1 //===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(),
10 // cast_if_present<X>(), and dyn_cast_if_present<X>() templates.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_CASTING_H
15 #define LLVM_SUPPORT_CASTING_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/type_traits.h"
19 #include <cassert>
20 #include <memory>
21 #include <optional>
22 #include <type_traits>
23 
24 namespace llvm {
25 
26 //===----------------------------------------------------------------------===//
27 // simplify_type
28 //===----------------------------------------------------------------------===//
29 
30 /// Define a template that can be specialized by smart pointers to reflect the
31 /// fact that they are automatically dereferenced, and are not involved with the
32 /// template selection process...  the default implementation is a noop.
33 // TODO: rename this and/or replace it with other cast traits.
34 template <typename From> struct simplify_type {
35   using SimpleType = From; // The real type this represents...
36 
37   // An accessor to get the real value...
getSimplifiedValuesimplify_type38   static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39 };
40 
41 template <typename From> struct simplify_type<const From> {
42   using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43   using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type;
44   using RetType =
45       typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46 
47   static RetType getSimplifiedValue(const From &Val) {
48     return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val));
49   }
50 };
51 
52 // TODO: add this namespace once everyone is switched to using the new
53 //       interface.
54 // namespace detail {
55 
56 //===----------------------------------------------------------------------===//
57 // isa_impl
58 //===----------------------------------------------------------------------===//
59 
60 // The core of the implementation of isa<X> is here; To and From should be
61 // the names of classes.  This template can be specialized to customize the
62 // implementation of isa<> without rewriting it from scratch.
63 template <typename To, typename From, typename Enabler = void> struct isa_impl {
64   static inline bool doit(const From &Val) { return To::classof(&Val); }
65 };
66 
67 // Always allow upcasts, and perform no dynamic check for them.
68 template <typename To, typename From>
69 struct isa_impl<To, From, std::enable_if_t<std::is_base_of_v<To, From>>> {
70   static inline bool doit(const From &) { return true; }
71 };
72 
73 template <typename To, typename From> struct isa_impl_cl {
74   static inline bool doit(const From &Val) {
75     return isa_impl<To, From>::doit(Val);
76   }
77 };
78 
79 template <typename To, typename From> struct isa_impl_cl<To, const From> {
80   static inline bool doit(const From &Val) {
81     return isa_impl<To, From>::doit(Val);
82   }
83 };
84 
85 template <typename To, typename From>
86 struct isa_impl_cl<To, const std::unique_ptr<From>> {
87   static inline bool doit(const std::unique_ptr<From> &Val) {
88     assert(Val && "isa<> used on a null pointer");
89     return isa_impl_cl<To, From>::doit(*Val);
90   }
91 };
92 
93 template <typename To, typename From> struct isa_impl_cl<To, From *> {
94   static inline bool doit(const From *Val) {
95     assert(Val && "isa<> used on a null pointer");
96     return isa_impl<To, From>::doit(*Val);
97   }
98 };
99 
100 template <typename To, typename From> struct isa_impl_cl<To, From *const> {
101   static inline bool doit(const From *Val) {
102     assert(Val && "isa<> used on a null pointer");
103     return isa_impl<To, From>::doit(*Val);
104   }
105 };
106 
107 template <typename To, typename From> struct isa_impl_cl<To, const From *> {
108   static inline bool doit(const From *Val) {
109     assert(Val && "isa<> used on a null pointer");
110     return isa_impl<To, From>::doit(*Val);
111   }
112 };
113 
114 template <typename To, typename From>
115 struct isa_impl_cl<To, const From *const> {
116   static inline bool doit(const From *Val) {
117     assert(Val && "isa<> used on a null pointer");
118     return isa_impl<To, From>::doit(*Val);
119   }
120 };
121 
122 template <typename To, typename From, typename SimpleFrom>
123 struct isa_impl_wrap {
124   // When From != SimplifiedType, we can simplify the type some more by using
125   // the simplify_type template.
126   static bool doit(const From &Val) {
127     return isa_impl_wrap<To, SimpleFrom,
128                          typename simplify_type<SimpleFrom>::SimpleType>::
129         doit(simplify_type<const From>::getSimplifiedValue(Val));
130   }
131 };
132 
133 template <typename To, typename FromTy>
134 struct isa_impl_wrap<To, FromTy, FromTy> {
135   // When From == SimpleType, we are as simple as we are going to get.
