //===--------------------------------------------------------------------===//
2035   /// \name Helpers for atomic expansion.
2036   /// @{
2037 
2038   /// Returns the maximum atomic operation size (in bits) supported by
2039   /// the backend. Atomic operations greater than this size (as well
2040   /// as ones that are not naturally aligned), will be expanded by
2041   /// AtomicExpandPass into an __atomic_* library call.
getMaxAtomicSizeInBitsSupported()2042   unsigned getMaxAtomicSizeInBitsSupported() const {
2043     return MaxAtomicSizeInBitsSupported;
2044   }
2045 
2046   /// Returns the size in bits of the maximum div/rem the backend supports.
2047   /// Larger operations will be expanded by ExpandLargeDivRem.
getMaxDivRemBitWidthSupported()2048   unsigned getMaxDivRemBitWidthSupported() const {
2049     return MaxDivRemBitWidthSupported;
2050   }
2051 
2052   /// Returns the size in bits of the maximum larget fp convert the backend
2053   /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
getMaxLargeFPConvertBitWidthSupported()2054   unsigned getMaxLargeFPConvertBitWidthSupported() const {
2055     return MaxLargeFPConvertBitWidthSupported;
2056   }
2057 
2058   /// Returns the size of the smallest cmpxchg or ll/sc instruction
2059   /// the backend supports.  Any smaller operations are widened in
2060   /// AtomicExpandPass.
2061   ///
2062   /// Note that *unlike* operations above the maximum size, atomic ops
2063   /// are still natively supported below the minimum; they just
2064   /// require a more complex expansion.
getMinCmpXchgSizeInBits()2065   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
2066 
2067   /// Whether the target supports unaligned atomic operations.
supportsUnalignedAtomics()2068   bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
2069 
2070   /// Whether AtomicExpandPass should automatically insert fences and reduce
2071   /// ordering for this atomic. This should be true for most architectures with
2072   /// weak memory ordering. Defaults to false.
shouldInsertFencesForAtomic(const Instruction * I)2073   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
2074     return false;
2075   }
2076 
2077   /// Whether AtomicExpandPass should automatically insert a trailing fence
2078   /// without reducing the ordering for this atomic. Defaults to false.
2079   virtual bool
shouldInsertTrailingFenceForAtomicStore(const Instruction * I)2080   shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const {
2081     return false;
2082   }
2083 
2084   /// Perform a load-linked operation on Addr, returning a "Value *" with the
2085   /// corresponding pointee type. This may entail some non-trivial operations to
2086   /// truncate or reconstruct types that will be illegal in the backend. See
2087   /// ARMISelLowering for an example implementation.
emitLoadLinked(IRBuilderBase & Builder,Type * ValueTy,Value * Addr,AtomicOrdering Ord)2088   virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
2089                                 Value *Addr, AtomicOrdering Ord) const {
2090     llvm_unreachable("Load linked unimplemented on this target");
2091   }
2092 
2093   /// Perform a store-conditional operation to Addr. Return the status of the
2094   /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilderBase & Builder,Value * Val,Value * Addr,AtomicOrdering Ord)2095   virtual Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val,
2096                                       Value *Addr, AtomicOrdering Ord) const {
2097     llvm_unreachable("Store conditional unimplemented on this target");
2098   }
2099 
2100   /// Perform a masked atomicrmw using a target-specific intrinsic. This
2101   /// represents the core LL/SC loop which will be lowered at a late stage by
2102   /// the backend. The target-specific intrinsic returns the loaded value and
2103   /// is not responsible for masking and shifting the result.
emitMaskedAtomicRMWIntrinsic(IRBuilderBase & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord)2104   virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
2105                                               AtomicRMWInst *AI,
2106                                               Value *AlignedAddr, Value *Incr,
2107                                               Value *Mask, Value *ShiftAmt,
2108                                               AtomicOrdering Ord) const {
2109     llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
2110   }
2111 
2112   /// Perform a atomicrmw expansion using a target-specific way. This is
2113   /// expected to be called when masked atomicrmw and bit test atomicrmw don't
2114   /// work, and the target supports another way to lower atomicrmw.
emitExpandAtomicRMW(AtomicRMWInst * AI)2115   virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
2116     llvm_unreachable(
2117         "Generic atomicrmw expansion unimplemented on this target");
2118   }
2119 
2120   /// Perform a bit test atomicrmw using a target-specific intrinsic. This
2121   /// represents the combined bit test intrinsic which will be lowered at a late
2122   /// stage by the backend.
emitBitTestAtomicRMWIntrinsic(AtomicRMWInst * AI)2123   virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
2124     llvm_unreachable(
2125         "Bit test atomicrmw expansion unimplemented on this target");
2126   }
2127 
2128   /// Perform a atomicrmw which the result is only used by comparison, using a
2129   /// target-specific intrinsic. This represents the combined atomic and compare
2130   /// intrinsic which will be lowered at a late stage by the backend.
emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst * AI)2131   virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
2132     llvm_unreachable(
2133         "Compare arith atomicrmw expansion unimplemented on this target");
2134   }
2135 
2136   /// Perform a masked cmpxchg using a target-specific intrinsic. This
2137   /// represents the core LL/SC loop which will be lowered at a late stage by
2138   /// the backend. The target-specific intrinsic returns the loaded value and
2139   /// is not responsible for masking and shifting the result.
emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord)2140   virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
2141       IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2142       Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2143     llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
2144   }
2145 
2146   //===--------------------------------------------------------------------===//
2147   /// \name KCFI check lowering.
2148   /// @{
2149 
EmitKCFICheck(MachineBasicBlock & MBB,MachineBasicBlock::instr_iterator & MBBI,const TargetInstrInfo * TII)2150   virtual MachineInstr *EmitKCFICheck(MachineBasicBlock &MBB,
2151                                       MachineBasicBlock::instr_iterator &MBBI,
2152                                       const TargetInstrInfo *TII) const {
2153     llvm_unreachable("KCFI is not supported on this target");
2154   }
2155 
2156   /// @}
2157 
2158   /// Inserts in the IR a target-specific intrinsic specifying a fence.
2159   /// It is called by AtomicExpandPass before expanding an
2160   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
2161   ///   if shouldInsertFencesForAtomic returns true.
2162   ///
2163   /// Inst is the original atomic instruction, prior to other expansions that
2164   /// may be performed.
2165   ///
2166   /// This function should either return a nullptr, or a pointer to an IR-level
2167   ///   Instruction*. Even complex fence sequences can be represented by a
2168   ///   single Instruction* through an intrinsic to be lowered later.
2169   ///
2170   /// The default implementation emits an IR fence before any release (or
2171   ///   stronger) operation that stores, and after any acquire (or stronger)
2172   ///   operation. This is generally a correct implementation, but backends may
2173   ///   override if they wish to use alternative schemes (e.g. the PowerPC
2174   ///   standard ABI uses a fence before a seq_cst load instead of after a
2175   ///   seq_cst store).
2176   /// @{
2177   virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
2178                                         Instruction *Inst,
2179                                         AtomicOrdering Ord) const;
2180 
2181   virtual Instruction *emitTrailingFence(IRBuilderBase &Builder,
2182                                          Instruction *Inst,
2183                                          AtomicOrdering Ord) const;
2184   /// @}
2185 
2186   // Emits code that executes when the comparison result in the ll/sc
2187   // expansion of a cmpxchg instruction is such that the store-conditional will
2188   // not execute.  This makes it possible to balance out the load-linked with
2189   // a dedicated instruction, if desired.
2190   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
2191   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase & Builder)2192   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
2193 
2194   /// Returns true if arguments should be sign-extended in lib calls.
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned)2195   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
2196     return IsSigned;
2197   }
2198 
2199   /// Returns true if arguments should be extended in lib calls.
shouldExtendTypeInLibCall(EVT Type)2200   virtual bool shouldExtendTypeInLibCall(EVT Type) const {
2201     return true;
2202   }
2203 
2204   /// Returns how the given (atomic) load should be expanded by the
2205   /// IR-level AtomicExpand pass.
shouldExpandAtomicLoadInIR(LoadInst * LI)2206   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
2207     return AtomicExpansionKind::None;
2208   }
2209 
2210   /// Returns how the given (atomic) load should be cast by the IR-level
2211   /// AtomicExpand pass.
shouldCastAtomicLoadInIR(LoadInst * LI)2212   virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const {
2213     if (LI->getType()->isFloatingPointTy())
2214       return AtomicExpansionKind::CastToInteger;
2215     return AtomicExpansionKind::None;
2216   }
2217 
2218   /// Returns how the given (atomic) store should be expanded by the IR-level
2219   /// AtomicExpand pass into. For instance AtomicExpansionKind::Expand will try
2220   /// to use an atomicrmw xchg.
shouldExpandAtomicStoreInIR(StoreInst * SI)2221   virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const {
2222     return AtomicExpansionKind::None;
2223   }
2224 
2225   /// Returns how the given (atomic) store should be cast by the IR-level
2226   /// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
2227   /// will try to cast the operands to integer values.
shouldCastAtomicStoreInIR(StoreInst * SI)2228   virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const {
2229     if (SI->getValueOperand()->getType()->isFloatingPointTy())
2230       return AtomicExpansionKind::CastToInteger;
2231     return AtomicExpansionKind::None;
2232   }
2233 
2234   /// Returns how the given atomic cmpxchg should be expanded by the IR-level
2235   /// AtomicExpand pass.
2236   virtual AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI)2237   shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
2238     return AtomicExpansionKind::None;
2239   }
2240 
2241   /// Returns how the IR-level AtomicExpand pass should expand the given
2242   /// AtomicRMW, if at all. Default is to never expand.
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW)2243   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
2244     return RMW->isFloatingPointOperation() ?
2245       AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
2246   }
2247 
2248   /// Returns how the given atomic atomicrmw should be cast by the IR-level
2249   /// AtomicExpand pass.
2250   virtual AtomicExpansionKind
shouldCastAtomicRMWIInIR(AtomicRMWInst * RMWI)2251   shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const {
2252     if (RMWI->getOperation() == AtomicRMWInst::Xchg &&
2253         (RMWI->getValOperand()->getType()->isFloatingPointTy() ||
2254          RMWI->getValOperand()->getType()->isPointerTy()))
2255       return AtomicExpansionKind::CastToInteger;
2256 
2257     return AtomicExpansionKind::None;
2258   }
2259 
2260   /// On some platforms, an AtomicRMW that never actually modifies the value
2261   /// (such as fetch_add of 0) can be turned into a fence followed by an
2262   /// atomic load. This may sound useless, but it makes it possible for the
2263   /// processor to keep the cacheline shared, dramatically improving
2264   /// performance. And such idempotent RMWs are useful for implementing some
2265   /// kinds of locks, see for example (justification + benchmarks):
2266   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
2267   /// This method tries doing that transformation, returning the atomic load if
2268   /// it succeeds, and nullptr otherwise.
2269   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2270   /// another round of expansion.
2271   virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst * RMWI)2272   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
2273     return nullptr;
2274   }
2275 
2276   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2277   /// SIGN_EXTEND, or ANY_EXTEND).
getExtendForAtomicOps()2278   virtual ISD::NodeType getExtendForAtomicOps() const {
2279     return ISD::ZERO_EXTEND;
2280   }
2281 
2282   /// Returns how the platform's atomic compare and swap expects its comparison
2283   /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2284   /// separate from getExtendForAtomicOps, which is concerned with the
2285   /// sign-extension of the instruction's output, whereas here we are concerned
2286   /// with the sign-extension of the input. For targets with compare-and-swap
2287   /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2288   /// the input can be ANY_EXTEND, but the output will still have a specific
2289   /// extension.
getExtendForAtomicCmpSwapArg()2290   virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
2291     return ISD::ANY_EXTEND;
2292   }
2293 
2294   /// @}
2295 
2296   /// Returns true if we should normalize
2297   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2298   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2299   /// that it saves us from materializing N0 and N1 in an integer register.
2300   /// Targets that are able to perform and/or on flags should return false here.
shouldNormalizeToSelectSequence(LLVMContext & Context,EVT VT)2301   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
2302                                                EVT VT) const {
2303     // If a target has multiple condition registers, then it likely has logical
2304     // operations on those registers.
2305     if (hasMultipleConditionRegisters())
2306       return false;
2307     // Only do the transform if the value won't be split into multiple
2308     // registers.
2309     LegalizeTypeAction Action = getTypeAction(Context, VT);
2310     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2311       Action != TypeSplitVector;
2312   }
2313 
isProfitableToCombineMinNumMaxNum(EVT VT)2314   virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2315 
2316   /// Return true if a select of constants (select Cond, C1, C2) should be
2317   /// transformed into simple math ops with the condition value. For example:
2318   /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
convertSelectOfConstantsToMath(EVT VT)2319   virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2320     return false;
2321   }
2322 
2323   /// Return true if it is profitable to transform an integer
2324   /// multiplication-by-constant into simpler operations like shifts and adds.
2325   /// This may be true if the target does not directly support the
2326   /// multiplication operation for the specified type or the sequence of simpler
2327   /// ops is faster than the multiply.
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C)2328   virtual bool decomposeMulByConstant(LLVMContext &Context,
2329                                       EVT VT, SDValue C) const {
2330     return false;
2331   }
2332 
2333   /// Return true if it may be profitable to transform
2334   /// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
2335   /// This may not be true if c1 and c2 can be represented as immediates but
2336   /// c1*c2 cannot, for example.
2337   /// The target should check if c1, c2 and c1*c2 can be represented as
2338   /// immediates, or have to be materialized into registers. If it is not sure
2339   /// about some cases, a default true can be returned to let the DAGCombiner
2340   /// decide.
2341   /// AddNode is (add x, c1), and ConstNode is c2.
isMulAddWithConstProfitable(SDValue AddNode,SDValue ConstNode)2342   virtual bool isMulAddWithConstProfitable(SDValue AddNode,
2343                                            SDValue ConstNode) const {
2344     return true;
2345   }
2346 
2347   /// Return true if it is more correct/profitable to use strict FP_TO_INT
2348   /// conversion operations - canonicalizing the FP source value instead of
2349   /// converting all cases and then selecting based on value.
2350   /// This may be true if the target throws exceptions for out of bounds
2351   /// conversions or has fast FP CMOV.
shouldUseStrictFP_TO_INT(EVT FpVT,EVT IntVT,bool IsSigned)2352   virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2353                                         bool IsSigned) const {
2354     return false;
2355   }
2356 
2357   /// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
2358   /// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
2359   /// considered beneficial.
2360   /// If optimizing for size, expansion is only considered beneficial for upto
2361   /// 5 multiplies and a divide (if the exponent is negative).
isBeneficialToExpandPowI(int64_t Exponent,bool OptForSize)2362   bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const {
2363     if (Exponent < 0)
2364       Exponent = -Exponent;
2365     uint64_t E = static_cast<uint64_t>(Exponent);
2366     return !OptForSize || (llvm::popcount(E) + Log2_64(E) < 7);
2367   }
2368 
2369   //===--------------------------------------------------------------------===//
2370   // TargetLowering Configuration Methods - These methods should be invoked by
2371   // the derived class constructor to configure this object for the target.
2372   //
2373 protected:
2374   /// Specify how the target extends the result of integer and floating point
2375   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent Ty)2376   void setBooleanContents(BooleanContent Ty) {
2377     BooleanContents = Ty;
2378     BooleanFloatContents = Ty;
2379   }
2380 
2381   /// Specify how the target extends the result of integer and floating point
2382   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent IntTy,BooleanContent FloatTy)2383   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
2384     BooleanContents = IntTy;
2385     BooleanFloatContents = FloatTy;
2386   }
2387 
2388   /// Specify how the target extends the result of a vector boolean value from a
2389   /// vector of i1 to a wider type.  See getBooleanContents.
setBooleanVectorContents(BooleanContent Ty)2390   void setBooleanVectorContents(BooleanContent Ty) {
2391     BooleanVectorContents = Ty;
2392   }
2393 
2394   /// Specify the target scheduling preference.
setSchedulingPreference(Sched::Preference Pref)2395   void setSchedulingPreference(Sched::Preference Pref) {
2396     SchedPreferenceInfo = Pref;
2397   }
2398 
2399   /// Indicate the minimum number of blocks to generate jump tables.
2400   void setMinimumJumpTableEntries(unsigned Val);
2401 
2402   /// Indicate the maximum number of entries in jump tables.
2403   /// Set to zero to generate unlimited jump tables.
2404   void setMaximumJumpTableSize(unsigned);
2405 
2406   /// If set to a physical register, this specifies the register that
2407   /// llvm.savestack/llvm.restorestack should save and restore.
setStackPointerRegisterToSaveRestore(Register R)2408   void setStackPointerRegisterToSaveRestore(Register R) {
2409     StackPointerRegisterToSaveRestore = R;
2410   }
2411 
2412   /// Tells the code generator that the target has multiple (allocatable)
2413   /// condition registers that can be used to store the results of comparisons
2414   /// for use by selects and conditional branches. With multiple condition
2415   /// registers, the code generator will not aggressively sink comparisons into
2416   /// the blocks of their users.
2417   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
2418     HasMultipleConditionRegisters = hasManyRegs;
2419   }
2420 
2421   /// Tells the code generator that the target has BitExtract instructions.
2422   /// The code generator will aggressively sink "shift"s into the blocks of
2423   /// their users if the users will generate "and" instructions which can be
2424   /// combined with "shift" to BitExtract instructions.
