1 //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a Union-find algorithm to compute Minimum Spanning Tree
10 // for a given CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_INSTRUMENTATION_CFGMST_H
15 #define LLVM_TRANSFORMS_INSTRUMENTATION_CFGMST_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/Support/BranchProbability.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include <utility>
29 #include <vector>
30 
31 #define DEBUG_TYPE "cfgmst"
32 
33 namespace llvm {
34 
35 /// An union-find based Minimum Spanning Tree for CFG
36 ///
37 /// Implements a Union-find algorithm to compute Minimum Spanning Tree
38 /// for a given CFG.
39 template <class Edge, class BBInfo> class CFGMST {
40   Function &F;
41 
42   // Store all the edges in CFG. It may contain some stale edges
43   // when Removed is set.
44   std::vector<std::unique_ptr<Edge>> AllEdges;
45 
46   // This map records the auxiliary information for each BB.
47   DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
48 
49   // Whehter the function has an exit block with no successors.
50   // (For function with an infinite loop, this block may be absent)
51   bool ExitBlockFound = false;
52 
53   BranchProbabilityInfo *const BPI;
54   BlockFrequencyInfo *const BFI;
55 
56   // If function entry will be always instrumented.
57   const bool InstrumentFuncEntry;
58 
59   // Find the root group of the G and compress the path from G to the root.
findAndCompressGroup(BBInfo * G)60   BBInfo *findAndCompressGroup(BBInfo *G) {
61     if (G->Group != G)
62       G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
63     return static_cast<BBInfo *>(G->Group);
64   }
65 
66   // Union BB1 and BB2 into the same group and return true.
67   // Returns false if BB1 and BB2 are already in the same group.
unionGroups(const BasicBlock * BB1,const BasicBlock * BB2)68   bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
69     BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
70     BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
71 
72     if (BB1G == BB2G)
73       return false;
74 
75     // Make the smaller rank tree a direct child or the root of high rank tree.
76     if (BB1G->Rank < BB2G->Rank)
77       BB1G->Group = BB2G;
78     else {
79       BB2G->Group = BB1G;
80       // If the ranks are the same, increment root of one tree by one.
81       if (BB1G->Rank == BB2G->Rank)
82         BB1G->Rank++;
83     }
84     return true;
85   }
86 
handleCoroSuspendEdge(Edge * E)87   void handleCoroSuspendEdge(Edge *E) {
88     // We must not add instrumentation to the BB representing the
89     // "suspend" path, else CoroSplit won't be able to lower
90     // llvm.coro.suspend to a tail call. We do want profiling info for
91     // the other branches (resume/destroy). So we do 2 things:
92     // 1. we prefer instrumenting those other edges by setting the weight
93     //    of the "suspend" edge to max, and
94     // 2. we mark the edge as "Removed" to guarantee it is not considered
95     //    for instrumentation. That could technically happen:
96     //    (from test/Transforms/Coroutines/coro-split-musttail.ll)
97     //
98     // %suspend = call i8 @llvm.coro.suspend(token %save, i1 false)
99     // switch i8 %suspend, label %exit [
100     //   i8 0, label %await.ready
101     //   i8 1, label %exit
102     // ]
103     if (!E->DestBB)
104       return;
105     assert(E->SrcBB);
106     if (llvm::isPresplitCoroSuspendExitEdge(*E->SrcBB, *E->DestBB))
107       E->Removed = true;
108   }
109 
110   // Traverse the CFG using a stack. Find all the edges and assign the weight.
111   // Edges with large weight will be put into MST first so they are less likely
112   // to be instrumented.
buildEdges()113   void buildEdges() {
114     LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
115 
116     BasicBlock *Entry = &(F.getEntryBlock());
117     uint64_t EntryWeight =
118         (BFI != nullptr ? BFI->getEntryFreq().getFrequency() : 2);
119     // If we want to instrument the entry count, lower the weight to 0.
120     if (InstrumentFuncEntry)
121       EntryWeight = 0;
122     Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
123          *ExitOutgoing = nullptr, *ExitIncoming = nullptr;
124     uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
125 
126     // Add a fake edge to the entry.
127     EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
128     LLVM_DEBUG(dbgs() << "  Edge: from fake node to " << Entry->getName()
129                       << " w = " << EntryWeight << "\n");
130 
131     // Special handling for single BB functions.
