1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCStreamer.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/MC/MCTargetOptions.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Target/TargetLoweringObjectFile.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstdint>
34 #include <vector>
35 
36 using namespace llvm;
37 
38 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
39 
40 EHStreamer::~EHStreamer() = default;
41 
42 /// How many leading type ids two landing pads have in common.
43 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
44                                    const LandingPadInfo *R) {
45   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
46   return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
47              .first -
48          LIds.begin();
49 }
50 
51 /// Compute the actions table and gather the first action index for each landing
52 /// pad site.
53 void EHStreamer::computeActionsTable(
54     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
55     SmallVectorImpl<ActionEntry> &Actions,
56     SmallVectorImpl<unsigned> &FirstActions) {
57   // The action table follows the call-site table in the LSDA. The individual
58   // records are of two types:
59   //
60   //   * Catch clause
61   //   * Exception specification
62   //
63   // The two record kinds have the same format, with only small differences.
64   // They are distinguished by the "switch value" field: Catch clauses
65   // (TypeInfos) have strictly positive switch values, and exception
66   // specifications (FilterIds) have strictly negative switch values. Value 0
67   // indicates a catch-all clause.
68   //
69   // Negative type IDs index into FilterIds. Positive type IDs index into
70   // TypeInfos.  The value written for a positive type ID is just the type ID
71   // itself.  For a negative type ID, however, the value written is the
72   // (negative) byte offset of the corresponding FilterIds entry.  The byte
73   // offset is usually equal to the type ID (because the FilterIds entries are
74   // written using a variable width encoding, which outputs one byte per entry
75   // as long as the value written is not too large) but can differ.  This kind
76   // of complication does not occur for positive type IDs because type infos are
77   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
78   // offset corresponding to FilterIds[i].
79 
80   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
81   SmallVector<int, 16> FilterOffsets;
82   FilterOffsets.reserve(FilterIds.size());
83   int Offset = -1;
84 
85   for (unsigned FilterId : FilterIds) {
86     FilterOffsets.push_back(Offset);
87     Offset -= getULEB128Size(FilterId);
88   }
89 
90   FirstActions.reserve(LandingPads.size());
91 
92   int FirstAction = 0;
93   unsigned SizeActions = 0; // Total size of all action entries for a function
94   const LandingPadInfo *PrevLPI = nullptr;
95 
96   for (const LandingPadInfo *LPI : LandingPads) {
97     const std::vector<int> &TypeIds = LPI->TypeIds;
98     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
99     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
100 
101     if (NumShared < TypeIds.size()) {
102       // Size of one action entry (typeid + next action)
103       unsigned SizeActionEntry = 0;
104       unsigned PrevAction = (unsigned)-1;
105 
106       if (NumShared) {
107         unsigned SizePrevIds = PrevLPI->TypeIds.size();
108         assert(Actions.size());
109         PrevAction = Actions.size() - 1;
110         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
111                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
112 
113         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
114           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
115           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
116           SizeActionEntry += -Actions[PrevAction].NextAction;
117           PrevAction = Actions[PrevAction].Previous;
118         }
119       }
120 
121       // Compute the actions.
122       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
123         int TypeID = TypeIds[J];
124         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
125         int ValueForTypeID =
126             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
127         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
128 
129         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
130         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
131         SizeSiteActions += SizeActionEntry;
132 
133         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
134         Actions.push_back(Action);
135         PrevAction = Actions.size() - 1;
136       }
137 
138       // Record the first action of the landing pad site.
139       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
140     } // else identical - re-use previous FirstAction
141 
142     // Information used when creating the call-site table. The action record
143     // field of the call site record is the offset of the first associated
144     // action record, relative to the start of the actions table. This value is
145     // biased by 1 (1 indicating the start of the actions table), and 0
146     // indicates that there are no actions.
147     FirstActions.push_back(FirstAction);
148 
149     // Compute this sites contribution to size.
150     SizeActions += SizeSiteActions;
151 
152     PrevLPI = LPI;
153   }
154 }
155 
156 /// Return `true' if this is a call to a function marked `nounwind'. Return
157 /// `false' otherwise.