2425   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2426     HasExtractBitsInsn = hasExtractInsn;
2427   }
2428 
2429   /// Tells the code generator not to expand logic operations on comparison
2430   /// predicates into separate sequences that increase the amount of flow
2431   /// control.
2432   void setJumpIsExpensive(bool isExpensive = true);
2433 
2434   /// Tells the code generator which bitwidths to bypass.
addBypassSlowDiv(unsigned int SlowBitWidth,unsigned int FastBitWidth)2435   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2436     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2437   }
2438 
2439   /// Add the specified register class as an available regclass for the
2440   /// specified value type. This indicates the selector can handle values of
2441   /// that class natively.
addRegisterClass(MVT VT,const TargetRegisterClass * RC)2442   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
2443     assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
2444     RegClassForVT[VT.SimpleTy] = RC;
2445   }
2446 
2447   /// Return the largest legal super-reg register class of the register class
2448   /// for the specified type and its associated "cost".
2449   virtual std::pair<const TargetRegisterClass *, uint8_t>
2450   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2451 
2452   /// Once all of the register classes are added, this allows us to compute
2453   /// derived properties we expose.
2454   void computeRegisterProperties(const TargetRegisterInfo *TRI);
2455 
2456   /// Indicate that the specified operation does not work with the specified
2457   /// type and indicate what to do about it. Note that VT may refer to either
2458   /// the type of a result or that of an operand of Op.
setOperationAction(unsigned Op,MVT VT,LegalizeAction Action)2459   void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
2460     assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
2461     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2462   }
setOperationAction(ArrayRef<unsigned> Ops,MVT VT,LegalizeAction Action)2463   void setOperationAction(ArrayRef<unsigned> Ops, MVT VT,
2464                           LegalizeAction Action) {
2465     for (auto Op : Ops)
2466       setOperationAction(Op, VT, Action);
2467   }
setOperationAction(ArrayRef<unsigned> Ops,ArrayRef<MVT> VTs,LegalizeAction Action)2468   void setOperationAction(ArrayRef<unsigned> Ops, ArrayRef<MVT> VTs,
2469                           LegalizeAction Action) {
2470     for (auto VT : VTs)
2471       setOperationAction(Ops, VT, Action);
2472   }
2473 
2474   /// Indicate that the specified load with extension does not work with the
2475   /// specified type and indicate what to do about it.
setLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)2476   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2477                         LegalizeAction Action) {
2478     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2479            MemVT.isValid() && "Table isn't big enough!");
2480     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2481     unsigned Shift = 4 * ExtType;
2482     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2483     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2484   }
setLoadExtAction(ArrayRef<unsigned> ExtTypes,MVT ValVT,MVT MemVT,LegalizeAction Action)2485   void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
2486                         LegalizeAction Action) {
2487     for (auto ExtType : ExtTypes)
2488       setLoadExtAction(ExtType, ValVT, MemVT, Action);
2489   }
setLoadExtAction(ArrayRef<unsigned> ExtTypes,MVT ValVT,ArrayRef<MVT> MemVTs,LegalizeAction Action)2490   void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT,
2491                         ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2492     for (auto MemVT : MemVTs)
2493       setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2494   }
2495 
2496   /// Indicate that the specified truncating store does not work with the
2497   /// specified type and indicate what to do about it.
setTruncStoreAction(MVT ValVT,MVT MemVT,LegalizeAction Action)2498   void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
2499     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2500     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2501   }
2502 
2503   /// Indicate that the specified indexed load does or does not work with the
2504   /// specified type and indicate what to do abort it.
2505   ///
2506   /// NOTE: All indexed mode loads are initialized to Expand in
2507   /// TargetLowering.cpp
setIndexedLoadAction(ArrayRef<unsigned> IdxModes,MVT VT,LegalizeAction Action)2508   void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, MVT VT,
2509                             LegalizeAction Action) {
2510     for (auto IdxMode : IdxModes)
2511       setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2512   }
2513 
setIndexedLoadAction(ArrayRef<unsigned> IdxModes,ArrayRef<MVT> VTs,LegalizeAction Action)2514   void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
2515                             LegalizeAction Action) {
2516     for (auto VT : VTs)
2517       setIndexedLoadAction(IdxModes, VT, Action);
2518   }
2519 
2520   /// Indicate that the specified indexed store does or does not work with the
2521   /// specified type and indicate what to do about it.
2522   ///
2523   /// NOTE: All indexed mode stores are initialized to Expand in
2524   /// TargetLowering.cpp
setIndexedStoreAction(ArrayRef<unsigned> IdxModes,MVT VT,LegalizeAction Action)2525   void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, MVT VT,
2526                              LegalizeAction Action) {
2527     for (auto IdxMode : IdxModes)
2528       setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2529   }
2530 
setIndexedStoreAction(ArrayRef<unsigned> IdxModes,ArrayRef<MVT> VTs,LegalizeAction Action)2531   void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
2532                              LegalizeAction Action) {
2533     for (auto VT : VTs)
2534       setIndexedStoreAction(IdxModes, VT, Action);
2535   }
2536 
2537   /// Indicate that the specified indexed masked load does or does not work with
2538   /// the specified type and indicate what to do about it.
2539   ///
2540   /// NOTE: All indexed mode masked loads are initialized to Expand in
2541   /// TargetLowering.cpp
setIndexedMaskedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2542   void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2543                                   LegalizeAction Action) {
2544     setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2545   }
2546 
2547   /// Indicate that the specified indexed masked store does or does not work
2548   /// with the specified type and indicate what to do about it.
2549   ///
2550   /// NOTE: All indexed mode masked stores are initialized to Expand in
2551   /// TargetLowering.cpp
setIndexedMaskedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2552   void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2553                                    LegalizeAction Action) {
2554     setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2555   }
2556 
2557   /// Indicate that the specified condition code is or isn't supported on the
2558   /// target and indicate what to do about it.
setCondCodeAction(ArrayRef<ISD::CondCode> CCs,MVT VT,LegalizeAction Action)2559   void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, MVT VT,
2560                          LegalizeAction Action) {
2561     for (auto CC : CCs) {
2562       assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
2563              "Table isn't big enough!");
2564       assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2565       /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
2566       /// 32-bit value and the upper 29 bits index into the second dimension of
2567       /// the array to select what 32-bit value to use.
2568       uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2569       CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2570       CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2571     }
2572   }
setCondCodeAction(ArrayRef<ISD::CondCode> CCs,ArrayRef<MVT> VTs,LegalizeAction Action)2573   void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, ArrayRef<MVT> VTs,
2574                          LegalizeAction Action) {
2575     for (auto VT : VTs)
2576       setCondCodeAction(CCs, VT, Action);
2577   }
2578 
2579   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2580   /// to trying a larger integer/fp until it can find one that works. If that
2581   /// default is insufficient, this method can be used by the target to override
2582   /// the default.
AddPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2583   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2584     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2585   }
2586 
2587   /// Convenience method to set an operation to Promote and specify the type
2588   /// in a single call.
setOperationPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2589   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2590     setOperationAction(Opc, OrigVT, Promote);
2591     AddPromotedToType(Opc, OrigVT, DestVT);
2592   }
setOperationPromotedToType(ArrayRef<unsigned> Ops,MVT OrigVT,MVT DestVT)2593   void setOperationPromotedToType(ArrayRef<unsigned> Ops, MVT OrigVT,
2594                                   MVT DestVT) {
2595     for (auto Op : Ops) {
2596       setOperationAction(Op, OrigVT, Promote);
2597       AddPromotedToType(Op, OrigVT, DestVT);
2598     }
2599   }
2600 
2601   /// Targets should invoke this method for each target independent node that
2602   /// they want to provide a custom DAG combiner for by implementing the
2603   /// PerformDAGCombine virtual method.
setTargetDAGCombine(ArrayRef<ISD::NodeType> NTs)2604   void setTargetDAGCombine(ArrayRef<ISD::NodeType> NTs) {
2605     for (auto NT : NTs) {
2606       assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
2607       TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
2608     }
2609   }
2610 
2611   /// Set the target's minimum function alignment.
setMinFunctionAlignment(Align Alignment)2612   void setMinFunctionAlignment(Align Alignment) {
2613     MinFunctionAlignment = Alignment;
2614   }
2615 
2616   /// Set the target's preferred function alignment.  This should be set if
2617   /// there is a performance benefit to higher-than-minimum alignment
setPrefFunctionAlignment(Align Alignment)2618   void setPrefFunctionAlignment(Align Alignment) {
2619     PrefFunctionAlignment = Alignment;
2620   }
2621 
2622   /// Set the target's preferred loop alignment. Default alignment is one, it
2623   /// means the target does not care about loop alignment. The target may also
2624   /// override getPrefLoopAlignment to provide per-loop values.
setPrefLoopAlignment(Align Alignment)2625   void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
setMaxBytesForAlignment(unsigned MaxBytes)2626   void setMaxBytesForAlignment(unsigned MaxBytes) {
2627     MaxBytesForAlignment = MaxBytes;
2628   }
2629 
2630   /// Set the minimum stack alignment of an argument.
setMinStackArgumentAlignment(Align Alignment)2631   void setMinStackArgumentAlignment(Align Alignment) {
2632     MinStackArgumentAlignment = Alignment;
2633   }
2634 
2635   /// Set the maximum atomic operation size supported by the
2636   /// backend. Atomic operations greater than this size (as well as
2637   /// ones that are not naturally aligned), will be expanded by
2638   /// AtomicExpandPass into an __atomic_* library call.
setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)2639   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2640     MaxAtomicSizeInBitsSupported = SizeInBits;
2641   }
2642 
2643   /// Set the size in bits of the maximum div/rem the backend supports.
2644   /// Larger operations will be expanded by ExpandLargeDivRem.
setMaxDivRemBitWidthSupported(unsigned SizeInBits)2645   void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
2646     MaxDivRemBitWidthSupported = SizeInBits;
2647   }
2648 
2649   /// Set the size in bits of the maximum fp convert the backend supports.
2650   /// Larger operations will be expanded by ExpandLargeFPConvert.
setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits)2651   void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
2652     MaxLargeFPConvertBitWidthSupported = SizeInBits;
2653   }
2654 
2655   /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
setMinCmpXchgSizeInBits(unsigned SizeInBits)2656   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2657     MinCmpXchgSizeInBits = SizeInBits;
2658   }
2659 
2660   /// Sets whether unaligned atomic operations are supported.
setSupportsUnalignedAtomics(bool UnalignedSupported)2661   void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2662     SupportsUnalignedAtomics = UnalignedSupported;
2663   }
2664 
2665 public:
2666   //===--------------------------------------------------------------------===//
2667   // Addressing mode description hooks (used by LSR etc).
2668   //
2669 
2670   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2671   /// instructions reading the address. This allows as much computation as
2672   /// possible to be done in the address mode for that operand. This hook lets
2673   /// targets also pass back when this should be done on intrinsics which
2674   /// load/store.
getAddrModeArguments(IntrinsicInst *,SmallVectorImpl<Value * > &,Type * &)2675   virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2676                                     SmallVectorImpl<Value*> &/*Ops*/,
2677                                     Type *&/*AccessTy*/) const {
2678     return false;
2679   }
2680 
2681   /// This represents an addressing mode of:
2682   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2683   /// If BaseGV is null,  there is no BaseGV.
2684   /// If BaseOffs is zero, there is no base offset.
2685   /// If HasBaseReg is false, there is no base register.
2686   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
2687   /// no scale.
2688   struct AddrMode {
2689     GlobalValue *BaseGV = nullptr;
2690     int64_t      BaseOffs = 0;
2691     bool         HasBaseReg = false;
2692     int64_t      Scale = 0;
2693     AddrMode() = default;
2694   };
2695 
2696   /// Return true if the addressing mode represented by AM is legal for this
2697   /// target, for a load/store of the specified type.
2698   ///
2699   /// The type may be VoidTy, in which case only return true if the addressing
2700   /// mode is legal for a load/store of any legal type.  TODO: Handle
2701   /// pre/postinc as well.
2702   ///
2703   /// If the address space cannot be determined, it will be -1.
2704   ///
2705   /// TODO: Remove default argument
2706   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2707                                      Type *Ty, unsigned AddrSpace,
2708                                      Instruction *I = nullptr) const;
2709 
2710   /// Return the prefered common base offset.
getPreferredLargeGEPBaseOffset(int64_t MinOffset,int64_t MaxOffset)2711   virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset,
2712                                                  int64_t MaxOffset) const {
2713     return 0;
2714   }
2715 
2716   /// Return true if the specified immediate is legal icmp immediate, that is
2717   /// the target has icmp instructions which can compare a register against the
2718   /// immediate without having to materialize the immediate into a register.
isLegalICmpImmediate(int64_t)2719   virtual bool isLegalICmpImmediate(int64_t) const {
2720     return true;
2721   }
2722 
2723   /// Return true if the specified immediate is legal add immediate, that is the
2724   /// target has add instructions which can add a register with the immediate
2725   /// without having to materialize the immediate into a register.
isLegalAddImmediate(int64_t)2726   virtual bool isLegalAddImmediate(int64_t) const {
2727     return true;
2728   }
2729 
2730   /// Return true if the specified immediate is legal for the value input of a
2731   /// store instruction.
isLegalStoreImmediate(int64_t Value)2732   virtual bool isLegalStoreImmediate(int64_t Value) const {
2733     // Default implementation assumes that at least 0 works since it is likely
2734     // that a zero register exists or a zero immediate is allowed.
2735     return Value == 0;
2736   }
2737 
2738   /// Return true if it's significantly cheaper to shift a vector by a uniform
2739   /// scalar than by an amount which will vary across each lane. On x86 before
2740   /// AVX2 for example, there is a "psllw" instruction for the former case, but
2741   /// no simple instruction for a general "a << b" operation on vectors.
2742   /// This should also apply to lowering for vector funnel shifts (rotates).
isVectorShiftByScalarCheap(Type * Ty)2743   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2744     return false;
2745   }
2746 
2747   /// Given a shuffle vector SVI representing a vector splat, return a new
2748   /// scalar type of size equal to SVI's scalar type if the new type is more
2749   /// profitable. Returns nullptr otherwise. For example under MVE float splats
2750   /// are converted to integer to prevent the need to move from SPR to GPR
2751   /// registers.
shouldConvertSplatType(ShuffleVectorInst * SVI)2752   virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
2753     return nullptr;
2754   }
2755 
2756   /// Given a set in interconnected phis of type 'From' that are loaded/stored
2757   /// or bitcast to type 'To', return true if the set should be converted to
2758   /// 'To'.
shouldConvertPhiType(Type * From,Type * To)2759   virtual bool shouldConvertPhiType(Type *From, Type *To) const {
2760     return (From->isIntegerTy() || From->isFloatingPointTy()) &&
2761            (To->isIntegerTy() || To->isFloatingPointTy());
2762   }
2763 
2764   /// Returns true if the opcode is a commutative binary operation.
isCommutativeBinOp(unsigned Opcode)2765   virtual bool isCommutativeBinOp(unsigned Opcode) const {
2766     // FIXME: This should get its info from the td file.
2767     switch (Opcode) {
2768     case ISD::ADD:
2769     case ISD::SMIN:
2770     case ISD::SMAX:
2771     case ISD::UMIN:
2772     case ISD::UMAX:
2773     case ISD::MUL:
2774     case ISD::MULHU:
2775     case ISD::MULHS:
2776     case ISD::SMUL_LOHI:
2777     case ISD::UMUL_LOHI:
2778     case ISD::FADD:
2779     case ISD::FMUL:
2780     case ISD::AND:
2781     case ISD::OR:
2782     case ISD::XOR:
2783     case ISD::SADDO:
2784     case ISD::UADDO:
2785     case ISD::ADDC:
2786     case ISD::ADDE:
2787     case ISD::SADDSAT:
2788     case ISD::UADDSAT:
2789     case ISD::FMINNUM:
2790     case ISD::FMAXNUM:
2791     case ISD::FMINNUM_IEEE:
2792     case ISD::FMAXNUM_IEEE:
2793     case ISD::FMINIMUM:
2794     case ISD::FMAXIMUM:
2795     case ISD::AVGFLOORS:
2796     case ISD::AVGFLOORU:
2797     case ISD::AVGCEILS:
2798     case ISD::AVGCEILU:
2799     case ISD::ABDS:
2800     case ISD::ABDU:
2801       return true;
2802     default: return false;
2803     }
2804   }
2805 
2806   /// Return true if the node is a math/logic binary operator.
isBinOp(unsigned Opcode)2807   virtual bool isBinOp(unsigned Opcode) const {
2808     // A commutative binop must be a binop.
2809     if (isCommutativeBinOp(Opcode))
2810       return true;
2811     // These are non-commutative binops.
2812     switch (Opcode) {
2813     case ISD::SUB:
2814     case ISD::SHL:
2815     case ISD::SRL:
2816     case ISD::SRA:
2817     case ISD::ROTL:
2818     case ISD::ROTR:
2819     case ISD::SDIV:
2820     case ISD::UDIV:
2821     case ISD::SREM:
2822     case ISD::UREM:
2823     case ISD::SSUBSAT:
2824     case ISD::USUBSAT:
2825     case ISD::FSUB:
2826     case ISD::FDIV:
2827     case ISD::FREM:
2828       return true;
2829     default:
2830       return false;
2831     }
2832   }
2833 
2834   /// Return true if it's free to truncate a value of type FromTy to type
2835   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2836   /// by referencing its sub-register AX.
