1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Analysis/MemoryLocation.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 
27 using namespace llvm;
28 
isAligned(const Value * Base,const APInt & Offset,Align Alignment,const DataLayout & DL)29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
30                       const DataLayout &DL) {
31   Align BA = Base->getPointerAlignment(DL);
32   return BA >= Alignment && Offset.isAligned(BA);
33 }
34 
35 /// Test if V is always a pointer to allocated and suitably aligned memory for
36 /// a simple load or store.
isDereferenceableAndAlignedPointer(const Value * V,Align Alignment,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,AssumptionCache * AC,const DominatorTree * DT,const TargetLibraryInfo * TLI,SmallPtrSetImpl<const Value * > & Visited,unsigned MaxDepth)37 static bool isDereferenceableAndAlignedPointer(
38     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
39     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
40     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
41     unsigned MaxDepth) {
42   assert(V->getType()->isPointerTy() && "Base must be pointer");
43 
44   // Recursion limit.
45   if (MaxDepth-- == 0)
46     return false;
47 
48   // Already visited?  Bail out, we've likely hit unreachable code.
49   if (!Visited.insert(V).second)
50     return false;
51 
52   // Note that it is not safe to speculate into a malloc'd region because
53   // malloc may return null.
54 
55   // For GEPs, determine if the indexing lands within the allocated object.
56   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
57     const Value *Base = GEP->getPointerOperand();
58 
59     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
60     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
61         !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
62              .isMinValue())
63       return false;
64 
65     // If the base pointer is dereferenceable for Offset+Size bytes, then the
66     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
67     // pointer is aligned to Align bytes, and the Offset is divisible by Align
68     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
69     // aligned to Align bytes.
70 
71     // Offset and Size may have different bit widths if we have visited an
72     // addrspacecast, so we can't do arithmetic directly on the APInt values.
73     return isDereferenceableAndAlignedPointer(
74         Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
75         CtxI, AC, DT, TLI, Visited, MaxDepth);
76   }
77 
78   // bitcast instructions are no-ops as far as dereferenceability is concerned.
79   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
80     if (BC->getSrcTy()->isPointerTy())
81       return isDereferenceableAndAlignedPointer(
82         BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI,
83           Visited, MaxDepth);
84   }
85 
86   // Recurse into both hands of select.
87   if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
88     return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
89                                               Size, DL, CtxI, AC, DT, TLI,
90                                               Visited, MaxDepth) &&
91            isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
92                                               Size, DL, CtxI, AC, DT, TLI,
93                                               Visited, MaxDepth);
94   }
95 
96   bool CheckForNonNull, CheckForFreed;
97   APInt KnownDerefBytes(Size.getBitWidth(),
98                         V->getPointerDereferenceableBytes(DL, CheckForNonNull,
99                                                           CheckForFreed));
100   if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
101       !CheckForFreed)
102     if (!CheckForNonNull || isKnownNonZero(V, DL, 0, AC, CtxI, DT)) {
103       // As we recursed through GEPs to get here, we've incrementally checked
104       // that each step advanced by a multiple of the alignment. If our base is
105       // properly aligned, then the original offset accessed must also be.
106       APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
107       return isAligned(V, Offset, Alignment, DL);
108     }
109 
110   /// TODO refactor this function to be able to search independently for
111   /// Dereferencability and Alignment requirements.
112 
113 
114   if (const auto *Call = dyn_cast<CallBase>(V)) {
115     if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
116       return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
117                                                 AC, DT, TLI, Visited, MaxDepth);
118 
119     // If we have a call we can't recurse through, check to see if this is an
120     // allocation function for which we can establish an minimum object size.
121     // Such a minimum object size is analogous to a deref_or_null attribute in
122     // that we still need to prove the result non-null at point of use.
123     // NOTE: We can only use the object size as a base fact as we a) need to
124     // prove alignment too, and b) don't want the compile time impact of a
125     // separate recursive walk.
126     ObjectSizeOpts Opts;
127     // TODO: It may be okay to round to align, but that would imply that
128     // accessing slightly out of bounds was legal, and we're currently
129     // inconsistent about that.  For the moment, be conservative.
130     Opts.RoundToAlign = false;
131     Opts.NullIsUnknownSize = true;
132     uint64_t ObjSize;
133     if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
134       APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
135       if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
136           isKnownNonZero(V, DL, 0, AC, CtxI, DT) && !V->canBeFreed()) {
137         // As we recursed through GEPs to get here, we've incrementally
138         // checked that each step advanced by a multiple of the alignment. If
139         // our base is properly aligned, then the original offset accessed
140         // must also be.
