1 //===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains common definitions used in the reading and writing of
10 // sample profile data.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
15 #define LLVM_PROFILEDATA_SAMPLEPROF_H
16 
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/ProfileData/FunctionId.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorOr.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/ProfileData/HashKeyMap.h"
29 #include <algorithm>
30 #include <cstdint>
31 #include <list>
32 #include <map>
33 #include <set>
34 #include <sstream>
35 #include <string>
36 #include <system_error>
37 #include <unordered_map>
38 #include <utility>
39 
40 namespace llvm {
41 
42 class DILocation;
43 class raw_ostream;
44 
45 const std::error_category &sampleprof_category();
46 
47 enum class sampleprof_error {
48   success = 0,
49   bad_magic,
50   unsupported_version,
51   too_large,
52   truncated,
53   malformed,
54   unrecognized_format,
55   unsupported_writing_format,
56   truncated_name_table,
57   not_implemented,
58   counter_overflow,
59   ostream_seek_unsupported,
60   uncompress_failed,
61   zlib_unavailable,
62   hash_mismatch
63 };
64 
make_error_code(sampleprof_error E)65 inline std::error_code make_error_code(sampleprof_error E) {
66   return std::error_code(static_cast<int>(E), sampleprof_category());
67 }
68 
MergeResult(sampleprof_error & Accumulator,sampleprof_error Result)69 inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
70                                     sampleprof_error Result) {
71   // Prefer first error encountered as later errors may be secondary effects of
72   // the initial problem.
73   if (Accumulator == sampleprof_error::success &&
74       Result != sampleprof_error::success)
75     Accumulator = Result;
76   return Accumulator;
77 }
78 
79 } // end namespace llvm
80 
81 namespace std {
82 
83 template <>
84 struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
85 
86 } // end namespace std
87 
88 namespace llvm {
89 namespace sampleprof {
90 
91 enum SampleProfileFormat {
92   SPF_None = 0,
93   SPF_Text = 0x1,
94   SPF_Compact_Binary = 0x2, // Deprecated
95   SPF_GCC = 0x3,
96   SPF_Ext_Binary = 0x4,
97   SPF_Binary = 0xff
98 };
99 
100 enum SampleProfileLayout {
101   SPL_None = 0,
102   SPL_Nest = 0x1,
103   SPL_Flat = 0x2,
104 };
105 
106 static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
107   return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
108          uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
109          uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
110          uint64_t('2') << (64 - 56) | uint64_t(Format);
111 }
112 
113 static inline uint64_t SPVersion() { return 103; }
114 
115 // Section Type used by SampleProfileExtBinaryBaseReader and
116 // SampleProfileExtBinaryBaseWriter. Never change the existing
117 // value of enum. Only append new ones.
118 enum SecType {
119   SecInValid = 0,
120   SecProfSummary = 1,
121   SecNameTable = 2,
122   SecProfileSymbolList = 3,
123   SecFuncOffsetTable = 4,
124   SecFuncMetadata = 5,
125   SecCSNameTable = 6,
126   // marker for the first type of profile.
127   SecFuncProfileFirst = 32,
128   SecLBRProfile = SecFuncProfileFirst
129 };
130 
131 static inline std::string getSecName(SecType Type) {
132   switch ((int)Type) { // Avoid -Wcovered-switch-default
133   case SecInValid:
134     return "InvalidSection";
135   case SecProfSummary:
136     return "ProfileSummarySection";
137   case SecNameTable:
138     return "NameTableSection";
139   case SecProfileSymbolList:
140     return "ProfileSymbolListSection";
141   case SecFuncOffsetTable:
142     return "FuncOffsetTableSection";
143   case SecFuncMetadata:
144     return "FunctionMetadata";
145   case SecCSNameTable:
146     return "CSNameTableSection";
147   case SecLBRProfile:
148     return "LBRProfileSection";
149   default:
150     return "UnknownSection";
151   }
152 }
153 
154 // Entry type of section header table used by SampleProfileExtBinaryBaseReader
155 // and SampleProfileExtBinaryBaseWriter.
156 struct SecHdrTableEntry {
157   SecType Type;
158   uint64_t Flags;
159   uint64_t Offset;
160   uint64_t Size;
161   // The index indicating the location of the current entry in
162   // SectionHdrLayout table.
163   uint64_t LayoutIndex;
164 };
165 
166 // Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
167 // common flags will be saved in the lower 32bits and section specific flags
168 // will be saved in the higher 32 bits.
169 enum class SecCommonFlags : uint32_t {
170   SecFlagInValid = 0,
171   SecFlagCompress = (1 << 0),
172   // Indicate the section contains only profile without context.
173   SecFlagFlat = (1 << 1)
174 };
175 
176 // Section specific flags are defined here.
177 // !!!Note: Everytime a new enum class is created here, please add
178 // a new check in verifySecFlag.
179 enum class SecNameTableFlags : uint32_t {
180   SecFlagInValid = 0,
181   SecFlagMD5Name = (1 << 0),
182   // Store MD5 in fixed length instead of ULEB128 so NameTable can be
183   // accessed like an array.
184   SecFlagFixedLengthMD5 = (1 << 1),
185   // Profile contains ".__uniq." suffix name. Compiler shouldn't strip
186   // the suffix when doing profile matching when seeing the flag.
187   SecFlagUniqSuffix = (1 << 2)
188 };
189 enum class SecProfSummaryFlags : uint32_t {
190   SecFlagInValid = 0,
191   /// SecFlagPartial means the profile is for common/shared code.
192   /// The common profile is usually merged from profiles collected
193   /// from running other targets.
194   SecFlagPartial = (1 << 0),
195   /// SecFlagContext means this is context-sensitive flat profile for
196   /// CSSPGO
197   SecFlagFullContext = (1 << 1),
198   /// SecFlagFSDiscriminator means this profile uses flow-sensitive
199   /// discriminators.
200   SecFlagFSDiscriminator = (1 << 2),
201   /// SecFlagIsPreInlined means this profile contains ShouldBeInlined
202   /// contexts thus this is CS preinliner computed.
203   SecFlagIsPreInlined = (1 << 4),
204 };
205 
206 enum class SecFuncMetadataFlags : uint32_t {
207   SecFlagInvalid = 0,
208   SecFlagIsProbeBased = (1 << 0),
209   SecFlagHasAttribute = (1 << 1),
210 };
211 
212 enum class SecFuncOffsetFlags : uint32_t {
213   SecFlagInvalid = 0,
214   // Store function offsets in an order of contexts. The order ensures that
215   // callee contexts of a given context laid out next to it.
216   SecFlagOrdered = (1 << 0),
217 };
218 
219 // Verify section specific flag is used for the correct section.
220 template <class SecFlagType>
221 static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
222   // No verification is needed for common flags.
223   if (std::is_same<SecCommonFlags, SecFlagType>())
224     return;
225 
226   // Verification starts here for section specific flag.