2837   /// Targets must return false when FromTy <= ToTy.
isTruncateFree(Type * FromTy,Type * ToTy)2838   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2839     return false;
2840   }
2841 
2842   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2843   /// whether a call is in tail position. Typically this means that both results
2844   /// would be assigned to the same register or stack slot, but it could mean
2845   /// the target performs adequate checks of its own before proceeding with the
2846   /// tail call.  Targets must return false when FromTy <= ToTy.
allowTruncateForTailCall(Type * FromTy,Type * ToTy)2847   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2848     return false;
2849   }
2850 
isTruncateFree(EVT FromVT,EVT ToVT)2851   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
isTruncateFree(LLT FromTy,LLT ToTy,const DataLayout & DL,LLVMContext & Ctx)2852   virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
2853                               LLVMContext &Ctx) const {
2854     return isTruncateFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
2855                           getApproximateEVTForLLT(ToTy, DL, Ctx));
2856   }
2857 
2858   /// Return true if truncating the specific node Val to type VT2 is free.
isTruncateFree(SDValue Val,EVT VT2)2859   virtual bool isTruncateFree(SDValue Val, EVT VT2) const {
2860     // Fallback to type matching.
2861     return isTruncateFree(Val.getValueType(), VT2);
2862   }
2863 
isProfitableToHoist(Instruction * I)2864   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2865 
2866   /// Return true if the extension represented by \p I is free.
2867   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2868   /// this method can use the context provided by \p I to decide
2869   /// whether or not \p I is free.
2870   /// This method extends the behavior of the is[Z|FP]ExtFree family.
2871   /// In other words, if is[Z|FP]Free returns true, then this method
2872   /// returns true as well. The converse is not true.
2873   /// The target can perform the adequate checks by overriding isExtFreeImpl.
2874   /// \pre \p I must be a sign, zero, or fp extension.
isExtFree(const Instruction * I)2875   bool isExtFree(const Instruction *I) const {
2876     switch (I->getOpcode()) {
2877     case Instruction::FPExt:
2878       if (isFPExtFree(EVT::getEVT(I->getType()),
2879                       EVT::getEVT(I->getOperand(0)->getType())))
2880         return true;
2881       break;
2882     case Instruction::ZExt:
2883       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2884         return true;
2885       break;
2886     case Instruction::SExt:
2887       break;
2888     default:
2889       llvm_unreachable("Instruction is not an extension");
2890     }
2891     return isExtFreeImpl(I);
2892   }
2893 
2894   /// Return true if \p Load and \p Ext can form an ExtLoad.
2895   /// For example, in AArch64
2896   ///   %L = load i8, i8* %ptr
2897   ///   %E = zext i8 %L to i32
2898   /// can be lowered into one load instruction
2899   ///   ldrb w0, [x0]
isExtLoad(const LoadInst * Load,const Instruction * Ext,const DataLayout & DL)2900   bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2901                  const DataLayout &DL) const {
2902     EVT VT = getValueType(DL, Ext->getType());
2903     EVT LoadVT = getValueType(DL, Load->getType());
2904 
2905     // If the load has other users and the truncate is not free, the ext
2906     // probably isn't free.
2907     if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2908         !isTruncateFree(Ext->getType(), Load->getType()))
2909       return false;
2910 
2911     // Check whether the target supports casts folded into loads.
2912     unsigned LType;
2913     if (isa<ZExtInst>(Ext))
2914       LType = ISD::ZEXTLOAD;
2915     else {
2916       assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2917       LType = ISD::SEXTLOAD;
2918     }
2919 
2920     return isLoadExtLegal(LType, VT, LoadVT);
2921   }
2922 
2923   /// Return true if any actual instruction that defines a value of type FromTy
2924   /// implicitly zero-extends the value to ToTy in the result register.
2925   ///
2926   /// The function should return true when it is likely that the truncate can
2927   /// be freely folded with an instruction defining a value of FromTy. If
2928   /// the defining instruction is unknown (because you're looking at a
2929   /// function argument, PHI, etc.) then the target may require an
2930   /// explicit truncate, which is not necessarily free, but this function
2931   /// does not deal with those cases.
2932   /// Targets must return false when FromTy >= ToTy.
isZExtFree(Type * FromTy,Type * ToTy)2933   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2934     return false;
2935   }
2936 
isZExtFree(EVT FromTy,EVT ToTy)2937   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
isZExtFree(LLT FromTy,LLT ToTy,const DataLayout & DL,LLVMContext & Ctx)2938   virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
2939                           LLVMContext &Ctx) const {
2940     return isZExtFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
2941                       getApproximateEVTForLLT(ToTy, DL, Ctx));
2942   }
2943 
2944   /// Return true if zero-extending the specific node Val to type VT2 is free
2945   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2946   /// because it's folded such as X86 zero-extending loads).
isZExtFree(SDValue Val,EVT VT2)2947   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2948     return isZExtFree(Val.getValueType(), VT2);
2949   }
2950 
2951   /// Return true if sign-extension from FromTy to ToTy is cheaper than
2952   /// zero-extension.
isSExtCheaperThanZExt(EVT FromTy,EVT ToTy)2953   virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
2954     return false;
2955   }
2956 
2957   /// Return true if this constant should be sign extended when promoting to
2958   /// a larger type.
signExtendConstant(const ConstantInt * C)2959   virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
2960 
2961   /// Return true if sinking I's operands to the same basic block as I is
2962   /// profitable, e.g. because the operands can be folded into a target
2963   /// instruction during instruction selection. After calling the function
2964   /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2965   /// come first).
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops)2966   virtual bool shouldSinkOperands(Instruction *I,
2967                                   SmallVectorImpl<Use *> &Ops) const {
2968     return false;
2969   }
2970 
2971   /// Try to optimize extending or truncating conversion instructions (like
2972   /// zext, trunc, fptoui, uitofp) for the target.
2973   virtual bool
optimizeExtendOrTruncateConversion(Instruction * I,Loop * L,const TargetTransformInfo & TTI)2974   optimizeExtendOrTruncateConversion(Instruction *I, Loop *L,
2975                                      const TargetTransformInfo &TTI) const {
2976     return false;
2977   }
2978 
2979   /// Return true if the target supplies and combines to a paired load
2980   /// two loaded values of type LoadedType next to each other in memory.
2981   /// RequiredAlignment gives the minimal alignment constraints that must be met
2982   /// to be able to select this paired load.
2983   ///
2984   /// This information is *not* used to generate actual paired loads, but it is
2985   /// used to generate a sequence of loads that is easier to combine into a
2986   /// paired load.
2987   /// For instance, something like this:
2988   /// a = load i64* addr
2989   /// b = trunc i64 a to i32
2990   /// c = lshr i64 a, 32
2991   /// d = trunc i64 c to i32
2992   /// will be optimized into:
2993   /// b = load i32* addr1
2994   /// d = load i32* addr2
2995   /// Where addr1 = addr2 +/- sizeof(i32).
2996   ///
2997   /// In other words, unless the target performs a post-isel load combining,
2998   /// this information should not be provided because it will generate more
2999   /// loads.
hasPairedLoad(EVT,Align &)3000   virtual bool hasPairedLoad(EVT /*LoadedType*/,
3001                              Align & /*RequiredAlignment*/) const {
3002     return false;
3003   }
3004 
3005   /// Return true if the target has a vector blend instruction.
hasVectorBlend()3006   virtual bool hasVectorBlend() const { return false; }
3007 
3008   /// Get the maximum supported factor for interleaved memory accesses.
3009   /// Default to be the minimum interleave factor: 2.
getMaxSupportedInterleaveFactor()3010   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
3011 
3012   /// Lower an interleaved load to target specific intrinsics. Return
3013   /// true on success.
3014   ///
3015   /// \p LI is the vector load instruction.
3016   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
3017   /// \p Indices is the corresponding indices for each shufflevector.
3018   /// \p Factor is the interleave factor.
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor)3019   virtual bool lowerInterleavedLoad(LoadInst *LI,
3020                                     ArrayRef<ShuffleVectorInst *> Shuffles,
3021                                     ArrayRef<unsigned> Indices,
3022                                     unsigned Factor) const {
3023     return false;
3024   }
3025 
3026   /// Lower an interleaved store to target specific intrinsics. Return
3027   /// true on success.
3028   ///
3029   /// \p SI is the vector store instruction.
3030   /// \p SVI is the shufflevector to RE-interleave the stored vector.
3031   /// \p Factor is the interleave factor.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor)3032   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
3033                                      unsigned Factor) const {
3034     return false;
3035   }
3036 
3037   /// Lower a deinterleave intrinsic to a target specific load intrinsic.
3038   /// Return true on success. Currently only supports
3039   /// llvm.experimental.vector.deinterleave2
3040   ///
3041   /// \p DI is the deinterleave intrinsic.
3042   /// \p LI is the accompanying load instruction
lowerDeinterleaveIntrinsicToLoad(IntrinsicInst * DI,LoadInst * LI)3043   virtual bool lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *DI,
3044                                                 LoadInst *LI) const {
3045     return false;
3046   }
3047 
3048   /// Lower an interleave intrinsic to a target specific store intrinsic.
3049   /// Return true on success. Currently only supports
3050   /// llvm.experimental.vector.interleave2
3051   ///
3052   /// \p II is the interleave intrinsic.
3053   /// \p SI is the accompanying store instruction
lowerInterleaveIntrinsicToStore(IntrinsicInst * II,StoreInst * SI)3054   virtual bool lowerInterleaveIntrinsicToStore(IntrinsicInst *II,
3055                                                StoreInst *SI) const {
3056     return false;
3057   }
3058 
3059   /// Return true if an fpext operation is free (for instance, because
3060   /// single-precision floating-point numbers are implicitly extended to
3061   /// double-precision).
isFPExtFree(EVT DestVT,EVT SrcVT)3062   virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
3063     assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
3064            "invalid fpext types");
3065     return false;
3066   }
3067 
3068   /// Return true if an fpext operation input to an \p Opcode operation is free
3069   /// (for instance, because half-precision floating-point numbers are
3070   /// implicitly extended to float-precision) for an FMA instruction.
isFPExtFoldable(const MachineInstr & MI,unsigned Opcode,LLT DestTy,LLT SrcTy)3071   virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
3072                                LLT DestTy, LLT SrcTy) const {
3073     return false;
3074   }
3075 
3076   /// Return true if an fpext operation input to an \p Opcode operation is free
3077   /// (for instance, because half-precision floating-point numbers are
3078   /// implicitly extended to float-precision) for an FMA instruction.
isFPExtFoldable(const SelectionDAG & DAG,unsigned Opcode,EVT DestVT,EVT SrcVT)3079   virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
3080                                EVT DestVT, EVT SrcVT) const {
3081     assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
3082            "invalid fpext types");
3083     return isFPExtFree(DestVT, SrcVT);
3084   }
3085 
3086   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
3087   /// extend node) is profitable.
isVectorLoadExtDesirable(SDValue ExtVal)3088   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
3089 
3090   /// Return true if an fneg operation is free to the point where it is never
3091   /// worthwhile to replace it with a bitwise operation.
isFNegFree(EVT VT)3092   virtual bool isFNegFree(EVT VT) const {
3093     assert(VT.isFloatingPoint());
3094     return false;
3095   }
3096 
3097   /// Return true if an fabs operation is free to the point where it is never
3098   /// worthwhile to replace it with a bitwise operation.
isFAbsFree(EVT VT)3099   virtual bool isFAbsFree(EVT VT) const {
3100     assert(VT.isFloatingPoint());
3101     return false;
3102   }
3103 
3104   /// Return true if an FMA operation is faster than a pair of fmul and fadd
3105   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3106   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3107   ///
3108   /// NOTE: This may be called before legalization on types for which FMAs are
3109   /// not legal, but should return true if those types will eventually legalize
3110   /// to types that support FMAs. After legalization, it will only be called on
3111   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT)3112   virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
3113                                           EVT) const {
3114     return false;
3115   }
3116 
3117   /// Return true if an FMA operation is faster than a pair of fmul and fadd
3118   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3119   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3120   ///
3121   /// NOTE: This may be called before legalization on types for which FMAs are
3122   /// not legal, but should return true if those types will eventually legalize
3123   /// to types that support FMAs. After legalization, it will only be called on
3124   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,LLT)3125   virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
3126                                           LLT) const {
3127     return false;
3128   }
3129 
3130   /// IR version
isFMAFasterThanFMulAndFAdd(const Function & F,Type *)3131   virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
3132     return false;
3133   }
3134 
3135   /// Returns true if \p MI can be combined with another instruction to
3136   /// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
3137   /// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
3138   /// distributed into an fadd/fsub.
isFMADLegal(const MachineInstr & MI,LLT Ty)3139   virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
3140     assert((MI.getOpcode() == TargetOpcode::G_FADD ||
3141             MI.getOpcode() == TargetOpcode::G_FSUB ||
3142             MI.getOpcode() == TargetOpcode::G_FMUL) &&
3143            "unexpected node in FMAD forming combine");
3144     switch (Ty.getScalarSizeInBits()) {
3145     case 16:
3146       return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
3147     case 32:
3148       return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
3149     case 64:
3150       return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
3151     default:
3152       break;
3153     }
3154 
3155     return false;
3156   }
3157 
3158   /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
3159   /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
3160   /// fadd/fsub.
isFMADLegal(const SelectionDAG & DAG,const SDNode * N)3161   virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
3162     assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
3163             N->getOpcode() == ISD::FMUL) &&
3164            "unexpected node in FMAD forming combine");
3165     return isOperationLegal(ISD::FMAD, N->getValueType(0));
3166   }
3167 
3168   // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
3169   // than FMUL and ADD is delegated to the machine combiner.
generateFMAsInMachineCombiner(EVT VT,CodeGenOptLevel OptLevel)3170   virtual bool generateFMAsInMachineCombiner(EVT VT,
3171                                              CodeGenOptLevel OptLevel) const {
3172     return false;
3173   }
3174 
3175   /// Return true if it's profitable to narrow operations of type SrcVT to
3176   /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
3177   /// i32 to i16.
isNarrowingProfitable(EVT SrcVT,EVT DestVT)3178   virtual bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
3179     return false;
3180   }
3181 
3182   /// Return true if pulling a binary operation into a select with an identity
3183   /// constant is profitable. This is the inverse of an IR transform.
3184   /// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,EVT VT)3185   virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
3186                                                     EVT VT) const {
3187     return false;
3188   }
3189 
3190   /// Return true if it is beneficial to convert a load of a constant to
3191   /// just the constant itself.
3192   /// On some targets it might be more efficient to use a combination of
3193   /// arithmetic instructions to materialize the constant instead of loading it
3194   /// from a constant pool.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty)3195   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
3196                                                  Type *Ty) const {
3197     return false;
3198   }
3199 
3200   /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
3201   /// from this source type with this index. This is needed because
3202   /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
3203   /// the first element, and only the target knows which lowering is cheap.
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index)3204   virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
3205                                        unsigned Index) const {
3206     return false;
3207   }
3208 
3209   /// Try to convert an extract element of a vector binary operation into an
3210   /// extract element followed by a scalar operation.
shouldScalarizeBinop(SDValue VecOp)3211   virtual bool shouldScalarizeBinop(SDValue VecOp) const {
3212     return false;
3213   }
3214 
3215   /// Return true if extraction of a scalar element from the given vector type
3216   /// at the given index is cheap. For example, if scalar operations occur on
3217   /// the same register file as vector operations, then an extract element may
3218   /// be a sub-register rename rather than an actual instruction.
isExtractVecEltCheap(EVT VT,unsigned Index)3219   virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
3220     return false;
3221   }
3222 
3223   /// Try to convert math with an overflow comparison into the corresponding DAG
3224   /// node operation. Targets may want to override this independently of whether
3225   /// the operation is legal/custom for the given type because it may obscure
3226   /// matching of other patterns.
shouldFormOverflowOp(unsigned Opcode,EVT VT,bool MathUsed)3227   virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
3228                                     bool MathUsed) const {
3229     // TODO: The default logic is inherited from code in CodeGenPrepare.
3230     // The opcode should not make a difference by default?
3231     if (Opcode != ISD::UADDO)
3232       return false;
3233 
3234     // Allow the transform as long as we have an integer type that is not
3235     // obviously illegal and unsupported and if the math result is used
3236     // besides the overflow check. On some targets (e.g. SPARC), it is
3237     // not profitable to form on overflow op if the math result has no
3238     // concrete users.
