1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCStreamer.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/MC/MCTargetOptions.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Target/TargetLoweringObjectFile.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstdint>
34 #include <vector>
35 
36 using namespace llvm;
37 
38 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
39 
40 EHStreamer::~EHStreamer() = default;
41 
42 /// How many leading type ids two landing pads have in common.
43 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
44                                    const LandingPadInfo *R) {
45   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
46   return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
47              .first -
48          LIds.begin();
49 }
50 
51 /// Compute the actions table and gather the first action index for each landing
52 /// pad site.
53 void EHStreamer::computeActionsTable(
54     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
55     SmallVectorImpl<ActionEntry> &Actions,
56     SmallVectorImpl<unsigned> &FirstActions) {
57   // The action table follows the call-site table in the LSDA. The individual
58   // records are of two types:
59   //
60   //   * Catch clause
61   //   * Exception specification
62   //
63   // The two record kinds have the same format, with only small differences.
64   // They are distinguished by the "switch value" field: Catch clauses
65   // (TypeInfos) have strictly positive switch values, and exception
66   // specifications (FilterIds) have strictly negative switch values. Value 0
67   // indicates a catch-all clause.
68   //
69   // Negative type IDs index into FilterIds. Positive type IDs index into
70   // TypeInfos.  The value written for a positive type ID is just the type ID
71   // itself.  For a negative type ID, however, the value written is the
72   // (negative) byte offset of the corresponding FilterIds entry.  The byte
73   // offset is usually equal to the type ID (because the FilterIds entries are
74   // written using a variable width encoding, which outputs one byte per entry
75   // as long as the value written is not too large) but can differ.  This kind
76   // of complication does not occur for positive type IDs because type infos are
77   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
78   // offset corresponding to FilterIds[i].
79 
80   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
81   SmallVector<int, 16> FilterOffsets;
82   FilterOffsets.reserve(FilterIds.size());
83   int Offset = -1;
84 
85   for (unsigned FilterId : FilterIds) {
86     FilterOffsets.push_back(Offset);
87     Offset -= getULEB128Size(FilterId);
88   }
89 
90   FirstActions.reserve(LandingPads.size());
91 
92   int FirstAction = 0;
93   unsigned SizeActions = 0; // Total size of all action entries for a function
94   const LandingPadInfo *PrevLPI = nullptr;
95 
96   for (const LandingPadInfo *LPI : LandingPads) {
97     const std::vector<int> &TypeIds = LPI->TypeIds;
98     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
99     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
100 
101     if (NumShared < TypeIds.size()) {
102       // Size of one action entry (typeid + next action)
103       unsigned SizeActionEntry = 0;
104       unsigned PrevAction = (unsigned)-1;
105 
106       if (NumShared) {
107         unsigned SizePrevIds = PrevLPI->TypeIds.size();
108         assert(Actions.size());
109         PrevAction = Actions.size() - 1;
110         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
111                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
112 
113         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
114           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
115           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
116           SizeActionEntry += -Actions[PrevAction].NextAction;
117           PrevAction = Actions[PrevAction].Previous;
118         }
119       }
120 
121       // Compute the actions.
122       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
123         int TypeID = TypeIds[J];
124         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
125         int ValueForTypeID =
126             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
127         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
128 
129         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
130         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
131         SizeSiteActions += SizeActionEntry;
132 
133         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
134         Actions.push_back(Action);
135         PrevAction = Actions.size() - 1;
136       }
137 
138       // Record the first action of the landing pad site.
139       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
140     } // else identical - re-use previous FirstAction
141 
142     // Information used when creating the call-site table. The action record
143     // field of the call site record is the offset of the first associated
144     // action record, relative to the start of the actions table. This value is
145     // biased by 1 (1 indicating the start of the actions table), and 0
146     // indicates that there are no actions.
147     FirstActions.push_back(FirstAction);
148 
149     // Compute this sites contribution to size.
150     SizeActions += SizeSiteActions;
151 
152     PrevLPI = LPI;
153   }
154 }
155 
156 /// Return `true' if this is a call to a function marked `nounwind'. Return
157 /// `false' otherwise.