227   bool IsFlagLegal = false;
228   switch (Type) {
229   case SecNameTable:
230     IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
231     break;
232   case SecProfSummary:
233     IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
234     break;
235   case SecFuncMetadata:
236     IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
237     break;
238   default:
239   case SecFuncOffsetTable:
240     IsFlagLegal = std::is_same<SecFuncOffsetFlags, SecFlagType>();
241     break;
242   }
243   if (!IsFlagLegal)
244     llvm_unreachable("Misuse of a flag in an incompatible section");
245 }
246 
247 template <class SecFlagType>
248 static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
249   verifySecFlag(Entry.Type, Flag);
250   auto FVal = static_cast<uint64_t>(Flag);
251   bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
252   Entry.Flags |= IsCommon ? FVal : (FVal << 32);
253 }
254 
255 template <class SecFlagType>
256 static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
257   verifySecFlag(Entry.Type, Flag);
258   auto FVal = static_cast<uint64_t>(Flag);
259   bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
260   Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
261 }
262 
263 template <class SecFlagType>
264 static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
265   verifySecFlag(Entry.Type, Flag);
266   auto FVal = static_cast<uint64_t>(Flag);
267   bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
268   return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
269 }
270 
271 /// Represents the relative location of an instruction.
272 ///
273 /// Instruction locations are specified by the line offset from the
274 /// beginning of the function (marked by the line where the function
275 /// header is) and the discriminator value within that line.
276 ///
277 /// The discriminator value is useful to distinguish instructions
278 /// that are on the same line but belong to different basic blocks
279 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
280 struct LineLocation {
281   LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
282 
283   void print(raw_ostream &OS) const;
284   void dump() const;
285 
286   bool operator<(const LineLocation &O) const {
287     return LineOffset < O.LineOffset ||
288            (LineOffset == O.LineOffset && Discriminator < O.Discriminator);
289   }
290 
291   bool operator==(const LineLocation &O) const {
292     return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
293   }
294 
295   bool operator!=(const LineLocation &O) const {
296     return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
297   }
298 
299   uint64_t getHashCode() const {
300     return ((uint64_t) Discriminator << 32) | LineOffset;
301   }
302 
303   uint32_t LineOffset;
304   uint32_t Discriminator;
305 };
306 
307 struct LineLocationHash {
308   uint64_t operator()(const LineLocation &Loc) const {
309     return Loc.getHashCode();
310   }
311 };
312 
313 raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
314 
315 /// Representation of a single sample record.
316 ///
317 /// A sample record is represented by a positive integer value, which
318 /// indicates how frequently was the associated line location executed.
319 ///
320 /// Additionally, if the associated location contains a function call,
321 /// the record will hold a list of all the possible called targets. For
322 /// direct calls, this will be the exact function being invoked. For
323 /// indirect calls (function pointers, virtual table dispatch), this
324 /// will be a list of one or more functions.
325 class SampleRecord {
326 public:
327   using CallTarget = std::pair<FunctionId, uint64_t>;
328   struct CallTargetComparator {
329     bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
330       if (LHS.second != RHS.second)
331         return LHS.second > RHS.second;
332 
333       return LHS.first < RHS.first;
334     }
335   };
336 
337   using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
338   using CallTargetMap = std::unordered_map<FunctionId, uint64_t>;
339   SampleRecord() = default;
340 
341   /// Increment the number of samples for this record by \p S.
342   /// Optionally scale sample count \p S by \p Weight.
343   ///
344   /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
345   /// around unsigned integers.
346   sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
347     bool Overflowed;
348     NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
349     return Overflowed ? sampleprof_error::counter_overflow
350                       : sampleprof_error::success;
351   }
352 
353   /// Decrease the number of samples for this record by \p S. Return the amout
354   /// of samples actually decreased.
355   uint64_t removeSamples(uint64_t S) {
356     if (S > NumSamples)
357       S = NumSamples;
358     NumSamples -= S;
359     return S;
360   }
361 
362   /// Add called function \p F with samples \p S.
363   /// Optionally scale sample count \p S by \p Weight.
364   ///
365   /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
366   /// around unsigned integers.
367   sampleprof_error addCalledTarget(FunctionId F, uint64_t S,
368                                    uint64_t Weight = 1) {
369     uint64_t &TargetSamples = CallTargets[F];
370     bool Overflowed;
371     TargetSamples =
372         SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
373     return Overflowed ? sampleprof_error::counter_overflow
374                       : sampleprof_error::success;
375   }
376 
377   /// Remove called function from the call target map. Return the target sample
378   /// count of the called function.
379   uint64_t removeCalledTarget(FunctionId F) {
380     uint64_t Count = 0;
381     auto I = CallTargets.find(F);
382     if (I != CallTargets.end()) {
383       Count = I->second;
384       CallTargets.erase(I);
385     }
386     return Count;
387   }
388 
389   /// Return true if this sample record contains function calls.
390   bool hasCalls() const { return !CallTargets.empty(); }
391 
392   uint64_t getSamples() const { return NumSamples; }
393   const CallTargetMap &getCallTargets() const { return CallTargets; }
394   const SortedCallTargetSet getSortedCallTargets() const {
395     return SortCallTargets(CallTargets);
396   }
397 
398   uint64_t getCallTargetSum() const {
399     uint64_t Sum = 0;
400     for (const auto &I : CallTargets)
401       Sum += I.second;
402     return Sum;
403   }
404 
405   /// Sort call targets in descending order of call frequency.
406   static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets) {
407     SortedCallTargetSet SortedTargets;
408     for (const auto &[Target, Frequency] : Targets) {
409       SortedTargets.emplace(Target, Frequency);
410     }
411     return SortedTargets;
412   }
413 
414   /// Prorate call targets by a distribution factor.
415   static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
416                                                float DistributionFactor) {
417     CallTargetMap AdjustedTargets;
418     for (const auto &[Target, Frequency] : Targets) {
419       AdjustedTargets[Target] = Frequency * DistributionFactor;
420     }
421     return AdjustedTargets;
422   }
423 
424   /// Merge the samples in \p Other into this record.
425   /// Optionally scale sample counts by \p Weight.
426   sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1);
427   void print(raw_ostream &OS, unsigned Indent) const;
428   void dump() const;
429 
430   bool operator==(const SampleRecord &Other) const {
431     return NumSamples == Other.NumSamples && CallTargets == Other.CallTargets;
432   }
433 
434   bool operator!=(const SampleRecord &Other) const {
435     return !(*this == Other);
436   }
437 
438 private:
439   uint64_t NumSamples = 0;
440   CallTargetMap CallTargets;
441 };
442 
443 raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
444 
445 // State of context associated with FunctionSamples
446 enum ContextStateMask {
447   UnknownContext = 0x0,   // Profile without context
448   RawContext = 0x1,       // Full context profile from input profile
449   SyntheticContext = 0x2, // Synthetic context created for context promotion
450   InlinedContext = 0x4,   // Profile for context that is inlined into caller
451   MergedContext = 0x8     // Profile for context merged into base profile
452 };
453 
454 // Attribute of context associated with FunctionSamples
455 enum ContextAttributeMask {
456   ContextNone = 0x0,
457   ContextWasInlined = 0x1,      // Leaf of context was inlined in previous build
458   ContextShouldBeInlined = 0x2, // Leaf of context should be inlined
459   ContextDuplicatedIntoBase =
460       0x4, // Leaf of context is duplicated into the base profile
461 };
462 
463 // Represents a context frame with profile function and line location
464 struct SampleContextFrame {
465   FunctionId Func;
466   LineLocation Location;
467 
468   SampleContextFrame() : Location(0, 0) {}
469 
470   SampleContextFrame(FunctionId Func, LineLocation Location)
471       : Func(Func), Location(Location) {}
472 
473   bool operator==(const SampleContextFrame &That) const {
474     return Location == That.Location && Func == That.Func;
475   }
476 
477   bool operator!=(const SampleContextFrame &That) const {
478     return !(*this == That);
479   }
480 
481   std::string toString(bool OutputLineLocation) const {
482     std::ostringstream OContextStr;
483     OContextStr << Func.str();
484     if (OutputLineLocation) {
485       OContextStr << ":" << Location.LineOffset;
486       if (Location.Discriminator)
487         OContextStr << "." << Location.Discriminator;
488     }
489     return OContextStr.str();
490   }
491 
492   uint64_t getHashCode() const {
493     uint64_t NameHash = Func.getHashCode();
494     uint64_t LocId = Location.getHashCode();
495     return NameHash + (LocId << 5) + LocId;
496   }
497 };
498 
499 static inline hash_code hash_value(const SampleContextFrame &arg) {
500   return arg.getHashCode();
501 }
502 
503 using SampleContextFrameVector = SmallVector<SampleContextFrame, 1>;
504 using SampleContextFrames = ArrayRef<SampleContextFrame>;
505 
506 struct SampleContextFrameHash {
507   uint64_t operator()(const SampleContextFrameVector &S) const {
508     return hash_combine_range(S.begin(), S.end());
509   }
510 };
511 
512 // Sample context for FunctionSamples. It consists of the calling context,
513 // the function name and context state. Internally sample context is represented
514 // using ArrayRef, which is also the input for constructing a `SampleContext`.