3239     if (VT.isVector())
3240       return false;
3241     return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
3242   }
3243 
3244   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
3245   // even if the vector itself has multiple uses.
aggressivelyPreferBuildVectorSources(EVT VecVT)3246   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
3247     return false;
3248   }
3249 
3250   // Return true if CodeGenPrepare should consider splitting large offset of a
3251   // GEP to make the GEP fit into the addressing mode and can be sunk into the
3252   // same blocks of its users.
shouldConsiderGEPOffsetSplit()3253   virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
3254 
3255   /// Return true if creating a shift of the type by the given
3256   /// amount is not profitable.
shouldAvoidTransformToShift(EVT VT,unsigned Amount)3257   virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
3258     return false;
3259   }
3260 
3261   // Should we fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x))
3262   // A) where y has a single bit set?
shouldFoldSelectWithSingleBitTest(EVT VT,const APInt & AndMask)3263   virtual bool shouldFoldSelectWithSingleBitTest(EVT VT,
3264                                                  const APInt &AndMask) const {
3265     unsigned ShCt = AndMask.getBitWidth() - 1;
3266     return !shouldAvoidTransformToShift(VT, ShCt);
3267   }
3268 
3269   /// Does this target require the clearing of high-order bits in a register
3270   /// passed to the fp16 to fp conversion library function.
shouldKeepZExtForFP16Conv()3271   virtual bool shouldKeepZExtForFP16Conv() const { return false; }
3272 
3273   /// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
3274   /// from min(max(fptoi)) saturation patterns.
shouldConvertFpToSat(unsigned Op,EVT FPVT,EVT VT)3275   virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
3276     return isOperationLegalOrCustom(Op, VT);
3277   }
3278 
3279   /// Does this target support complex deinterleaving
isComplexDeinterleavingSupported()3280   virtual bool isComplexDeinterleavingSupported() const { return false; }
3281 
3282   /// Does this target support complex deinterleaving with the given operation
3283   /// and type
isComplexDeinterleavingOperationSupported(ComplexDeinterleavingOperation Operation,Type * Ty)3284   virtual bool isComplexDeinterleavingOperationSupported(
3285       ComplexDeinterleavingOperation Operation, Type *Ty) const {
3286     return false;
3287   }
3288 
3289   /// Create the IR node for the given complex deinterleaving operation.
3290   /// If one cannot be created using all the given inputs, nullptr should be
3291   /// returned.
3292   virtual Value *createComplexDeinterleavingIR(
3293       IRBuilderBase &B, ComplexDeinterleavingOperation OperationType,
3294       ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
3295       Value *Accumulator = nullptr) const {
3296     return nullptr;
3297   }
3298 
3299   //===--------------------------------------------------------------------===//
3300   // Runtime Library hooks
3301   //
3302 
3303   /// Rename the default libcall routine name for the specified libcall.
setLibcallName(RTLIB::Libcall Call,const char * Name)3304   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
3305     LibcallRoutineNames[Call] = Name;
3306   }
setLibcallName(ArrayRef<RTLIB::Libcall> Calls,const char * Name)3307   void setLibcallName(ArrayRef<RTLIB::Libcall> Calls, const char *Name) {
3308     for (auto Call : Calls)
3309       setLibcallName(Call, Name);
3310   }
3311 
3312   /// Get the libcall routine name for the specified libcall.
getLibcallName(RTLIB::Libcall Call)3313   const char *getLibcallName(RTLIB::Libcall Call) const {
3314     return LibcallRoutineNames[Call];
3315   }
3316 
3317   /// Override the default CondCode to be used to test the result of the
3318   /// comparison libcall against zero.
setCmpLibcallCC(RTLIB::Libcall Call,ISD::CondCode CC)3319   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
3320     CmpLibcallCCs[Call] = CC;
3321   }
3322 
3323   /// Get the CondCode that's to be used to test the result of the comparison
3324   /// libcall against zero.
getCmpLibcallCC(RTLIB::Libcall Call)3325   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
3326     return CmpLibcallCCs[Call];
3327   }
3328 
3329   /// Set the CallingConv that should be used for the specified libcall.
setLibcallCallingConv(RTLIB::Libcall Call,CallingConv::ID CC)3330   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
3331     LibcallCallingConvs[Call] = CC;
3332   }
3333 
3334   /// Get the CallingConv that should be used for the specified libcall.
getLibcallCallingConv(RTLIB::Libcall Call)3335   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
3336     return LibcallCallingConvs[Call];
3337   }
3338 
3339   /// Execute target specific actions to finalize target lowering.
3340   /// This is used to set extra flags in MachineFrameInformation and freezing
3341   /// the set of reserved registers.
3342   /// The default implementation just freezes the set of reserved registers.
3343   virtual void finalizeLowering(MachineFunction &MF) const;
3344 
3345   //===----------------------------------------------------------------------===//
3346   //  GlobalISel Hooks
3347   //===----------------------------------------------------------------------===//
3348   /// Check whether or not \p MI needs to be moved close to its uses.
3349   virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
3350 
3351 
3352 private:
3353   const TargetMachine &TM;
3354 
3355   /// Tells the code generator that the target has multiple (allocatable)
3356   /// condition registers that can be used to store the results of comparisons
3357   /// for use by selects and conditional branches. With multiple condition
3358   /// registers, the code generator will not aggressively sink comparisons into
3359   /// the blocks of their users.
3360   bool HasMultipleConditionRegisters;
3361 
3362   /// Tells the code generator that the target has BitExtract instructions.
3363   /// The code generator will aggressively sink "shift"s into the blocks of
3364   /// their users if the users will generate "and" instructions which can be
3365   /// combined with "shift" to BitExtract instructions.
3366   bool HasExtractBitsInsn;
3367 
3368   /// Tells the code generator to bypass slow divide or remainder
3369   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
3370   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
3371   /// div/rem when the operands are positive and less than 256.
3372   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
3373 
3374   /// Tells the code generator that it shouldn't generate extra flow control
3375   /// instructions and should attempt to combine flow control instructions via
3376   /// predication.
3377   bool JumpIsExpensive;
3378 
3379   /// Information about the contents of the high-bits in boolean values held in
3380   /// a type wider than i1. See getBooleanContents.
3381   BooleanContent BooleanContents;
3382 
3383   /// Information about the contents of the high-bits in boolean values held in
3384   /// a type wider than i1. See getBooleanContents.
3385   BooleanContent BooleanFloatContents;
3386 
3387   /// Information about the contents of the high-bits in boolean vector values
3388   /// when the element type is wider than i1. See getBooleanContents.
3389   BooleanContent BooleanVectorContents;
3390 
3391   /// The target scheduling preference: shortest possible total cycles or lowest
3392   /// register usage.
3393   Sched::Preference SchedPreferenceInfo;
3394 
3395   /// The minimum alignment that any argument on the stack needs to have.
3396   Align MinStackArgumentAlignment;
3397 
3398   /// The minimum function alignment (used when optimizing for size, and to
3399   /// prevent explicitly provided alignment from leading to incorrect code).
3400   Align MinFunctionAlignment;
3401 
3402   /// The preferred function alignment (used when alignment unspecified and
3403   /// optimizing for speed).
3404   Align PrefFunctionAlignment;
3405 
3406   /// The preferred loop alignment (in log2 bot in bytes).
3407   Align PrefLoopAlignment;
3408   /// The maximum amount of bytes permitted to be emitted for alignment.
3409   unsigned MaxBytesForAlignment;
3410 
3411   /// Size in bits of the maximum atomics size the backend supports.
3412   /// Accesses larger than this will be expanded by AtomicExpandPass.
3413   unsigned MaxAtomicSizeInBitsSupported;
3414 
3415   /// Size in bits of the maximum div/rem size the backend supports.
3416   /// Larger operations will be expanded by ExpandLargeDivRem.
3417   unsigned MaxDivRemBitWidthSupported;
3418 
3419   /// Size in bits of the maximum larget fp convert size the backend
3420   /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
3421   unsigned MaxLargeFPConvertBitWidthSupported;
3422 
3423   /// Size in bits of the minimum cmpxchg or ll/sc operation the
3424   /// backend supports.
3425   unsigned MinCmpXchgSizeInBits;
3426 
3427   /// This indicates if the target supports unaligned atomic operations.
3428   bool SupportsUnalignedAtomics;
3429 
3430   /// If set to a physical register, this specifies the register that
3431   /// llvm.savestack/llvm.restorestack should save and restore.
3432   Register StackPointerRegisterToSaveRestore;
3433 
3434   /// This indicates the default register class to use for each ValueType the
3435   /// target supports natively.
3436   const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
3437   uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
3438   MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
3439 
3440   /// This indicates the "representative" register class to use for each
3441   /// ValueType the target supports natively. This information is used by the
3442   /// scheduler to track register pressure. By default, the representative
3443   /// register class is the largest legal super-reg register class of the
3444   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
3445   /// representative class would be GR32.
3446   const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE] = {0};
3447 
3448   /// This indicates the "cost" of the "representative" register class for each
3449   /// ValueType. The cost is used by the scheduler to approximate register
3450   /// pressure.
3451   uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
3452 
3453   /// For any value types we are promoting or expanding, this contains the value
3454   /// type that we are changing to.  For Expanded types, this contains one step
3455   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
3456   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
3457   /// the same type (e.g. i32 -> i32).
3458   MVT TransformToType[MVT::VALUETYPE_SIZE];
3459 
3460   /// For each operation and each value type, keep a LegalizeAction that
3461   /// indicates how instruction selection should deal with the operation.  Most
3462   /// operations are Legal (aka, supported natively by the target), but
3463   /// operations that are not should be described.  Note that operations on
3464   /// non-legal value types are not described here.
3465   LegalizeAction OpActions[MVT::VALUETYPE_SIZE][ISD::BUILTIN_OP_END];
3466 
3467   /// For each load extension type and each value type, keep a LegalizeAction
3468   /// that indicates how instruction selection should deal with a load of a
3469   /// specific value type and extension type. Uses 4-bits to store the action
3470   /// for each of the 4 load ext types.
3471   uint16_t LoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3472 
3473   /// For each value type pair keep a LegalizeAction that indicates whether a
3474   /// truncating store of a specific value type and truncating type is legal.
3475   LegalizeAction TruncStoreActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3476 
3477   /// For each indexed mode and each value type, keep a quad of LegalizeAction
3478   /// that indicates how instruction selection should deal with the load /
3479   /// store / maskedload / maskedstore.
3480   ///
3481   /// The first dimension is the value_type for the reference. The second
3482   /// dimension represents the various modes for load store.
3483   uint16_t IndexedModeActions[MVT::VALUETYPE_SIZE][ISD::LAST_INDEXED_MODE];
3484 
3485   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
3486   /// indicates how instruction selection should deal with the condition code.
3487   ///
3488   /// Because each CC action takes up 4 bits, we need to have the array size be
3489   /// large enough to fit all of the value types. This can be done by rounding
3490   /// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
3491   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
3492 
3493   ValueTypeActionImpl ValueTypeActions;
3494 
3495 private:
3496   /// Targets can specify ISD nodes that they would like PerformDAGCombine
3497   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
3498   /// array.
3499   unsigned char
3500   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3501 
3502   /// For operations that must be promoted to a specific type, this holds the
3503   /// destination type.  This map should be sparse, so don't hold it as an
3504   /// array.
3505   ///
3506   /// Targets add entries to this map with AddPromotedToType(..), clients access
3507   /// this with getTypeToPromoteTo(..).
3508   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3509     PromoteToType;
3510 
3511   /// Stores the name each libcall.
3512   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
3513 
3514   /// The ISD::CondCode that should be used to test the result of each of the
3515   /// comparison libcall against zero.
3516   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
3517 
3518   /// Stores the CallingConv that should be used for each libcall.
3519   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
3520 
3521   /// Set default libcall names and calling conventions.
3522   void InitLibcalls(const Triple &TT);
3523 
3524   /// The bits of IndexedModeActions used to store the legalisation actions
3525   /// We store the data as   | ML | MS |  L |  S | each taking 4 bits.
3526   enum IndexedModeActionsBits {
3527     IMAB_Store = 0,
3528     IMAB_Load = 4,
3529     IMAB_MaskedStore = 8,
3530     IMAB_MaskedLoad = 12
3531   };
3532 
setIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift,LegalizeAction Action)3533   void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3534                             LegalizeAction Action) {
3535     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3536            (unsigned)Action < 0xf && "Table isn't big enough!");
3537     unsigned Ty = (unsigned)VT.SimpleTy;
3538     IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3539     IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3540   }
3541 
getIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift)3542   LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3543                                       unsigned Shift) const {
3544     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3545            "Table isn't big enough!");
3546     unsigned Ty = (unsigned)VT.SimpleTy;
3547     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3548   }
3549 
3550 protected:
3551   /// Return true if the extension represented by \p I is free.
3552   /// \pre \p I is a sign, zero, or fp extension and
3553   ///      is[Z|FP]ExtFree of the related types is not true.
isExtFreeImpl(const Instruction * I)3554   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3555 
3556   /// Depth that GatherAllAliases should continue looking for chain
3557   /// dependencies when trying to find a more preferable chain. As an
3558   /// approximation, this should be more than the number of consecutive stores
3559   /// expected to be merged.
3560   unsigned GatherAllAliasesMaxDepth;
3561 
3562   /// \brief Specify maximum number of store instructions per memset call.
3563   ///
3564   /// When lowering \@llvm.memset this field specifies the maximum number of
3565   /// store operations that may be substituted for the call to memset. Targets
3566   /// must set this value based on the cost threshold for that target. Targets
3567   /// should assume that the memset will be done using as many of the largest
3568   /// store operations first, followed by smaller ones, if necessary, per
3569   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3570   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3571   /// store.  This only applies to setting a constant array of a constant size.
3572   unsigned MaxStoresPerMemset;
3573   /// Likewise for functions with the OptSize attribute.
3574   unsigned MaxStoresPerMemsetOptSize;
3575 
3576   /// \brief Specify maximum number of store instructions per memcpy call.
3577   ///
3578   /// When lowering \@llvm.memcpy this field specifies the maximum number of
3579   /// store operations that may be substituted for a call to memcpy. Targets
3580   /// must set this value based on the cost threshold for that target. Targets
3581   /// should assume that the memcpy will be done using as many of the largest
3582   /// store operations first, followed by smaller ones, if necessary, per
3583   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3584   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3585   /// and one 1-byte store. This only applies to copying a constant array of
3586   /// constant size.
3587   unsigned MaxStoresPerMemcpy;
3588   /// Likewise for functions with the OptSize attribute.
3589   unsigned MaxStoresPerMemcpyOptSize;
3590   /// \brief Specify max number of store instructions to glue in inlined memcpy.
3591   ///
3592   /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3593   /// of store instructions to keep together. This helps in pairing and
3594   //  vectorization later on.
3595   unsigned MaxGluedStoresPerMemcpy = 0;
3596 
3597   /// \brief Specify maximum number of load instructions per memcmp call.
3598   ///
3599   /// When lowering \@llvm.memcmp this field specifies the maximum number of
3600   /// pairs of load operations that may be substituted for a call to memcmp.
3601   /// Targets must set this value based on the cost threshold for that target.
3602   /// Targets should assume that the memcmp will be done using as many of the
3603   /// largest load operations first, followed by smaller ones, if necessary, per
3604   /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3605   /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3606   /// and one 1-byte load. This only applies to copying a constant array of
3607   /// constant size.
3608   unsigned MaxLoadsPerMemcmp;
3609   /// Likewise for functions with the OptSize attribute.
3610   unsigned MaxLoadsPerMemcmpOptSize;
3611 
3612   /// \brief Specify maximum number of store instructions per memmove call.
3613   ///
3614   /// When lowering \@llvm.memmove this field specifies the maximum number of
3615   /// store instructions that may be substituted for a call to memmove. Targets
3616   /// must set this value based on the cost threshold for that target. Targets
3617   /// should assume that the memmove will be done using as many of the largest
3618   /// store operations first, followed by smaller ones, if necessary, per
3619   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3620   /// with 8-bit alignment would result in nine 1-byte stores.  This only
3621   /// applies to copying a constant array of constant size.
3622   unsigned MaxStoresPerMemmove;
3623   /// Likewise for functions with the OptSize attribute.
3624   unsigned MaxStoresPerMemmoveOptSize;
3625 
3626   /// Tells the code generator that select is more expensive than a branch if
3627   /// the branch is usually predicted right.
3628   bool PredictableSelectIsExpensive;
3629 
3630   /// \see enableExtLdPromotion.
3631   bool EnableExtLdPromotion;
3632 
3633   /// Return true if the value types that can be represented by the specified
3634   /// register class are all legal.
3635   bool isLegalRC(const TargetRegisterInfo &TRI,
3636                  const TargetRegisterClass &RC) const;
3637 
3638   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3639   /// sequence of memory operands that is recognized by PrologEpilogInserter.
3640   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
3641                                     MachineBasicBlock *MBB) const;
3642 
3643   bool IsStrictFPEnabled;
3644 };
3645 
3646 /// This class defines information used to lower LLVM code to legal SelectionDAG
3647 /// operators that the target instruction selector can accept natively.
3648 ///
3649 /// This class also defines callbacks that targets must implement to lower
3650 /// target-specific constructs to SelectionDAG operators.
