1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/BinaryFormat/Dwarf.h"
17 #include "llvm/CodeGen/AsmPrinter.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/MC/MCTargetOptions.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Target/TargetLoweringObjectFile.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <vector>
34 
35 using namespace llvm;
36 
EHStreamer(AsmPrinter * A)37 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
38 
39 EHStreamer::~EHStreamer() = default;
40 
41 /// How many leading type ids two landing pads have in common.
sharedTypeIDs(const LandingPadInfo * L,const LandingPadInfo * R)42 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
43                                    const LandingPadInfo *R) {
44   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
45   return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
46              .first -
47          LIds.begin();
48 }
49 
50 /// Compute the actions table and gather the first action index for each landing
51 /// pad site.
computeActionsTable(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,SmallVectorImpl<ActionEntry> & Actions,SmallVectorImpl<unsigned> & FirstActions)52 void EHStreamer::computeActionsTable(
53     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
54     SmallVectorImpl<ActionEntry> &Actions,
55     SmallVectorImpl<unsigned> &FirstActions) {
56   // The action table follows the call-site table in the LSDA. The individual
57   // records are of two types:
58   //
59   //   * Catch clause
60   //   * Exception specification
61   //
62   // The two record kinds have the same format, with only small differences.
63   // They are distinguished by the "switch value" field: Catch clauses
64   // (TypeInfos) have strictly positive switch values, and exception
65   // specifications (FilterIds) have strictly negative switch values. Value 0
66   // indicates a catch-all clause.
67   //
68   // Negative type IDs index into FilterIds. Positive type IDs index into
69   // TypeInfos.  The value written for a positive type ID is just the type ID
70   // itself.  For a negative type ID, however, the value written is the
71   // (negative) byte offset of the corresponding FilterIds entry.  The byte
72   // offset is usually equal to the type ID (because the FilterIds entries are
73   // written using a variable width encoding, which outputs one byte per entry
74   // as long as the value written is not too large) but can differ.  This kind
75   // of complication does not occur for positive type IDs because type infos are
76   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
77   // offset corresponding to FilterIds[i].
78 
79   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
80   SmallVector<int, 16> FilterOffsets;
81   FilterOffsets.reserve(FilterIds.size());
82   int Offset = -1;
83 
84   for (unsigned FilterId : FilterIds) {
85     FilterOffsets.push_back(Offset);
86     Offset -= getULEB128Size(FilterId);
87   }
88 
89   FirstActions.reserve(LandingPads.size());
90 
91   int FirstAction = 0;
92   unsigned SizeActions = 0; // Total size of all action entries for a function
93   const LandingPadInfo *PrevLPI = nullptr;
94 
95   for (const LandingPadInfo *LPI : LandingPads) {
96     const std::vector<int> &TypeIds = LPI->TypeIds;
97     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
98     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
99 
100     if (NumShared < TypeIds.size()) {
101       // Size of one action entry (typeid + next action)
102       unsigned SizeActionEntry = 0;
103       unsigned PrevAction = (unsigned)-1;
104 
105       if (NumShared) {
106         unsigned SizePrevIds = PrevLPI->TypeIds.size();
107         assert(Actions.size());
108         PrevAction = Actions.size() - 1;
109         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
110                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
111 
112         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
113           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
114           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
115           SizeActionEntry += -Actions[PrevAction].NextAction;
116           PrevAction = Actions[PrevAction].Previous;
117         }
118       }
119 
120       // Compute the actions.
121       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
122         int TypeID = TypeIds[J];
123         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
124         int ValueForTypeID =
125             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
126         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
127 
128         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
129         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
130         SizeSiteActions += SizeActionEntry;
131 
132         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
133         Actions.push_back(Action);
134         PrevAction = Actions.size() - 1;
135       }
136 
137       // Record the first action of the landing pad site.
138       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
139     } // else identical - re-use previous FirstAction
140 
141     // Information used when creating the call-site table. The action record
142     // field of the call site record is the offset of the first associated
143     // action record, relative to the start of the actions table. This value is
144     // biased by 1 (1 indicating the start of the actions table), and 0
145     // indicates that there are no actions.
146     FirstActions.push_back(FirstAction);
147 
148     // Compute this sites contribution to size.