515 // It can accept and represent both full context string as well as context-less
516 // function name.
517 // For a CS profile, a full context vector can look like:
518 //    `main:3 _Z5funcAi:1 _Z8funcLeafi`
519 // For a base CS profile without calling context, the context vector should only
520 // contain the leaf frame name.
521 // For a non-CS profile, the context vector should be empty.
522 class SampleContext {
523 public:
524   SampleContext() : State(UnknownContext), Attributes(ContextNone) {}
525 
526   SampleContext(StringRef Name)
527       : Func(Name), State(UnknownContext), Attributes(ContextNone) {
528         assert(!Name.empty() && "Name is empty");
529       }
530 
531   SampleContext(FunctionId Func)
532       : Func(Func), State(UnknownContext), Attributes(ContextNone) {}
533 
534   SampleContext(SampleContextFrames Context,
535                 ContextStateMask CState = RawContext)
536       : Attributes(ContextNone) {
537     assert(!Context.empty() && "Context is empty");
538     setContext(Context, CState);
539   }
540 
541   // Give a context string, decode and populate internal states like
542   // Function name, Calling context and context state. Example of input
543   // `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
544   SampleContext(StringRef ContextStr,
545                 std::list<SampleContextFrameVector> &CSNameTable,
546                 ContextStateMask CState = RawContext)
547       : Attributes(ContextNone) {
548     assert(!ContextStr.empty());
549     // Note that `[]` wrapped input indicates a full context string, otherwise
550     // it's treated as context-less function name only.
551     bool HasContext = ContextStr.starts_with("[");
552     if (!HasContext) {
553       State = UnknownContext;
554       Func = FunctionId(ContextStr);
555     } else {
556       CSNameTable.emplace_back();
557       SampleContextFrameVector &Context = CSNameTable.back();
558       createCtxVectorFromStr(ContextStr, Context);
559       setContext(Context, CState);
560     }
561   }
562 
563   /// Create a context vector from a given context string and save it in
564   /// `Context`.
565   static void createCtxVectorFromStr(StringRef ContextStr,
566                                      SampleContextFrameVector &Context) {
567     // Remove encapsulating '[' and ']' if any
568     ContextStr = ContextStr.substr(1, ContextStr.size() - 2);
569     StringRef ContextRemain = ContextStr;
570     StringRef ChildContext;
571     FunctionId Callee;
572     while (!ContextRemain.empty()) {
573       auto ContextSplit = ContextRemain.split(" @ ");
574       ChildContext = ContextSplit.first;
575       ContextRemain = ContextSplit.second;
576       LineLocation CallSiteLoc(0, 0);
577       decodeContextString(ChildContext, Callee, CallSiteLoc);
578       Context.emplace_back(Callee, CallSiteLoc);
579     }
580   }
581 
582   // Decode context string for a frame to get function name and location.
583   // `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
584   static void decodeContextString(StringRef ContextStr,
585                                   FunctionId &Func,
586                                   LineLocation &LineLoc) {
587     // Get function name
588     auto EntrySplit = ContextStr.split(':');
589     Func = FunctionId(EntrySplit.first);
590 
591     LineLoc = {0, 0};
592     if (!EntrySplit.second.empty()) {
593       // Get line offset, use signed int for getAsInteger so string will
594       // be parsed as signed.
595       int LineOffset = 0;
596       auto LocSplit = EntrySplit.second.split('.');
597       LocSplit.first.getAsInteger(10, LineOffset);
598       LineLoc.LineOffset = LineOffset;
599 
600       // Get discriminator
601       if (!LocSplit.second.empty())
602         LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
603     }
604   }
605 
606   operator SampleContextFrames() const { return FullContext; }
607   bool hasAttribute(ContextAttributeMask A) { return Attributes & (uint32_t)A; }
608   void setAttribute(ContextAttributeMask A) { Attributes |= (uint32_t)A; }
609   uint32_t getAllAttributes() { return Attributes; }
610   void setAllAttributes(uint32_t A) { Attributes = A; }
611   bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
612   void setState(ContextStateMask S) { State |= (uint32_t)S; }
613   void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
614   bool hasContext() const { return State != UnknownContext; }
615   bool isBaseContext() const { return FullContext.size() == 1; }
616   FunctionId getFunction() const { return Func; }
617   SampleContextFrames getContextFrames() const { return FullContext; }
618 
619   static std::string getContextString(SampleContextFrames Context,
620                                       bool IncludeLeafLineLocation = false) {
621     std::ostringstream OContextStr;
622     for (uint32_t I = 0; I < Context.size(); I++) {
623       if (OContextStr.str().size()) {
624         OContextStr << " @ ";
625       }
626       OContextStr << Context[I].toString(I != Context.size() - 1 ||
627                                          IncludeLeafLineLocation);
628     }
629     return OContextStr.str();
630   }
631 
632   std::string toString() const {
633     if (!hasContext())
634       return Func.str();
635     return getContextString(FullContext, false);
636   }
637 
638   uint64_t getHashCode() const {
639     if (hasContext())
640       return hash_value(getContextFrames());
641     return getFunction().getHashCode();
642   }
643 
644   /// Set the name of the function and clear the current context.