3651 class TargetLowering : public TargetLoweringBase {
3652 public:
3653   struct DAGCombinerInfo;
3654   struct MakeLibCallOptions;
3655 
3656   TargetLowering(const TargetLowering &) = delete;
3657   TargetLowering &operator=(const TargetLowering &) = delete;
3658 
3659   explicit TargetLowering(const TargetMachine &TM);
3660 
3661   bool isPositionIndependent() const;
3662 
isSDNodeSourceOfDivergence(const SDNode * N,FunctionLoweringInfo * FLI,UniformityInfo * UA)3663   virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
3664                                           FunctionLoweringInfo *FLI,
3665                                           UniformityInfo *UA) const {
3666     return false;
3667   }
3668 
3669   // Lets target to control the following reassociation of operands: (op (op x,
3670   // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3671   // default consider profitable any case where N0 has single use.  This
3672   // behavior reflects the condition replaced by this target hook call in the
3673   // DAGCombiner.  Any particular target can implement its own heuristic to
3674   // restrict common combiner.
isReassocProfitable(SelectionDAG & DAG,SDValue N0,SDValue N1)3675   virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0,
3676                                    SDValue N1) const {
3677     return N0.hasOneUse();
3678   }
3679 
3680   // Lets target to control the following reassociation of operands: (op (op x,
3681   // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3682   // default consider profitable any case where N0 has single use.  This
3683   // behavior reflects the condition replaced by this target hook call in the
3684   // combiner.  Any particular target can implement its own heuristic to
3685   // restrict common combiner.
isReassocProfitable(MachineRegisterInfo & MRI,Register N0,Register N1)3686   virtual bool isReassocProfitable(MachineRegisterInfo &MRI, Register N0,
3687                                    Register N1) const {
3688     return MRI.hasOneNonDBGUse(N0);
3689   }
3690 
isSDNodeAlwaysUniform(const SDNode * N)3691   virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
3692     return false;
3693   }
3694 
3695   /// Returns true by value, base pointer and offset pointer and addressing mode
3696   /// by reference if the node's address can be legally represented as
3697   /// pre-indexed load / store address.
getPreIndexedAddressParts(SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3698   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
3699                                          SDValue &/*Offset*/,
3700                                          ISD::MemIndexedMode &/*AM*/,
3701                                          SelectionDAG &/*DAG*/) const {
3702     return false;
3703   }
3704 
3705   /// Returns true by value, base pointer and offset pointer and addressing mode
3706   /// by reference if this node can be combined with a load / store to form a
3707   /// post-indexed load / store.
getPostIndexedAddressParts(SDNode *,SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3708   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
3709                                           SDValue &/*Base*/,
3710                                           SDValue &/*Offset*/,
3711                                           ISD::MemIndexedMode &/*AM*/,
3712                                           SelectionDAG &/*DAG*/) const {
3713     return false;
3714   }
3715 
3716   /// Returns true if the specified base+offset is a legal indexed addressing
3717   /// mode for this target. \p MI is the load or store instruction that is being
3718   /// considered for transformation.
isIndexingLegal(MachineInstr & MI,Register Base,Register Offset,bool IsPre,MachineRegisterInfo & MRI)3719   virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
3720                                bool IsPre, MachineRegisterInfo &MRI) const {
3721     return false;
3722   }
3723 
3724   /// Return the entry encoding for a jump table in the current function.  The
3725   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3726   virtual unsigned getJumpTableEncoding() const;
3727 
3728   virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *,const MachineBasicBlock *,unsigned,MCContext &)3729   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
3730                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3731                             MCContext &/*Ctx*/) const {
3732     llvm_unreachable("Need to implement this hook if target has custom JTIs");
3733   }
3734 
3735   /// Returns relocation base for the given PIC jumptable.
3736   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
3737                                            SelectionDAG &DAG) const;
3738 
3739   /// This returns the relocation base for the given PIC jumptable, the same as
3740   /// getPICJumpTableRelocBase, but as an MCExpr.
3741   virtual const MCExpr *
3742   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3743                                unsigned JTI, MCContext &Ctx) const;
3744 
3745   /// Return true if folding a constant offset with the given GlobalAddress is
3746   /// legal.  It is frequently not legal in PIC relocation models.
3747   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3748 
3749   /// On x86, return true if the operand with index OpNo is a CALL or JUMP
3750   /// instruction, which can use either a memory constraint or an address
3751   /// constraint. -fasm-blocks "__asm call foo" lowers to
3752   /// call void asm sideeffect inteldialect "call ${0:P}", "*m..."
3753   ///
3754   /// This function is used by a hack to choose the address constraint,
3755   /// lowering to a direct call.
3756   virtual bool
isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> & AsmStrs,unsigned OpNo)3757   isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> &AsmStrs,
3758                           unsigned OpNo) const {
3759     return false;
3760   }
3761 
3762   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
3763                             SDValue &Chain) const;
3764 
3765   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3766                            SDValue &NewRHS, ISD::CondCode &CCCode,
3767                            const SDLoc &DL, const SDValue OldLHS,
3768                            const SDValue OldRHS) const;
3769 
3770   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3771                            SDValue &NewRHS, ISD::CondCode &CCCode,
3772                            const SDLoc &DL, const SDValue OldLHS,
3773                            const SDValue OldRHS, SDValue &Chain,
3774                            bool IsSignaling = false) const;
3775 
3776   /// Returns a pair of (return value, chain).
3777   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3778   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3779                                           EVT RetVT, ArrayRef<SDValue> Ops,
3780                                           MakeLibCallOptions CallOptions,
3781                                           const SDLoc &dl,
3782                                           SDValue Chain = SDValue()) const;
3783 
3784   /// Check whether parameters to a call that are passed in callee saved
3785   /// registers are the same as from the calling function.  This needs to be
3786   /// checked for tail call eligibility.
3787   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
3788       const uint32_t *CallerPreservedMask,
3789       const SmallVectorImpl<CCValAssign> &ArgLocs,
3790       const SmallVectorImpl<SDValue> &OutVals) const;
3791 
3792   //===--------------------------------------------------------------------===//
3793   // TargetLowering Optimization Methods
3794   //
3795 
3796   /// A convenience struct that encapsulates a DAG, and two SDValues for
3797   /// returning information from TargetLowering to its clients that want to
3798   /// combine.
3799   struct TargetLoweringOpt {
3800     SelectionDAG &DAG;
3801     bool LegalTys;
3802     bool LegalOps;
3803     SDValue Old;
3804     SDValue New;
3805 
TargetLoweringOptTargetLoweringOpt3806     explicit TargetLoweringOpt(SelectionDAG &InDAG,
3807                                bool LT, bool LO) :
3808       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3809 
LegalTypesTargetLoweringOpt3810     bool LegalTypes() const { return LegalTys; }
LegalOperationsTargetLoweringOpt3811     bool LegalOperations() const { return LegalOps; }
3812 
CombineToTargetLoweringOpt3813     bool CombineTo(SDValue O, SDValue N) {
3814       Old = O;
3815       New = N;
3816       return true;
3817     }
3818   };
3819 
3820   /// Determines the optimal series of memory ops to replace the memset / memcpy.
3821   /// Return true if the number of memory ops is below the threshold (Limit).
3822   /// Note that this is always the case when Limit is ~0.
3823   /// It returns the types of the sequence of memory ops to perform
3824   /// memset / memcpy by reference.
3825   virtual bool
3826   findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
3827                            const MemOp &Op, unsigned DstAS, unsigned SrcAS,
3828                            const AttributeList &FuncAttributes) const;
3829 
3830   /// Check to see if the specified operand of the specified instruction is a
3831   /// constant integer.  If so, check to see if there are any bits set in the
3832   /// constant that are not demanded.  If so, shrink the constant and return
3833   /// true.
3834   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3835                               const APInt &DemandedElts,
3836                               TargetLoweringOpt &TLO) const;
3837 
3838   /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
3839   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3840                               TargetLoweringOpt &TLO) const;
3841 
3842   // Target hook to do target-specific const optimization, which is called by
3843   // ShrinkDemandedConstant. This function should return true if the target
3844   // doesn't want ShrinkDemandedConstant to further optimize the constant.
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO)3845   virtual bool targetShrinkDemandedConstant(SDValue Op,
3846                                             const APInt &DemandedBits,
3847                                             const APInt &DemandedElts,
3848                                             TargetLoweringOpt &TLO) const {
3849     return false;
3850   }
3851 
3852   /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
3853   /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
3854   /// but it could be generalized for targets with other types of implicit
3855   /// widening casts.
3856   bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
3857                         const APInt &DemandedBits,
3858                         TargetLoweringOpt &TLO) const;
3859 
3860   /// Look at Op.  At this point, we know that only the DemandedBits bits of the
3861   /// result of Op are ever used downstream.  If we can use this information to
3862   /// simplify Op, create a new simplified DAG node and return true, returning
3863   /// the original and new nodes in Old and New.  Otherwise, analyze the
3864   /// expression and return a mask of KnownOne and KnownZero bits for the
3865   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3866   /// be accurate for those bits in the Demanded masks.
3867   /// \p AssumeSingleUse When this parameter is true, this function will
3868   ///    attempt to simplify \p Op even if there are multiple uses.
3869   ///    Callers are responsible for correctly updating the DAG based on the
3870   ///    results of this function, because simply replacing TLO.Old
3871   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3872   ///    has multiple uses.
3873   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3874                             const APInt &DemandedElts, KnownBits &Known,
3875                             TargetLoweringOpt &TLO, unsigned Depth = 0,
3876                             bool AssumeSingleUse = false) const;
3877 
3878   /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3879   /// Adds Op back to the worklist upon success.
3880   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3881                             KnownBits &Known, TargetLoweringOpt &TLO,
3882                             unsigned Depth = 0,
3883                             bool AssumeSingleUse = false) const;
3884 
3885   /// Helper wrapper around SimplifyDemandedBits.
3886   /// Adds Op back to the worklist upon success.
3887   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3888                             DAGCombinerInfo &DCI) const;
3889 
3890   /// Helper wrapper around SimplifyDemandedBits.
3891   /// Adds Op back to the worklist upon success.
3892   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3893                             const APInt &DemandedElts,
3894                             DAGCombinerInfo &DCI) const;
3895 
3896   /// More limited version of SimplifyDemandedBits that can be used to "look
3897   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3898   /// bitwise ops etc.
3899   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3900                                           const APInt &DemandedElts,
3901                                           SelectionDAG &DAG,
3902                                           unsigned Depth = 0) const;
3903 
3904   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3905   /// elements.
3906   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3907                                           SelectionDAG &DAG,
3908                                           unsigned Depth = 0) const;
3909 
3910   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3911   /// bits from only some vector elements.
3912   SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
3913                                                 const APInt &DemandedElts,
3914                                                 SelectionDAG &DAG,
3915                                                 unsigned Depth = 0) const;
3916 
3917   /// Look at Vector Op. At this point, we know that only the DemandedElts
3918   /// elements of the result of Op are ever used downstream.  If we can use
3919   /// this information to simplify Op, create a new simplified DAG node and
3920   /// return true, storing the original and new nodes in TLO.
3921   /// Otherwise, analyze the expression and return a mask of KnownUndef and
3922   /// KnownZero elements for the expression (used to simplify the caller).
3923   /// The KnownUndef/Zero elements may only be accurate for those bits
3924   /// in the DemandedMask.
3925   /// \p AssumeSingleUse When this parameter is true, this function will
3926   ///    attempt to simplify \p Op even if there are multiple uses.
3927   ///    Callers are responsible for correctly updating the DAG based on the
3928   ///    results of this function, because simply replacing TLO.Old
3929   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3930   ///    has multiple uses.
3931   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
3932                                   APInt &KnownUndef, APInt &KnownZero,
3933                                   TargetLoweringOpt &TLO, unsigned Depth = 0,
3934                                   bool AssumeSingleUse = false) const;
3935 
3936   /// Helper wrapper around SimplifyDemandedVectorElts.
3937   /// Adds Op back to the worklist upon success.
3938   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
3939                                   DAGCombinerInfo &DCI) const;
3940 
3941   /// Return true if the target supports simplifying demanded vector elements by
3942   /// converting them to undefs.
3943   virtual bool
shouldSimplifyDemandedVectorElts(SDValue Op,const TargetLoweringOpt & TLO)3944   shouldSimplifyDemandedVectorElts(SDValue Op,
3945                                    const TargetLoweringOpt &TLO) const {
3946     return true;
3947   }
3948 
3949   /// Determine which of the bits specified in Mask are known to be either zero
3950   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3951   /// argument allows us to only collect the known bits that are shared by the
3952   /// requested vector elements.
3953   virtual void computeKnownBitsForTargetNode(const SDValue Op,
3954                                              KnownBits &Known,
3955                                              const APInt &DemandedElts,
3956                                              const SelectionDAG &DAG,
3957                                              unsigned Depth = 0) const;
3958 
3959   /// Determine which of the bits specified in Mask are known to be either zero
3960   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3961   /// argument allows us to only collect the known bits that are shared by the
3962   /// requested vector elements. This is for GISel.
3963   virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
3964                                               Register R, KnownBits &Known,
3965                                               const APInt &DemandedElts,
3966                                               const MachineRegisterInfo &MRI,
3967                                               unsigned Depth = 0) const;
3968 
3969   /// Determine the known alignment for the pointer value \p R. This is can
3970   /// typically be inferred from the number of low known 0 bits. However, for a
3971   /// pointer with a non-integral address space, the alignment value may be
3972   /// independent from the known low bits.
3973   virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
3974                                                 Register R,
3975                                                 const MachineRegisterInfo &MRI,
3976                                                 unsigned Depth = 0) const;
3977 
3978   /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3979   /// Default implementation computes low bits based on alignment
3980   /// information. This should preserve known bits passed into it.
3981   virtual void computeKnownBitsForFrameIndex(int FIOp,
3982                                              KnownBits &Known,
3983                                              const MachineFunction &MF) const;
3984 
3985   /// This method can be implemented by targets that want to expose additional
3986   /// information about sign bits to the DAG Combiner. The DemandedElts
3987   /// argument allows us to only collect the minimum sign bits that are shared
3988   /// by the requested vector elements.
3989   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
3990                                                    const APInt &DemandedElts,
3991                                                    const SelectionDAG &DAG,
3992                                                    unsigned Depth = 0) const;
3993 
3994   /// This method can be implemented by targets that want to expose additional
3995   /// information about sign bits to GlobalISel combiners. The DemandedElts
3996   /// argument allows us to only collect the minimum sign bits that are shared
3997   /// by the requested vector elements.
3998   virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
3999                                                     Register R,
4000                                                     const APInt &DemandedElts,
4001                                                     const MachineRegisterInfo &MRI,
4002                                                     unsigned Depth = 0) const;
4003 
4004   /// Attempt to simplify any target nodes based on the demanded vector
4005   /// elements, returning true on success. Otherwise, analyze the expression and
4006   /// return a mask of KnownUndef and KnownZero elements for the expression
4007   /// (used to simplify the caller). The KnownUndef/Zero elements may only be
4008   /// accurate for those bits in the DemandedMask.
4009   virtual bool SimplifyDemandedVectorEltsForTargetNode(
4010       SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
4011       APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
4012 
4013   /// Attempt to simplify any target nodes based on the demanded bits/elts,
4014   /// returning true on success. Otherwise, analyze the
4015   /// expression and return a mask of KnownOne and KnownZero bits for the
4016   /// expression (used to simplify the caller).  The KnownZero/One bits may only
4017   /// be accurate for those bits in the Demanded masks.
4018   virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
4019                                                  const APInt &DemandedBits,
4020                                                  const APInt &DemandedElts,
4021                                                  KnownBits &Known,
4022                                                  TargetLoweringOpt &TLO,
4023                                                  unsigned Depth = 0) const;
4024 
4025   /// More limited version of SimplifyDemandedBits that can be used to "look
4026   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4027   /// bitwise ops etc.
4028   virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
4029       SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4030       SelectionDAG &DAG, unsigned Depth) const;
4031 
4032   /// Return true if this function can prove that \p Op is never poison
4033   /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
4034   /// argument limits the check to the requested vector elements.
4035   virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4036       SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4037       bool PoisonOnly, unsigned Depth) const;
4038 
4039   /// Return true if Op can create undef or poison from non-undef & non-poison
4040   /// operands. The DemandedElts argument limits the check to the requested
4041   /// vector elements.
4042   virtual bool
4043   canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts,
4044                                       const SelectionDAG &DAG, bool PoisonOnly,
4045                                       bool ConsiderFlags, unsigned Depth) const;
4046 
4047   /// Tries to build a legal vector shuffle using the provided parameters
4048   /// or equivalent variations. The Mask argument maybe be modified as the
4049   /// function tries different variations.
4050   /// Returns an empty SDValue if the operation fails.
4051   SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
4052                                   SDValue N1, MutableArrayRef<int> Mask,
4053                                   SelectionDAG &DAG) const;
4054 
4055   /// This method returns the constant pool value that will be loaded by LD.
4056   /// NOTE: You must check for implicit extensions of the constant by LD.
4057   virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
4058 
4059   /// If \p SNaN is false, \returns true if \p Op is known to never be any
4060   /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
4061   /// NaN.
4062   virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
4063                                             const SelectionDAG &DAG,
4064                                             bool SNaN = false,
4065                                             unsigned Depth = 0) const;
4066 
4067   /// Return true if vector \p Op has the same value across all \p DemandedElts,
4068   /// indicating any elements which may be undef in the output \p UndefElts.
4069   virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
4070                                          APInt &UndefElts,
4071                                          const SelectionDAG &DAG,
4072                                          unsigned Depth = 0) const;
4073 
4074   /// Returns true if the given Opc is considered a canonical constant for the
4075   /// target, which should not be transformed back into a BUILD_VECTOR.
isTargetCanonicalConstantNode(SDValue Op)4076   virtual bool isTargetCanonicalConstantNode(SDValue Op) const {
4077     return Op.getOpcode() == ISD::SPLAT_VECTOR ||
4078            Op.getOpcode() == ISD::SPLAT_VECTOR_PARTS;
4079   }
4080 
4081   struct DAGCombinerInfo {
4082     void *DC;  // The DAG Combiner object.