158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
159   assert(MI->isCall() && "This should be a call instruction!");
160 
161   bool MarkedNoUnwind = false;
162   bool SawFunc = false;
163 
164   for (const MachineOperand &MO : MI->operands()) {
165     if (!MO.isGlobal()) continue;
166 
167     const Function *F = dyn_cast<Function>(MO.getGlobal());
168     if (!F) continue;
169 
170     if (SawFunc) {
171       // Be conservative. If we have more than one function operand for this
172       // call, then we can't make the assumption that it's the callee and
173       // not a parameter to the call.
174       //
175       // FIXME: Determine if there's a way to say that `F' is the callee or
176       // parameter.
177       MarkedNoUnwind = false;
178       break;
179     }
180 
181     MarkedNoUnwind = F->doesNotThrow();
182     SawFunc = true;
183   }
184 
185   return MarkedNoUnwind;
186 }
187 
188 void EHStreamer::computePadMap(
189     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
190     RangeMapType &PadMap) {
191   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
192   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
193   // try-ranges for them need be deduced so we can put them in the LSDA.
194   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
195     const LandingPadInfo *LandingPad = LandingPads[i];
196     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
197       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
198       MCSymbol *EndLabel = LandingPad->BeginLabels[j];
199       // If we have deleted the code for a given invoke after registering it in
200       // the LandingPad label list, the associated symbols will not have been
201       // emitted. In that case, ignore this callsite entry.
202       if (!BeginLabel->isDefined() || !EndLabel->isDefined())
203         continue;
204       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
205       PadRange P = { i, j };
206       PadMap[BeginLabel] = P;
207     }
208   }
209 }
210 
211 /// Compute the call-site table.  The entry for an invoke has a try-range
212 /// containing the call, a non-zero landing pad, and an appropriate action.  The
213 /// entry for an ordinary call has a try-range containing the call and zero for
214 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
215 /// must not be contained in the try-range of any entry - they form gaps in the
216 /// table.  Entries must be ordered by try-range address.
217 ///
218 /// Call-sites are split into one or more call-site ranges associated with
219 /// different sections of the function.
220 ///
221 ///   - Without -basic-block-sections, all call-sites are grouped into one
222 ///     call-site-range corresponding to the function section.
223 ///
224 ///   - With -basic-block-sections, one call-site range is created for each
225 ///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
226 //      set to the beginning and ending of the corresponding section and its
227 //      ExceptionLabel set to the exception symbol dedicated for this section.
228 //      Later, one LSDA header will be emitted for each call-site range with its
229 //      call-sites following. The action table and type info table will be
230 //      shared across all ranges.
231 void EHStreamer::computeCallSiteTable(
232     SmallVectorImpl<CallSiteEntry> &CallSites,
233     SmallVectorImpl<CallSiteRange> &CallSiteRanges,
234     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
235     const SmallVectorImpl<unsigned> &FirstActions) {
236   RangeMapType PadMap;
237   computePadMap(LandingPads, PadMap);
238 
239   // The end label of the previous invoke or nounwind try-range.
240   MCSymbol *LastLabel = Asm->getFunctionBegin();
241 
242   // Whether there is a potentially throwing instruction (currently this means
243   // an ordinary call) between the end of the previous try-range and now.
244   bool SawPotentiallyThrowing = false;
245 
246   // Whether the last CallSite entry was for an invoke.
247   bool PreviousIsInvoke = false;
248 
249   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
250 
251   // Visit all instructions in order of address.
252   for (const auto &MBB : *Asm->MF) {
253     if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
254       // We start a call-site range upon function entry and at the beginning of
255       // every basic block section.
256       CallSiteRanges.push_back(
257           {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
258            Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
259            Asm->getMBBExceptionSym(MBB), CallSites.size()});
260       PreviousIsInvoke = false;
261       SawPotentiallyThrowing = false;
262       LastLabel = nullptr;
263     }
264 
265     if (MBB.isEHPad())
266       CallSiteRanges.back().IsLPRange = true;
267 
268     for (const auto &MI : MBB) {
269       if (!MI.isEHLabel()) {
270         if (MI.isCall())
271           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
272         continue;
273       }
274 
275       // End of the previous try-range?