141         APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
142         return isAligned(V, Offset, Alignment, DL);
143       }
144     }
145   }
146 
147   // For gc.relocate, look through relocations
148   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
149     return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
150                                               Alignment, Size, DL, CtxI, AC, DT,
151                                               TLI, Visited, MaxDepth);
152 
153   if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
154     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
155                                               Size, DL, CtxI, AC, DT, TLI,
156                                               Visited, MaxDepth);
157 
158   if (CtxI) {
159     /// Look through assumes to see if both dereferencability and alignment can
160     /// be provent by an assume
161     RetainedKnowledge AlignRK;
162     RetainedKnowledge DerefRK;
163     if (getKnowledgeForValue(
164             V, {Attribute::Dereferenceable, Attribute::Alignment}, AC,
165             [&](RetainedKnowledge RK, Instruction *Assume, auto) {
166               if (!isValidAssumeForContext(Assume, CtxI))
167                 return false;
168               if (RK.AttrKind == Attribute::Alignment)
169                 AlignRK = std::max(AlignRK, RK);
170               if (RK.AttrKind == Attribute::Dereferenceable)
171                 DerefRK = std::max(DerefRK, RK);
172               if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
173                   DerefRK.ArgValue >= Size.getZExtValue())
174                 return true; // We have found what we needed so we stop looking
175               return false;  // Other assumes may have better information. so
176                              // keep looking
177             }))
178       return true;
179   }
180 
181   // If we don't know, assume the worst.
182   return false;
183 }
184 
isDereferenceableAndAlignedPointer(const Value * V,Align Alignment,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,AssumptionCache * AC,const DominatorTree * DT,const TargetLibraryInfo * TLI)185 bool llvm::isDereferenceableAndAlignedPointer(
186     const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
187     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
188     const TargetLibraryInfo *TLI) {
189   // Note: At the moment, Size can be zero.  This ends up being interpreted as
190   // a query of whether [Base, V] is dereferenceable and V is aligned (since
191   // that's what the implementation happened to do).  It's unclear if this is
192   // the desired semantic, but at least SelectionDAG does exercise this case.
193 
194   SmallPtrSet<const Value *, 32> Visited;
195   return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC,
196                                               DT, TLI, Visited, 16);
197 }
198 
isDereferenceableAndAlignedPointer(const Value * V,Type * Ty,Align Alignment,const DataLayout & DL,const Instruction * CtxI,AssumptionCache * AC,const DominatorTree * DT,const TargetLibraryInfo * TLI)199 bool llvm::isDereferenceableAndAlignedPointer(
200     const Value *V, Type *Ty, Align Alignment, const DataLayout &DL,
201     const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
202     const TargetLibraryInfo *TLI) {
203   // For unsized types or scalable vectors we don't know exactly how many bytes
204   // are dereferenced, so bail out.
205   if (!Ty->isSized() || Ty->isScalableTy())
206     return false;
207 
208   // When dereferenceability information is provided by a dereferenceable
209   // attribute, we know exactly how many bytes are dereferenceable. If we can
210   // determine the exact offset to the attributed variable, we can use that
211   // information here.
212 
213   APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
214                    DL.getTypeStoreSize(Ty));
215   return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
216                                             AC, DT, TLI);
217 }
218 
isDereferenceablePointer(const Value * V,Type * Ty,const DataLayout & DL,const Instruction * CtxI,AssumptionCache * AC,const DominatorTree * DT,const TargetLibraryInfo * TLI)219 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
220                                     const DataLayout &DL,
221                                     const Instruction *CtxI,
222                                     AssumptionCache *AC,
223                                     const DominatorTree *DT,
224                                     const TargetLibraryInfo *TLI) {
225   return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT,
226                                             TLI);
227 }
228 
229 /// Test if A and B will obviously have the same value.
230 ///
231 /// This includes recognizing that %t0 and %t1 will have the same
232 /// value in code like this:
233 /// \code
234 ///   %t0 = getelementptr \@a, 0, 3
235 ///   store i32 0, i32* %t0
236 ///   %t1 = getelementptr \@a, 0, 3
237 ///   %t2 = load i32* %t1
238 /// \endcode
239 ///
AreEquivalentAddressValues(const Value * A,const Value * B)240 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
241   // Test if the values are trivially equivalent.
