1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40 
41 EHStreamer::~EHStreamer() = default;
42 
43 /// How many leading type ids two landing pads have in common.
44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45                                    const LandingPadInfo *R) {
46   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47   unsigned LSize = LIds.size(), RSize = RIds.size();
48   unsigned MinSize = LSize < RSize ? LSize : RSize;
49   unsigned Count = 0;
50 
51   for (; Count != MinSize; ++Count)
52     if (LIds[Count] != RIds[Count])
53       return Count;
54 
55   return Count;
56 }
57 
58 /// Compute the actions table and gather the first action index for each landing
59 /// pad site.
60 void EHStreamer::computeActionsTable(
61     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
62     SmallVectorImpl<ActionEntry> &Actions,
63     SmallVectorImpl<unsigned> &FirstActions) {
64   // The action table follows the call-site table in the LSDA. The individual
65   // records are of two types:
66   //
67   //   * Catch clause
68   //   * Exception specification
69   //
70   // The two record kinds have the same format, with only small differences.
71   // They are distinguished by the "switch value" field: Catch clauses
72   // (TypeInfos) have strictly positive switch values, and exception
73   // specifications (FilterIds) have strictly negative switch values. Value 0
74   // indicates a catch-all clause.
75   //
76   // Negative type IDs index into FilterIds. Positive type IDs index into
77   // TypeInfos.  The value written for a positive type ID is just the type ID
78   // itself.  For a negative type ID, however, the value written is the
79   // (negative) byte offset of the corresponding FilterIds entry.  The byte
80   // offset is usually equal to the type ID (because the FilterIds entries are
81   // written using a variable width encoding, which outputs one byte per entry
82   // as long as the value written is not too large) but can differ.  This kind
83   // of complication does not occur for positive type IDs because type infos are
84   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
85   // offset corresponding to FilterIds[i].
86 
87   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
88   SmallVector<int, 16> FilterOffsets;
89   FilterOffsets.reserve(FilterIds.size());
90   int Offset = -1;
91 
92   for (std::vector<unsigned>::const_iterator
93          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
94     FilterOffsets.push_back(Offset);
95     Offset -= getULEB128Size(*I);
96   }
97 
98   FirstActions.reserve(LandingPads.size());
99 
100   int FirstAction = 0;
101   unsigned SizeActions = 0; // Total size of all action entries for a function
102   const LandingPadInfo *PrevLPI = nullptr;
103 
104   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
105          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
106     const LandingPadInfo *LPI = *I;
107     const std::vector<int> &TypeIds = LPI->TypeIds;
108     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
109     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
110 
111     if (NumShared < TypeIds.size()) {
112       // Size of one action entry (typeid + next action)
113       unsigned SizeActionEntry = 0;
114       unsigned PrevAction = (unsigned)-1;
115 
116       if (NumShared) {
117         unsigned SizePrevIds = PrevLPI->TypeIds.size();
118         assert(Actions.size());
119         PrevAction = Actions.size() - 1;
120         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
121                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
122 
123         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
124           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
125           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
126           SizeActionEntry += -Actions[PrevAction].NextAction;
127           PrevAction = Actions[PrevAction].Previous;
128         }
129       }
130 
131       // Compute the actions.
132       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
133         int TypeID = TypeIds[J];
134         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
135         int ValueForTypeID =
136             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
137         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
138 
139         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
140         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
141         SizeSiteActions += SizeActionEntry;
142 
143         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
144         Actions.push_back(Action);
145         PrevAction = Actions.size() - 1;
146       }
147 
148       // Record the first action of the landing pad site.
149       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
150     } // else identical - re-use previous FirstAction
151 
152     // Information used when creating the call-site table. The action record
153     // field of the call site record is the offset of the first associated
154     // action record, relative to the start of the actions table. This value is
155     // biased by 1 (1 indicating the start of the actions table), and 0
156     // indicates that there are no actions.
157     FirstActions.push_back(FirstAction);
158 
159     // Compute this sites contribution to size.
160     SizeActions += SizeSiteActions;
161 
162     PrevLPI = LPI;
163   }
164 }
165 
166 /// Return `true' if this is a call to a function marked `nounwind'. Return
167 /// `false' otherwise.
168 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
169   assert(MI->isCall() && "This should be a call instruction!");
170 
171   bool MarkedNoUnwind = false;
172   bool SawFunc = false;
173 
174   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
175     const MachineOperand &MO = MI->getOperand(I);
176 
177     if (!MO.isGlobal()) continue;
178 
179     const Function *F = dyn_cast<Function>(MO.getGlobal());
180     if (!F) continue;
181 
182     if (SawFunc) {
183       // Be conservative. If we have more than one function operand for this
184       // call, then we can't make the assumption that it's the callee and
185       // not a parameter to the call.