158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
159   assert(MI->isCall() && "This should be a call instruction!");
160 
161   bool MarkedNoUnwind = false;
162   bool SawFunc = false;
163 
164   for (const MachineOperand &MO : MI->operands()) {
165     if (!MO.isGlobal()) continue;
166 
167     const Function *F = dyn_cast<Function>(MO.getGlobal());
168     if (!F) continue;
169 
170     if (SawFunc) {
171       // Be conservative. If we have more than one function operand for this
172       // call, then we can't make the assumption that it's the callee and
173       // not a parameter to the call.
174       //
175       // FIXME: Determine if there's a way to say that `F' is the callee or
176       // parameter.
177       MarkedNoUnwind = false;
178       break;
179     }
180 
181     MarkedNoUnwind = F->doesNotThrow();
182     SawFunc = true;
183   }
184 
185   return MarkedNoUnwind;
186 }
187 
188 void EHStreamer::computePadMap(
189     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
190     RangeMapType &PadMap) {
191   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
192   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
193   // try-ranges for them need be deduced so we can put them in the LSDA.
194   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
195     const LandingPadInfo *LandingPad = LandingPads[i];
196     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
197       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
198       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
199       PadRange P = { i, j };
200       PadMap[BeginLabel] = P;
201     }
202   }
203 }
204 
205 /// Compute the call-site table.  The entry for an invoke has a try-range
206 /// containing the call, a non-zero landing pad, and an appropriate action.  The
207 /// entry for an ordinary call has a try-range containing the call and zero for
208 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
209 /// must not be contained in the try-range of any entry - they form gaps in the
210 /// table.  Entries must be ordered by try-range address.
211 ///
212 /// Call-sites are split into one or more call-site ranges associated with
213 /// different sections of the function.
214 ///
215 ///   - Without -basic-block-sections, all call-sites are grouped into one
216 ///     call-site-range corresponding to the function section.
217 ///
218 ///   - With -basic-block-sections, one call-site range is created for each
219 ///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
220 //      set to the beginning and ending of the corresponding section and its
221 //      ExceptionLabel set to the exception symbol dedicated for this section.
222 //      Later, one LSDA header will be emitted for each call-site range with its
223 //      call-sites following. The action table and type info table will be
224 //      shared across all ranges.
225 void EHStreamer::computeCallSiteTable(
226     SmallVectorImpl<CallSiteEntry> &CallSites,
227     SmallVectorImpl<CallSiteRange> &CallSiteRanges,
228     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
229     const SmallVectorImpl<unsigned> &FirstActions) {
230   RangeMapType PadMap;
231   computePadMap(LandingPads, PadMap);
232 
233   // The end label of the previous invoke or nounwind try-range.
234   MCSymbol *LastLabel = Asm->getFunctionBegin();
235 
236   // Whether there is a potentially throwing instruction (currently this means
237   // an ordinary call) between the end of the previous try-range and now.
238   bool SawPotentiallyThrowing = false;
239 
240   // Whether the last CallSite entry was for an invoke.
241   bool PreviousIsInvoke = false;
242 
243   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
244 
245   // Visit all instructions in order of address.
246   for (const auto &MBB : *Asm->MF) {
247     if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
248       // We start a call-site range upon function entry and at the beginning of
249       // every basic block section.
250       CallSiteRanges.push_back(
251           {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
252            Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
253            Asm->getMBBExceptionSym(MBB), CallSites.size()});
254       PreviousIsInvoke = false;
255       SawPotentiallyThrowing = false;
256       LastLabel = nullptr;
257     }
258 
259     if (MBB.isEHPad())
260       CallSiteRanges.back().IsLPRange = true;
261 
262     for (const auto &MI : MBB) {
263       if (!MI.isEHLabel()) {
264         if (MI.isCall())
265           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
266         continue;
267       }
268 
269       // End of the previous try-range?