132     if (succ_empty(Entry)) {
133       addEdge(Entry, nullptr, EntryWeight);
134       return;
135     }
136 
137     static const uint32_t CriticalEdgeMultiplier = 1000;
138 
139     for (BasicBlock &BB : F) {
140       Instruction *TI = BB.getTerminator();
141       uint64_t BBWeight =
142           (BFI != nullptr ? BFI->getBlockFreq(&BB).getFrequency() : 2);
143       uint64_t Weight = 2;
144       if (int successors = TI->getNumSuccessors()) {
145         for (int i = 0; i != successors; ++i) {
146           BasicBlock *TargetBB = TI->getSuccessor(i);
147           bool Critical = isCriticalEdge(TI, i);
148           uint64_t scaleFactor = BBWeight;
149           if (Critical) {
150             if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
151               scaleFactor *= CriticalEdgeMultiplier;
152             else
153               scaleFactor = UINT64_MAX;
154           }
155           if (BPI != nullptr)
156             Weight = BPI->getEdgeProbability(&BB, TargetBB).scale(scaleFactor);
157           if (Weight == 0)
158             Weight++;
159           auto *E = &addEdge(&BB, TargetBB, Weight);
160           E->IsCritical = Critical;
161           handleCoroSuspendEdge(E);
162           LLVM_DEBUG(dbgs() << "  Edge: from " << BB.getName() << " to "
163                             << TargetBB->getName() << "  w=" << Weight << "\n");
164 
165           // Keep track of entry/exit edges:
166           if (&BB == Entry) {
167             if (Weight > MaxEntryOutWeight) {
168               MaxEntryOutWeight = Weight;
169               EntryOutgoing = E;
170             }
171           }
172 
173           auto *TargetTI = TargetBB->getTerminator();
174           if (TargetTI && !TargetTI->getNumSuccessors()) {
175             if (Weight > MaxExitInWeight) {
176               MaxExitInWeight = Weight;
177               ExitIncoming = E;
178             }
179           }
180         }
181       } else {
182         ExitBlockFound = true;
183         Edge *ExitO = &addEdge(&BB, nullptr, BBWeight);
184         if (BBWeight > MaxExitOutWeight) {
185           MaxExitOutWeight = BBWeight;
186           ExitOutgoing = ExitO;
187         }
188         LLVM_DEBUG(dbgs() << "  Edge: from " << BB.getName() << " to fake exit"
189                           << " w = " << BBWeight << "\n");
190       }
191     }
192 
193     // Entry/exit edge adjustment heurisitic:
194     // prefer instrumenting entry edge over exit edge
195     // if possible. Those exit edges may never have a chance to be
196     // executed (for instance the program is an event handling loop)
197     // before the profile is asynchronously dumped.
198     //
199     // If EntryIncoming and ExitOutgoing has similar weight, make sure
200     // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
201     // and ExitIncoming has similar weight, make sure ExitIncoming becomes
202     // the min-edge.
203     uint64_t EntryInWeight = EntryWeight;
204 
205     if (EntryInWeight >= MaxExitOutWeight &&
206         EntryInWeight * 2 < MaxExitOutWeight * 3) {
207       EntryIncoming->Weight = MaxExitOutWeight;
208       ExitOutgoing->Weight = EntryInWeight + 1;
209     }
210 
211     if (MaxEntryOutWeight >= MaxExitInWeight &&
212         MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
213       EntryOutgoing->Weight = MaxExitInWeight;
214       ExitIncoming->Weight = MaxEntryOutWeight + 1;
215     }
216   }
217 
218   // Sort CFG edges based on its weight.
sortEdgesByWeight()219   void sortEdgesByWeight() {
220     llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
221                                    const std::unique_ptr<Edge> &Edge2) {
222       return Edge1->Weight > Edge2->Weight;
223     });
224   }
225 
226   // Traverse all the edges and compute the Minimum Weight Spanning Tree
227   // using union-find algorithm.
computeMinimumSpanningTree()228   void computeMinimumSpanningTree() {
229     // First, put all the critical edge with landing-pad as the Dest to MST.
230     // This works around the insufficient support of critical edges split
231     // when destination BB is a landing pad.