136   static bool doit(const FromTy &Val) {
137     return isa_impl_cl<To, FromTy>::doit(Val);
138   }
139 };
140 
141 //===----------------------------------------------------------------------===//
142 // cast_retty + cast_retty_impl
143 //===----------------------------------------------------------------------===//
144 
145 template <class To, class From> struct cast_retty;
146 
147 // Calculate what type the 'cast' function should return, based on a requested
148 // type of To and a source type of From.
149 template <class To, class From> struct cast_retty_impl {
150   using ret_type = To &; // Normal case, return Ty&
151 };
152 template <class To, class From> struct cast_retty_impl<To, const From> {
153   using ret_type = const To &; // Normal case, return Ty&
154 };
155 
156 template <class To, class From> struct cast_retty_impl<To, From *> {
157   using ret_type = To *; // Pointer arg case, return Ty*
158 };
159 
160 template <class To, class From> struct cast_retty_impl<To, const From *> {
161   using ret_type = const To *; // Constant pointer arg case, return const Ty*
162 };
163 
164 template <class To, class From> struct cast_retty_impl<To, const From *const> {
165   using ret_type = const To *; // Constant pointer arg case, return const Ty*
166 };
167 
168 template <class To, class From>
169 struct cast_retty_impl<To, std::unique_ptr<From>> {
170 private:
171   using PointerType = typename cast_retty_impl<To, From *>::ret_type;
172   using ResultType = std::remove_pointer_t<PointerType>;
173 
174 public:
175   using ret_type = std::unique_ptr<ResultType>;
176 };
177 
178 template <class To, class From, class SimpleFrom> struct cast_retty_wrap {
179   // When the simplified type and the from type are not the same, use the type
180   // simplifier to reduce the type, then reuse cast_retty_impl to get the
181   // resultant type.
182   using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
183 };
184 
185 template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> {
186   // When the simplified type is equal to the from type, use it directly.
187   using ret_type = typename cast_retty_impl<To, FromTy>::ret_type;
188 };
189 
190 template <class To, class From> struct cast_retty {
191   using ret_type = typename cast_retty_wrap<
192       To, From, typename simplify_type<From>::SimpleType>::ret_type;
193 };
194 
195 //===----------------------------------------------------------------------===//
196 // cast_convert_val
197 //===----------------------------------------------------------------------===//
198 
199 // Ensure the non-simple values are converted using the simplify_type template
200 // that may be specialized by smart pointers...
201 //
202 template <class To, class From, class SimpleFrom> struct cast_convert_val {
203   // This is not a simple type, use the template to simplify it...
204   static typename cast_retty<To, From>::ret_type doit(const From &Val) {
205     return cast_convert_val<To, SimpleFrom,
206                             typename simplify_type<SimpleFrom>::SimpleType>::
207         doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)));
208   }
209 };
210 
211 template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> {
212   // If it's a reference, switch to a pointer to do the cast and then deref it.
213   static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
214     return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type>
215                  *)&const_cast<FromTy &>(Val);
216   }
217 };
218 
219 template <class To, class FromTy>
220 struct cast_convert_val<To, FromTy *, FromTy *> {
221   // If it's a pointer, we can use c-style casting directly.
222   static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) {
223     return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>(
224         Val);
225   }
226 };
227 
228 //===----------------------------------------------------------------------===//
229 // is_simple_type
230 //===----------------------------------------------------------------------===//
231 
232 template <class X> struct is_simple_type {
233   static const bool value =
234       std::is_same_v<X, typename simplify_type<X>::SimpleType>;
235 };
236 
237 // } // namespace detail
238 
239 //===----------------------------------------------------------------------===//
240 // CastIsPossible
241 //===----------------------------------------------------------------------===//
242 
243 /// This struct provides a way to check if a given cast is possible. It provides
244 /// a static function called isPossible that is used to check if a cast can be
245 /// performed. It should be overridden like this:
246 ///
247 /// template<> struct CastIsPossible<foo, bar> {
248 ///   static inline bool isPossible(const bar &b) {
249 ///     return bar.isFoo();
250 ///   }
251 /// };
252 template <typename To, typename From, typename Enable = void>
253 struct CastIsPossible {
254   static inline bool isPossible(const From &f) {
255     return isa_impl_wrap<
256         To, const From,
257         typename simplify_type<const From>::SimpleType>::doit(f);
258   }
259 };
260 
261 // Needed for optional unwrapping. This could be implemented with isa_impl, but
262 // we want to implement things in the new method and move old implementations
263 // over. In fact, some of the isa_impl templates should be moved over to
264 // CastIsPossible.