149     SizeActions += SizeSiteActions;
150 
151     PrevLPI = LPI;
152   }
153 }
154 
155 /// Return `true' if this is a call to a function marked `nounwind'. Return
156 /// `false' otherwise.
callToNoUnwindFunction(const MachineInstr * MI)157 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
158   assert(MI->isCall() && "This should be a call instruction!");
159 
160   bool MarkedNoUnwind = false;
161   bool SawFunc = false;
162 
163   for (const MachineOperand &MO : MI->operands()) {
164     if (!MO.isGlobal()) continue;
165 
166     const Function *F = dyn_cast<Function>(MO.getGlobal());
167     if (!F) continue;
168 
169     if (SawFunc) {
170       // Be conservative. If we have more than one function operand for this
171       // call, then we can't make the assumption that it's the callee and
172       // not a parameter to the call.
173       //
174       // FIXME: Determine if there's a way to say that `F' is the callee or
175       // parameter.
176       MarkedNoUnwind = false;
177       break;
178     }
179 
180     MarkedNoUnwind = F->doesNotThrow();
181     SawFunc = true;
182   }
183 
184   return MarkedNoUnwind;
185 }
186 
computePadMap(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,RangeMapType & PadMap)187 void EHStreamer::computePadMap(
188     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
189     RangeMapType &PadMap) {
190   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
191   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
192   // try-ranges for them need be deduced so we can put them in the LSDA.
193   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
194     const LandingPadInfo *LandingPad = LandingPads[i];
195     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
196       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
197       MCSymbol *EndLabel = LandingPad->BeginLabels[j];
198       // If we have deleted the code for a given invoke after registering it in
199       // the LandingPad label list, the associated symbols will not have been
200       // emitted. In that case, ignore this callsite entry.
201       if (!BeginLabel->isDefined() || !EndLabel->isDefined())
202         continue;
203       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
204       PadRange P = { i, j };
205       PadMap[BeginLabel] = P;
206     }
207   }
208 }
209 
210 /// Compute the call-site table.  The entry for an invoke has a try-range
211 /// containing the call, a non-zero landing pad, and an appropriate action.  The
212 /// entry for an ordinary call has a try-range containing the call and zero for
213 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
214 /// must not be contained in the try-range of any entry - they form gaps in the
215 /// table.  Entries must be ordered by try-range address.
216 ///
217 /// Call-sites are split into one or more call-site ranges associated with
218 /// different sections of the function.
219 ///
220 ///   - Without -basic-block-sections, all call-sites are grouped into one
221 ///     call-site-range corresponding to the function section.
222 ///
223 ///   - With -basic-block-sections, one call-site range is created for each
224 ///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
225 //      set to the beginning and ending of the corresponding section and its
226 //      ExceptionLabel set to the exception symbol dedicated for this section.
227 //      Later, one LSDA header will be emitted for each call-site range with its
228 //      call-sites following. The action table and type info table will be
229 //      shared across all ranges.
computeCallSiteTable(SmallVectorImpl<CallSiteEntry> & CallSites,SmallVectorImpl<CallSiteRange> & CallSiteRanges,const SmallVectorImpl<const LandingPadInfo * > & LandingPads,const SmallVectorImpl<unsigned> & FirstActions)230 void EHStreamer::computeCallSiteTable(
231     SmallVectorImpl<CallSiteEntry> &CallSites,
232     SmallVectorImpl<CallSiteRange> &CallSiteRanges,
233     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
234     const SmallVectorImpl<unsigned> &FirstActions) {
235   RangeMapType PadMap;
236   computePadMap(LandingPads, PadMap);
237 
238   // The end label of the previous invoke or nounwind try-range.
239   MCSymbol *LastLabel = Asm->getFunctionBegin();
240 
241   // Whether there is a potentially throwing instruction (currently this means
242   // an ordinary call) between the end of the previous try-range and now.
243   bool SawPotentiallyThrowing = false;
244 
245   // Whether the last CallSite entry was for an invoke.
246   bool PreviousIsInvoke = false;
247 
248   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
249 
250   // Visit all instructions in order of address.
251   for (const auto &MBB : *Asm->MF) {
252     if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
253       // We start a call-site range upon function entry and at the beginning of
254       // every basic block section.