645   void setFunction(FunctionId newFunction) {
646     Func = newFunction;
647     FullContext = SampleContextFrames();
648     State = UnknownContext;
649   }
650 
651   void setContext(SampleContextFrames Context,
652                   ContextStateMask CState = RawContext) {
653     assert(CState != UnknownContext);
654     FullContext = Context;
655     Func = Context.back().Func;
656     State = CState;
657   }
658 
659   bool operator==(const SampleContext &That) const {
660     return State == That.State && Func == That.Func &&
661            FullContext == That.FullContext;
662   }
663 
664   bool operator!=(const SampleContext &That) const { return !(*this == That); }
665 
666   bool operator<(const SampleContext &That) const {
667     if (State != That.State)
668       return State < That.State;
669 
670     if (!hasContext()) {
671       return Func < That.Func;
672     }
673 
674     uint64_t I = 0;
675     while (I < std::min(FullContext.size(), That.FullContext.size())) {
676       auto &Context1 = FullContext[I];
677       auto &Context2 = That.FullContext[I];
678       auto V = Context1.Func.compare(Context2.Func);
679       if (V)
680         return V < 0;
681       if (Context1.Location != Context2.Location)
682         return Context1.Location < Context2.Location;
683       I++;
684     }
685 
686     return FullContext.size() < That.FullContext.size();
687   }
688 
689   struct Hash {
690     uint64_t operator()(const SampleContext &Context) const {
691       return Context.getHashCode();
692     }
693   };
694 
695   bool IsPrefixOf(const SampleContext &That) const {
696     auto ThisContext = FullContext;
697     auto ThatContext = That.FullContext;
698     if (ThatContext.size() < ThisContext.size())
699       return false;
700     ThatContext = ThatContext.take_front(ThisContext.size());
701     // Compare Leaf frame first
702     if (ThisContext.back().Func != ThatContext.back().Func)
703       return false;
704     // Compare leading context
705     return ThisContext.drop_back() == ThatContext.drop_back();
706   }
707 
708 private:
709   // The function associated with this context. If CS profile, this is the leaf
710   // function.
711   FunctionId Func;
712   // Full context including calling context and leaf function name
713   SampleContextFrames FullContext;
714   // State of the associated sample profile
715   uint32_t State;
716   // Attribute of the associated sample profile
717   uint32_t Attributes;
718 };
719 
720 static inline hash_code hash_value(const SampleContext &Context) {
721   return Context.getHashCode();
722 }
723 
724 inline raw_ostream &operator<<(raw_ostream &OS, const SampleContext &Context) {
725   return OS << Context.toString();
726 }
727 
728 class FunctionSamples;
729 class SampleProfileReaderItaniumRemapper;
730 
731 using BodySampleMap = std::map<LineLocation, SampleRecord>;
732 // NOTE: Using a StringMap here makes parsed profiles consume around 17% more
733 // memory, which is *very* significant for large profiles.
734 using FunctionSamplesMap = std::map<FunctionId, FunctionSamples>;
735 using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
736 using LocToLocMap =
737     std::unordered_map<LineLocation, LineLocation, LineLocationHash>;
738 
739 /// Representation of the samples collected for a function.
740 ///
741 /// This data structure contains all the collected samples for the body
742 /// of a function. Each sample corresponds to a LineLocation instance
743 /// within the body of the function.
744 class FunctionSamples {
745 public:
746   FunctionSamples() = default;
747 
748   void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
749   void dump() const;
750 
751   sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
752     bool Overflowed;
753     TotalSamples =
754         SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
755     return Overflowed ? sampleprof_error::counter_overflow
756                       : sampleprof_error::success;
757   }
758 
759   void removeTotalSamples(uint64_t Num) {
760     if (TotalSamples < Num)
761       TotalSamples = 0;
762     else
763       TotalSamples -= Num;
764   }
765 
766   void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
767 
768   void setHeadSamples(uint64_t Num) { TotalHeadSamples = Num; }
769 
770   sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
771     bool Overflowed;
772     TotalHeadSamples =
773         SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
774     return Overflowed ? sampleprof_error::counter_overflow
775                       : sampleprof_error::success;
776   }
777 
778   sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
779                                   uint64_t Num, uint64_t Weight = 1) {
780     return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
781         Num, Weight);
782   }
783 
784   sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
785                                           uint32_t Discriminator,
786                                           FunctionId Func,
787                                           uint64_t Num,
788                                           uint64_t Weight = 1) {
789     return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
790         Func, Num, Weight);
791   }
792 
793   sampleprof_error addSampleRecord(LineLocation Location,
794                                    const SampleRecord &SampleRecord,
795                                    uint64_t Weight = 1) {
796     return BodySamples[Location].merge(SampleRecord, Weight);
797   }
798 
799   // Remove a call target and decrease the body sample correspondingly. Return
800   // the number of body samples actually decreased.
801   uint64_t removeCalledTargetAndBodySample(uint32_t LineOffset,
802                                            uint32_t Discriminator,
803                                            FunctionId Func) {
804     uint64_t Count = 0;
805     auto I = BodySamples.find(LineLocation(LineOffset, Discriminator));
806     if (I != BodySamples.end()) {
807       Count = I->second.removeCalledTarget(Func);
808       Count = I->second.removeSamples(Count);
809       if (!I->second.getSamples())
810         BodySamples.erase(I);
811     }
812     return Count;
813   }
814 
815   // Remove all call site samples for inlinees. This is needed when flattening
816   // a nested profile.
817   void removeAllCallsiteSamples() {
818     CallsiteSamples.clear();
819   }
820 
821   // Accumulate all call target samples to update the body samples.
822   void updateCallsiteSamples() {
823     for (auto &I : BodySamples) {
824       uint64_t TargetSamples = I.second.getCallTargetSum();
825       // It's possible that the body sample count can be greater than the call
826       // target sum. E.g, if some call targets are external targets, they won't
827       // be considered valid call targets, but the body sample count which is
828       // from lbr ranges can actually include them.
829       if (TargetSamples > I.second.getSamples())
830         I.second.addSamples(TargetSamples - I.second.getSamples());
831     }
832   }
833 
834   // Accumulate all body samples to set total samples.
835   void updateTotalSamples() {
836     setTotalSamples(0);
837     for (const auto &I : BodySamples)
838       addTotalSamples(I.second.getSamples());
839 
840     for (auto &I : CallsiteSamples) {
841       for (auto &CS : I.second) {
842         CS.second.updateTotalSamples();
843         addTotalSamples(CS.second.getTotalSamples());
844       }
845     }
846   }
847 
848   // Set current context and all callee contexts to be synthetic.
849   void SetContextSynthetic() {
850     Context.setState(SyntheticContext);
851     for (auto &I : CallsiteSamples) {
852       for (auto &CS : I.second) {
853         CS.second.SetContextSynthetic();
854       }
855     }
856   }
857 
858   // Query the stale profile matching results and remap the location.
859   const LineLocation &mapIRLocToProfileLoc(const LineLocation &IRLoc) const {
860     // There is no remapping if the profile is not stale or the matching gives
861     // the same location.
862     if (!IRToProfileLocationMap)
863       return IRLoc;
864     const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
865     if (ProfileLoc != IRToProfileLocationMap->end())
866       return ProfileLoc->second;
867     else
868       return IRLoc;
869   }
870 
871   /// Return the number of samples collected at the given location.
872   /// Each location is specified by \p LineOffset and \p Discriminator.
873   /// If the location is not found in profile, return error.
874   ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
875                                   uint32_t Discriminator) const {
876     const auto &ret = BodySamples.find(
877         mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
878     if (ret == BodySamples.end())
879       return std::error_code();
880     return ret->second.getSamples();
881   }
882 
883   /// Returns the call target map collected at a given location.
884   /// Each location is specified by \p LineOffset and \p Discriminator.
885   /// If the location is not found in profile, return error.