186       //
187       // FIXME: Determine if there's a way to say that `F' is the callee or
188       // parameter.
189       MarkedNoUnwind = false;
190       break;
191     }
192 
193     MarkedNoUnwind = F->doesNotThrow();
194     SawFunc = true;
195   }
196 
197   return MarkedNoUnwind;
198 }
199 
200 void EHStreamer::computePadMap(
201     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
202     RangeMapType &PadMap) {
203   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
204   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
205   // try-ranges for them need be deduced so we can put them in the LSDA.
206   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
207     const LandingPadInfo *LandingPad = LandingPads[i];
208     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
209       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
210       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
211       PadRange P = { i, j };
212       PadMap[BeginLabel] = P;
213     }
214   }
215 }
216 
217 /// Compute the call-site table.  The entry for an invoke has a try-range
218 /// containing the call, a non-zero landing pad, and an appropriate action.  The
219 /// entry for an ordinary call has a try-range containing the call and zero for
220 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
221 /// must not be contained in the try-range of any entry - they form gaps in the
222 /// table.  Entries must be ordered by try-range address.
223 void EHStreamer::
224 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
225                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
226                      const SmallVectorImpl<unsigned> &FirstActions) {
227   RangeMapType PadMap;
228   computePadMap(LandingPads, PadMap);
229 
230   // The end label of the previous invoke or nounwind try-range.
231   MCSymbol *LastLabel = nullptr;
232 
233   // Whether there is a potentially throwing instruction (currently this means
234   // an ordinary call) between the end of the previous try-range and now.
235   bool SawPotentiallyThrowing = false;
236 
237   // Whether the last CallSite entry was for an invoke.
238   bool PreviousIsInvoke = false;
239 
240   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
241 
242   // Visit all instructions in order of address.
243   for (const auto &MBB : *Asm->MF) {
244     for (const auto &MI : MBB) {
245       if (!MI.isEHLabel()) {
246         if (MI.isCall())
247           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
248         continue;
249       }
250 
251       // End of the previous try-range?
252       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
253       if (BeginLabel == LastLabel)
254         SawPotentiallyThrowing = false;
255 
256       // Beginning of a new try-range?
257       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
258       if (L == PadMap.end())
259         // Nope, it was just some random label.
260         continue;
261 
262       const PadRange &P = L->second;
263       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
264       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
265              "Inconsistent landing pad map!");
266 
267       // For Dwarf exception handling (SjLj handling doesn't use this). If some
268       // instruction between the previous try-range and this one may throw,
269       // create a call-site entry with no landing pad for the region between the
270       // try-ranges.
271       if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
272         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
273         CallSites.push_back(Site);
274         PreviousIsInvoke = false;
275       }
276 
277       LastLabel = LandingPad->EndLabels[P.RangeIndex];
278       assert(BeginLabel && LastLabel && "Invalid landing pad!");
279 
280       if (!LandingPad->LandingPadLabel) {
281         // Create a gap.
282         PreviousIsInvoke = false;
283       } else {
284         // This try-range is for an invoke.
285         CallSiteEntry Site = {
286           BeginLabel,
287           LastLabel,
288           LandingPad,
289           FirstActions[P.PadIndex]
290         };
291 
292         // Try to merge with the previous call-site. SJLJ doesn't do this
293         if (PreviousIsInvoke && !IsSJLJ) {
294           CallSiteEntry &Prev = CallSites.back();
295           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
296             // Extend the range of the previous entry.
297             Prev.EndLabel = Site.EndLabel;
298             continue;
299           }
300         }
301 
302         // Otherwise, create a new call-site.
303         if (!IsSJLJ)
304           CallSites.push_back(Site);
305         else {
306           // SjLj EH must maintain the call sites in the order assigned
307           // to them by the SjLjPrepare pass.
308           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
309           if (CallSites.size() < SiteNo)
310             CallSites.resize(SiteNo);
311           CallSites[SiteNo - 1] = Site;
312         }
313         PreviousIsInvoke = true;
314       }
315     }
316   }
317 
318   // If some instruction between the previous try-range and the end of the
319   // function may throw, create a call-site entry with no landing pad for the
320   // region following the try-range.