265 template <typename To, typename From>
266 struct CastIsPossible<To, std::optional<From>> {
267   static inline bool isPossible(const std::optional<From> &f) {
268     assert(f && "CastIsPossible::isPossible called on a nullopt!");
269     return isa_impl_wrap<
270         To, const From,
271         typename simplify_type<const From>::SimpleType>::doit(*f);
272   }
273 };
274 
275 /// Upcasting (from derived to base) and casting from a type to itself should
276 /// always be possible.
277 template <typename To, typename From>
278 struct CastIsPossible<To, From, std::enable_if_t<std::is_base_of_v<To, From>>> {
279   static inline bool isPossible(const From &f) { return true; }
280 };
281 
282 //===----------------------------------------------------------------------===//
283 // Cast traits
284 //===----------------------------------------------------------------------===//
285 
286 /// All of these cast traits are meant to be implementations for useful casts
287 /// that users may want to use that are outside the standard behavior. An
288 /// example of how to use a special cast called `CastTrait` is:
289 ///
290 /// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {};
291 ///
292 /// Essentially, if your use case falls directly into one of the use cases
293 /// supported by a given cast trait, simply inherit your special CastInfo
294 /// directly from one of these to avoid having to reimplement the boilerplate
295 /// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also
296 /// provide a subset of those functions.
297 
298 /// This cast trait just provides castFailed for the specified `To` type to make
299 /// CastInfo specializations more declarative. In order to use this, the target
300 /// result type must be `To` and `To` must be constructible from `nullptr`.
301 template <typename To> struct NullableValueCastFailed {
302   static To castFailed() { return To(nullptr); }
303 };
304 
305 /// This cast trait just provides the default implementation of doCastIfPossible
306 /// to make CastInfo specializations more declarative. The `Derived` template
307 /// parameter *must* be provided for forwarding castFailed and doCast.
308 template <typename To, typename From, typename Derived>
309 struct DefaultDoCastIfPossible {
310   static To doCastIfPossible(From f) {
311     if (!Derived::isPossible(f))
312       return Derived::castFailed();
313     return Derived::doCast(f);
314   }
315 };
316 
317 namespace detail {
318 /// A helper to derive the type to use with `Self` for cast traits, when the
319 /// provided CRTP derived type is allowed to be void.
320 template <typename OptionalDerived, typename Default>
321 using SelfType = std::conditional_t<std::is_same_v<OptionalDerived, void>,
322                                     Default, OptionalDerived>;
323 } // namespace detail
324 
325 /// This cast trait provides casting for the specific case of casting to a
326 /// value-typed object from a pointer-typed object. Note that `To` must be
327 /// nullable/constructible from a pointer to `From` to use this cast.
328 template <typename To, typename From, typename Derived = void>
329 struct ValueFromPointerCast
330     : public CastIsPossible<To, From *>,
331       public NullableValueCastFailed<To>,
332       public DefaultDoCastIfPossible<
333           To, From *,
334           detail::SelfType<Derived, ValueFromPointerCast<To, From>>> {
335   static inline To doCast(From *f) { return To(f); }
336 };
337 
338 /// This cast trait provides std::unique_ptr casting. It has the semantics of
339 /// moving the contents of the input unique_ptr into the output unique_ptr
340 /// during the cast. It's also a good example of how to implement a move-only
341 /// cast.