886   ErrorOr<const SampleRecord::CallTargetMap &>
887   findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
888     const auto &ret = BodySamples.find(
889         mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
890     if (ret == BodySamples.end())
891       return std::error_code();
892     return ret->second.getCallTargets();
893   }
894 
895   /// Returns the call target map collected at a given location specified by \p
896   /// CallSite. If the location is not found in profile, return error.
897   ErrorOr<const SampleRecord::CallTargetMap &>
898   findCallTargetMapAt(const LineLocation &CallSite) const {
899     const auto &Ret = BodySamples.find(mapIRLocToProfileLoc(CallSite));
900     if (Ret == BodySamples.end())
901       return std::error_code();
902     return Ret->second.getCallTargets();
903   }
904 
905   /// Return the function samples at the given callsite location.
906   FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
907     return CallsiteSamples[mapIRLocToProfileLoc(Loc)];
908   }
909 
910   /// Returns the FunctionSamplesMap at the given \p Loc.
911   const FunctionSamplesMap *
912   findFunctionSamplesMapAt(const LineLocation &Loc) const {
913     auto iter = CallsiteSamples.find(mapIRLocToProfileLoc(Loc));
914     if (iter == CallsiteSamples.end())
915       return nullptr;
916     return &iter->second;
917   }
918 
919   /// Returns a pointer to FunctionSamples at the given callsite location
920   /// \p Loc with callee \p CalleeName. If no callsite can be found, relax
921   /// the restriction to return the FunctionSamples at callsite location
922   /// \p Loc with the maximum total sample count. If \p Remapper is not
923   /// nullptr, use \p Remapper to find FunctionSamples with equivalent name
924   /// as \p CalleeName.
925   const FunctionSamples *
926   findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName,
927                         SampleProfileReaderItaniumRemapper *Remapper) const;
928 
929   bool empty() const { return TotalSamples == 0; }
930 
931   /// Return the total number of samples collected inside the function.
932   uint64_t getTotalSamples() const { return TotalSamples; }
933 
934   /// For top-level functions, return the total number of branch samples that
935   /// have the function as the branch target (or 0 otherwise). This is the raw
936   /// data fetched from the profile. This should be equivalent to the sample of
937   /// the first instruction of the symbol. But as we directly get this info for
938   /// raw profile without referring to potentially inaccurate debug info, this
939   /// gives more accurate profile data and is preferred for standalone symbols.
940   uint64_t getHeadSamples() const { return TotalHeadSamples; }
941 
942   /// Return an estimate of the sample count of the function entry basic block.
943   /// The function can be either a standalone symbol or an inlined function.
944   /// For Context-Sensitive profiles, this will prefer returning the head
945   /// samples (i.e. getHeadSamples()), if non-zero. Otherwise it estimates from
946   /// the function body's samples or callsite samples.
947   uint64_t getHeadSamplesEstimate() const {
948     if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
949       // For CS profile, if we already have more accurate head samples
950       // counted by branch sample from caller, use them as entry samples.
951       return getHeadSamples();
952     }
953     uint64_t Count = 0;
954     // Use either BodySamples or CallsiteSamples which ever has the smaller
955     // lineno.
956     if (!BodySamples.empty() &&
957         (CallsiteSamples.empty() ||
958          BodySamples.begin()->first < CallsiteSamples.begin()->first))
959       Count = BodySamples.begin()->second.getSamples();
960     else if (!CallsiteSamples.empty()) {
961       // An indirect callsite may be promoted to several inlined direct calls.
962       // We need to get the sum of them.
963       for (const auto &N_FS : CallsiteSamples.begin()->second)
964         Count += N_FS.second.getHeadSamplesEstimate();
965     }
966     // Return at least 1 if total sample is not 0.
967     return Count ? Count : TotalSamples > 0;
968   }
969 
970   /// Return all the samples collected in the body of the function.
971   const BodySampleMap &getBodySamples() const { return BodySamples; }
972 
973   /// Return all the callsite samples collected in the body of the function.
974   const CallsiteSampleMap &getCallsiteSamples() const {
975     return CallsiteSamples;
976   }
977 
978   /// Return the maximum of sample counts in a function body. When SkipCallSite
979   /// is false, which is the default, the return count includes samples in the
980   /// inlined functions. When SkipCallSite is true, the return count only
981   /// considers the body samples.
982   uint64_t getMaxCountInside(bool SkipCallSite = false) const {
983     uint64_t MaxCount = 0;
984     for (const auto &L : getBodySamples())
985       MaxCount = std::max(MaxCount, L.second.getSamples());
986     if (SkipCallSite)
987       return MaxCount;
988     for (const auto &C : getCallsiteSamples())
989       for (const FunctionSamplesMap::value_type &F : C.second)
990         MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
991     return MaxCount;
992   }
993 
994   /// Merge the samples in \p Other into this one.
995   /// Optionally scale samples by \p Weight.
996   sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
997     sampleprof_error Result = sampleprof_error::success;
998     if (!GUIDToFuncNameMap)
999       GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
1000     if (Context.getFunction().empty())
1001       Context = Other.getContext();
1002     if (FunctionHash == 0) {
1003       // Set the function hash code for the target profile.
1004       FunctionHash = Other.getFunctionHash();
1005     } else if (FunctionHash != Other.getFunctionHash()) {
1006       // The two profiles coming with different valid hash codes indicates
1007       // either:
1008       // 1. They are same-named static functions from different compilation
1009       // units (without using -unique-internal-linkage-names), or
1010       // 2. They are really the same function but from different compilations.
1011       // Let's bail out in either case for now, which means one profile is
1012       // dropped.
1013       return sampleprof_error::hash_mismatch;
1014     }
1015 
1016     MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
1017     MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
1018     for (const auto &I : Other.getBodySamples()) {
1019       const LineLocation &Loc = I.first;
1020       const SampleRecord &Rec = I.second;
1021       MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
1022     }
1023     for (const auto &I : Other.getCallsiteSamples()) {
1024       const LineLocation &Loc = I.first;
1025       FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
1026       for (const auto &Rec : I.second)
1027         MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
1028     }
1029     return Result;
1030   }
1031 
1032   /// Recursively traverses all children, if the total sample count of the
1033   /// corresponding function is no less than \p Threshold, add its corresponding
1034   /// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
1035   /// to \p S.
1036   void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S,
1037                             const HashKeyMap<std::unordered_map, FunctionId,
1038                                              Function *>  &SymbolMap,
1039                             uint64_t Threshold) const {
1040     if (TotalSamples <= Threshold)
1041       return;
1042     auto isDeclaration = [](const Function *F) {
1043       return !F || F->isDeclaration();
1044     };
1045     if (isDeclaration(SymbolMap.lookup(getFunction()))) {
1046       // Add to the import list only when it's defined out of module.
1047       S.insert(getGUID());
1048     }
1049     // Import hot CallTargets, which may not be available in IR because full
1050     // profile annotation cannot be done until backend compilation in ThinLTO.
1051     for (const auto &BS : BodySamples)
1052       for (const auto &TS : BS.second.getCallTargets())
1053         if (TS.second > Threshold) {
1054           const Function *Callee = SymbolMap.lookup(TS.first);
1055           if (isDeclaration(Callee))
1056             S.insert(TS.first.getHashCode());
1057         }
1058     for (const auto &CS : CallsiteSamples)
1059       for (const auto &NameFS : CS.second)
1060         NameFS.second.findInlinedFunctions(S, SymbolMap, Threshold);
1061   }
1062 
1063   /// Set the name of the function.