321   if (SawPotentiallyThrowing && !IsSJLJ) {
322     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
323     CallSites.push_back(Site);
324   }
325 }
326 
327 /// Emit landing pads and actions.
328 ///
329 /// The general organization of the table is complex, but the basic concepts are
330 /// easy.  First there is a header which describes the location and organization
331 /// of the three components that follow.
332 ///
333 ///  1. The landing pad site information describes the range of code covered by
334 ///     the try.  In our case it's an accumulation of the ranges covered by the
335 ///     invokes in the try.  There is also a reference to the landing pad that
336 ///     handles the exception once processed.  Finally an index into the actions
337 ///     table.
338 ///  2. The action table, in our case, is composed of pairs of type IDs and next
339 ///     action offset.  Starting with the action index from the landing pad
340 ///     site, each type ID is checked for a match to the current exception.  If
341 ///     it matches then the exception and type id are passed on to the landing
342 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
343 ///     with a next action of zero.  If no type id is found then the frame is
344 ///     unwound and handling continues.
345 ///  3. Type ID table contains references to all the C++ typeinfo for all
346 ///     catches in the function.  This tables is reverse indexed base 1.
347 ///
348 /// Returns the starting symbol of an exception table.
349 MCSymbol *EHStreamer::emitExceptionTable() {
350   const MachineFunction *MF = Asm->MF;
351   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
352   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
353   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
354 
355   // Sort the landing pads in order of their type ids.  This is used to fold
356   // duplicate actions.
357   SmallVector<const LandingPadInfo *, 64> LandingPads;
358   LandingPads.reserve(PadInfos.size());
359 
360   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
361     LandingPads.push_back(&PadInfos[i]);
362 
363   // Order landing pads lexicographically by type id.
364   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
365     return L->TypeIds < R->TypeIds;
366   });
367 
368   // Compute the actions table and gather the first action index for each
369   // landing pad site.
370   SmallVector<ActionEntry, 32> Actions;
371   SmallVector<unsigned, 64> FirstActions;
372   computeActionsTable(LandingPads, Actions, FirstActions);
373 
374   // Compute the call-site table.
375   SmallVector<CallSiteEntry, 64> CallSites;
376   computeCallSiteTable(CallSites, LandingPads, FirstActions);
377 
378   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
379   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
380   unsigned CallSiteEncoding =
381       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
382                Asm->getObjFileLowering().getCallSiteEncoding();
383   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
384 
385   // Type infos.
386   MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
387   unsigned TTypeEncoding;
388 
389   if (!HaveTTData) {
390     // If there is no TypeInfo, then we just explicitly say that we're omitting
391     // that bit.
392     TTypeEncoding = dwarf::DW_EH_PE_omit;
393   } else {
394     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
395     // pick a type encoding for them.  We're about to emit a list of pointers to
396     // typeinfo objects at the end of the LSDA.  However, unless we're in static
397     // mode, this reference will require a relocation by the dynamic linker.
398     //
399     // Because of this, we have a couple of options:
400     //
401     //   1) If we are in -static mode, we can always use an absolute reference
402     //      from the LSDA, because the static linker will resolve it.
403     //
404     //   2) Otherwise, if the LSDA section is writable, we can output the direct
405     //      reference to the typeinfo and allow the dynamic linker to relocate
406     //      it.  Since it is in a writable section, the dynamic linker won't
407     //      have a problem.
408     //
409     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
410     //      we need to use some form of indirection.  For example, on Darwin,
411     //      we can output a statically-relocatable reference to a dyld stub. The
412     //      offset to the stub is constant, but the contents are in a section
413     //      that is updated by the dynamic linker.  This is easy enough, but we
414     //      need to tell the personality function of the unwinder to indirect
415     //      through the dyld stub.
416     //
417     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
418     // somewhere.  This predicate should be moved to a shared location that is
419     // in target-independent code.
420     //
421     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
422   }
423 
424   // Begin the exception table.
425   // Sometimes we want not to emit the data into separate section (e.g. ARM
426   // EHABI). In this case LSDASection will be NULL.
427   if (LSDASection)
428     Asm->OutStreamer->SwitchSection(LSDASection);
429   Asm->EmitAlignment(Align(4));
430 
431   // Emit the LSDA.
432   MCSymbol *GCCETSym =
433     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
434                                       Twine(Asm->getFunctionNumber()));
435   Asm->OutStreamer->EmitLabel(GCCETSym);
436   Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
437 
438   // Emit the LSDA header.