242   if (A == B)
243     return true;
244 
245   // Test if the values come from identical arithmetic instructions.
246   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
247   // this function is only used when one address use dominates the
248   // other, which means that they'll always either have the same
249   // value or one of them will have an undefined value.
250   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
251       isa<GetElementPtrInst>(A))
252     if (const Instruction *BI = dyn_cast<Instruction>(B))
253       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
254         return true;
255 
256   // Otherwise they may not be equivalent.
257   return false;
258 }
259 
isDereferenceableAndAlignedInLoop(LoadInst * LI,Loop * L,ScalarEvolution & SE,DominatorTree & DT,AssumptionCache * AC)260 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
261                                              ScalarEvolution &SE,
262                                              DominatorTree &DT,
263                                              AssumptionCache *AC) {
264   auto &DL = LI->getModule()->getDataLayout();
265   Value *Ptr = LI->getPointerOperand();
266 
267   APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
268                 DL.getTypeStoreSize(LI->getType()).getFixedValue());
269   const Align Alignment = LI->getAlign();
270 
271   Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
272 
273   // If given a uniform (i.e. non-varying) address, see if we can prove the
274   // access is safe within the loop w/o needing predication.
275   if (L->isLoopInvariant(Ptr))
276     return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
277                                               HeaderFirstNonPHI, AC, &DT);
278 
279   // Otherwise, check to see if we have a repeating access pattern where we can
280   // prove that all accesses are well aligned and dereferenceable.
281   auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
282   if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
283     return false;
284   auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
285   if (!Step)
286     return false;
287 
288   auto TC = SE.getSmallConstantMaxTripCount(L);
289   if (!TC)
290     return false;
291 
292   // TODO: Handle overlapping accesses.
293   // We should be computing AccessSize as (TC - 1) * Step + EltSize.
294   if (EltSize.sgt(Step->getAPInt()))
295     return false;
296 
297   // Compute the total access size for access patterns with unit stride and
298   // patterns with gaps. For patterns with unit stride, Step and EltSize are the
299   // same.
300   // For patterns with gaps (i.e. non unit stride), we are
301   // accessing EltSize bytes at every Step.
302   APInt AccessSize = TC * Step->getAPInt();
303 
304   assert(SE.isLoopInvariant(AddRec->getStart(), L) &&
305          "implied by addrec definition");
306   Value *Base = nullptr;
307   if (auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart())) {
308     Base = StartS->getValue();
309   } else if (auto *StartS = dyn_cast<SCEVAddExpr>(AddRec->getStart())) {
310     // Handle (NewBase + offset) as start value.
311     const auto *Offset = dyn_cast<SCEVConstant>(StartS->getOperand(0));
312     const auto *NewBase = dyn_cast<SCEVUnknown>(StartS->getOperand(1));
313     if (StartS->getNumOperands() == 2 && Offset && NewBase) {
314       // For the moment, restrict ourselves to the case where the offset is a
315       // multiple of the requested alignment and the base is aligned.
316       // TODO: generalize if a case found which warrants
317       if (Offset->getAPInt().urem(Alignment.value()) != 0)
318         return false;
319       Base = NewBase->getValue();
320       bool Overflow = false;
321       AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow);
322       if (Overflow)
323         return false;
324     }
325   }
326 
327   if (!Base)
328     return false;
329 
330   // For the moment, restrict ourselves to the case where the access size is a
331   // multiple of the requested alignment and the base is aligned.
332   // TODO: generalize if a case found which warrants
333   if (EltSize.urem(Alignment.value()) != 0)
334     return false;
335   return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
336                                             HeaderFirstNonPHI, AC, &DT);
337 }
338 
339 /// Check if executing a load of this pointer value cannot trap.
340 ///
341 /// If DT and ScanFrom are specified this method performs context-sensitive
342 /// analysis and returns true if it is safe to load immediately before ScanFrom.
343 ///
344 /// If it is not obviously safe to load from the specified pointer, we do
345 /// a quick local scan of the basic block containing \c ScanFrom, to determine
346 /// if the address is already accessed.