1064   void setFunction(FunctionId newFunction) {
1065     Context.setFunction(newFunction);
1066   }
1067 
1068   /// Return the function name.
1069   FunctionId getFunction() const { return Context.getFunction(); }
1070 
1071   /// Return the original function name.
1072   StringRef getFuncName() const { return getFuncName(getFunction()); }
1073 
1074   void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
1075 
1076   uint64_t getFunctionHash() const { return FunctionHash; }
1077 
1078   void setIRToProfileLocationMap(const LocToLocMap *LTLM) {
1079     assert(IRToProfileLocationMap == nullptr && "this should be set only once");
1080     IRToProfileLocationMap = LTLM;
1081   }
1082 
1083   /// Return the canonical name for a function, taking into account
1084   /// suffix elision policy attributes.
1085   static StringRef getCanonicalFnName(const Function &F) {
1086     auto AttrName = "sample-profile-suffix-elision-policy";
1087     auto Attr = F.getFnAttribute(AttrName).getValueAsString();
1088     return getCanonicalFnName(F.getName(), Attr);
1089   }
1090 
1091   /// Name suffixes which canonicalization should handle to avoid
1092   /// profile mismatch.
1093   static constexpr const char *LLVMSuffix = ".llvm.";
1094   static constexpr const char *PartSuffix = ".part.";
1095   static constexpr const char *UniqSuffix = ".__uniq.";
1096 
1097   static StringRef getCanonicalFnName(StringRef FnName,
1098                                       StringRef Attr = "selected") {
1099     // Note the sequence of the suffixes in the knownSuffixes array matters.
1100     // If suffix "A" is appended after the suffix "B", "A" should be in front
1101     // of "B" in knownSuffixes.
1102     const char *knownSuffixes[] = {LLVMSuffix, PartSuffix, UniqSuffix};
1103     if (Attr == "" || Attr == "all") {
1104       return FnName.split('.').first;
1105     } else if (Attr == "selected") {
1106       StringRef Cand(FnName);
1107       for (const auto &Suf : knownSuffixes) {
1108         StringRef Suffix(Suf);
1109         // If the profile contains ".__uniq." suffix, don't strip the
1110         // suffix for names in the IR.
1111         if (Suffix == UniqSuffix && FunctionSamples::HasUniqSuffix)
1112           continue;
1113         auto It = Cand.rfind(Suffix);
1114         if (It == StringRef::npos)
1115           continue;
1116         auto Dit = Cand.rfind('.');
1117         if (Dit == It + Suffix.size() - 1)
1118           Cand = Cand.substr(0, It);
1119       }
1120       return Cand;
1121     } else if (Attr == "none") {
1122       return FnName;
1123     } else {
1124       assert(false && "internal error: unknown suffix elision policy");
1125     }
1126     return FnName;
1127   }
1128 
1129   /// Translate \p Func into its original name.
1130   /// When profile doesn't use MD5, \p Func needs no translation.
1131   /// When profile uses MD5, \p Func in current FunctionSamples
1132   /// is actually GUID of the original function name. getFuncName will
1133   /// translate \p Func in current FunctionSamples into its original name
1134   /// by looking up in the function map GUIDToFuncNameMap.
1135   /// If the original name doesn't exist in the map, return empty StringRef.
1136   StringRef getFuncName(FunctionId Func) const {
1137     if (!UseMD5)
1138       return Func.stringRef();
1139 
1140     assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be populated first");
1141     return GUIDToFuncNameMap->lookup(Func.getHashCode());
1142   }
1143 
1144   /// Returns the line offset to the start line of the subprogram.
1145   /// We assume that a single function will not exceed 65535 LOC.
1146   static unsigned getOffset(const DILocation *DIL);
1147 
1148   /// Returns a unique call site identifier for a given debug location of a call
1149   /// instruction. This is wrapper of two scenarios, the probe-based profile and
1150   /// regular profile, to hide implementation details from the sample loader and
1151   /// the context tracker.
1152   static LineLocation getCallSiteIdentifier(const DILocation *DIL,
1153                                             bool ProfileIsFS = false);
1154 
1155   /// Returns a unique hash code for a combination of a callsite location and
1156   /// the callee function name.
1157   /// Guarantee MD5 and non-MD5 representation of the same function results in
1158   /// the same hash.
1159   static uint64_t getCallSiteHash(FunctionId Callee,
1160                                   const LineLocation &Callsite) {
1161     return SampleContextFrame(Callee, Callsite).getHashCode();
1162   }
1163 
1164   /// Get the FunctionSamples of the inline instance where DIL originates
1165   /// from.
1166   ///
1167   /// The FunctionSamples of the instruction (Machine or IR) associated to
1168   /// \p DIL is the inlined instance in which that instruction is coming from.
1169   /// We traverse the inline stack of that instruction, and match it with the
1170   /// tree nodes in the profile.
1171   ///
1172   /// \returns the FunctionSamples pointer to the inlined instance.
1173   /// If \p Remapper is not nullptr, it will be used to find matching
1174   /// FunctionSamples with not exactly the same but equivalent name.
1175   const FunctionSamples *findFunctionSamples(
1176       const DILocation *DIL,
1177       SampleProfileReaderItaniumRemapper *Remapper = nullptr) const;
1178 
1179   static bool ProfileIsProbeBased;
1180 
1181   static bool ProfileIsCS;
1182 
1183   static bool ProfileIsPreInlined;
1184 
1185   SampleContext &getContext() const { return Context; }
1186 
1187   void setContext(const SampleContext &FContext) { Context = FContext; }
1188 
1189   /// Whether the profile uses MD5 to represent string.
1190   static bool UseMD5;
1191 
1192   /// Whether the profile contains any ".__uniq." suffix in a name.
1193   static bool HasUniqSuffix;
1194 
1195   /// If this profile uses flow sensitive discriminators.
1196   static bool ProfileIsFS;
1197 
1198   /// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
1199   /// all the function symbols defined or declared in current module.
1200   DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
1201 
1202   /// Return the GUID of the context's name. If the context is already using
1203   /// MD5, don't hash it again.
1204   uint64_t getGUID() const {
1205     return getFunction().getHashCode();
1206   }
1207 
1208   // Find all the names in the current FunctionSamples including names in
1209   // all the inline instances and names of call targets.
1210   void findAllNames(DenseSet<FunctionId> &NameSet) const;
1211 
1212   bool operator==(const FunctionSamples &Other) const {
1213     return (GUIDToFuncNameMap == Other.GUIDToFuncNameMap ||
1214             (GUIDToFuncNameMap && Other.GUIDToFuncNameMap &&
1215              *GUIDToFuncNameMap == *Other.GUIDToFuncNameMap)) &&
1216            FunctionHash == Other.FunctionHash && Context == Other.Context &&
1217            TotalSamples == Other.TotalSamples &&
1218            TotalHeadSamples == Other.TotalHeadSamples &&
1219            BodySamples == Other.BodySamples &&
1220            CallsiteSamples == Other.CallsiteSamples;
1221   }
1222 
1223   bool operator!=(const FunctionSamples &Other) const {
1224     return !(*this == Other);
1225   }
1226 
1227 private:
1228   /// CFG hash value for the function.
1229   uint64_t FunctionHash = 0;
1230 
1231   /// Calling context for function profile
1232   mutable SampleContext Context;
1233 
1234   /// Total number of samples collected inside this function.