270       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
271       if (BeginLabel == LastLabel)
272         SawPotentiallyThrowing = false;
273 
274       // Beginning of a new try-range?
275       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
276       if (L == PadMap.end())
277         // Nope, it was just some random label.
278         continue;
279 
280       const PadRange &P = L->second;
281       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
282       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
283              "Inconsistent landing pad map!");
284 
285       // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
286       // If some instruction between the previous try-range and this one may
287       // throw, create a call-site entry with no landing pad for the region
288       // between the try-ranges.
289       if (SawPotentiallyThrowing &&
290           (Asm->MAI->usesCFIForEH() ||
291            Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
292         CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
293         PreviousIsInvoke = false;
294       }
295 
296       LastLabel = LandingPad->EndLabels[P.RangeIndex];
297       assert(BeginLabel && LastLabel && "Invalid landing pad!");
298 
299       if (!LandingPad->LandingPadLabel) {
300         // Create a gap.
301         PreviousIsInvoke = false;
302       } else {
303         // This try-range is for an invoke.
304         CallSiteEntry Site = {
305           BeginLabel,
306           LastLabel,
307           LandingPad,
308           FirstActions[P.PadIndex]
309         };
310 
311         // Try to merge with the previous call-site. SJLJ doesn't do this
312         if (PreviousIsInvoke && !IsSJLJ) {
313           CallSiteEntry &Prev = CallSites.back();
314           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
315             // Extend the range of the previous entry.
316             Prev.EndLabel = Site.EndLabel;
317             continue;
318           }
319         }
320 
321         // Otherwise, create a new call-site.
322         if (!IsSJLJ)
323           CallSites.push_back(Site);
324         else {
325           // SjLj EH must maintain the call sites in the order assigned
326           // to them by the SjLjPrepare pass.
327           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
328           if (CallSites.size() < SiteNo)
329             CallSites.resize(SiteNo);
330           CallSites[SiteNo - 1] = Site;
331         }
332         PreviousIsInvoke = true;
333       }
334     }
335 
336     // We end the call-site range upon function exit and at the end of every
337     // basic block section.
338     if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
339       // If some instruction between the previous try-range and the end of the
340       // function may throw, create a call-site entry with no landing pad for
341       // the region following the try-range.
342       if (SawPotentiallyThrowing && !IsSJLJ) {
343         CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
344                               nullptr, 0};
345         CallSites.push_back(Site);
346         SawPotentiallyThrowing = false;
347       }
348       CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
349     }
350   }
351 }
352 
353 /// Emit landing pads and actions.
354 ///
355 /// The general organization of the table is complex, but the basic concepts are
356 /// easy.  First there is a header which describes the location and organization
357 /// of the three components that follow.
358 ///
359 ///  1. The landing pad site information describes the range of code covered by
360 ///     the try.  In our case it's an accumulation of the ranges covered by the
361 ///     invokes in the try.  There is also a reference to the landing pad that
362 ///     handles the exception once processed.  Finally an index into the actions
363 ///     table.
364 ///  2. The action table, in our case, is composed of pairs of type IDs and next
365 ///     action offset.  Starting with the action index from the landing pad
366 ///     site, each type ID is checked for a match to the current exception.  If
367 ///     it matches then the exception and type id are passed on to the landing
368 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
369 ///     with a next action of zero.  If no type id is found then the frame is
370 ///     unwound and handling continues.
371 ///  3. Type ID table contains references to all the C++ typeinfo for all
372 ///     catches in the function.  This tables is reverse indexed base 1.
373 ///
374 /// Returns the starting symbol of an exception table.
375 MCSymbol *EHStreamer::emitExceptionTable() {
376   const MachineFunction *MF = Asm->MF;
377   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
378   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
379   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
380 
381   // Sort the landing pads in order of their type ids.  This is used to fold
382   // duplicate actions.
383   SmallVector<const LandingPadInfo *, 64> LandingPads;
384   LandingPads.reserve(PadInfos.size());
385 
386   for (const LandingPadInfo &LPI : PadInfos)
387     LandingPads.push_back(&LPI);
388 
389   // Order landing pads lexicographically by type id.