255       CallSiteRanges.push_back(
256           {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
257            Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
258            Asm->getMBBExceptionSym(MBB), CallSites.size()});
259       PreviousIsInvoke = false;
260       SawPotentiallyThrowing = false;
261       LastLabel = nullptr;
262     }
263 
264     if (MBB.isEHPad())
265       CallSiteRanges.back().IsLPRange = true;
266 
267     for (const auto &MI : MBB) {
268       if (!MI.isEHLabel()) {
269         if (MI.isCall())
270           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
271         continue;
272       }
273 
274       // End of the previous try-range?
275       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
276       if (BeginLabel == LastLabel)
277         SawPotentiallyThrowing = false;
278 
279       // Beginning of a new try-range?
280       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
281       if (L == PadMap.end())
282         // Nope, it was just some random label.
283         continue;
284 
285       const PadRange &P = L->second;
286       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
287       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
288              "Inconsistent landing pad map!");
289 
290       // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
291       // If some instruction between the previous try-range and this one may
292       // throw, create a call-site entry with no landing pad for the region
293       // between the try-ranges.
294       if (SawPotentiallyThrowing &&
295           (Asm->MAI->usesCFIForEH() ||
296            Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
297         CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
298         PreviousIsInvoke = false;
299       }
300 
301       LastLabel = LandingPad->EndLabels[P.RangeIndex];
302       assert(BeginLabel && LastLabel && "Invalid landing pad!");
303 
304       if (!LandingPad->LandingPadLabel) {
305         // Create a gap.
306         PreviousIsInvoke = false;
307       } else {
308         // This try-range is for an invoke.
309         CallSiteEntry Site = {
310           BeginLabel,
311           LastLabel,
312           LandingPad,
313           FirstActions[P.PadIndex]
314         };
315 
316         // Try to merge with the previous call-site. SJLJ doesn't do this
317         if (PreviousIsInvoke && !IsSJLJ) {
318           CallSiteEntry &Prev = CallSites.back();
319           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
320             // Extend the range of the previous entry.
321             Prev.EndLabel = Site.EndLabel;
322             continue;
323           }
324         }
325 
326         // Otherwise, create a new call-site.
327         if (!IsSJLJ)
328           CallSites.push_back(Site);
329         else {
330           // SjLj EH must maintain the call sites in the order assigned
331           // to them by the SjLjPrepare pass.
332           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
333           if (CallSites.size() < SiteNo)
334             CallSites.resize(SiteNo);
335           CallSites[SiteNo - 1] = Site;
336         }
337         PreviousIsInvoke = true;
338       }
339     }
340 
341     // We end the call-site range upon function exit and at the end of every
342     // basic block section.
343     if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
344       // If some instruction between the previous try-range and the end of the
345       // function may throw, create a call-site entry with no landing pad for
346       // the region following the try-range.
347       if (SawPotentiallyThrowing && !IsSJLJ) {
348         CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
349                               nullptr, 0};
350         CallSites.push_back(Site);
351         SawPotentiallyThrowing = false;
352       }
353       CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
354     }
355   }
356 }
357 
358 /// Emit landing pads and actions.
359 ///
360 /// The general organization of the table is complex, but the basic concepts are
361 /// easy.  First there is a header which describes the location and organization
362 /// of the three components that follow.
363 ///
364 ///  1. The landing pad site information describes the range of code covered by
365 ///     the try.  In our case it's an accumulation of the ranges covered by the
366 ///     invokes in the try.  There is also a reference to the landing pad that
367 ///     handles the exception once processed.  Finally an index into the actions
368 ///     table.
369 ///  2. The action table, in our case, is composed of pairs of type IDs and next
370 ///     action offset.  Starting with the action index from the landing pad
371 ///     site, each type ID is checked for a match to the current exception.  If
372 ///     it matches then the exception and type id are passed on to the landing
373 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
374 ///     with a next action of zero.  If no type id is found then the frame is
375 ///     unwound and handling continues.
376 ///  3. Type ID table contains references to all the C++ typeinfo for all
377 ///     catches in the function.  This tables is reverse indexed base 1.