4083     CombineLevel Level;
4084     bool CalledByLegalizer;
4085 
4086   public:
4087     SelectionDAG &DAG;
4088 
DAGCombinerInfoDAGCombinerInfo4089     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
4090       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
4091 
isBeforeLegalizeDAGCombinerInfo4092     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
isBeforeLegalizeOpsDAGCombinerInfo4093     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
isAfterLegalizeDAGDAGCombinerInfo4094     bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
getDAGCombineLevelDAGCombinerInfo4095     CombineLevel getDAGCombineLevel() { return Level; }
isCalledByLegalizerDAGCombinerInfo4096     bool isCalledByLegalizer() const { return CalledByLegalizer; }
4097 
4098     void AddToWorklist(SDNode *N);
4099     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
4100     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
4101     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
4102 
4103     bool recursivelyDeleteUnusedNodes(SDNode *N);
4104 
4105     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
4106   };
4107 
4108   /// Return if the N is a constant or constant vector equal to the true value
4109   /// from getBooleanContents().
4110   bool isConstTrueVal(SDValue N) const;
4111 
4112   /// Return if the N is a constant or constant vector equal to the false value
4113   /// from getBooleanContents().
4114   bool isConstFalseVal(SDValue N) const;
4115 
4116   /// Return if \p N is a True value when extended to \p VT.
4117   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
4118 
4119   /// Try to simplify a setcc built with the specified operands and cc. If it is
4120   /// unable to simplify it, return a null SDValue.
4121   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4122                         bool foldBooleans, DAGCombinerInfo &DCI,
4123                         const SDLoc &dl) const;
4124 
4125   // For targets which wrap address, unwrap for analysis.
unwrapAddress(SDValue N)4126   virtual SDValue unwrapAddress(SDValue N) const { return N; }
4127 
4128   /// Returns true (and the GlobalValue and the offset) if the node is a
4129   /// GlobalAddress + offset.
4130   virtual bool
4131   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
4132 
4133   /// This method will be invoked for all target nodes and for any
4134   /// target-independent nodes that the target has registered with invoke it
4135   /// for.
4136   ///
4137   /// The semantics are as follows:
4138   /// Return Value:
4139   ///   SDValue.Val == 0   - No change was made
4140   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
4141   ///   otherwise          - N should be replaced by the returned Operand.
4142   ///
4143   /// In addition, methods provided by DAGCombinerInfo may be used to perform
4144   /// more complex transformations.
4145   ///
4146   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
4147 
4148   /// Return true if it is profitable to move this shift by a constant amount
4149   /// through its operand, adjusting any immediate operands as necessary to
4150   /// preserve semantics. This transformation may not be desirable if it
4151   /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
4152   /// extraction in AArch64). By default, it returns true.
4153   ///
4154   /// @param N the shift node
4155   /// @param Level the current DAGCombine legalization level.
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level)4156   virtual bool isDesirableToCommuteWithShift(const SDNode *N,
4157                                              CombineLevel Level) const {
4158     return true;
4159   }
4160 
4161   /// GlobalISel - return true if it is profitable to move this shift by a
4162   /// constant amount through its operand, adjusting any immediate operands as
4163   /// necessary to preserve semantics. This transformation may not be desirable
4164   /// if it disrupts a particularly auspicious target-specific tree (e.g.
4165   /// bitfield extraction in AArch64). By default, it returns true.
4166   ///
4167   /// @param MI the shift instruction
4168   /// @param IsAfterLegal true if running after legalization.
isDesirableToCommuteWithShift(const MachineInstr & MI,bool IsAfterLegal)4169   virtual bool isDesirableToCommuteWithShift(const MachineInstr &MI,
4170                                              bool IsAfterLegal) const {
4171     return true;
4172   }
4173 
4174   /// GlobalISel - return true if it's profitable to perform the combine:
4175   /// shl ([sza]ext x), y => zext (shl x, y)
isDesirableToPullExtFromShl(const MachineInstr & MI)4176   virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const {
4177     return true;
4178   }
4179 
4180   // Return AndOrSETCCFoldKind::{AddAnd, ABS} if its desirable to try and
4181   // optimize LogicOp(SETCC0, SETCC1). An example (what is implemented as of
4182   // writing this) is:
4183   //    With C as a power of 2 and C != 0 and C != INT_MIN:
4184   //    AddAnd:
4185   //     (icmp eq A, C) | (icmp eq A, -C)
4186   //            -> (icmp eq and(add(A, C), ~(C + C)), 0)
4187   //     (icmp ne A, C) & (icmp ne A, -C)w
4188   //            -> (icmp ne and(add(A, C), ~(C + C)), 0)
4189   //    ABS:
4190   //     (icmp eq A, C) | (icmp eq A, -C)
4191   //            -> (icmp eq Abs(A), C)
4192   //     (icmp ne A, C) & (icmp ne A, -C)w
4193   //            -> (icmp ne Abs(A), C)
4194   //
4195   // @param LogicOp the logic op
4196   // @param SETCC0 the first of the SETCC nodes
4197   // @param SETCC0 the second of the SETCC nodes
isDesirableToCombineLogicOpOfSETCC(const SDNode * LogicOp,const SDNode * SETCC0,const SDNode * SETCC1)4198   virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(
4199       const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const {
4200     return AndOrSETCCFoldKind::None;
4201   }
4202 
4203   /// Return true if it is profitable to combine an XOR of a logical shift
4204   /// to create a logical shift of NOT. This transformation may not be desirable
4205   /// if it disrupts a particularly auspicious target-specific tree (e.g.
4206   /// BIC on ARM/AArch64). By default, it returns true.
isDesirableToCommuteXorWithShift(const SDNode * N)4207   virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
4208     return true;
4209   }
4210 
4211   /// Return true if the target has native support for the specified value type
4212   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
4213   /// i16 is legal, but undesirable since i16 instruction encodings are longer
4214   /// and some i16 instructions are slow.
isTypeDesirableForOp(unsigned,EVT VT)4215   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
4216     // By default, assume all legal types are desirable.
4217     return isTypeLegal(VT);
4218   }
4219 
4220   /// Return true if it is profitable for dag combiner to transform a floating
4221   /// point op of specified opcode to a equivalent op of an integer
4222   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
isDesirableToTransformToIntegerOp(unsigned,EVT)4223   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
4224                                                  EVT /*VT*/) const {
4225     return false;
4226   }
4227 
4228   /// This method query the target whether it is beneficial for dag combiner to
4229   /// promote the specified node. If true, it should return the desired
4230   /// promotion type by reference.
IsDesirableToPromoteOp(SDValue,EVT &)4231   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
4232     return false;
4233   }
4234 
4235   /// Return true if the target supports swifterror attribute. It optimizes
4236   /// loads and stores to reading and writing a specific register.
supportSwiftError()4237   virtual bool supportSwiftError() const {
4238     return false;
4239   }
4240 
4241   /// Return true if the target supports that a subset of CSRs for the given
4242   /// machine function is handled explicitly via copies.
supportSplitCSR(MachineFunction * MF)4243   virtual bool supportSplitCSR(MachineFunction *MF) const {
4244     return false;
4245   }
4246 
4247   /// Return true if the target supports kcfi operand bundles.
supportKCFIBundles()4248   virtual bool supportKCFIBundles() const { return false; }
4249 
4250   /// Perform necessary initialization to handle a subset of CSRs explicitly
4251   /// via copies. This function is called at the beginning of instruction
4252   /// selection.
initializeSplitCSR(MachineBasicBlock * Entry)4253   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
4254     llvm_unreachable("Not Implemented");
4255   }
4256 
4257   /// Insert explicit copies in entry and exit blocks. We copy a subset of
4258   /// CSRs to virtual registers in the entry block, and copy them back to
4259   /// physical registers in the exit blocks. This function is called at the end
4260   /// of instruction selection.
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits)4261   virtual void insertCopiesSplitCSR(
4262       MachineBasicBlock *Entry,
4263       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
4264     llvm_unreachable("Not Implemented");
4265   }
4266 
4267   /// Return the newly negated expression if the cost is not expensive and
4268   /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
4269   /// do the negation.
4270   virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
4271                                        bool LegalOps, bool OptForSize,
4272                                        NegatibleCost &Cost,
4273                                        unsigned Depth = 0) const;
4274 
4275   SDValue getCheaperOrNeutralNegatedExpression(
4276       SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
4277       const NegatibleCost CostThreshold = NegatibleCost::Neutral,
4278       unsigned Depth = 0) const {
4279     NegatibleCost Cost = NegatibleCost::Expensive;
4280     SDValue Neg =
4281         getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4282     if (!Neg)
4283       return SDValue();
4284 
4285     if (Cost <= CostThreshold)
4286       return Neg;
4287 
4288     // Remove the new created node to avoid the side effect to the DAG.
4289     if (Neg->use_empty())
4290       DAG.RemoveDeadNode(Neg.getNode());
4291     return SDValue();
4292   }
4293 
4294   /// This is the helper function to return the newly negated expression only
4295   /// when the cost is cheaper.
4296   SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
4297                                       bool LegalOps, bool OptForSize,
4298                                       unsigned Depth = 0) const {
4299     return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
4300                                                 NegatibleCost::Cheaper, Depth);
4301   }
4302 
4303   /// This is the helper function to return the newly negated expression if
4304   /// the cost is not expensive.
4305   SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
4306                                bool OptForSize, unsigned Depth = 0) const {
4307     NegatibleCost Cost = NegatibleCost::Expensive;
4308     return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4309   }
4310 
4311   //===--------------------------------------------------------------------===//
4312   // Lowering methods - These methods must be implemented by targets so that
4313   // the SelectionDAGBuilder code knows how to lower these.
4314   //
4315 
4316   /// Target-specific splitting of values into parts that fit a register
4317   /// storing a legal type
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,std::optional<CallingConv::ID> CC)4318   virtual bool splitValueIntoRegisterParts(
4319       SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4320       unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4321     return false;
4322   }
4323 
4324   /// Allows the target to handle physreg-carried dependency
4325   /// in target-specific way. Used from the ScheduleDAGSDNodes to decide whether
4326   /// to add the edge to the dependency graph.
4327   /// Def - input: Selection DAG node defininfg physical register
4328   /// User - input: Selection DAG node using physical register
4329   /// Op - input: Number of User operand
4330   /// PhysReg - inout: set to the physical register if the edge is
4331   /// necessary, unchanged otherwise
4332   /// Cost - inout: physical register copy cost.
4333   /// Returns 'true' is the edge is necessary, 'false' otherwise
checkForPhysRegDependency(SDNode * Def,SDNode * User,unsigned Op,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII,unsigned & PhysReg,int & Cost)4334   virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
4335                                          const TargetRegisterInfo *TRI,
4336                                          const TargetInstrInfo *TII,
4337                                          unsigned &PhysReg, int &Cost) const {
4338     return false;
4339   }
4340 
4341   /// Target-specific combining of register parts into its original value
4342   virtual SDValue
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,std::optional<CallingConv::ID> CC)4343   joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
4344                              const SDValue *Parts, unsigned NumParts,
4345                              MVT PartVT, EVT ValueVT,
4346                              std::optional<CallingConv::ID> CC) const {
4347     return SDValue();
4348   }
4349 
4350   /// This hook must be implemented to lower the incoming (formal) arguments,
4351   /// described by the Ins array, into the specified DAG. The implementation
4352   /// should fill in the InVals array with legal-type argument values, and
4353   /// return the resulting token chain value.
LowerFormalArguments(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::InputArg> &,const SDLoc &,SelectionDAG &,SmallVectorImpl<SDValue> &)4354   virtual SDValue LowerFormalArguments(
4355       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
4356       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
4357       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
4358     llvm_unreachable("Not Implemented");
4359   }
4360 
4361   /// This structure contains all information that is necessary for lowering
4362   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
4363   /// needs to lower a call, and targets will see this struct in their LowerCall
4364   /// implementation.
4365   struct CallLoweringInfo {
4366     SDValue Chain;
4367     Type *RetTy = nullptr;
4368     bool RetSExt           : 1;
4369     bool RetZExt           : 1;
4370     bool IsVarArg          : 1;
4371     bool IsInReg           : 1;
4372     bool DoesNotReturn     : 1;
4373     bool IsReturnValueUsed : 1;
4374     bool IsConvergent      : 1;
4375     bool IsPatchPoint      : 1;
4376     bool IsPreallocated : 1;
4377     bool NoMerge           : 1;
4378 
4379     // IsTailCall should be modified by implementations of
4380     // TargetLowering::LowerCall that perform tail call conversions.
4381     bool IsTailCall = false;
4382 
4383     // Is Call lowering done post SelectionDAG type legalization.
4384     bool IsPostTypeLegalization = false;
4385 
4386     unsigned NumFixedArgs = -1;
4387     CallingConv::ID CallConv = CallingConv::C;
4388     SDValue Callee;
4389     ArgListTy Args;
4390     SelectionDAG &DAG;
4391     SDLoc DL;
4392     const CallBase *CB = nullptr;
4393     SmallVector<ISD::OutputArg, 32> Outs;
4394     SmallVector<SDValue, 32> OutVals;
4395     SmallVector<ISD::InputArg, 32> Ins;
4396     SmallVector<SDValue, 4> InVals;
4397     const ConstantInt *CFIType = nullptr;
4398 
CallLoweringInfoCallLoweringInfo4399     CallLoweringInfo(SelectionDAG &DAG)
4400         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
4401           DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
4402           IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
4403           DAG(DAG) {}
4404 
setDebugLocCallLoweringInfo4405     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
4406       DL = dl;
4407       return *this;
4408     }
4409 
setChainCallLoweringInfo4410     CallLoweringInfo &setChain(SDValue InChain) {
4411       Chain = InChain;
4412       return *this;
4413     }
4414 
4415     // setCallee with target/module-specific attributes
setLibCalleeCallLoweringInfo4416     CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
4417                                    SDValue Target, ArgListTy &&ArgsList) {
4418       RetTy = ResultType;
4419       Callee = Target;
4420       CallConv = CC;
4421       NumFixedArgs = ArgsList.size();
4422       Args = std::move(ArgsList);
4423 
4424       DAG.getTargetLoweringInfo().markLibCallAttributes(
4425           &(DAG.getMachineFunction()), CC, Args);
4426       return *this;
4427     }
4428 
4429     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
4430                                 SDValue Target, ArgListTy &&ArgsList,
4431                                 AttributeSet ResultAttrs = {}) {
4432       RetTy = ResultType;
4433       IsInReg = ResultAttrs.hasAttribute(Attribute::InReg);
4434       RetSExt = ResultAttrs.hasAttribute(Attribute::SExt);
4435       RetZExt = ResultAttrs.hasAttribute(Attribute::ZExt);
4436       NoMerge = ResultAttrs.hasAttribute(Attribute::NoMerge);
4437 
4438       Callee = Target;
4439       CallConv = CC;
4440       NumFixedArgs = ArgsList.size();
4441       Args = std::move(ArgsList);
4442       return *this;
4443     }
4444 
setCalleeCallLoweringInfo4445     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
4446                                 SDValue Target, ArgListTy &&ArgsList,
4447                                 const CallBase &Call) {
4448       RetTy = ResultType;
4449 
4450       IsInReg = Call.hasRetAttr(Attribute::InReg);
4451       DoesNotReturn =
4452           Call.doesNotReturn() ||
4453           (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
4454       IsVarArg = FTy->isVarArg();
4455       IsReturnValueUsed = !Call.use_empty();
4456       RetSExt = Call.hasRetAttr(Attribute::SExt);
4457       RetZExt = Call.hasRetAttr(Attribute::ZExt);
4458       NoMerge = Call.hasFnAttr(Attribute::NoMerge);
4459 
4460       Callee = Target;
4461 
4462       CallConv = Call.getCallingConv();
4463       NumFixedArgs = FTy->getNumParams();
4464       Args = std::move(ArgsList);
4465 
4466       CB = &Call;
4467 
4468       return *this;
4469     }
4470 
4471     CallLoweringInfo &setInRegister(bool Value = true) {
4472       IsInReg = Value;
4473       return *this;
4474     }
4475 
4476     CallLoweringInfo &setNoReturn(bool Value = true) {
4477       DoesNotReturn = Value;
4478       return *this;
4479     }
4480 
4481     CallLoweringInfo &setVarArg(bool Value = true) {
4482       IsVarArg = Value;
4483       return *this;
4484     }
4485 
4486     CallLoweringInfo &setTailCall(bool Value = true) {
4487       IsTailCall = Value;
4488       return *this;
4489     }
4490 
4491     CallLoweringInfo &setDiscardResult(bool Value = true) {
4492       IsReturnValueUsed = !Value;
4493       return *this;
4494     }
4495 
4496     CallLoweringInfo &setConvergent(bool Value = true) {
4497       IsConvergent = Value;
4498       return *this;
4499     }
4500 
4501     CallLoweringInfo &setSExtResult(bool Value = true) {
4502       RetSExt = Value;
4503       return *this;
4504     }
4505 
4506     CallLoweringInfo &setZExtResult(bool Value = true) {
4507       RetZExt = Value;
4508       return *this;
4509     }
4510 
4511     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
4512       IsPatchPoint = Value;
4513       return *this;
4514     }
4515 
4516     CallLoweringInfo &setIsPreallocated(bool Value = true) {
4517       IsPreallocated = Value;
4518       return *this;
4519     }
4520 
4521     CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
4522       IsPostTypeLegalization = Value;
4523       return *this;
4524     }
4525 
setCFITypeCallLoweringInfo4526     CallLoweringInfo &setCFIType(const ConstantInt *Type) {
4527       CFIType = Type;
4528       return *this;
4529     }
4530 
getArgsCallLoweringInfo4531     ArgListTy &getArgs() {
4532       return Args;
4533     }
4534   };
4535 
4536   /// This structure is used to pass arguments to makeLibCall function.
4537   struct MakeLibCallOptions {
4538     // By passing type list before soften to makeLibCall, the target hook
4539     // shouldExtendTypeInLibCall can get the original type before soften.