342 template <typename To, typename From, typename Derived = void>
343 struct UniquePtrCast : public CastIsPossible<To, From *> {
344   using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>;
345   using CastResultType = std::unique_ptr<
346       std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
347 
348   static inline CastResultType doCast(std::unique_ptr<From> &&f) {
349     return CastResultType((typename CastResultType::element_type *)f.release());
350   }
351 
352   static inline CastResultType castFailed() { return CastResultType(nullptr); }
353 
354   static inline CastResultType doCastIfPossible(std::unique_ptr<From> &f) {
355     if (!Self::isPossible(f.get()))
356       return castFailed();
357     return doCast(std::move(f));
358   }
359 };
360 
361 /// This cast trait provides std::optional<T> casting. This means that if you
362 /// have a value type, you can cast it to another value type and have dyn_cast
363 /// return an std::optional<T>.
364 template <typename To, typename From, typename Derived = void>
365 struct OptionalValueCast
366     : public CastIsPossible<To, From>,
367       public DefaultDoCastIfPossible<
368           std::optional<To>, From,
369           detail::SelfType<Derived, OptionalValueCast<To, From>>> {
370   static inline std::optional<To> castFailed() { return std::optional<To>{}; }
371 
372   static inline std::optional<To> doCast(const From &f) { return To(f); }
373 };
374 
375 /// Provides a cast trait that strips `const` from types to make it easier to
376 /// implement a const-version of a non-const cast. It just removes boilerplate
377 /// and reduces the amount of code you as the user need to implement. You can
378 /// use it like this:
379 ///
380 /// template<> struct CastInfo<foo, bar> {
381 ///   ...verbose implementation...
382 /// };
383 ///
384 /// template<> struct CastInfo<foo, const bar> : public
385 ///        ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {};
386 ///
387 template <typename To, typename From, typename ForwardTo>
388 struct ConstStrippingForwardingCast {
389   // Remove the pointer if it exists, then we can get rid of consts/volatiles.
390   using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>;
391   // Now if it's a pointer, add it back. Otherwise, we want a ref.
392   using NonConstFrom =
393       std::conditional_t<std::is_pointer_v<From>, DecayedFrom *, DecayedFrom &>;
394 
395   static inline bool isPossible(const From &f) {
396     return ForwardTo::isPossible(const_cast<NonConstFrom>(f));
397   }
398 
399   static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
400 
401   static inline decltype(auto) doCast(const From &f) {
402     return ForwardTo::doCast(const_cast<NonConstFrom>(f));
403   }
404 
405   static inline decltype(auto) doCastIfPossible(const From &f) {
406     return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f));
407   }
408 };
409 
410 /// Provides a cast trait that uses a defined pointer to pointer cast as a base
411 /// for reference-to-reference casts. Note that it does not provide castFailed
412 /// and doCastIfPossible because a pointer-to-pointer cast would likely just
413 /// return `nullptr` which could cause nullptr dereference. You can use it like
414 /// this:
415 ///
416 ///   template <> struct CastInfo<foo, bar *> { ... verbose implementation... };
417 ///
418 ///   template <>
419 ///   struct CastInfo<foo, bar>
420 ///       : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {};
421 ///
422 template <typename To, typename From, typename ForwardTo>
423 struct ForwardToPointerCast {
424   static inline bool isPossible(const From &f) {
425     return ForwardTo::isPossible(&f);
426   }
427 
428   static inline decltype(auto) doCast(const From &f) {
429     return *ForwardTo::doCast(&f);
430   }
431 };
432 
433 //===----------------------------------------------------------------------===//
434 // CastInfo
435 //===----------------------------------------------------------------------===//
436 
437 /// This struct provides a method for customizing the way a cast is performed.
438 /// It inherits from CastIsPossible, to support the case of declaring many
439 /// CastIsPossible specializations without having to specialize the full
440 /// CastInfo.
441 ///
442 /// In order to specialize different behaviors, specify different functions in
443 /// your CastInfo specialization.