276       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
277       if (BeginLabel == LastLabel)
278         SawPotentiallyThrowing = false;
279 
280       // Beginning of a new try-range?
281       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
282       if (L == PadMap.end())
283         // Nope, it was just some random label.
284         continue;
285 
286       const PadRange &P = L->second;
287       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
288       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
289              "Inconsistent landing pad map!");
290 
291       // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
292       // If some instruction between the previous try-range and this one may
293       // throw, create a call-site entry with no landing pad for the region
294       // between the try-ranges.
295       if (SawPotentiallyThrowing &&
296           (Asm->MAI->usesCFIForEH() ||
297            Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
298         CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
299         PreviousIsInvoke = false;
300       }
301 
302       LastLabel = LandingPad->EndLabels[P.RangeIndex];
303       assert(BeginLabel && LastLabel && "Invalid landing pad!");
304 
305       if (!LandingPad->LandingPadLabel) {
306         // Create a gap.
307         PreviousIsInvoke = false;
308       } else {
309         // This try-range is for an invoke.
310         CallSiteEntry Site = {
311           BeginLabel,
312           LastLabel,
313           LandingPad,
314           FirstActions[P.PadIndex]
315         };
316 
317         // Try to merge with the previous call-site. SJLJ doesn't do this
318         if (PreviousIsInvoke && !IsSJLJ) {
319           CallSiteEntry &Prev = CallSites.back();
320           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
321             // Extend the range of the previous entry.
322             Prev.EndLabel = Site.EndLabel;
323             continue;
324           }
325         }
326 
327         // Otherwise, create a new call-site.
328         if (!IsSJLJ)
329           CallSites.push_back(Site);
330         else {
331           // SjLj EH must maintain the call sites in the order assigned
332           // to them by the SjLjPrepare pass.
333           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
334           if (CallSites.size() < SiteNo)
335             CallSites.resize(SiteNo);
336           CallSites[SiteNo - 1] = Site;
337         }
338         PreviousIsInvoke = true;
339       }
340     }
341 
342     // We end the call-site range upon function exit and at the end of every
343     // basic block section.
344     if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
345       // If some instruction between the previous try-range and the end of the
346       // function may throw, create a call-site entry with no landing pad for
347       // the region following the try-range.
348       if (SawPotentiallyThrowing && !IsSJLJ) {
349         CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
350                               nullptr, 0};
351         CallSites.push_back(Site);
352         SawPotentiallyThrowing = false;
353       }
354       CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
355     }
356   }
357 }
358 
359 /// Emit landing pads and actions.
360 ///
361 /// The general organization of the table is complex, but the basic concepts are
362 /// easy.  First there is a header which describes the location and organization
363 /// of the three components that follow.
364 ///
365 ///  1. The landing pad site information describes the range of code covered by
366 ///     the try.  In our case it's an accumulation of the ranges covered by the
367 ///     invokes in the try.  There is also a reference to the landing pad that
368 ///     handles the exception once processed.  Finally an index into the actions
369 ///     table.
370 ///  2. The action table, in our case, is composed of pairs of type IDs and next
371 ///     action offset.  Starting with the action index from the landing pad
372 ///     site, each type ID is checked for a match to the current exception.  If
373 ///     it matches then the exception and type id are passed on to the landing
374 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
375 ///     with a next action of zero.  If no type id is found then the frame is
376 ///     unwound and handling continues.
377 ///  3. Type ID table contains references to all the C++ typeinfo for all
378 ///     catches in the function.  This tables is reverse indexed base 1.
379 ///
380 /// Returns the starting symbol of an exception table.
381 MCSymbol *EHStreamer::emitExceptionTable() {
382   const MachineFunction *MF = Asm->MF;
383   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
384   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
385   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
386 
387   // Sort the landing pads in order of their type ids.  This is used to fold
388   // duplicate actions.
389   SmallVector<const LandingPadInfo *, 64> LandingPads;
390   LandingPads.reserve(PadInfos.size());
391 
392   for (const LandingPadInfo &LPI : PadInfos) {
393     // If a landing-pad has an associated label, but the label wasn't ever
394     // emitted, then skip it.  (This can occur if the landingpad's MBB was
395     // deleted).