4540     ArrayRef<EVT> OpsVTBeforeSoften;
4541     EVT RetVTBeforeSoften;
4542     bool IsSExt : 1;
4543     bool DoesNotReturn : 1;
4544     bool IsReturnValueUsed : 1;
4545     bool IsPostTypeLegalization : 1;
4546     bool IsSoften : 1;
4547 
MakeLibCallOptionsMakeLibCallOptions4548     MakeLibCallOptions()
4549         : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
4550           IsPostTypeLegalization(false), IsSoften(false) {}
4551 
4552     MakeLibCallOptions &setSExt(bool Value = true) {
4553       IsSExt = Value;
4554       return *this;
4555     }
4556 
4557     MakeLibCallOptions &setNoReturn(bool Value = true) {
4558       DoesNotReturn = Value;
4559       return *this;
4560     }
4561 
4562     MakeLibCallOptions &setDiscardResult(bool Value = true) {
4563       IsReturnValueUsed = !Value;
4564       return *this;
4565     }
4566 
4567     MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
4568       IsPostTypeLegalization = Value;
4569       return *this;
4570     }
4571 
4572     MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
4573                                                 bool Value = true) {
4574       OpsVTBeforeSoften = OpsVT;
4575       RetVTBeforeSoften = RetVT;
4576       IsSoften = Value;
4577       return *this;
4578     }
4579   };
4580 
4581   /// This function lowers an abstract call to a function into an actual call.
4582   /// This returns a pair of operands.  The first element is the return value
4583   /// for the function (if RetTy is not VoidTy).  The second element is the
4584   /// outgoing token chain. It calls LowerCall to do the actual lowering.
4585   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
4586 
4587   /// This hook must be implemented to lower calls into the specified
4588   /// DAG. The outgoing arguments to the call are described by the Outs array,
4589   /// and the values to be returned by the call are described by the Ins
4590   /// array. The implementation should fill in the InVals array with legal-type
4591   /// return values from the call, and return the resulting token chain value.
4592   virtual SDValue
LowerCall(CallLoweringInfo &,SmallVectorImpl<SDValue> &)4593     LowerCall(CallLoweringInfo &/*CLI*/,
4594               SmallVectorImpl<SDValue> &/*InVals*/) const {
4595     llvm_unreachable("Not Implemented");
4596   }
4597 
4598   /// Target-specific cleanup for formal ByVal parameters.
HandleByVal(CCState *,unsigned &,Align)4599   virtual void HandleByVal(CCState *, unsigned &, Align) const {}
4600 
4601   /// This hook should be implemented to check whether the return values
4602   /// described by the Outs array can fit into the return registers.  If false
4603   /// is returned, an sret-demotion is performed.
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> &,LLVMContext &)4604   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
4605                               MachineFunction &/*MF*/, bool /*isVarArg*/,
4606                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
4607                LLVMContext &/*Context*/) const
4608   {
4609     // Return true by default to get preexisting behavior.
4610     return true;
4611   }
4612 
4613   /// This hook must be implemented to lower outgoing return values, described
4614   /// by the Outs array, into the specified DAG. The implementation should
4615   /// return the resulting token chain value.
LowerReturn(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::OutputArg> &,const SmallVectorImpl<SDValue> &,const SDLoc &,SelectionDAG &)4616   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
4617                               bool /*isVarArg*/,
4618                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
4619                               const SmallVectorImpl<SDValue> & /*OutVals*/,
4620                               const SDLoc & /*dl*/,
4621                               SelectionDAG & /*DAG*/) const {
4622     llvm_unreachable("Not Implemented");
4623   }
4624 
4625   /// Return true if result of the specified node is used by a return node
4626   /// only. It also compute and return the input chain for the tail call.
4627   ///
4628   /// This is used to determine whether it is possible to codegen a libcall as
4629   /// tail call at legalization time.
isUsedByReturnOnly(SDNode *,SDValue &)4630   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
4631     return false;
4632   }
4633 
4634   /// Return true if the target may be able emit the call instruction as a tail
4635   /// call. This is used by optimization passes to determine if it's profitable
4636   /// to duplicate return instructions to enable tailcall optimization.
mayBeEmittedAsTailCall(const CallInst *)4637   virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
4638     return false;
4639   }
4640 
4641   /// Return the builtin name for the __builtin___clear_cache intrinsic
4642   /// Default is to invoke the clear cache library call
getClearCacheBuiltinName()4643   virtual const char * getClearCacheBuiltinName() const {
4644     return "__clear_cache";
4645   }
4646 
4647   /// Return the register ID of the name passed in. Used by named register
4648   /// global variables extension. There is no target-independent behaviour
4649   /// so the default action is to bail.
getRegisterByName(const char * RegName,LLT Ty,const MachineFunction & MF)4650   virtual Register getRegisterByName(const char* RegName, LLT Ty,
4651                                      const MachineFunction &MF) const {
4652     report_fatal_error("Named registers not implemented for this target");
4653   }
4654 
4655   /// Return the type that should be used to zero or sign extend a
4656   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
4657   /// require the return type to be promoted, but this is not true all the time,
4658   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
4659   /// conventions. The frontend should handle this and include all of the
4660   /// necessary information.
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType)4661   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
4662                                        ISD::NodeType /*ExtendKind*/) const {
4663     EVT MinVT = getRegisterType(MVT::i32);
4664     return VT.bitsLT(MinVT) ? MinVT : VT;
4665   }
4666 
4667   /// For some targets, an LLVM struct type must be broken down into multiple
4668   /// simple types, but the calling convention specifies that the entire struct
4669   /// must be passed in a block of consecutive registers.
4670   virtual bool
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg,const DataLayout & DL)4671   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
4672                                             bool isVarArg,
4673                                             const DataLayout &DL) const {
4674     return false;
4675   }
4676 
4677   /// For most targets, an LLVM type must be broken down into multiple
4678   /// smaller types. Usually the halves are ordered according to the endianness
4679   /// but for some platform that would break. So this method will default to
4680   /// matching the endianness but can be overridden.
4681   virtual bool
shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout & DL)4682   shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
4683     return DL.isLittleEndian();
4684   }
4685 
4686   /// Returns a 0 terminated array of registers that can be safely used as
4687   /// scratch registers.
getScratchRegisters(CallingConv::ID CC)4688   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
4689     return nullptr;
4690   }
4691 
4692   /// Returns a 0 terminated array of rounding control registers that can be
4693   /// attached into strict FP call.
getRoundingControlRegisters()4694   virtual ArrayRef<MCPhysReg> getRoundingControlRegisters() const {
4695     return ArrayRef<MCPhysReg>();
4696   }
4697 
4698   /// This callback is used to prepare for a volatile or atomic load.
4699   /// It takes a chain node as input and returns the chain for the load itself.
4700   ///
4701   /// Having a callback like this is necessary for targets like SystemZ,
4702   /// which allows a CPU to reuse the result of a previous load indefinitely,
4703   /// even if a cache-coherent store is performed by another CPU.  The default
4704   /// implementation does nothing.
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG)4705   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
4706                                               SelectionDAG &DAG) const {
4707     return Chain;
4708   }
4709 
4710   /// This callback is invoked by the type legalizer to legalize nodes with an
4711   /// illegal operand type but legal result types.  It replaces the
4712   /// LowerOperation callback in the type Legalizer.  The reason we can not do
4713   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
4714   /// use this callback.
4715   ///
4716   /// TODO: Consider merging with ReplaceNodeResults.
4717   ///
4718   /// The target places new result values for the node in Results (their number
4719   /// and types must exactly match those of the original return values of
4720   /// the node), or leaves Results empty, which indicates that the node is not
4721   /// to be custom lowered after all.
4722   /// The default implementation calls LowerOperation.
4723   virtual void LowerOperationWrapper(SDNode *N,
4724                                      SmallVectorImpl<SDValue> &Results,
4725                                      SelectionDAG &DAG) const;
4726 
4727   /// This callback is invoked for operations that are unsupported by the
4728   /// target, which are registered to use 'custom' lowering, and whose defined
4729   /// values are all legal.  If the target has no operations that require custom
4730   /// lowering, it need not implement this.  The default implementation of this
4731   /// aborts.
4732   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
4733 
4734   /// This callback is invoked when a node result type is illegal for the
4735   /// target, and the operation was registered to use 'custom' lowering for that
4736   /// result type.  The target places new result values for the node in Results
4737   /// (their number and types must exactly match those of the original return
4738   /// values of the node), or leaves Results empty, which indicates that the
4739   /// node is not to be custom lowered after all.
4740   ///
4741   /// If the target has no operations that require custom lowering, it need not
4742   /// implement this.  The default implementation aborts.
ReplaceNodeResults(SDNode *,SmallVectorImpl<SDValue> &,SelectionDAG &)4743   virtual void ReplaceNodeResults(SDNode * /*N*/,
4744                                   SmallVectorImpl<SDValue> &/*Results*/,
4745                                   SelectionDAG &/*DAG*/) const {
4746     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
4747   }
4748 
4749   /// This method returns the name of a target specific DAG node.
4750   virtual const char *getTargetNodeName(unsigned Opcode) const;
4751 
4752   /// This method returns a target specific FastISel object, or null if the
4753   /// target does not support "fast" ISel.
createFastISel(FunctionLoweringInfo &,const TargetLibraryInfo *)4754   virtual FastISel *createFastISel(FunctionLoweringInfo &,
4755                                    const TargetLibraryInfo *) const {
4756     return nullptr;
4757   }
4758 
4759   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
4760                                              SelectionDAG &DAG) const;
4761 
4762   //===--------------------------------------------------------------------===//
4763   // Inline Asm Support hooks
4764   //
4765 
4766   /// This hook allows the target to expand an inline asm call to be explicit
4767   /// llvm code if it wants to.  This is useful for turning simple inline asms
4768   /// into LLVM intrinsics, which gives the compiler more information about the
4769   /// behavior of the code.
ExpandInlineAsm(CallInst *)4770   virtual bool ExpandInlineAsm(CallInst *) const {
4771     return false;
4772   }
4773 
4774   enum ConstraintType {
4775     C_Register,            // Constraint represents specific register(s).
4776     C_RegisterClass,       // Constraint represents any of register(s) in class.
4777     C_Memory,              // Memory constraint.
4778     C_Address,             // Address constraint.
4779     C_Immediate,           // Requires an immediate.
4780     C_Other,               // Something else.
4781     C_Unknown              // Unsupported constraint.
4782   };
4783 
4784   enum ConstraintWeight {
4785     // Generic weights.
4786     CW_Invalid  = -1,     // No match.
4787     CW_Okay     = 0,      // Acceptable.
4788     CW_Good     = 1,      // Good weight.
4789     CW_Better   = 2,      // Better weight.
4790     CW_Best     = 3,      // Best weight.
4791 
4792     // Well-known weights.
4793     CW_SpecificReg  = CW_Okay,    // Specific register operands.
4794     CW_Register     = CW_Good,    // Register operands.
4795     CW_Memory       = CW_Better,  // Memory operands.
4796     CW_Constant     = CW_Best,    // Constant operand.
4797     CW_Default      = CW_Okay     // Default or don't know type.
4798   };
4799 
4800   /// This contains information for each constraint that we are lowering.
4801   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
4802     /// This contains the actual string for the code, like "m".  TargetLowering
4803     /// picks the 'best' code from ConstraintInfo::Codes that most closely
4804     /// matches the operand.
4805     std::string ConstraintCode;
4806 
4807     /// Information about the constraint code, e.g. Register, RegisterClass,
4808     /// Memory, Other, Unknown.
4809     TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
4810 
4811     /// If this is the result output operand or a clobber, this is null,
4812     /// otherwise it is the incoming operand to the CallInst.  This gets
4813     /// modified as the asm is processed.
4814     Value *CallOperandVal = nullptr;
4815 
4816     /// The ValueType for the operand value.
4817     MVT ConstraintVT = MVT::Other;
4818 
4819     /// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfoAsmOperandInfo4820     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
4821         : InlineAsm::ConstraintInfo(std::move(Info)) {}
4822 
4823     /// Return true of this is an input operand that is a matching constraint
4824     /// like "4".
4825     bool isMatchingInputConstraint() const;
4826 
4827     /// If this is an input matching constraint, this method returns the output
4828     /// operand it matches.
4829     unsigned getMatchedOperand() const;
4830   };
4831 
4832   using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
4833 
4834   /// Split up the constraint string from the inline assembly value into the
4835   /// specific constraints and their prefixes, and also tie in the associated
4836   /// operand values.  If this returns an empty vector, and if the constraint
4837   /// string itself isn't empty, there was an error parsing.
4838   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
4839                                                 const TargetRegisterInfo *TRI,
4840                                                 const CallBase &Call) const;
4841 
4842   /// Examine constraint type and operand type and determine a weight value.
4843   /// The operand object must already have been set up with the operand type.
4844   virtual ConstraintWeight getMultipleConstraintMatchWeight(
4845       AsmOperandInfo &info, int maIndex) const;
4846 
4847   /// Examine constraint string and operand type and determine a weight value.
4848   /// The operand object must already have been set up with the operand type.
4849   virtual ConstraintWeight getSingleConstraintMatchWeight(
4850       AsmOperandInfo &info, const char *constraint) const;
4851 
4852   /// Determines the constraint code and constraint type to use for the specific
4853   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4854   /// If the actual operand being passed in is available, it can be passed in as
4855   /// Op, otherwise an empty SDValue can be passed.
4856   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4857                                       SDValue Op,
4858                                       SelectionDAG *DAG = nullptr) const;
4859 
4860   /// Given a constraint, return the type of constraint it is for this target.
4861   virtual ConstraintType getConstraintType(StringRef Constraint) const;
4862 
4863   using ConstraintPair = std::pair<StringRef, TargetLowering::ConstraintType>;
4864   using ConstraintGroup = SmallVector<ConstraintPair>;
4865   /// Given an OpInfo with list of constraints codes as strings, return a
4866   /// sorted Vector of pairs of constraint codes and their types in priority of
4867   /// what we'd prefer to lower them as. This may contain immediates that
4868   /// cannot be lowered, but it is meant to be a machine agnostic order of
4869   /// preferences.
4870   ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const;
4871 
4872   /// Given a physical register constraint (e.g.  {edx}), return the register
4873   /// number and the register class for the register.
4874   ///
4875   /// Given a register class constraint, like 'r', if this corresponds directly
4876   /// to an LLVM register class, return a register of 0 and the register class
4877   /// pointer.
4878   ///
4879   /// This should only be used for C_Register constraints.  On error, this
4880   /// returns a register number of 0 and a null register class pointer.
4881   virtual std::pair<unsigned, const TargetRegisterClass *>
4882   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4883                                StringRef Constraint, MVT VT) const;
4884 
4885   virtual InlineAsm::ConstraintCode
getInlineAsmMemConstraint(StringRef ConstraintCode)4886   getInlineAsmMemConstraint(StringRef ConstraintCode) const {
4887     if (ConstraintCode == "m")
4888       return InlineAsm::ConstraintCode::m;
4889     if (ConstraintCode == "o")
4890       return InlineAsm::ConstraintCode::o;
4891     if (ConstraintCode == "X")
4892       return InlineAsm::ConstraintCode::X;
4893     if (ConstraintCode == "p")
4894       return InlineAsm::ConstraintCode::p;
4895     return InlineAsm::ConstraintCode::Unknown;
4896   }
4897 
4898   /// Try to replace an X constraint, which matches anything, with another that
4899   /// has more specific requirements based on the type of the corresponding
4900   /// operand.  This returns null if there is no replacement to make.
4901   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
4902 
4903   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
4904   /// add anything to Ops.
4905   virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
4906                                             std::vector<SDValue> &Ops,
4907                                             SelectionDAG &DAG) const;
4908 
4909   // Lower custom output constraints. If invalid, return SDValue().
4910   virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue,
4911                                               const SDLoc &DL,
4912                                               const AsmOperandInfo &OpInfo,
4913                                               SelectionDAG &DAG) const;
4914 
4915   // Targets may override this function to collect operands from the CallInst
4916   // and for example, lower them into the SelectionDAG operands.
4917   virtual void CollectTargetIntrinsicOperands(const CallInst &I,
4918                                               SmallVectorImpl<SDValue> &Ops,
4919                                               SelectionDAG &DAG) const;
4920 
4921   //===--------------------------------------------------------------------===//
4922   // Div utility functions
4923   //
4924 
4925   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4926                     SmallVectorImpl<SDNode *> &Created) const;
4927   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4928                     SmallVectorImpl<SDNode *> &Created) const;
4929   // Build sdiv by power-of-2 with conditional move instructions
4930   SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor,
4931                                 SelectionDAG &DAG,
4932                                 SmallVectorImpl<SDNode *> &Created) const;
4933 
4934   /// Targets may override this function to provide custom SDIV lowering for
4935   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
4936   /// assumes SDIV is expensive and replaces it with a series of other integer
4937   /// operations.
4938   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4939                                 SelectionDAG &DAG,
4940                                 SmallVectorImpl<SDNode *> &Created) const;
4941 
4942   /// Targets may override this function to provide custom SREM lowering for
4943   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
4944   /// assumes SREM is expensive and replaces it with a series of other integer
4945   /// operations.