378 ///
379 /// Returns the starting symbol of an exception table.
emitExceptionTable()380 MCSymbol *EHStreamer::emitExceptionTable() {
381   const MachineFunction *MF = Asm->MF;
382   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
383   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
384   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
385 
386   // Sort the landing pads in order of their type ids.  This is used to fold
387   // duplicate actions.
388   SmallVector<const LandingPadInfo *, 64> LandingPads;
389   LandingPads.reserve(PadInfos.size());
390 
391   for (const LandingPadInfo &LPI : PadInfos) {
392     // If a landing-pad has an associated label, but the label wasn't ever
393     // emitted, then skip it.  (This can occur if the landingpad's MBB was
394     // deleted).
395     if (LPI.LandingPadLabel && !LPI.LandingPadLabel->isDefined())
396       continue;
397     LandingPads.push_back(&LPI);
398   }
399 
400   // Order landing pads lexicographically by type id.
401   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
402     return L->TypeIds < R->TypeIds;
403   });
404 
405   // Compute the actions table and gather the first action index for each
406   // landing pad site.
407   SmallVector<ActionEntry, 32> Actions;
408   SmallVector<unsigned, 64> FirstActions;
409   computeActionsTable(LandingPads, Actions, FirstActions);
410 
411   // Compute the call-site table and call-site ranges. Normally, there is only
412   // one call-site-range which covers the whole function. With
413   // -basic-block-sections, there is one call-site-range per basic block
414   // section.
415   SmallVector<CallSiteEntry, 64> CallSites;
416   SmallVector<CallSiteRange, 4> CallSiteRanges;
417   computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
418 
419   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
420   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
421   bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
422   unsigned CallSiteEncoding =
423       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
424                Asm->getObjFileLowering().getCallSiteEncoding();
425   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
426 
427   // Type infos.
428   MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
429       MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
430   unsigned TTypeEncoding;
431 
432   if (!HaveTTData) {
433     // If there is no TypeInfo, then we just explicitly say that we're omitting
434     // that bit.
435     TTypeEncoding = dwarf::DW_EH_PE_omit;
436   } else {
437     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
438     // pick a type encoding for them.  We're about to emit a list of pointers to
439     // typeinfo objects at the end of the LSDA.  However, unless we're in static
440     // mode, this reference will require a relocation by the dynamic linker.
441     //
442     // Because of this, we have a couple of options:
443     //
444     //   1) If we are in -static mode, we can always use an absolute reference
445     //      from the LSDA, because the static linker will resolve it.
446     //
447     //   2) Otherwise, if the LSDA section is writable, we can output the direct
448     //      reference to the typeinfo and allow the dynamic linker to relocate
449     //      it.  Since it is in a writable section, the dynamic linker won't
450     //      have a problem.
451     //
452     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
453     //      we need to use some form of indirection.  For example, on Darwin,
454     //      we can output a statically-relocatable reference to a dyld stub. The
455     //      offset to the stub is constant, but the contents are in a section
456     //      that is updated by the dynamic linker.  This is easy enough, but we
457     //      need to tell the personality function of the unwinder to indirect
458     //      through the dyld stub.
459     //
460     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
461     // somewhere.  This predicate should be moved to a shared location that is
462     // in target-independent code.
463     //
464     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
465   }
466 
467   // Begin the exception table.
468   // Sometimes we want not to emit the data into separate section (e.g. ARM
469   // EHABI). In this case LSDASection will be NULL.
470   if (LSDASection)
471     Asm->OutStreamer->switchSection(LSDASection);
472   Asm->emitAlignment(Align(4));
473 
474   // Emit the LSDA.
475   MCSymbol *GCCETSym =
476     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
477                                       Twine(Asm->getFunctionNumber()));
478   Asm->OutStreamer->emitLabel(GCCETSym);
479   MCSymbol *CstEndLabel = Asm->createTempSymbol(
480       CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
481 
482   MCSymbol *TTBaseLabel = nullptr;
483   if (HaveTTData)
484     TTBaseLabel = Asm->createTempSymbol("ttbase");
485 
486   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
487 
488   // Helper for emitting references (offsets) for type table and the end of the
489   // call-site table (which marks the beginning of the action table).
490   //  * For Itanium, these references will be emitted for every callsite range.