396     if (LPI.LandingPadLabel && !LPI.LandingPadLabel->isDefined())
397       continue;
398     LandingPads.push_back(&LPI);
399   }
400 
401   // Order landing pads lexicographically by type id.
402   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
403     return L->TypeIds < R->TypeIds;
404   });
405 
406   // Compute the actions table and gather the first action index for each
407   // landing pad site.
408   SmallVector<ActionEntry, 32> Actions;
409   SmallVector<unsigned, 64> FirstActions;
410   computeActionsTable(LandingPads, Actions, FirstActions);
411 
412   // Compute the call-site table and call-site ranges. Normally, there is only
413   // one call-site-range which covers the whole funciton. With
414   // -basic-block-sections, there is one call-site-range per basic block
415   // section.
416   SmallVector<CallSiteEntry, 64> CallSites;
417   SmallVector<CallSiteRange, 4> CallSiteRanges;
418   computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
419 
420   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
421   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
422   bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
423   unsigned CallSiteEncoding =
424       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
425                Asm->getObjFileLowering().getCallSiteEncoding();
426   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
427 
428   // Type infos.
429   MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
430       MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
431   unsigned TTypeEncoding;
432 
433   if (!HaveTTData) {
434     // If there is no TypeInfo, then we just explicitly say that we're omitting
435     // that bit.
436     TTypeEncoding = dwarf::DW_EH_PE_omit;
437   } else {
438     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
439     // pick a type encoding for them.  We're about to emit a list of pointers to
440     // typeinfo objects at the end of the LSDA.  However, unless we're in static
441     // mode, this reference will require a relocation by the dynamic linker.
442     //
443     // Because of this, we have a couple of options:
444     //
445     //   1) If we are in -static mode, we can always use an absolute reference
446     //      from the LSDA, because the static linker will resolve it.
447     //
448     //   2) Otherwise, if the LSDA section is writable, we can output the direct
449     //      reference to the typeinfo and allow the dynamic linker to relocate
450     //      it.  Since it is in a writable section, the dynamic linker won't
451     //      have a problem.
452     //
453     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
454     //      we need to use some form of indirection.  For example, on Darwin,
455     //      we can output a statically-relocatable reference to a dyld stub. The
456     //      offset to the stub is constant, but the contents are in a section
457     //      that is updated by the dynamic linker.  This is easy enough, but we
458     //      need to tell the personality function of the unwinder to indirect
459     //      through the dyld stub.
460     //
461     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
462     // somewhere.  This predicate should be moved to a shared location that is
463     // in target-independent code.
464     //
465     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
466   }
467 
468   // Begin the exception table.
469   // Sometimes we want not to emit the data into separate section (e.g. ARM
470   // EHABI). In this case LSDASection will be NULL.
471   if (LSDASection)
472     Asm->OutStreamer->switchSection(LSDASection);
473   Asm->emitAlignment(Align(4));
474 
475   // Emit the LSDA.
476   MCSymbol *GCCETSym =
477     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
478                                       Twine(Asm->getFunctionNumber()));
479   Asm->OutStreamer->emitLabel(GCCETSym);
480   MCSymbol *CstEndLabel = Asm->createTempSymbol(
481       CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
482 
483   MCSymbol *TTBaseLabel = nullptr;
484   if (HaveTTData)
485     TTBaseLabel = Asm->createTempSymbol("ttbase");
486 
487   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
488 
489   // Helper for emitting references (offsets) for type table and the end of the
490   // call-site table (which marks the beginning of the action table).
491   //  * For Itanium, these references will be emitted for every callsite range.
492   //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
493   auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
494     Asm->emitEncodingByte(TTypeEncoding, "@TType");
495     if (HaveTTData) {
496       // N.B.: There is a dependency loop between the size of the TTBase uleb128
497       // here and the amount of padding before the aligned type table. The
498       // assembler must sometimes pad this uleb128 or insert extra padding
499       // before the type table. See PR35809 or GNU as bug 4029.