444 /// For isa<> customization, provide:
445 ///
446 ///   `static bool isPossible(const From &f)`
447 ///
448 /// For cast<> customization, provide:
449 ///
450 ///  `static To doCast(const From &f)`
451 ///
452 /// For dyn_cast<> and the *_if_present<> variants' customization, provide:
453 ///
454 ///  `static To castFailed()` and `static To doCastIfPossible(const From &f)`
455 ///
456 /// Your specialization might look something like this:
457 ///
458 ///  template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> {
459 ///    static inline foo doCast(const bar &b) {
460 ///      return foo(const_cast<bar &>(b));
461 ///    }
462 ///    static inline foo castFailed() { return foo(); }
463 ///    static inline foo doCastIfPossible(const bar &b) {
464 ///      if (!CastInfo<foo, bar>::isPossible(b))
465 ///        return castFailed();
466 ///      return doCast(b);
467 ///    }
468 ///  };
469 
470 // The default implementations of CastInfo don't use cast traits for now because
471 // we need to specify types all over the place due to the current expected
472 // casting behavior and the way cast_retty works. New use cases can and should
473 // take advantage of the cast traits whenever possible!
474 
475 template <typename To, typename From, typename Enable = void>
476 struct CastInfo : public CastIsPossible<To, From> {
477   using Self = CastInfo<To, From, Enable>;
478 
479   using CastReturnType = typename cast_retty<To, From>::ret_type;
480 
481   static inline CastReturnType doCast(const From &f) {
482     return cast_convert_val<
483         To, From,
484         typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f));
485   }
486 
487   // This assumes that you can construct the cast return type from `nullptr`.
488   // This is largely to support legacy use cases - if you don't want this
489   // behavior you should specialize CastInfo for your use case.
490   static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
491 
492   static inline CastReturnType doCastIfPossible(const From &f) {
493     if (!Self::isPossible(f))
494       return castFailed();
495     return doCast(f);
496   }
497 };
498 
499 /// This struct provides an overload for CastInfo where From has simplify_type
500 /// defined. This simply forwards to the appropriate CastInfo with the
501 /// simplified type/value, so you don't have to implement both.
502 template <typename To, typename From>
503 struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> {
504   using Self = CastInfo<To, From>;
505   using SimpleFrom = typename simplify_type<From>::SimpleType;
506   using SimplifiedSelf = CastInfo<To, SimpleFrom>;
507 
508   static inline bool isPossible(From &f) {
509     return SimplifiedSelf::isPossible(
510         simplify_type<From>::getSimplifiedValue(f));
511   }
512 
513   static inline decltype(auto) doCast(From &f) {
514     return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f));
515   }
516 
517   static inline decltype(auto) castFailed() {
518     return SimplifiedSelf::castFailed();
519   }
520 
521   static inline decltype(auto) doCastIfPossible(From &f) {
522     return SimplifiedSelf::doCastIfPossible(
523         simplify_type<From>::getSimplifiedValue(f));
524   }
525 };
526 
527 //===----------------------------------------------------------------------===//
528 // Pre-specialized CastInfo
529 //===----------------------------------------------------------------------===//
530 
531 /// Provide a CastInfo specialized for std::unique_ptr.
532 template <typename To, typename From>
533 struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
534 
535 /// Provide a CastInfo specialized for std::optional<From>. It's assumed that if
536 /// the input is std::optional<From> that the output can be std::optional<To>.
537 /// If that's not the case, specialize CastInfo for your use case.