491   //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
492   auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
493     Asm->emitEncodingByte(TTypeEncoding, "@TType");
494     if (HaveTTData) {
495       // N.B.: There is a dependency loop between the size of the TTBase uleb128
496       // here and the amount of padding before the aligned type table. The
497       // assembler must sometimes pad this uleb128 or insert extra padding
498       // before the type table. See PR35809 or GNU as bug 4029.
499       MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
500       Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
501       Asm->OutStreamer->emitLabel(TTBaseRefLabel);
502     }
503 
504     // The Action table follows the call-site table. So we emit the
505     // label difference from here (start of the call-site table for SJLJ and
506     // Wasm, and start of a call-site range for Itanium) to the end of the
507     // whole call-site table (end of the last call-site range for Itanium).
508     MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
509     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
510     Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
511     Asm->OutStreamer->emitLabel(CstBeginLabel);
512   };
513 
514   // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
515   // For some platforms, the system assembler does not accept the form of
516   // `.uleb128 label2 - label1`. In those situations, we would need to calculate
517   // the size between label1 and label2 manually.
518   // In this case, we would need to calculate the LSDA size and the call
519   // site table size.
520   auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
521     assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
522            "Targets supporting .uleb128 do not need to take this path.");
523     if (CallSiteRanges.size() > 1)
524       report_fatal_error(
525           "-fbasic-block-sections is not yet supported on "
526           "platforms that do not have general LEB128 directive support.");
527 
528     uint64_t CallSiteTableSize = 0;
529     const CallSiteRange &CSRange = CallSiteRanges.back();
530     for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
531          CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
532       const CallSiteEntry &S = CallSites[CallSiteIdx];
533       // Each call site entry consists of 3 udata4 fields (12 bytes) and
534       // 1 ULEB128 field.
535       CallSiteTableSize += 12 + getULEB128Size(S.Action);
536       assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
537     }
538 
539     Asm->emitEncodingByte(TTypeEncoding, "@TType");
540     if (HaveTTData) {
541       const unsigned ByteSizeOfCallSiteOffset =
542           getULEB128Size(CallSiteTableSize);
543       uint64_t ActionTableSize = 0;
544       for (const ActionEntry &Action : Actions) {
545         // Each action entry consists of two SLEB128 fields.
546         ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
547                            getSLEB128Size(Action.NextAction);
548         assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
549       }
550 
551       const unsigned TypeInfoSize =
552           Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
553 
554       const uint64_t LSDASizeBeforeAlign =
555           1                          // Call site encoding byte.
556           + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
557           + CallSiteTableSize        // Call site table content.
558           + ActionTableSize;         // Action table content.
559 
560       const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
561       const unsigned ByteSizeOfLSDAWithoutAlign =
562           getULEB128Size(LSDASizeWithoutAlign);
563       const uint64_t DisplacementBeforeAlign =
564           2 // LPStartEncoding and TypeTableEncoding.
565           + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
566 
567       // The type info area starts with 4 byte alignment.
568       const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
569       uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
570       const unsigned ByteSizeOfLSDAWithAlign =
571           getULEB128Size(LSDASizeWithAlign);
572 
573       // The LSDASizeWithAlign could use 1 byte less padding for alignment
574       // when the data we use to represent the LSDA Size "needs" to be 1 byte
575       // larger than the one previously calculated without alignment.
576       if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
577         LSDASizeWithAlign -= 1;
578 
579       Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
580                                             ByteSizeOfLSDAWithAlign);
581     }
582 
583     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
584     Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
585   };
586 
587   // SjLj / Wasm Exception handling
588   if (IsSJLJ || IsWasm) {
589     Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
590 
591     // emit the LSDA header.
592     Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
593     EmitTypeTableRefAndCallSiteTableEndRef();
594 
595     unsigned idx = 0;
596     for (SmallVectorImpl<CallSiteEntry>::const_iterator
597          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
598       const CallSiteEntry &S = *I;
599 
600       // Index of the call site entry.
601       if (VerboseAsm) {
602         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
603         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
604       }
605       Asm->emitULEB128(idx);
606 
607       // Offset of the first associated action record, relative to the start of
608       // the action table. This value is biased by 1 (1 indicates the start of
609       // the action table), and 0 indicates that there are no actions.