1235   ///
1236   /// Samples are cumulative, they include all the samples collected
1237   /// inside this function and all its inlined callees.
1238   uint64_t TotalSamples = 0;
1239 
1240   /// Total number of samples collected at the head of the function.
1241   /// This is an approximation of the number of calls made to this function
1242   /// at runtime.
1243   uint64_t TotalHeadSamples = 0;
1244 
1245   /// Map instruction locations to collected samples.
1246   ///
1247   /// Each entry in this map contains the number of samples
1248   /// collected at the corresponding line offset. All line locations
1249   /// are an offset from the start of the function.
1250   BodySampleMap BodySamples;
1251 
1252   /// Map call sites to collected samples for the called function.
1253   ///
1254   /// Each entry in this map corresponds to all the samples
1255   /// collected for the inlined function call at the given
1256   /// location. For example, given:
1257   ///
1258   ///     void foo() {
1259   ///  1    bar();
1260   ///  ...
1261   ///  8    baz();
1262   ///     }
1263   ///
1264   /// If the bar() and baz() calls were inlined inside foo(), this
1265   /// map will contain two entries.  One for all the samples collected
1266   /// in the call to bar() at line offset 1, the other for all the samples
1267   /// collected in the call to baz() at line offset 8.
1268   CallsiteSampleMap CallsiteSamples;
1269 
1270   /// IR to profile location map generated by stale profile matching.
1271   ///
1272   /// Each entry is a mapping from the location on current build to the matched
1273   /// location in the "stale" profile. For example:
1274   ///   Profiled source code:
1275   ///      void foo() {
1276   ///   1    bar();
1277   ///      }
1278   ///
1279   ///   Current source code:
1280   ///      void foo() {
1281   ///   1    // Code change
1282   ///   2    bar();
1283   ///      }
1284   /// Supposing the stale profile matching algorithm generated the mapping [2 ->
1285   /// 1], the profile query using the location of bar on the IR which is 2 will
1286   /// be remapped to 1 and find the location of bar in the profile.
1287   const LocToLocMap *IRToProfileLocationMap = nullptr;
1288 };
1289 
1290 /// Get the proper representation of a string according to whether the
1291 /// current Format uses MD5 to represent the string.
1292 static inline FunctionId getRepInFormat(StringRef Name) {
1293   if (Name.empty() || !FunctionSamples::UseMD5)
1294     return FunctionId(Name);
1295   return FunctionId(Function::getGUID(Name));
1296 }
1297 
1298 raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
1299 
1300 /// This class provides operator overloads to the map container using MD5 as the
1301 /// key type, so that existing code can still work in most cases using
1302 /// SampleContext as key.
1303 /// Note: when populating container, make sure to assign the SampleContext to
1304 /// the mapped value immediately because the key no longer holds it.
1305 class SampleProfileMap
1306     : public HashKeyMap<std::unordered_map, SampleContext, FunctionSamples> {
1307 public:
1308   // Convenience method because this is being used in many places. Set the
1309   // FunctionSamples' context if its newly inserted.
1310   mapped_type &Create(const SampleContext &Ctx) {
1311     auto Ret = try_emplace(Ctx, FunctionSamples());
1312     if (Ret.second)
1313       Ret.first->second.setContext(Ctx);
1314     return Ret.first->second;
1315   }
1316 
1317   iterator find(const SampleContext &Ctx) {
1318     return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1319         Ctx);
1320   }
1321 
1322   const_iterator find(const SampleContext &Ctx) const {
1323     return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1324         Ctx);
1325   }
1326 
1327   size_t erase(const SampleContext &Ctx) {
1328     return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::
1329         erase(Ctx);
1330   }
1331 
1332   size_t erase(const key_type &Key) { return base_type::erase(Key); }
1333 
1334   iterator erase(iterator It) { return base_type::erase(It); }
1335 };
1336 
1337 using NameFunctionSamples = std::pair<hash_code, const FunctionSamples *>;
1338 
1339 void sortFuncProfiles(const SampleProfileMap &ProfileMap,
1340                       std::vector<NameFunctionSamples> &SortedProfiles);
1341 
1342 /// Sort a LocationT->SampleT map by LocationT.
1343 ///
1344 /// It produces a sorted list of <LocationT, SampleT> records by ascending
1345 /// order of LocationT.
1346 template <class LocationT, class SampleT> class SampleSorter {
1347 public:
1348   using SamplesWithLoc = std::pair<const LocationT, SampleT>;
1349   using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
1350 
1351   SampleSorter(const std::map<LocationT, SampleT> &Samples) {
1352     for (const auto &I : Samples)
1353       V.push_back(&I);
1354     llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
1355       return A->first < B->first;
1356     });
1357   }
1358 
1359   const SamplesWithLocList &get() const { return V; }
1360 
1361 private:
1362   SamplesWithLocList V;
1363 };
1364 
1365 /// SampleContextTrimmer impelements helper functions to trim, merge cold
1366 /// context profiles. It also supports context profile canonicalization to make
1367 /// sure ProfileMap's key is consistent with FunctionSample's name/context.
1368 class SampleContextTrimmer {
1369 public:
1370   SampleContextTrimmer(SampleProfileMap &Profiles) : ProfileMap(Profiles){};
1371   // Trim and merge cold context profile when requested. TrimBaseProfileOnly
1372   // should only be effective when TrimColdContext is true. On top of
1373   // TrimColdContext, TrimBaseProfileOnly can be used to specify to trim all
1374   // cold profiles or only cold base profiles. Trimming base profiles only is
1375   // mainly to honor the preinliner decsion. Note that when MergeColdContext is
1376   // true, preinliner decsion is not honored anyway so TrimBaseProfileOnly will
1377   // be ignored.
1378   void trimAndMergeColdContextProfiles(uint64_t ColdCountThreshold,
1379                                        bool TrimColdContext,
1380                                        bool MergeColdContext,
1381                                        uint32_t ColdContextFrameLength,
1382                                        bool TrimBaseProfileOnly);
1383 
1384 private:
1385   SampleProfileMap &ProfileMap;
1386 };
1387 
1388 /// Helper class for profile conversion.
1389 ///
1390 /// It supports full context-sensitive profile to nested profile conversion,
1391 /// nested profile to flatten profile conversion, etc.
1392 class ProfileConverter {
1393 public:
1394   ProfileConverter(SampleProfileMap &Profiles);
1395   // Convert a full context-sensitive flat sample profile into a nested sample
1396   // profile.
1397   void convertCSProfiles();
1398   struct FrameNode {
1399     FrameNode(FunctionId FName = FunctionId(),
1400               FunctionSamples *FSamples = nullptr,
1401               LineLocation CallLoc = {0, 0})
1402         : FuncName(FName), FuncSamples(FSamples), CallSiteLoc(CallLoc){};
1403 
1404     // Map line+discriminator location to child frame
1405     std::map<uint64_t, FrameNode> AllChildFrames;
1406     // Function name for current frame
1407     FunctionId FuncName;
1408     // Function Samples for current frame
1409     FunctionSamples *FuncSamples;
1410     // Callsite location in parent context
1411     LineLocation CallSiteLoc;
1412 
1413     FrameNode *getOrCreateChildFrame(const LineLocation &CallSite,
1414                                      FunctionId CalleeName);
1415   };
1416 
1417   static void flattenProfile(SampleProfileMap &ProfileMap,
1418                              bool ProfileIsCS = false) {
1419     SampleProfileMap TmpProfiles;
1420     flattenProfile(ProfileMap, TmpProfiles, ProfileIsCS);
1421     ProfileMap = std::move(TmpProfiles);
1422   }
1423 
1424   static void flattenProfile(const SampleProfileMap &InputProfiles,
1425                              SampleProfileMap &OutputProfiles,
1426                              bool ProfileIsCS = false) {
1427     if (ProfileIsCS) {
1428       for (const auto &I : InputProfiles) {
1429         // Retain the profile name and clear the full context for each function
1430         // profile.