347 ///
348 /// This uses the pointee type to determine how many bytes need to be safe to
349 /// load from the pointer.
isSafeToLoadUnconditionally(Value * V,Align Alignment,APInt & Size,const DataLayout & DL,Instruction * ScanFrom,AssumptionCache * AC,const DominatorTree * DT,const TargetLibraryInfo * TLI)350 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
351                                        const DataLayout &DL,
352                                        Instruction *ScanFrom,
353                                        AssumptionCache *AC,
354                                        const DominatorTree *DT,
355                                        const TargetLibraryInfo *TLI) {
356   // If DT is not specified we can't make context-sensitive query
357   const Instruction* CtxI = DT ? ScanFrom : nullptr;
358   if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT,
359                                          TLI))
360     return true;
361 
362   if (!ScanFrom)
363     return false;
364 
365   if (Size.getBitWidth() > 64)
366     return false;
367   const TypeSize LoadSize = TypeSize::getFixed(Size.getZExtValue());
368 
369   // Otherwise, be a little bit aggressive by scanning the local block where we
370   // want to check to see if the pointer is already being loaded or stored
371   // from/to.  If so, the previous load or store would have already trapped,
372   // so there is no harm doing an extra load (also, CSE will later eliminate
373   // the load entirely).
374   BasicBlock::iterator BBI = ScanFrom->getIterator(),
375                        E = ScanFrom->getParent()->begin();
376 
377   // We can at least always strip pointer casts even though we can't use the
378   // base here.
379   V = V->stripPointerCasts();
380 
381   while (BBI != E) {
382     --BBI;
383 
384     // If we see a free or a call which may write to memory (i.e. which might do
385     // a free) the pointer could be marked invalid.
386     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
387         !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
388       return false;
389 
390     Value *AccessedPtr;
391     Type *AccessedTy;
392     Align AccessedAlign;
393     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
394       // Ignore volatile loads. The execution of a volatile load cannot
395       // be used to prove an address is backed by regular memory; it can,
396       // for example, point to an MMIO register.
397       if (LI->isVolatile())
398         continue;
399       AccessedPtr = LI->getPointerOperand();
400       AccessedTy = LI->getType();
401       AccessedAlign = LI->getAlign();
402     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
403       // Ignore volatile stores (see comment for loads).
404       if (SI->isVolatile())
405         continue;
406       AccessedPtr = SI->getPointerOperand();
407       AccessedTy = SI->getValueOperand()->getType();
408       AccessedAlign = SI->getAlign();
409     } else
410       continue;
411 
412     if (AccessedAlign < Alignment)
413       continue;
414 
415     // Handle trivial cases.
416     if (AccessedPtr == V &&
417         TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
418       return true;
419 
420     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
421         TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
422       return true;
423   }
424   return false;
425 }
426 
isSafeToLoadUnconditionally(Value * V,Type * Ty,Align Alignment,const DataLayout & DL,Instruction * ScanFrom,AssumptionCache * AC,const DominatorTree * DT,const TargetLibraryInfo * TLI)427 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
428                                        const DataLayout &DL,
429                                        Instruction *ScanFrom,
430                                        AssumptionCache *AC,
431                                        const DominatorTree *DT,
432                                        const TargetLibraryInfo *TLI) {
433   TypeSize TySize = DL.getTypeStoreSize(Ty);
434   if (TySize.isScalable())
435     return false;
436   APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
437   return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT,
438                                      TLI);
439 }
440 
441 /// DefMaxInstsToScan - the default number of maximum instructions
442 /// to scan in the block, used by FindAvailableLoadedValue().
443 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
444 /// threading in part by eliminating partially redundant loads.
445 /// At that point, the value of MaxInstsToScan was already set to '6'
446 /// without documented explanation.
447 cl::opt<unsigned>
448 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
449   cl::desc("Use this to specify the default maximum number of instructions "
450            "to scan backward from a given instruction, when searching for "
451            "available loaded value"));
452 
FindAvailableLoadedValue(LoadInst * Load,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,BatchAAResults * AA,bool * IsLoad,unsigned * NumScanedInst)453 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
454                                       BasicBlock::iterator &ScanFrom,
455                                       unsigned MaxInstsToScan,
456                                       BatchAAResults *AA, bool *IsLoad,
457                                       unsigned *NumScanedInst) {
458   // Don't CSE load that is volatile or anything stronger than unordered.