390   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
391     return L->TypeIds < R->TypeIds;
392   });
393 
394   // Compute the actions table and gather the first action index for each
395   // landing pad site.
396   SmallVector<ActionEntry, 32> Actions;
397   SmallVector<unsigned, 64> FirstActions;
398   computeActionsTable(LandingPads, Actions, FirstActions);
399 
400   // Compute the call-site table and call-site ranges. Normally, there is only
401   // one call-site-range which covers the whole funciton. With
402   // -basic-block-sections, there is one call-site-range per basic block
403   // section.
404   SmallVector<CallSiteEntry, 64> CallSites;
405   SmallVector<CallSiteRange, 4> CallSiteRanges;
406   computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
407 
408   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
409   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
410   bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
411   unsigned CallSiteEncoding =
412       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
413                Asm->getObjFileLowering().getCallSiteEncoding();
414   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
415 
416   // Type infos.
417   MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
418       MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
419   unsigned TTypeEncoding;
420 
421   if (!HaveTTData) {
422     // If there is no TypeInfo, then we just explicitly say that we're omitting
423     // that bit.
424     TTypeEncoding = dwarf::DW_EH_PE_omit;
425   } else {
426     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
427     // pick a type encoding for them.  We're about to emit a list of pointers to
428     // typeinfo objects at the end of the LSDA.  However, unless we're in static
429     // mode, this reference will require a relocation by the dynamic linker.
430     //
431     // Because of this, we have a couple of options:
432     //
433     //   1) If we are in -static mode, we can always use an absolute reference
434     //      from the LSDA, because the static linker will resolve it.
435     //
436     //   2) Otherwise, if the LSDA section is writable, we can output the direct
437     //      reference to the typeinfo and allow the dynamic linker to relocate
438     //      it.  Since it is in a writable section, the dynamic linker won't
439     //      have a problem.
440     //
441     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
442     //      we need to use some form of indirection.  For example, on Darwin,
443     //      we can output a statically-relocatable reference to a dyld stub. The
444     //      offset to the stub is constant, but the contents are in a section
445     //      that is updated by the dynamic linker.  This is easy enough, but we
446     //      need to tell the personality function of the unwinder to indirect
447     //      through the dyld stub.
448     //
449     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
450     // somewhere.  This predicate should be moved to a shared location that is
451     // in target-independent code.
452     //
453     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
454   }
455 
456   // Begin the exception table.
457   // Sometimes we want not to emit the data into separate section (e.g. ARM
458   // EHABI). In this case LSDASection will be NULL.
459   if (LSDASection)
460     Asm->OutStreamer->switchSection(LSDASection);
461   Asm->emitAlignment(Align(4));
462 
463   // Emit the LSDA.
464   MCSymbol *GCCETSym =
465     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
466                                       Twine(Asm->getFunctionNumber()));
467   Asm->OutStreamer->emitLabel(GCCETSym);
468   MCSymbol *CstEndLabel = Asm->createTempSymbol(
469       CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
470 
471   MCSymbol *TTBaseLabel = nullptr;
472   if (HaveTTData)
473     TTBaseLabel = Asm->createTempSymbol("ttbase");
474 
475   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
476 
477   // Helper for emitting references (offsets) for type table and the end of the
478   // call-site table (which marks the beginning of the action table).
479   //  * For Itanium, these references will be emitted for every callsite range.
480   //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
481   auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
482     Asm->emitEncodingByte(TTypeEncoding, "@TType");
483     if (HaveTTData) {
484       // N.B.: There is a dependency loop between the size of the TTBase uleb128
485       // here and the amount of padding before the aligned type table. The
486       // assembler must sometimes pad this uleb128 or insert extra padding
487       // before the type table. See PR35809 or GNU as bug 4029.