500       MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
501       Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
502       Asm->OutStreamer->emitLabel(TTBaseRefLabel);
503     }
504 
505     // The Action table follows the call-site table. So we emit the
506     // label difference from here (start of the call-site table for SJLJ and
507     // Wasm, and start of a call-site range for Itanium) to the end of the
508     // whole call-site table (end of the last call-site range for Itanium).
509     MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
510     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
511     Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
512     Asm->OutStreamer->emitLabel(CstBeginLabel);
513   };
514 
515   // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
516   // For some platforms, the system assembler does not accept the form of
517   // `.uleb128 label2 - label1`. In those situations, we would need to calculate
518   // the size between label1 and label2 manually.
519   // In this case, we would need to calculate the LSDA size and the call
520   // site table size.
521   auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
522     assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
523            "Targets supporting .uleb128 do not need to take this path.");
524     if (CallSiteRanges.size() > 1)
525       report_fatal_error(
526           "-fbasic-block-sections is not yet supported on "
527           "platforms that do not have general LEB128 directive support.");
528 
529     uint64_t CallSiteTableSize = 0;
530     const CallSiteRange &CSRange = CallSiteRanges.back();
531     for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
532          CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
533       const CallSiteEntry &S = CallSites[CallSiteIdx];
534       // Each call site entry consists of 3 udata4 fields (12 bytes) and
535       // 1 ULEB128 field.
536       CallSiteTableSize += 12 + getULEB128Size(S.Action);
537       assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
538     }
539 
540     Asm->emitEncodingByte(TTypeEncoding, "@TType");
541     if (HaveTTData) {
542       const unsigned ByteSizeOfCallSiteOffset =
543           getULEB128Size(CallSiteTableSize);
544       uint64_t ActionTableSize = 0;
545       for (const ActionEntry &Action : Actions) {
546         // Each action entry consists of two SLEB128 fields.
547         ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
548                            getSLEB128Size(Action.NextAction);
549         assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
550       }
551 
552       const unsigned TypeInfoSize =
553           Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
554 
555       const uint64_t LSDASizeBeforeAlign =
556           1                          // Call site encoding byte.
557           + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
558           + CallSiteTableSize        // Call site table content.
559           + ActionTableSize;         // Action table content.
560 
561       const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
562       const unsigned ByteSizeOfLSDAWithoutAlign =
563           getULEB128Size(LSDASizeWithoutAlign);
564       const uint64_t DisplacementBeforeAlign =
565           2 // LPStartEncoding and TypeTableEncoding.
566           + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
567 
568       // The type info area starts with 4 byte alignment.
569       const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
570       uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
571       const unsigned ByteSizeOfLSDAWithAlign =
572           getULEB128Size(LSDASizeWithAlign);
573 
574       // The LSDASizeWithAlign could use 1 byte less padding for alignment
575       // when the data we use to represent the LSDA Size "needs" to be 1 byte
576       // larger than the one previously calculated without alignment.
577       if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
578         LSDASizeWithAlign -= 1;
579 
580       Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
581                                             ByteSizeOfLSDAWithAlign);
582     }
583 
584     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
585     Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
586   };
587 
588   // SjLj / Wasm Exception handling
589   if (IsSJLJ || IsWasm) {
590     Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
591 
592     // emit the LSDA header.
593     Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
594     EmitTypeTableRefAndCallSiteTableEndRef();
595 
596     unsigned idx = 0;
597     for (SmallVectorImpl<CallSiteEntry>::const_iterator
598          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
599       const CallSiteEntry &S = *I;
600 
601       // Index of the call site entry.
602       if (VerboseAsm) {
603         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
604         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
605       }
606       Asm->emitULEB128(idx);
607 
608       // Offset of the first associated action record, relative to the start of
609       // the action table. This value is biased by 1 (1 indicates the start of
610       // the action table), and 0 indicates that there are no actions.