1431         FunctionSamples &FS = OutputProfiles.Create(I.second.getFunction());
1432         FS.merge(I.second);
1433       }
1434     } else {
1435       for (const auto &I : InputProfiles)
1436         flattenNestedProfile(OutputProfiles, I.second);
1437     }
1438   }
1439 
1440 private:
1441   static void flattenNestedProfile(SampleProfileMap &OutputProfiles,
1442                                    const FunctionSamples &FS) {
1443     // To retain the context, checksum, attributes of the original profile, make
1444     // a copy of it if no profile is found.
1445     SampleContext &Context = FS.getContext();
1446     auto Ret = OutputProfiles.try_emplace(Context, FS);
1447     FunctionSamples &Profile = Ret.first->second;
1448     if (Ret.second) {
1449       // Clear nested inlinees' samples for the flattened copy. These inlinees
1450       // will have their own top-level entries after flattening.
1451       Profile.removeAllCallsiteSamples();
1452       // We recompute TotalSamples later, so here set to zero.
1453       Profile.setTotalSamples(0);
1454     } else {
1455       for (const auto &[LineLocation, SampleRecord] : FS.getBodySamples()) {
1456         Profile.addSampleRecord(LineLocation, SampleRecord);
1457       }
1458     }
1459 
1460     assert(Profile.getCallsiteSamples().empty() &&
1461            "There should be no inlinees' profiles after flattening.");
1462 
1463     // TotalSamples might not be equal to the sum of all samples from
1464     // BodySamples and CallsiteSamples. So here we use "TotalSamples =
1465     // Original_TotalSamples - All_of_Callsite_TotalSamples +
1466     // All_of_Callsite_HeadSamples" to compute the new TotalSamples.
1467     uint64_t TotalSamples = FS.getTotalSamples();
1468 
1469     for (const auto &I : FS.getCallsiteSamples()) {
1470       for (const auto &Callee : I.second) {
1471         const auto &CalleeProfile = Callee.second;
1472         // Add body sample.
1473         Profile.addBodySamples(I.first.LineOffset, I.first.Discriminator,
1474                                CalleeProfile.getHeadSamplesEstimate());
1475         // Add callsite sample.
1476         Profile.addCalledTargetSamples(
1477             I.first.LineOffset, I.first.Discriminator,
1478             CalleeProfile.getFunction(),
1479             CalleeProfile.getHeadSamplesEstimate());
1480         // Update total samples.
1481         TotalSamples = TotalSamples >= CalleeProfile.getTotalSamples()
1482                            ? TotalSamples - CalleeProfile.getTotalSamples()
1483                            : 0;
1484         TotalSamples += CalleeProfile.getHeadSamplesEstimate();
1485         // Recursively convert callee profile.
1486         flattenNestedProfile(OutputProfiles, CalleeProfile);
1487       }
1488     }
1489     Profile.addTotalSamples(TotalSamples);
1490 
1491     Profile.setHeadSamples(Profile.getHeadSamplesEstimate());
1492   }
1493 
1494   // Nest all children profiles into the profile of Node.
1495   void convertCSProfiles(FrameNode &Node);
1496   FrameNode *getOrCreateContextPath(const SampleContext &Context);
1497 
1498   SampleProfileMap &ProfileMap;
1499   FrameNode RootFrame;
1500 };
1501 
1502 /// ProfileSymbolList records the list of function symbols shown up
1503 /// in the binary used to generate the profile. It is useful to
1504 /// to discriminate a function being so cold as not to shown up
1505 /// in the profile and a function newly added.
1506 class ProfileSymbolList {
1507 public:
1508   /// copy indicates whether we need to copy the underlying memory
1509   /// for the input Name.
1510   void add(StringRef Name, bool copy = false) {
1511     if (!copy) {
1512       Syms.insert(Name);
1513       return;
1514     }
1515     Syms.insert(Name.copy(Allocator));
1516   }
1517 
1518   bool contains(StringRef Name) { return Syms.count(Name); }
1519 
1520   void merge(const ProfileSymbolList &List) {
1521     for (auto Sym : List.Syms)
1522       add(Sym, true);
1523   }
1524 
1525   unsigned size() { return Syms.size(); }
1526 
1527   void setToCompress(bool TC) { ToCompress = TC; }
1528   bool toCompress() { return ToCompress; }
1529 
1530   std::error_code read(const uint8_t *Data, uint64_t ListSize);
1531   std::error_code write(raw_ostream &OS);
1532   void dump(raw_ostream &OS = dbgs()) const;
1533 
1534 private:
1535   // Determine whether or not to compress the symbol list when
1536   // writing it into profile. The variable is unused when the symbol
1537   // list is read from an existing profile.
1538   bool ToCompress = false;
1539   DenseSet<StringRef> Syms;
1540   BumpPtrAllocator Allocator;
1541 };
1542 
1543 } // end namespace sampleprof
1544 
1545 using namespace sampleprof;
1546 // Provide DenseMapInfo for SampleContext.
1547 template <> struct DenseMapInfo<SampleContext> {
1548   static inline SampleContext getEmptyKey() { return SampleContext(); }
1549 
1550   static inline SampleContext getTombstoneKey() {
1551     return SampleContext(FunctionId(~1ULL));
1552   }
1553 
1554   static unsigned getHashValue(const SampleContext &Val) {
1555     return Val.getHashCode();
1556   }
1557 
1558   static bool isEqual(const SampleContext &LHS, const SampleContext &RHS) {
1559     return LHS == RHS;
1560   }
1561 };
1562 
1563 // Prepend "__uniq" before the hash for tools like profilers to understand
1564 // that this symbol is of internal linkage type.  The "__uniq" is the
1565 // pre-determined prefix that is used to tell tools that this symbol was
1566 // created with -funique-internal-linkage-symbols and the tools can strip or
1567 // keep the prefix as needed.
1568 inline std::string getUniqueInternalLinkagePostfix(const StringRef &FName) {
1569   llvm::MD5 Md5;
1570   Md5.update(FName);
1571   llvm::MD5::MD5Result R;
1572   Md5.final(R);
1573   SmallString<32> Str;
1574   llvm::MD5::stringifyResult(R, Str);
1575   // Convert MD5hash to Decimal. Demangler suffixes can either contain
1576   // numbers or characters but not both.
1577   llvm::APInt IntHash(128, Str.str(), 16);
1578   return toString(IntHash, /* Radix = */ 10, /* Signed = */ false)
1579       .insert(0, FunctionSamples::UniqSuffix);
1580 }
1581 
1582 } // end namespace llvm
1583 
1584 #endif // LLVM_PROFILEDATA_SAMPLEPROF_H
1585