459   if (!Load->isUnordered())
460     return nullptr;
461 
462   MemoryLocation Loc = MemoryLocation::get(Load);
463   return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
464                                    ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
465                                    NumScanedInst);
466 }
467 
468 // Check if the load and the store have the same base, constant offsets and
469 // non-overlapping access ranges.
areNonOverlapSameBaseLoadAndStore(const Value * LoadPtr,Type * LoadTy,const Value * StorePtr,Type * StoreTy,const DataLayout & DL)470 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
471                                               Type *LoadTy,
472                                               const Value *StorePtr,
473                                               Type *StoreTy,
474                                               const DataLayout &DL) {
475   APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
476   APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
477   const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
478       DL, LoadOffset, /* AllowNonInbounds */ false);
479   const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
480       DL, StoreOffset, /* AllowNonInbounds */ false);
481   if (LoadBase != StoreBase)
482     return false;
483   auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
484   auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
485   ConstantRange LoadRange(LoadOffset,
486                           LoadOffset + LoadAccessSize.toRaw());
487   ConstantRange StoreRange(StoreOffset,
488                            StoreOffset + StoreAccessSize.toRaw());
489   return LoadRange.intersectWith(StoreRange).isEmptySet();
490 }
491 
getAvailableLoadStore(Instruction * Inst,const Value * Ptr,Type * AccessTy,bool AtLeastAtomic,const DataLayout & DL,bool * IsLoadCSE)492 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
493                                     Type *AccessTy, bool AtLeastAtomic,
494                                     const DataLayout &DL, bool *IsLoadCSE) {
495   // If this is a load of Ptr, the loaded value is available.
496   // (This is true even if the load is volatile or atomic, although
497   // those cases are unlikely.)
498   if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
499     // We can value forward from an atomic to a non-atomic, but not the
500     // other way around.
501     if (LI->isAtomic() < AtLeastAtomic)
502       return nullptr;
503 
504     Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
505     if (!AreEquivalentAddressValues(LoadPtr, Ptr))
506       return nullptr;
507 
508     if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
509       if (IsLoadCSE)
510         *IsLoadCSE = true;
511       return LI;
512     }
513   }
514 
515   // If this is a store through Ptr, the value is available!
516   // (This is true even if the store is volatile or atomic, although
517   // those cases are unlikely.)
518   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
519     // We can value forward from an atomic to a non-atomic, but not the
520     // other way around.
521     if (SI->isAtomic() < AtLeastAtomic)
522       return nullptr;
523 
524     Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
525     if (!AreEquivalentAddressValues(StorePtr, Ptr))
526       return nullptr;
527 
528     if (IsLoadCSE)
529       *IsLoadCSE = false;
530 
531     Value *Val = SI->getValueOperand();
532     if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
533       return Val;
534 
535     TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
536     TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
537     if (TypeSize::isKnownLE(LoadSize, StoreSize))
538       if (auto *C = dyn_cast<Constant>(Val))
539         return ConstantFoldLoadFromConst(C, AccessTy, DL);
540   }
541 
542   if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
543     // Don't forward from (non-atomic) memset to atomic load.
544     if (AtLeastAtomic)
545       return nullptr;
546 
547     // Only handle constant memsets.
548     auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
549     auto *Len = dyn_cast<ConstantInt>(MSI->getLength());
550     if (!Val || !Len)
551       return nullptr;
552 
553     // TODO: Handle offsets.
554     Value *Dst = MSI->getDest();
555     if (!AreEquivalentAddressValues(Dst, Ptr))
556       return nullptr;
557 
558     if (IsLoadCSE)
559       *IsLoadCSE = false;
560 
561     TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy);
562     if (LoadTypeSize.isScalable())
563       return nullptr;
564 
565     // Make sure the read bytes are contained in the memset.
566     uint64_t LoadSize = LoadTypeSize.getFixedValue();
567     if ((Len->getValue() * 8).ult(LoadSize))
568       return nullptr;
569 
570     APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue())
571                                 : Val->getValue().trunc(LoadSize);
572     ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat);
573     if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL))
574       return SplatC;
575 
576     return nullptr;
577   }
578 
579   return nullptr;
580 }
581 
findAvailablePtrLoadStore(const MemoryLocation & Loc,Type * AccessTy,bool AtLeastAtomic,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,BatchAAResults * AA,bool * IsLoadCSE,unsigned * NumScanedInst)582 Value *llvm::findAvailablePtrLoadStore(
583     const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
584     BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
585     BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
586   if (MaxInstsToScan == 0)
587     MaxInstsToScan = ~0U;
588 
589   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
590   const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
591 
592   while (ScanFrom != ScanBB->begin()) {
593     // We must ignore debug info directives when counting (otherwise they
594     // would affect codegen).
595     Instruction *Inst = &*--ScanFrom;
596     if (Inst->isDebugOrPseudoInst())
597       continue;
598 
599     // Restore ScanFrom to expected value in case next test succeeds
600     ScanFrom++;
601 
602     if (NumScanedInst)
603       ++(*NumScanedInst);
604 
605     // Don't scan huge blocks.