611       if (VerboseAsm) {
612         if (S.Action == 0)
613           Asm->OutStreamer->AddComment("  Action: cleanup");
614         else
615           Asm->OutStreamer->AddComment("  Action: " +
616                                        Twine((S.Action - 1) / 2 + 1));
617       }
618       Asm->emitULEB128(S.Action);
619     }
620     Asm->OutStreamer->emitLabel(CstEndLabel);
621   } else {
622     // Itanium LSDA exception handling
623 
624     // The call-site table is a list of all call sites that may throw an
625     // exception (including C++ 'throw' statements) in the procedure
626     // fragment. It immediately follows the LSDA header. Each entry indicates,
627     // for a given call, the first corresponding action record and corresponding
628     // landing pad.
629     //
630     // The table begins with the number of bytes, stored as an LEB128
631     // compressed, unsigned integer. The records immediately follow the record
632     // count. They are sorted in increasing call-site address. Each record
633     // indicates:
634     //
635     //   * The position of the call-site.
636     //   * The position of the landing pad.
637     //   * The first action record for that call site.
638     //
639     // A missing entry in the call-site table indicates that a call is not
640     // supposed to throw.
641 
642     assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
643 
644     // There should be only one call-site range which includes all the landing
645     // pads. Find that call-site range here.
646     const CallSiteRange *LandingPadRange = nullptr;
647     for (const CallSiteRange &CSRange : CallSiteRanges) {
648       if (CSRange.IsLPRange) {
649         assert(LandingPadRange == nullptr &&
650                "All landing pads must be in a single callsite range.");
651         LandingPadRange = &CSRange;
652       }
653     }
654 
655     // The call-site table is split into its call-site ranges, each being
656     // emitted as:
657     //              [ LPStartEncoding | LPStart ]
658     //              [ TypeTableEncoding | TypeTableOffset ]
659     //              [ CallSiteEncoding | CallSiteTableEndOffset ]
660     // cst_begin -> { call-site entries contained in this range }
661     //
662     // and is followed by the next call-site range.
663     //
664     // For each call-site range, CallSiteTableEndOffset is computed as the
665     // difference between cst_begin of that range and the last call-site-table's
666     // end label. This offset is used to find the action table.
667 
668     unsigned Entry = 0;
669     for (const CallSiteRange &CSRange : CallSiteRanges) {
670       if (CSRange.CallSiteBeginIdx != 0) {
671         // Align the call-site range for all ranges except the first. The
672         // first range is already aligned due to the exception table alignment.
673         Asm->emitAlignment(Align(4));
674       }
675       Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
676 
677       // Emit the LSDA header.
678       // LPStart is omitted if either we have a single call-site range (in which
679       // case the function entry is treated as @LPStart) or if this function has
680       // no landing pads (in which case @LPStart is undefined).
681       if (CallSiteRanges.size() == 1 || LandingPadRange == nullptr) {
682         Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
683       } else if (!Asm->isPositionIndependent()) {
684         // For more than one call-site ranges, LPStart must be explicitly
685         // specified.
686         // For non-PIC we can simply use the absolute value.
687         Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
688         Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
689                                           Asm->MAI->getCodePointerSize());
690       } else {
691         // For PIC mode, we Emit a PC-relative address for LPStart.
692         Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
693         MCContext &Context = Asm->OutStreamer->getContext();
694         MCSymbol *Dot = Context.createTempSymbol();
695         Asm->OutStreamer->emitLabel(Dot);
696         Asm->OutStreamer->emitValue(
697             MCBinaryExpr::createSub(
698                 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
699                                         Context),
700                 MCSymbolRefExpr::create(Dot, Context), Context),
701             Asm->MAI->getCodePointerSize());
702       }
703 
704       if (HasLEB128Directives)
705         EmitTypeTableRefAndCallSiteTableEndRef();
706       else
707         EmitTypeTableOffsetAndCallSiteTableOffset();
708 
709       for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
710            CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
711         const CallSiteEntry &S = CallSites[CallSiteIdx];
712 
713         MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
714         MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
715 
716         MCSymbol *BeginLabel = S.BeginLabel;
717         if (!BeginLabel)
718           BeginLabel = EHFuncBeginSym;
719         MCSymbol *EndLabel = S.EndLabel;
720         if (!EndLabel)
721           EndLabel = EHFuncEndSym;
722 
723         // Offset of the call site relative to the start of the procedure.