488       MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
489       Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
490       Asm->OutStreamer->emitLabel(TTBaseRefLabel);
491     }
492 
493     // The Action table follows the call-site table. So we emit the
494     // label difference from here (start of the call-site table for SJLJ and
495     // Wasm, and start of a call-site range for Itanium) to the end of the
496     // whole call-site table (end of the last call-site range for Itanium).
497     MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
498     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
499     Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
500     Asm->OutStreamer->emitLabel(CstBeginLabel);
501   };
502 
503   // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
504   // For some platforms, the system assembler does not accept the form of
505   // `.uleb128 label2 - label1`. In those situations, we would need to calculate
506   // the size between label1 and label2 manually.
507   // In this case, we would need to calculate the LSDA size and the call
508   // site table size.
509   auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
510     assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
511            "Targets supporting .uleb128 do not need to take this path.");
512     if (CallSiteRanges.size() > 1)
513       report_fatal_error(
514           "-fbasic-block-sections is not yet supported on "
515           "platforms that do not have general LEB128 directive support.");
516 
517     uint64_t CallSiteTableSize = 0;
518     const CallSiteRange &CSRange = CallSiteRanges.back();
519     for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
520          CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
521       const CallSiteEntry &S = CallSites[CallSiteIdx];
522       // Each call site entry consists of 3 udata4 fields (12 bytes) and
523       // 1 ULEB128 field.
524       CallSiteTableSize += 12 + getULEB128Size(S.Action);
525       assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
526     }
527 
528     Asm->emitEncodingByte(TTypeEncoding, "@TType");
529     if (HaveTTData) {
530       const unsigned ByteSizeOfCallSiteOffset =
531           getULEB128Size(CallSiteTableSize);
532       uint64_t ActionTableSize = 0;
533       for (const ActionEntry &Action : Actions) {
534         // Each action entry consists of two SLEB128 fields.
535         ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
536                            getSLEB128Size(Action.NextAction);
537         assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
538       }
539 
540       const unsigned TypeInfoSize =
541           Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
542 
543       const uint64_t LSDASizeBeforeAlign =
544           1                          // Call site encoding byte.
545           + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
546           + CallSiteTableSize        // Call site table content.
547           + ActionTableSize;         // Action table content.
548 
549       const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
550       const unsigned ByteSizeOfLSDAWithoutAlign =
551           getULEB128Size(LSDASizeWithoutAlign);
552       const uint64_t DisplacementBeforeAlign =
553           2 // LPStartEncoding and TypeTableEncoding.
554           + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
555 
556       // The type info area starts with 4 byte alignment.
557       const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
558       uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
559       const unsigned ByteSizeOfLSDAWithAlign =
560           getULEB128Size(LSDASizeWithAlign);
561 
562       // The LSDASizeWithAlign could use 1 byte less padding for alignment
563       // when the data we use to represent the LSDA Size "needs" to be 1 byte
564       // larger than the one previously calculated without alignment.
565       if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
566         LSDASizeWithAlign -= 1;
567 
568       Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
569                                             ByteSizeOfLSDAWithAlign);
570     }
571 
572     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
573     Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
574   };
575 
576   // SjLj / Wasm Exception handling
577   if (IsSJLJ || IsWasm) {
578     Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
579 
580     // emit the LSDA header.
581     Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
582     EmitTypeTableRefAndCallSiteTableEndRef();
583 
584     unsigned idx = 0;
585     for (SmallVectorImpl<CallSiteEntry>::const_iterator
586          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
587       const CallSiteEntry &S = *I;
588 
589       // Index of the call site entry.
590       if (VerboseAsm) {
591         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
592         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
593       }
594       Asm->emitULEB128(idx);
595 
596       // Offset of the first associated action record, relative to the start of
597       // the action table. This value is biased by 1 (1 indicates the start of
598       // the action table), and 0 indicates that there are no actions.