4946   virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
4947                                 SelectionDAG &DAG,
4948                                 SmallVectorImpl<SDNode *> &Created) const;
4949 
4950   /// Indicate whether this target prefers to combine FDIVs with the same
4951   /// divisor. If the transform should never be done, return zero. If the
4952   /// transform should be done, return the minimum number of divisor uses
4953   /// that must exist.
combineRepeatedFPDivisors()4954   virtual unsigned combineRepeatedFPDivisors() const {
4955     return 0;
4956   }
4957 
4958   /// Hooks for building estimates in place of slower divisions and square
4959   /// roots.
4960 
4961   /// Return either a square root or its reciprocal estimate value for the input
4962   /// operand.
4963   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4964   /// 'Enabled' as set by a potential default override attribute.
4965   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4966   /// refinement iterations required to generate a sufficient (though not
4967   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4968   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
4969   /// algorithm implementation that uses either one or two constants.
4970   /// The boolean Reciprocal is used to select whether the estimate is for the
4971   /// square root of the input operand or the reciprocal of its square root.
4972   /// A target may choose to implement its own refinement within this function.
4973   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4974   /// any further refinement of the estimate.
4975   /// An empty SDValue return means no estimate sequence can be created.
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal)4976   virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
4977                                   int Enabled, int &RefinementSteps,
4978                                   bool &UseOneConstNR, bool Reciprocal) const {
4979     return SDValue();
4980   }
4981 
4982   /// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
4983   /// required for correctness since InstCombine might have canonicalized a
4984   /// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic.  If we were to fall
4985   /// through to the default expansion/soften to libcall, we might introduce a
4986   /// link-time dependency on libm into a file that originally did not have one.
4987   SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const;
4988 
4989   /// Return a reciprocal estimate value for the input operand.
4990   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4991   /// 'Enabled' as set by a potential default override attribute.
4992   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4993   /// refinement iterations required to generate a sufficient (though not
4994   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4995   /// A target may choose to implement its own refinement within this function.
4996   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4997   /// any further refinement of the estimate.
4998   /// An empty SDValue return means no estimate sequence can be created.
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps)4999   virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
5000                                    int Enabled, int &RefinementSteps) const {
5001     return SDValue();
5002   }
5003 
5004   /// Return a target-dependent comparison result if the input operand is
5005   /// suitable for use with a square root estimate calculation. For example, the
5006   /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
5007   /// result should be used as the condition operand for a select or branch.
5008   virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
5009                                    const DenormalMode &Mode) const;
5010 
5011   /// Return a target-dependent result if the input operand is not suitable for
5012   /// use with a square root estimate calculation.
getSqrtResultForDenormInput(SDValue Operand,SelectionDAG & DAG)5013   virtual SDValue getSqrtResultForDenormInput(SDValue Operand,
5014                                               SelectionDAG &DAG) const {
5015     return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
5016   }
5017 
5018   //===--------------------------------------------------------------------===//
5019   // Legalization utility functions
5020   //
5021 
5022   /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
5023   /// respectively, each computing an n/2-bit part of the result.
5024   /// \param Result A vector that will be filled with the parts of the result
5025   ///        in little-endian order.
5026   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
5027   ///        if you want to control how low bits are extracted from the LHS.
5028   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
5029   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
5030   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
5031   /// \returns true if the node has been expanded, false if it has not
5032   bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
5033                       SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
5034                       SelectionDAG &DAG, MulExpansionKind Kind,
5035                       SDValue LL = SDValue(), SDValue LH = SDValue(),
5036                       SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5037 
5038   /// Expand a MUL into two nodes.  One that computes the high bits of
5039   /// the result and one that computes the low bits.
5040   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
5041   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
5042   ///        if you want to control how low bits are extracted from the LHS.
5043   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
5044   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
5045   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
5046   /// \returns true if the node has been expanded. false if it has not
5047   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5048                  SelectionDAG &DAG, MulExpansionKind Kind,
5049                  SDValue LL = SDValue(), SDValue LH = SDValue(),
5050                  SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5051 
5052   /// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
5053   /// urem by constant and other arithmetic ops. The n/2-bit urem by constant
5054   /// will be expanded by DAGCombiner. This is not possible for all constant
5055   /// divisors.
5056   /// \param N Node to expand
5057   /// \param Result A vector that will be filled with the lo and high parts of
5058   ///        the results. For *DIVREM, this will be the quotient parts followed
5059   ///        by the remainder parts.
5060   /// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
5061   ///        half of VT.
5062   /// \param LL Low bits of the LHS of the operation. You can use this
5063   ///        parameter if you want to control how low bits are extracted from
5064   ///        the LHS.
5065   /// \param LH High bits of the LHS of the operation. See LL for meaning.
5066   /// \returns true if the node has been expanded, false if it has not.
5067   bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl<SDValue> &Result,
5068                               EVT HiLoVT, SelectionDAG &DAG,
5069                               SDValue LL = SDValue(),
5070                               SDValue LH = SDValue()) const;
5071 
5072   /// Expand funnel shift.
5073   /// \param N Node to expand
5074   /// \returns The expansion if successful, SDValue() otherwise
5075   SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const;
5076 
5077   /// Expand rotations.
5078   /// \param N Node to expand
5079   /// \param AllowVectorOps expand vector rotate, this should only be performed
5080   ///        if the legalization is happening outside of LegalizeVectorOps
5081   /// \returns The expansion if successful, SDValue() otherwise
5082   SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
5083 
5084   /// Expand shift-by-parts.
5085   /// \param N Node to expand
5086   /// \param Lo lower-output-part after conversion
5087   /// \param Hi upper-output-part after conversion
5088   void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
5089                         SelectionDAG &DAG) const;
5090 
5091   /// Expand float(f32) to SINT(i64) conversion
5092   /// \param N Node to expand
5093   /// \param Result output after conversion
5094   /// \returns True, if the expansion was successful, false otherwise
5095   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
5096 
5097   /// Expand float to UINT conversion
5098   /// \param N Node to expand
5099   /// \param Result output after conversion
5100   /// \param Chain output chain after conversion
5101   /// \returns True, if the expansion was successful, false otherwise
5102   bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
5103                         SelectionDAG &DAG) const;
5104 
5105   /// Expand UINT(i64) to double(f64) conversion
5106   /// \param N Node to expand
5107   /// \param Result output after conversion
5108   /// \param Chain output chain after conversion
5109   /// \returns True, if the expansion was successful, false otherwise
5110   bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
5111                         SelectionDAG &DAG) const;
5112 
5113   /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
5114   SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
5115 
5116   /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
5117   /// \param N Node to expand
5118   /// \returns The expansion result
5119   SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
5120 
5121   /// Expand check for floating point class.
5122   /// \param ResultVT The type of intrinsic call result.
5123   /// \param Op The tested value.
5124   /// \param Test The test to perform.
5125   /// \param Flags The optimization flags.
5126   /// \returns The expansion result or SDValue() if it fails.
5127   SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test,
5128                            SDNodeFlags Flags, const SDLoc &DL,
5129                            SelectionDAG &DAG) const;
5130 
5131   /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
5132   /// vector nodes can only succeed if all operations are legal/custom.
5133   /// \param N Node to expand
5134   /// \returns The expansion result or SDValue() if it fails.
5135   SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
5136 
5137   /// Expand VP_CTPOP nodes.
5138   /// \returns The expansion result or SDValue() if it fails.
5139   SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const;
5140 
5141   /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
5142   /// vector nodes can only succeed if all operations are legal/custom.
5143   /// \param N Node to expand
5144   /// \returns The expansion result or SDValue() if it fails.
5145   SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
5146 
5147   /// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
5148   /// \param N Node to expand
5149   /// \returns The expansion result or SDValue() if it fails.
5150   SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const;
5151 
5152   /// Expand CTTZ via Table Lookup.
5153   /// \param N Node to expand
5154   /// \returns The expansion result or SDValue() if it fails.
5155   SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5156                           SDValue Op, unsigned NumBitsPerElt) const;
5157 
5158   /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
5159   /// vector nodes can only succeed if all operations are legal/custom.
5160   /// \param N Node to expand
5161   /// \returns The expansion result or SDValue() if it fails.
5162   SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
5163 
5164   /// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
5165   /// \param N Node to expand
5166   /// \returns The expansion result or SDValue() if it fails.
5167   SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const;
5168 
5169   /// Expand ABS nodes. Expands vector/scalar ABS nodes,
5170   /// vector nodes can only succeed if all operations are legal/custom.
5171   /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
5172   /// \param N Node to expand
5173   /// \param IsNegative indicate negated abs
5174   /// \returns The expansion result or SDValue() if it fails.
5175   SDValue expandABS(SDNode *N, SelectionDAG &DAG,
5176                     bool IsNegative = false) const;
5177 
5178   /// Expand ABDS/ABDU nodes. Expands vector/scalar ABDS/ABDU nodes.
5179   /// \param N Node to expand
5180   /// \returns The expansion result or SDValue() if it fails.
5181   SDValue expandABD(SDNode *N, SelectionDAG &DAG) const;
5182 
5183   /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
5184   /// scalar types. Returns SDValue() if expand fails.
5185   /// \param N Node to expand
5186   /// \returns The expansion result or SDValue() if it fails.
5187   SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
5188 
5189   /// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
5190   /// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
5191   /// to expand \returns The expansion result or SDValue() if it fails.
5192   SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const;
5193 
5194   /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
5195   /// Returns SDValue() if expand fails.
5196   /// \param N Node to expand
5197   /// \returns The expansion result or SDValue() if it fails.
5198   SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5199 
5200   /// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
5201   /// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
5202   /// expansion result or SDValue() if it fails.
5203   SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5204 
5205   /// Turn load of vector type into a load of the individual elements.
5206   /// \param LD load to expand
5207   /// \returns BUILD_VECTOR and TokenFactor nodes.
5208   std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
5209                                                   SelectionDAG &DAG) const;
5210 
5211   // Turn a store of a vector type into stores of the individual elements.
5212   /// \param ST Store with a vector value type
5213   /// \returns TokenFactor of the individual store chains.
5214   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
5215 
5216   /// Expands an unaligned load to 2 half-size loads for an integer, and
5217   /// possibly more for vectors.
5218   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
5219                                                   SelectionDAG &DAG) const;
5220 
5221   /// Expands an unaligned store to 2 half-size stores for integer values, and
5222   /// possibly more for vectors.
5223   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
5224 
5225   /// Increments memory address \p Addr according to the type of the value
5226   /// \p DataVT that should be stored. If the data is stored in compressed
5227   /// form, the memory address should be incremented according to the number of
5228   /// the stored elements. This number is equal to the number of '1's bits
5229   /// in the \p Mask.
5230   /// \p DataVT is a vector type. \p Mask is a vector value.
5231   /// \p DataVT and \p Mask have the same number of vector elements.
5232   SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
5233                                  EVT DataVT, SelectionDAG &DAG,
5234                                  bool IsCompressedMemory) const;
5235 
5236   /// Get a pointer to vector element \p Idx located in memory for a vector of
5237   /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5238   /// bounds the returned pointer is unspecified, but will be within the vector
5239   /// bounds.
5240   SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
5241                                   SDValue Index) const;
5242 
5243   /// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
5244   /// in memory for a vector of type \p VecVT starting at a base address of
5245   /// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
5246   /// returned pointer is unspecified, but the value returned will be such that
5247   /// the entire subvector would be within the vector bounds.
5248   SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
5249                                  EVT SubVecVT, SDValue Index) const;
5250 
5251   /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
5252   /// method accepts integers as its arguments.
5253   SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
5254 
5255   /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
5256   /// method accepts integers as its arguments.
5257   SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
5258 
5259   /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
5260   /// method accepts integers as its arguments.
5261   SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
5262 
5263   /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
5264   /// method accepts integers as its arguments.
5265   SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
5266 
5267   /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
5268   /// method accepts integers as its arguments.
5269   /// Note: This method may fail if the division could not be performed
5270   /// within the type. Clients must retry with a wider type if this happens.
5271   SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
5272                               SDValue LHS, SDValue RHS,
5273                               unsigned Scale, SelectionDAG &DAG) const;
5274 
5275   /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
5276   /// always suceeds and populates the Result and Overflow arguments.
5277   void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5278                       SelectionDAG &DAG) const;
5279 
5280   /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
5281   /// always suceeds and populates the Result and Overflow arguments.
5282   void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5283                       SelectionDAG &DAG) const;
5284 
5285   /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
5286   /// expansion was successful and populates the Result and Overflow arguments.
5287   bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5288                   SelectionDAG &DAG) const;
5289 
5290   /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
5291   /// only the first Count elements of the vector are used.
5292   SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
5293 
5294   /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
5295   SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
5296 
5297   /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
5298   /// Returns true if the expansion was successful.
5299   bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
5300 
5301   /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
5302   /// method accepts vectors as its arguments.
5303   SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
5304 
5305   /// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
5306   /// on the current target. A VP_SETCC will additionally be given a Mask
5307   /// and/or EVL not equal to SDValue().
5308   ///
5309   /// If the SETCC has been legalized using AND / OR, then the legalized node
5310   /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
5311   /// will be set to false. This will also hold if the VP_SETCC has been
5312   /// legalized using VP_AND / VP_OR.
5313   ///
5314   /// If the SETCC / VP_SETCC has been legalized by using
5315   /// getSetCCSwappedOperands(), then the values of LHS and RHS will be
5316   /// swapped, CC will be set to the new condition, and NeedInvert will be set
5317   /// to false.
5318   ///
5319   /// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
5320   /// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
5321   /// and NeedInvert will be set to true. The caller must invert the result of
5322   /// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
5323   /// swap the effect of a true/false result.
5324   ///
5325   /// \returns true if the SETCC / VP_SETCC has been legalized, false if it
5326   /// hasn't.
5327   bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
5328                              SDValue &RHS, SDValue &CC, SDValue Mask,
5329                              SDValue EVL, bool &NeedInvert, const SDLoc &dl,
5330                              SDValue &Chain, bool IsSignaling = false) const;
5331 
5332   //===--------------------------------------------------------------------===//
5333   // Instruction Emitting Hooks
5334   //
5335 
5336   /// This method should be implemented by targets that mark instructions with
5337   /// the 'usesCustomInserter' flag.  These instructions are special in various
5338   /// ways, which require special support to insert.  The specified MachineInstr
5339   /// is created but not inserted into any basic blocks, and this method is
5340   /// called to expand it into a sequence of instructions, potentially also
5341   /// creating new basic blocks and control flow.
5342   /// As long as the returned basic block is different (i.e., we created a new
5343   /// one), the custom inserter is free to modify the rest of \p MBB.
5344   virtual MachineBasicBlock *
5345   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
5346 
5347   /// This method should be implemented by targets that mark instructions with
5348   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
5349   /// instruction selection by target hooks.  e.g. To fill in optional defs for
5350   /// ARM 's' setting instructions.
5351   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
5352                                              SDNode *Node) const;
5353 
5354   /// If this function returns true, SelectionDAGBuilder emits a
5355   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
useLoadStackGuardNode()5356   virtual bool useLoadStackGuardNode() const {
5357     return false;
5358   }
5359 
emitStackGuardXorFP(SelectionDAG & DAG,SDValue Val,const SDLoc & DL)5360   virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
5361                                       const SDLoc &DL) const {
5362     llvm_unreachable("not implemented for this target");
5363   }
5364 
5365   /// Lower TLS global address SDNode for target independent emulated TLS model.
5366   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5367                                           SelectionDAG &DAG) const;
5368 
5369   /// Expands target specific indirect branch for the case of JumpTable
5370   /// expansion.
5371   virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
5372                                          SDValue Addr, int JTI,
5373                                          SelectionDAG &DAG) const;
5374 
5375   // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
5376   // If we're comparing for equality to zero and isCtlzFast is true, expose the
5377   // fact that this can be implemented as a ctlz/srl pair, so that the dag
5378   // combiner can fold the new nodes.
5379   SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
5380 
5381   // Return true if `X & Y eq/ne 0` is preferable to `X & Y ne/eq Y`
isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode,EVT)5382   virtual bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode, EVT) const {
5383     return true;
5384   }
5385 
5386 private:
5387   SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5388                            const SDLoc &DL, DAGCombinerInfo &DCI) const;
5389   SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5390                              const SDLoc &DL, DAGCombinerInfo &DCI) const;
5391 
5392   SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
5393                                                SDValue N1, ISD::CondCode Cond,
5394                                                DAGCombinerInfo &DCI,
5395                                                const SDLoc &DL) const;
5396 
5397   // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5398   SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
5399       EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
5400       DAGCombinerInfo &DCI, const SDLoc &DL) const;
5401 
5402   SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5403                             SDValue CompTargetNode, ISD::CondCode Cond,
5404                             DAGCombinerInfo &DCI, const SDLoc &DL,
5405                             SmallVectorImpl<SDNode *> &Created) const;
5406   SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5407                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
5408                           const SDLoc &DL) const;
5409 
5410   SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5411                             SDValue CompTargetNode, ISD::CondCode Cond,
5412                             DAGCombinerInfo &DCI, const SDLoc &DL,
5413                             SmallVectorImpl<SDNode *> &Created) const;
5414   SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5415                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
5416                           const SDLoc &DL) const;
5417 };
5418 
5419 /// Given an LLVM IR type and return type attributes, compute the return value
5420 /// EVTs and flags, and optionally also the offsets, if the return value is
5421 /// being lowered to memory.
5422 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
5423                    SmallVectorImpl<ISD::OutputArg> &Outs,
5424                    const TargetLowering &TLI, const DataLayout &DL);
5425 
5426 } // end namespace llvm
5427 
5428 #endif // LLVM_CODEGEN_TARGETLOWERING_H
5429