606     if (MaxInstsToScan-- == 0)
607       return nullptr;
608 
609     --ScanFrom;
610 
611     if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
612                                                  AtLeastAtomic, DL, IsLoadCSE))
613       return Available;
614 
615     // Try to get the store size for the type.
616     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
617       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
618 
619       // If both StrippedPtr and StorePtr reach all the way to an alloca or
620       // global and they are different, ignore the store. This is a trivial form
621       // of alias analysis that is important for reg2mem'd code.
622       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
623           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
624           StrippedPtr != StorePtr)
625         continue;
626 
627       if (!AA) {
628         // When AA isn't available, but if the load and the store have the same
629         // base, constant offsets and non-overlapping access ranges, ignore the
630         // store. This is a simple form of alias analysis that is used by the
631         // inliner. FIXME: use BasicAA if possible.
632         if (areNonOverlapSameBaseLoadAndStore(
633                 Loc.Ptr, AccessTy, SI->getPointerOperand(),
634                 SI->getValueOperand()->getType(), DL))
635           continue;
636       } else {
637         // If we have alias analysis and it says the store won't modify the
638         // loaded value, ignore the store.
639         if (!isModSet(AA->getModRefInfo(SI, Loc)))
640           continue;
641       }
642 
643       // Otherwise the store that may or may not alias the pointer, bail out.
644       ++ScanFrom;
645       return nullptr;
646     }
647 
648     // If this is some other instruction that may clobber Ptr, bail out.
649     if (Inst->mayWriteToMemory()) {
650       // If alias analysis claims that it really won't modify the load,
651       // ignore it.
652       if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
653         continue;
654 
655       // May modify the pointer, bail out.
656       ++ScanFrom;
657       return nullptr;
658     }
659   }
660 
661   // Got to the start of the block, we didn't find it, but are done for this
662   // block.
663   return nullptr;
664 }
665 
FindAvailableLoadedValue(LoadInst * Load,BatchAAResults & AA,bool * IsLoadCSE,unsigned MaxInstsToScan)666 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BatchAAResults &AA,
667                                       bool *IsLoadCSE,
668                                       unsigned MaxInstsToScan) {
669   const DataLayout &DL = Load->getModule()->getDataLayout();
670   Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
671   BasicBlock *ScanBB = Load->getParent();
672   Type *AccessTy = Load->getType();
673   bool AtLeastAtomic = Load->isAtomic();
674 
675   if (!Load->isUnordered())
676     return nullptr;
677 
678   // Try to find an available value first, and delay expensive alias analysis
679   // queries until later.
680   Value *Available = nullptr;
681   SmallVector<Instruction *> MustNotAliasInsts;
682   for (Instruction &Inst : make_range(++Load->getReverseIterator(),
683                                       ScanBB->rend())) {
684     if (Inst.isDebugOrPseudoInst())
685       continue;
686 
687     if (MaxInstsToScan-- == 0)
688       return nullptr;
689 
690     Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
691                                       AtLeastAtomic, DL, IsLoadCSE);
692     if (Available)
693       break;
694 
695     if (Inst.mayWriteToMemory())
696       MustNotAliasInsts.push_back(&Inst);
697   }
698 
699   // If we found an available value, ensure that the instructions in between
700   // did not modify the memory location.
701   if (Available) {
702     MemoryLocation Loc = MemoryLocation::get(Load);
703     for (Instruction *Inst : MustNotAliasInsts)
704       if (isModSet(AA.getModRefInfo(Inst, Loc)))
705         return nullptr;
706   }
707 
708   return Available;
709 }
710 
canReplacePointersIfEqual(Value * A,Value * B,const DataLayout & DL,Instruction * CtxI)711 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
712                                      Instruction *CtxI) {
713   Type *Ty = A->getType();
714   assert(Ty == B->getType() && Ty->isPointerTy() &&
715          "values must have matching pointer types");
716 
717   // NOTE: The checks in the function are incomplete and currently miss illegal
718   // cases! The current implementation is a starting point and the
719   // implementation should be made stricter over time.
720   if (auto *C = dyn_cast<Constant>(B)) {
721     // Do not allow replacing a pointer with a constant pointer, unless it is
722     // either null or at least one byte is dereferenceable.
723     APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
724     return C->isNullValue() ||
725            isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
726   }
727 
728   return true;
729 }
730