610       if (VerboseAsm) {
611         if (S.Action == 0)
612           Asm->OutStreamer->AddComment("  Action: cleanup");
613         else
614           Asm->OutStreamer->AddComment("  Action: " +
615                                        Twine((S.Action - 1) / 2 + 1));
616       }
617       Asm->emitULEB128(S.Action);
618     }
619     Asm->OutStreamer->emitLabel(CstEndLabel);
620   } else {
621     // Itanium LSDA exception handling
622 
623     // The call-site table is a list of all call sites that may throw an
624     // exception (including C++ 'throw' statements) in the procedure
625     // fragment. It immediately follows the LSDA header. Each entry indicates,
626     // for a given call, the first corresponding action record and corresponding
627     // landing pad.
628     //
629     // The table begins with the number of bytes, stored as an LEB128
630     // compressed, unsigned integer. The records immediately follow the record
631     // count. They are sorted in increasing call-site address. Each record
632     // indicates:
633     //
634     //   * The position of the call-site.
635     //   * The position of the landing pad.
636     //   * The first action record for that call site.
637     //
638     // A missing entry in the call-site table indicates that a call is not
639     // supposed to throw.
640 
641     assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
642 
643     // There should be only one call-site range which includes all the landing
644     // pads. Find that call-site range here.
645     const CallSiteRange *LandingPadRange = nullptr;
646     for (const CallSiteRange &CSRange : CallSiteRanges) {
647       if (CSRange.IsLPRange) {
648         assert(LandingPadRange == nullptr &&
649                "All landing pads must be in a single callsite range.");
650         LandingPadRange = &CSRange;
651       }
652     }
653 
654     // The call-site table is split into its call-site ranges, each being
655     // emitted as:
656     //              [ LPStartEncoding | LPStart ]
657     //              [ TypeTableEncoding | TypeTableOffset ]
658     //              [ CallSiteEncoding | CallSiteTableEndOffset ]
659     // cst_begin -> { call-site entries contained in this range }
660     //
661     // and is followed by the next call-site range.
662     //
663     // For each call-site range, CallSiteTableEndOffset is computed as the
664     // difference between cst_begin of that range and the last call-site-table's
665     // end label. This offset is used to find the action table.
666 
667     unsigned Entry = 0;
668     for (const CallSiteRange &CSRange : CallSiteRanges) {
669       if (CSRange.CallSiteBeginIdx != 0) {
670         // Align the call-site range for all ranges except the first. The
671         // first range is already aligned due to the exception table alignment.
672         Asm->emitAlignment(Align(4));
673       }
674       Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
675 
676       // Emit the LSDA header.
677       // LPStart is omitted if either we have a single call-site range (in which
678       // case the function entry is treated as @LPStart) or if this function has
679       // no landing pads (in which case @LPStart is undefined).
680       if (CallSiteRanges.size() == 1 || LandingPadRange == nullptr) {
681         Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
682       } else if (!Asm->isPositionIndependent()) {
683         // For more than one call-site ranges, LPStart must be explicitly
684         // specified.
685         // For non-PIC we can simply use the absolute value.
686         Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
687         Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
688                                           Asm->MAI->getCodePointerSize());
689       } else {
690         // For PIC mode, we Emit a PC-relative address for LPStart.
691         Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
692         MCContext &Context = Asm->OutStreamer->getContext();
693         MCSymbol *Dot = Context.createTempSymbol();
694         Asm->OutStreamer->emitLabel(Dot);
695         Asm->OutStreamer->emitValue(
696             MCBinaryExpr::createSub(
697                 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
698                                         Context),
699                 MCSymbolRefExpr::create(Dot, Context), Context),
700             Asm->MAI->getCodePointerSize());
701       }
702 
703       if (HasLEB128Directives)
704         EmitTypeTableRefAndCallSiteTableEndRef();
705       else
706         EmitTypeTableOffsetAndCallSiteTableOffset();
707 
708       for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
709            CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
710         const CallSiteEntry &S = CallSites[CallSiteIdx];
711 
712         MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
713         MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
714 
715         MCSymbol *BeginLabel = S.BeginLabel;
716         if (!BeginLabel)
717           BeginLabel = EHFuncBeginSym;
718         MCSymbol *EndLabel = S.EndLabel;
719         if (!EndLabel)
720           EndLabel = EHFuncEndSym;
721 
722         // Offset of the call site relative to the start of the procedure.