724         if (VerboseAsm)
725           Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
726                                        " <<");
727         Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
728         if (VerboseAsm)
729           Asm->OutStreamer->AddComment(Twine("  Call between ") +
730                                        BeginLabel->getName() + " and " +
731                                        EndLabel->getName());
732         Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
733 
734         // Offset of the landing pad relative to the start of the landing pad
735         // fragment.
736         if (!S.LPad) {
737           if (VerboseAsm)
738             Asm->OutStreamer->AddComment("    has no landing pad");
739           Asm->emitCallSiteValue(0, CallSiteEncoding);
740         } else {
741           if (VerboseAsm)
742             Asm->OutStreamer->AddComment(Twine("    jumps to ") +
743                                          S.LPad->LandingPadLabel->getName());
744           Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
745                                   LandingPadRange->FragmentBeginLabel,
746                                   CallSiteEncoding);
747         }
748 
749         // Offset of the first associated action record, relative to the start
750         // of the action table. This value is biased by 1 (1 indicates the start
751         // of the action table), and 0 indicates that there are no actions.
752         if (VerboseAsm) {
753           if (S.Action == 0)
754             Asm->OutStreamer->AddComment("  On action: cleanup");
755           else
756             Asm->OutStreamer->AddComment("  On action: " +
757                                          Twine((S.Action - 1) / 2 + 1));
758         }
759         Asm->emitULEB128(S.Action);
760       }
761     }
762     Asm->OutStreamer->emitLabel(CstEndLabel);
763   }
764 
765   // Emit the Action Table.
766   int Entry = 0;
767   for (const ActionEntry &Action : Actions) {
768     if (VerboseAsm) {
769       // Emit comments that decode the action table.
770       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
771     }
772 
773     // Type Filter
774     //
775     //   Used by the runtime to match the type of the thrown exception to the
776     //   type of the catch clauses or the types in the exception specification.
777     if (VerboseAsm) {
778       if (Action.ValueForTypeID > 0)
779         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
780                                      Twine(Action.ValueForTypeID));
781       else if (Action.ValueForTypeID < 0)
782         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
783                                      Twine(Action.ValueForTypeID));
784       else
785         Asm->OutStreamer->AddComment("  Cleanup");
786     }
787     Asm->emitSLEB128(Action.ValueForTypeID);
788 
789     // Action Record
790     if (VerboseAsm) {
791       if (Action.Previous == unsigned(-1)) {
792         Asm->OutStreamer->AddComment("  No further actions");
793       } else {
794         Asm->OutStreamer->AddComment("  Continue to action " +
795                                      Twine(Action.Previous + 1));
796       }
797     }
798     Asm->emitSLEB128(Action.NextAction);
799   }
800 
801   if (HaveTTData) {
802     Asm->emitAlignment(Align(4));
803     emitTypeInfos(TTypeEncoding, TTBaseLabel);
804   }
805 
806   Asm->emitAlignment(Align(4));
807   return GCCETSym;
808 }
809 
810 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
811   const MachineFunction *MF = Asm->MF;
812   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
813   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
814 
815   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
816 
817   int Entry = 0;
818   // Emit the Catch TypeInfos.
819   if (VerboseAsm && !TypeInfos.empty()) {
820     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
821     Asm->OutStreamer->addBlankLine();
822     Entry = TypeInfos.size();
823   }
824 
825   for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
826     if (VerboseAsm)
827       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
828     Asm->emitTTypeReference(GV, TTypeEncoding);
829   }
830 
831   Asm->OutStreamer->emitLabel(TTBaseLabel);
832 
833   // Emit the Exception Specifications.
834   if (VerboseAsm && !FilterIds.empty()) {
835     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
836     Asm->OutStreamer->addBlankLine();
837     Entry = 0;
838   }
839   for (std::vector<unsigned>::const_iterator
840          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
841     unsigned TypeID = *I;
842     if (VerboseAsm) {
843       --Entry;
844       if (isFilterEHSelector(TypeID))
845         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
846     }
847 
848     Asm->emitULEB128(TypeID);
849   }
850 }
851