538 template <typename To, typename From>
539 struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> {
540 };
541 
542 /// isa<X> - Return true if the parameter to the template is an instance of one
543 /// of the template type arguments.  Used like this:
544 ///
545 ///  if (isa<Type>(myVal)) { ... }
546 ///  if (isa<Type0, Type1, Type2>(myVal)) { ... }
547 template <typename To, typename From>
548 [[nodiscard]] inline bool isa(const From &Val) {
549   return CastInfo<To, const From>::isPossible(Val);
550 }
551 
552 template <typename First, typename Second, typename... Rest, typename From>
553 [[nodiscard]] inline bool isa(const From &Val) {
554   return isa<First>(Val) || isa<Second, Rest...>(Val);
555 }
556 
557 /// cast<X> - Return the argument parameter cast to the specified type.  This
558 /// casting operator asserts that the type is correct, so it does not return
559 /// null on failure.  It does not allow a null argument (use cast_if_present for
560 /// that). It is typically used like this:
561 ///
562 ///  cast<Instruction>(myVal)->getParent()
563 
564 template <typename To, typename From>
565 [[nodiscard]] inline decltype(auto) cast(const From &Val) {
566   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
567   return CastInfo<To, const From>::doCast(Val);
568 }
569 
570 template <typename To, typename From>
571 [[nodiscard]] inline decltype(auto) cast(From &Val) {
572   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
573   return CastInfo<To, From>::doCast(Val);
574 }
575 
576 template <typename To, typename From>
577 [[nodiscard]] inline decltype(auto) cast(From *Val) {
578   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
579   return CastInfo<To, From *>::doCast(Val);
580 }
581 
582 template <typename To, typename From>
583 [[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) {
584   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
585   return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val));
586 }
587 
588 //===----------------------------------------------------------------------===//
589 // ValueIsPresent
590 //===----------------------------------------------------------------------===//
591 
592 template <typename T>
593 constexpr bool IsNullable =
594     std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>;
595 
596 /// ValueIsPresent provides a way to check if a value is, well, present. For
597 /// pointers, this is the equivalent of checking against nullptr, for Optionals
598 /// this is the equivalent of checking hasValue(). It also provides a method for
599 /// unwrapping a value (think calling .value() on an optional).
600 
601 // Generic values can't *not* be present.
602 template <typename T, typename Enable = void> struct ValueIsPresent {
603   using UnwrappedType = T;
604   static inline bool isPresent(const T &t) { return true; }
605   static inline decltype(auto) unwrapValue(T &t) { return t; }
606 };
607 
608 // Optional provides its own way to check if something is present.
609 template <typename T> struct ValueIsPresent<std::optional<T>> {
610   using UnwrappedType = T;
611   static inline bool isPresent(const std::optional<T> &t) {
612     return t.has_value();
613   }
614   static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; }
615 };
616 
617 // If something is "nullable" then we just compare it to nullptr to see if it
618 // exists.
619 template <typename T>
620 struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> {
621   using UnwrappedType = T;
622   static inline bool isPresent(const T &t) { return t != T(nullptr); }
623   static inline decltype(auto) unwrapValue(T &t) { return t; }
624 };
625 
626 namespace detail {
627 // Convenience function we can use to check if a value is present. Because of
628 // simplify_type, we have to call it on the simplified type for now.
629 template <typename T> inline bool isPresent(const T &t) {
630   return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent(
631       simplify_type<T>::getSimplifiedValue(const_cast<T &>(t)));
632 }
633 
634 // Convenience function we can use to unwrap a value.
635 template <typename T> inline decltype(auto) unwrapValue(T &t) {
636   return ValueIsPresent<T>::unwrapValue(t);
637 }
638 } // namespace detail
639 
640 /// dyn_cast<X> - Return the argument parameter cast to the specified type. This
641 /// casting operator returns null if the argument is of the wrong type, so it
642 /// can be used to test for a type as well as cast if successful. The value
643 /// passed in must be present, if not, use dyn_cast_if_present. This should be
644 /// used in the context of an if statement like this:
645 ///
646 ///  if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
647 
648 template <typename To, typename From>
649 [[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) {
650   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
651   return CastInfo<To, const From>::doCastIfPossible(Val);
652 }
653 
654 template <typename To, typename From>
655 [[nodiscard]] inline decltype(auto) dyn_cast(From &Val) {
656   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
657   return CastInfo<To, From>::doCastIfPossible(Val);
658 }
659 
660 template <typename To, typename From>
661 [[nodiscard]] inline decltype(auto) dyn_cast(From *Val) {
662   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
663   return CastInfo<To, From *>::doCastIfPossible(Val);
664 }
665 
666 template <typename To, typename From>
667 [[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &Val) {
668   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
669   return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(Val);
670 }
671 
672 /// isa_and_present<X> - Functionally identical to isa, except that a null value
673 /// is accepted.
674 template <typename... X, class Y>
675 [[nodiscard]] inline bool isa_and_present(const Y &Val) {
676   if (!detail::isPresent(Val))
677     return false;
678   return isa<X...>(Val);
679 }
680 
681 template <typename... X, class Y>
682 [[nodiscard]] inline bool isa_and_nonnull(const Y &Val) {
683   return isa_and_present<X...>(Val);
684 }
685 
686 /// cast_if_present<X> - Functionally identical to cast, except that a null
687 /// value is accepted.