599       if (VerboseAsm) {
600         if (S.Action == 0)
601           Asm->OutStreamer->AddComment("  Action: cleanup");
602         else
603           Asm->OutStreamer->AddComment("  Action: " +
604                                        Twine((S.Action - 1) / 2 + 1));
605       }
606       Asm->emitULEB128(S.Action);
607     }
608     Asm->OutStreamer->emitLabel(CstEndLabel);
609   } else {
610     // Itanium LSDA exception handling
611 
612     // The call-site table is a list of all call sites that may throw an
613     // exception (including C++ 'throw' statements) in the procedure
614     // fragment. It immediately follows the LSDA header. Each entry indicates,
615     // for a given call, the first corresponding action record and corresponding
616     // landing pad.
617     //
618     // The table begins with the number of bytes, stored as an LEB128
619     // compressed, unsigned integer. The records immediately follow the record
620     // count. They are sorted in increasing call-site address. Each record
621     // indicates:
622     //
623     //   * The position of the call-site.
624     //   * The position of the landing pad.
625     //   * The first action record for that call site.
626     //
627     // A missing entry in the call-site table indicates that a call is not
628     // supposed to throw.
629 
630     assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
631 
632     // There should be only one call-site range which includes all the landing
633     // pads. Find that call-site range here.
634     const CallSiteRange *LandingPadRange = nullptr;
635     for (const CallSiteRange &CSRange : CallSiteRanges) {
636       if (CSRange.IsLPRange) {
637         assert(LandingPadRange == nullptr &&
638                "All landing pads must be in a single callsite range.");
639         LandingPadRange = &CSRange;
640       }
641     }
642 
643     // The call-site table is split into its call-site ranges, each being
644     // emitted as:
645     //              [ LPStartEncoding | LPStart ]
646     //              [ TypeTableEncoding | TypeTableOffset ]
647     //              [ CallSiteEncoding | CallSiteTableEndOffset ]
648     // cst_begin -> { call-site entries contained in this range }
649     //
650     // and is followed by the next call-site range.
651     //
652     // For each call-site range, CallSiteTableEndOffset is computed as the
653     // difference between cst_begin of that range and the last call-site-table's
654     // end label. This offset is used to find the action table.
655 
656     unsigned Entry = 0;
657     for (const CallSiteRange &CSRange : CallSiteRanges) {
658       if (CSRange.CallSiteBeginIdx != 0) {
659         // Align the call-site range for all ranges except the first. The
660         // first range is already aligned due to the exception table alignment.
661         Asm->emitAlignment(Align(4));
662       }
663       Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
664 
665       // Emit the LSDA header.
666       // If only one call-site range exists, LPStart is omitted as it is the
667       // same as the function entry.
668       if (CallSiteRanges.size() == 1) {
669         Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
670       } else if (!Asm->isPositionIndependent()) {
671         // For more than one call-site ranges, LPStart must be explicitly
672         // specified.
673         // For non-PIC we can simply use the absolute value.
674         Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
675         Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
676                                           Asm->MAI->getCodePointerSize());
677       } else {
678         // For PIC mode, we Emit a PC-relative address for LPStart.
679         Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
680         MCContext &Context = Asm->OutStreamer->getContext();
681         MCSymbol *Dot = Context.createTempSymbol();
682         Asm->OutStreamer->emitLabel(Dot);
683         Asm->OutStreamer->emitValue(
684             MCBinaryExpr::createSub(
685                 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
686                                         Context),
687                 MCSymbolRefExpr::create(Dot, Context), Context),
688             Asm->MAI->getCodePointerSize());
689       }
690 
691       if (HasLEB128Directives)
692         EmitTypeTableRefAndCallSiteTableEndRef();
693       else
694         EmitTypeTableOffsetAndCallSiteTableOffset();
695 
696       for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
697            CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
698         const CallSiteEntry &S = CallSites[CallSiteIdx];
699 
700         MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
701         MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
702 
703         MCSymbol *BeginLabel = S.BeginLabel;
704         if (!BeginLabel)
705           BeginLabel = EHFuncBeginSym;
706         MCSymbol *EndLabel = S.EndLabel;
707         if (!EndLabel)
708           EndLabel = EHFuncEndSym;
709 
710         // Offset of the call site relative to the start of the procedure.