723         if (VerboseAsm)
724           Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
725                                        " <<");
726         Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
727         if (VerboseAsm)
728           Asm->OutStreamer->AddComment(Twine("  Call between ") +
729                                        BeginLabel->getName() + " and " +
730                                        EndLabel->getName());
731         Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
732 
733         // Offset of the landing pad relative to the start of the landing pad
734         // fragment.
735         if (!S.LPad) {
736           if (VerboseAsm)
737             Asm->OutStreamer->AddComment("    has no landing pad");
738           Asm->emitCallSiteValue(0, CallSiteEncoding);
739         } else {
740           if (VerboseAsm)
741             Asm->OutStreamer->AddComment(Twine("    jumps to ") +
742                                          S.LPad->LandingPadLabel->getName());
743           Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
744                                   LandingPadRange->FragmentBeginLabel,
745                                   CallSiteEncoding);
746         }
747 
748         // Offset of the first associated action record, relative to the start
749         // of the action table. This value is biased by 1 (1 indicates the start
750         // of the action table), and 0 indicates that there are no actions.
751         if (VerboseAsm) {
752           if (S.Action == 0)
753             Asm->OutStreamer->AddComment("  On action: cleanup");
754           else
755             Asm->OutStreamer->AddComment("  On action: " +
756                                          Twine((S.Action - 1) / 2 + 1));
757         }
758         Asm->emitULEB128(S.Action);
759       }
760     }
761     Asm->OutStreamer->emitLabel(CstEndLabel);
762   }
763 
764   // Emit the Action Table.
765   int Entry = 0;
766   for (const ActionEntry &Action : Actions) {
767     if (VerboseAsm) {
768       // Emit comments that decode the action table.
769       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
770     }
771 
772     // Type Filter
773     //
774     //   Used by the runtime to match the type of the thrown exception to the
775     //   type of the catch clauses or the types in the exception specification.
776     if (VerboseAsm) {
777       if (Action.ValueForTypeID > 0)
778         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
779                                      Twine(Action.ValueForTypeID));
780       else if (Action.ValueForTypeID < 0)
781         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
782                                      Twine(Action.ValueForTypeID));
783       else
784         Asm->OutStreamer->AddComment("  Cleanup");
785     }
786     Asm->emitSLEB128(Action.ValueForTypeID);
787 
788     // Action Record
789     if (VerboseAsm) {
790       if (Action.Previous == unsigned(-1)) {
791         Asm->OutStreamer->AddComment("  No further actions");
792       } else {
793         Asm->OutStreamer->AddComment("  Continue to action " +
794                                      Twine(Action.Previous + 1));
795       }
796     }
797     Asm->emitSLEB128(Action.NextAction);
798   }
799 
800   if (HaveTTData) {
801     Asm->emitAlignment(Align(4));
802     emitTypeInfos(TTypeEncoding, TTBaseLabel);
803   }
804 
805   Asm->emitAlignment(Align(4));
806   return GCCETSym;
807 }
808 
emitTypeInfos(unsigned TTypeEncoding,MCSymbol * TTBaseLabel)809 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
810   const MachineFunction *MF = Asm->MF;
811   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
812   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
813 
814   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
815 
816   int Entry = 0;
817   // Emit the Catch TypeInfos.
818   if (VerboseAsm && !TypeInfos.empty()) {
819     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
820     Asm->OutStreamer->addBlankLine();
821     Entry = TypeInfos.size();
822   }
823 
824   for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
825     if (VerboseAsm)
826       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
827     Asm->emitTTypeReference(GV, TTypeEncoding);
828   }
829 
830   Asm->OutStreamer->emitLabel(TTBaseLabel);
831 
832   // Emit the Exception Specifications.
833   if (VerboseAsm && !FilterIds.empty()) {
834     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
835     Asm->OutStreamer->addBlankLine();
836     Entry = 0;
837   }
838   for (std::vector<unsigned>::const_iterator
839          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
840     unsigned TypeID = *I;
841     if (VerboseAsm) {
842       --Entry;
843       if (isFilterEHSelector(TypeID))
844         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
845     }
846 
847     Asm->emitULEB128(TypeID);
848   }
849 }
850