688 template <class X, class Y>
689 [[nodiscard]] inline auto cast_if_present(const Y &Val) {
690   if (!detail::isPresent(Val))
691     return CastInfo<X, const Y>::castFailed();
692   assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!");
693   return cast<X>(detail::unwrapValue(Val));
694 }
695 
696 template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) {
697   if (!detail::isPresent(Val))
698     return CastInfo<X, Y>::castFailed();
699   assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!");
700   return cast<X>(detail::unwrapValue(Val));
701 }
702 
703 template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) {
704   if (!detail::isPresent(Val))
705     return CastInfo<X, Y *>::castFailed();
706   assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!");
707   return cast<X>(detail::unwrapValue(Val));
708 }
709 
710 template <class X, class Y>
711 [[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) {
712   if (!detail::isPresent(Val))
713     return UniquePtrCast<X, Y>::castFailed();
714   return UniquePtrCast<X, Y>::doCast(std::move(Val));
715 }
716 
717 // Provide a forwarding from cast_or_null to cast_if_present for current
718 // users. This is deprecated and will be removed in a future patch, use
719 // cast_if_present instead.
720 template <class X, class Y> auto cast_or_null(const Y &Val) {
721   return cast_if_present<X>(Val);
722 }
723 
724 template <class X, class Y> auto cast_or_null(Y &Val) {
725   return cast_if_present<X>(Val);
726 }
727 
728 template <class X, class Y> auto cast_or_null(Y *Val) {
729   return cast_if_present<X>(Val);
730 }
731 
732 template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) {
733   return cast_if_present<X>(std::move(Val));
734 }
735 
736 /// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a
737 /// null (or none in the case of optionals) value is accepted.
738 template <class X, class Y> auto dyn_cast_if_present(const Y &Val) {
739   if (!detail::isPresent(Val))
740     return CastInfo<X, const Y>::castFailed();
741   return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val));
742 }
743 
744 template <class X, class Y> auto dyn_cast_if_present(Y &Val) {
745   if (!detail::isPresent(Val))
746     return CastInfo<X, Y>::castFailed();
747   return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val));
748 }
749 
750 template <class X, class Y> auto dyn_cast_if_present(Y *Val) {
751   if (!detail::isPresent(Val))
752     return CastInfo<X, Y *>::castFailed();
753   return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val));
754 }
755 
756 // Forwards to dyn_cast_if_present to avoid breaking current users. This is
757 // deprecated and will be removed in a future patch, use
758 // cast_if_present instead.
759 template <class X, class Y> auto dyn_cast_or_null(const Y &Val) {
760   return dyn_cast_if_present<X>(Val);
761 }
762 
763 template <class X, class Y> auto dyn_cast_or_null(Y &Val) {
764   return dyn_cast_if_present<X>(Val);
765 }
766 
767 template <class X, class Y> auto dyn_cast_or_null(Y *Val) {
768   return dyn_cast_if_present<X>(Val);
769 }
770 
771 /// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
772 /// taking ownership of the input pointer iff isa<X>(Val) is true.  If the
773 /// cast is successful, From refers to nullptr on exit and the casted value
774 /// is returned.  If the cast is unsuccessful, the function returns nullptr
775 /// and From is unchanged.
776 template <class X, class Y>
777 [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
778 unique_dyn_cast(std::unique_ptr<Y> &Val) {
779   if (!isa<X>(Val))
780     return nullptr;
781   return cast<X>(std::move(Val));
782 }
783 
784 template <class X, class Y>
785 [[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
786   return unique_dyn_cast<X, Y>(Val);
787 }
788 
789 // unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast,
790 // except that a null value is accepted.
791 template <class X, class Y>
792 [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
793 unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) {
794   if (!Val)
795     return nullptr;
796   return unique_dyn_cast<X, Y>(Val);
797 }
798 
799 template <class X, class Y>
800 [[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
801   return unique_dyn_cast_or_null<X, Y>(Val);
802 }
803 
804 } // end namespace llvm
805 
806 #endif // LLVM_SUPPORT_CASTING_H
807