711         if (VerboseAsm)
712           Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
713                                        " <<");
714         Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
715         if (VerboseAsm)
716           Asm->OutStreamer->AddComment(Twine("  Call between ") +
717                                        BeginLabel->getName() + " and " +
718                                        EndLabel->getName());
719         Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
720 
721         // Offset of the landing pad relative to the start of the landing pad
722         // fragment.
723         if (!S.LPad) {
724           if (VerboseAsm)
725             Asm->OutStreamer->AddComment("    has no landing pad");
726           Asm->emitCallSiteValue(0, CallSiteEncoding);
727         } else {
728           if (VerboseAsm)
729             Asm->OutStreamer->AddComment(Twine("    jumps to ") +
730                                          S.LPad->LandingPadLabel->getName());
731           Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
732                                   LandingPadRange->FragmentBeginLabel,
733                                   CallSiteEncoding);
734         }
735 
736         // Offset of the first associated action record, relative to the start
737         // of the action table. This value is biased by 1 (1 indicates the start
738         // of the action table), and 0 indicates that there are no actions.
739         if (VerboseAsm) {
740           if (S.Action == 0)
741             Asm->OutStreamer->AddComment("  On action: cleanup");
742           else
743             Asm->OutStreamer->AddComment("  On action: " +
744                                          Twine((S.Action - 1) / 2 + 1));
745         }
746         Asm->emitULEB128(S.Action);
747       }
748     }
749     Asm->OutStreamer->emitLabel(CstEndLabel);
750   }
751 
752   // Emit the Action Table.
753   int Entry = 0;
754   for (const ActionEntry &Action : Actions) {
755     if (VerboseAsm) {
756       // Emit comments that decode the action table.
757       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
758     }
759 
760     // Type Filter
761     //
762     //   Used by the runtime to match the type of the thrown exception to the
763     //   type of the catch clauses or the types in the exception specification.
764     if (VerboseAsm) {
765       if (Action.ValueForTypeID > 0)
766         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
767                                      Twine(Action.ValueForTypeID));
768       else if (Action.ValueForTypeID < 0)
769         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
770                                      Twine(Action.ValueForTypeID));
771       else
772         Asm->OutStreamer->AddComment("  Cleanup");
773     }
774     Asm->emitSLEB128(Action.ValueForTypeID);
775 
776     // Action Record
777     if (VerboseAsm) {
778       if (Action.Previous == unsigned(-1)) {
779         Asm->OutStreamer->AddComment("  No further actions");
780       } else {
781         Asm->OutStreamer->AddComment("  Continue to action " +
782                                      Twine(Action.Previous + 1));
783       }
784     }
785     Asm->emitSLEB128(Action.NextAction);
786   }
787 
788   if (HaveTTData) {
789     Asm->emitAlignment(Align(4));
790     emitTypeInfos(TTypeEncoding, TTBaseLabel);
791   }
792 
793   Asm->emitAlignment(Align(4));
794   return GCCETSym;
795 }
796 
797 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
798   const MachineFunction *MF = Asm->MF;
799   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
800   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
801 
802   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
803 
804   int Entry = 0;
805   // Emit the Catch TypeInfos.
806   if (VerboseAsm && !TypeInfos.empty()) {
807     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
808     Asm->OutStreamer->addBlankLine();
809     Entry = TypeInfos.size();
810   }
811 
812   for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
813     if (VerboseAsm)
814       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
815     Asm->emitTTypeReference(GV, TTypeEncoding);
816   }
817 
818   Asm->OutStreamer->emitLabel(TTBaseLabel);
819 
820   // Emit the Exception Specifications.
821   if (VerboseAsm && !FilterIds.empty()) {
822     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
823     Asm->OutStreamer->addBlankLine();
824     Entry = 0;
825   }
826   for (std::vector<unsigned>::const_iterator
827          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
828     unsigned TypeID = *I;
829     if (VerboseAsm) {
830       --Entry;
831       if (isFilterEHSelector(TypeID))
832         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
833     }
834 
835     Asm->emitULEB128(TypeID);
836   }
837 }
838