232     for (auto &Ei : AllEdges) {
233       if (Ei->Removed)
234         continue;
235       if (Ei->IsCritical) {
236         if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
237           if (unionGroups(Ei->SrcBB, Ei->DestBB))
238             Ei->InMST = true;
239         }
240       }
241     }
242 
243     for (auto &Ei : AllEdges) {
244       if (Ei->Removed)
245         continue;
246       // If we detect infinite loops, force
247       // instrumenting the entry edge:
248       if (!ExitBlockFound && Ei->SrcBB == nullptr)
249         continue;
250       if (unionGroups(Ei->SrcBB, Ei->DestBB))
251         Ei->InMST = true;
252     }
253   }
254 
255 public:
256   // Dump the Debug information about the instrumentation.
dumpEdges(raw_ostream & OS,const Twine & Message)257   void dumpEdges(raw_ostream &OS, const Twine &Message) const {
258     if (!Message.str().empty())
259       OS << Message << "\n";
260     OS << "  Number of Basic Blocks: " << BBInfos.size() << "\n";
261     for (auto &BI : BBInfos) {
262       const BasicBlock *BB = BI.first;
263       OS << "  BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << "  "
264          << BI.second->infoString() << "\n";
265     }
266 
267     OS << "  Number of Edges: " << AllEdges.size()
268        << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
269     uint32_t Count = 0;
270     for (auto &EI : AllEdges)
271       OS << "  Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
272          << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
273   }
274 
275   // Add an edge to AllEdges with weight W.
addEdge(BasicBlock * Src,BasicBlock * Dest,uint64_t W)276   Edge &addEdge(BasicBlock *Src, BasicBlock *Dest, uint64_t W) {
277     uint32_t Index = BBInfos.size();
278     auto Iter = BBInfos.end();
279     bool Inserted;
280     std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
281     if (Inserted) {
282       // Newly inserted, update the real info.
283       Iter->second = std::move(std::make_unique<BBInfo>(Index));
284       Index++;
285     }
286     std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
287     if (Inserted)
288       // Newly inserted, update the real info.
289       Iter->second = std::move(std::make_unique<BBInfo>(Index));
290     AllEdges.emplace_back(new Edge(Src, Dest, W));
291     return *AllEdges.back();
292   }
293 
294   CFGMST(Function &Func, bool InstrumentFuncEntry,
295          BranchProbabilityInfo *BPI = nullptr,
296          BlockFrequencyInfo *BFI = nullptr)
F(Func)297       : F(Func), BPI(BPI), BFI(BFI), InstrumentFuncEntry(InstrumentFuncEntry) {
298     buildEdges();
299     sortEdgesByWeight();
300     computeMinimumSpanningTree();
301     if (AllEdges.size() > 1 && InstrumentFuncEntry)
302       std::iter_swap(std::move(AllEdges.begin()),
303                      std::move(AllEdges.begin() + AllEdges.size() - 1));
304   }
305 
allEdges()306   const std::vector<std::unique_ptr<Edge>> &allEdges() const {
307     return AllEdges;
308   }
309 
allEdges()310   std::vector<std::unique_ptr<Edge>> &allEdges() { return AllEdges; }
311 
numEdges()312   size_t numEdges() const { return AllEdges.size(); }
313 
bbInfoSize()314   size_t bbInfoSize() const { return BBInfos.size(); }
315 
316   // Give BB, return the auxiliary information.
getBBInfo(const BasicBlock * BB)317   BBInfo &getBBInfo(const BasicBlock *BB) const {
318     auto It = BBInfos.find(BB);
319     assert(It->second.get() != nullptr);
320     return *It->second.get();
321   }
322 
323   // Give BB, return the auxiliary information if it's available.
findBBInfo(const BasicBlock * BB)324   BBInfo *findBBInfo(const BasicBlock *BB) const {
325     auto It = BBInfos.find(BB);
326     if (It == BBInfos.end())
327       return nullptr;
328     return It->second.get();
329   }
330 };
331 
332 } // end namespace llvm
333 
334 #undef DEBUG_TYPE // "cfgmst"
335 
336 #endif // LLVM_TRANSFORMS_INSTRUMENTATION_CFGMST_H
337