439   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
440   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
441 
442   MCSymbol *TTBaseLabel = nullptr;
443   if (HaveTTData) {
444     // N.B.: There is a dependency loop between the size of the TTBase uleb128
445     // here and the amount of padding before the aligned type table. The
446     // assembler must sometimes pad this uleb128 or insert extra padding before
447     // the type table. See PR35809 or GNU as bug 4029.
448     MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
449     TTBaseLabel = Asm->createTempSymbol("ttbase");
450     Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
451     Asm->OutStreamer->EmitLabel(TTBaseRefLabel);
452   }
453 
454   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
455 
456   // Emit the landing pad call site table.
457   MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
458   MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
459   Asm->EmitEncodingByte(CallSiteEncoding, "Call site");
460   Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
461   Asm->OutStreamer->EmitLabel(CstBeginLabel);
462 
463   // SjLj / Wasm Exception handling
464   if (IsSJLJ || IsWasm) {
465     unsigned idx = 0;
466     for (SmallVectorImpl<CallSiteEntry>::const_iterator
467          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
468       const CallSiteEntry &S = *I;
469 
470       // Index of the call site entry.
471       if (VerboseAsm) {
472         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
473         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
474       }
475       Asm->EmitULEB128(idx);
476 
477       // Offset of the first associated action record, relative to the start of
478       // the action table. This value is biased by 1 (1 indicates the start of
479       // the action table), and 0 indicates that there are no actions.
480       if (VerboseAsm) {
481         if (S.Action == 0)
482           Asm->OutStreamer->AddComment("  Action: cleanup");
483         else
484           Asm->OutStreamer->AddComment("  Action: " +
485                                        Twine((S.Action - 1) / 2 + 1));
486       }
487       Asm->EmitULEB128(S.Action);
488     }
489   } else {
490     // Itanium LSDA exception handling
491 
492     // The call-site table is a list of all call sites that may throw an
493     // exception (including C++ 'throw' statements) in the procedure
494     // fragment. It immediately follows the LSDA header. Each entry indicates,
495     // for a given call, the first corresponding action record and corresponding
496     // landing pad.
497     //
498     // The table begins with the number of bytes, stored as an LEB128
499     // compressed, unsigned integer. The records immediately follow the record
500     // count. They are sorted in increasing call-site address. Each record
501     // indicates:
502     //
503     //   * The position of the call-site.
504     //   * The position of the landing pad.
505     //   * The first action record for that call site.
506     //
507     // A missing entry in the call-site table indicates that a call is not
508     // supposed to throw.
509 
510     unsigned Entry = 0;
511     for (SmallVectorImpl<CallSiteEntry>::const_iterator
512          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
513       const CallSiteEntry &S = *I;
514 
515       MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
516 
517       MCSymbol *BeginLabel = S.BeginLabel;
518       if (!BeginLabel)
519         BeginLabel = EHFuncBeginSym;
520       MCSymbol *EndLabel = S.EndLabel;
521       if (!EndLabel)
522         EndLabel = Asm->getFunctionEnd();
523 
524       // Offset of the call site relative to the start of the procedure.
525       if (VerboseAsm)
526         Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
527       Asm->EmitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
528       if (VerboseAsm)
529         Asm->OutStreamer->AddComment(Twine("  Call between ") +
530                                      BeginLabel->getName() + " and " +
531                                      EndLabel->getName());
532       Asm->EmitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
533 
534       // Offset of the landing pad relative to the start of the procedure.
535       if (!S.LPad) {
536         if (VerboseAsm)
537           Asm->OutStreamer->AddComment("    has no landing pad");
538         Asm->EmitCallSiteValue(0, CallSiteEncoding);
539       } else {
540         if (VerboseAsm)
541           Asm->OutStreamer->AddComment(Twine("    jumps to ") +
542                                        S.LPad->LandingPadLabel->getName());
543         Asm->EmitCallSiteOffset(S.LPad->LandingPadLabel, EHFuncBeginSym,
544                                 CallSiteEncoding);
545       }
546 
547       // Offset of the first associated action record, relative to the start of
548       // the action table. This value is biased by 1 (1 indicates the start of
549       // the action table), and 0 indicates that there are no actions.
550       if (VerboseAsm) {
551         if (S.Action == 0)
552           Asm->OutStreamer->AddComment("  On action: cleanup");
553         else
554           Asm->OutStreamer->AddComment("  On action: " +
555                                        Twine((S.Action - 1) / 2 + 1));
556       }
557       Asm->EmitULEB128(S.Action);
558     }
559   }
560   Asm->OutStreamer->EmitLabel(CstEndLabel);
561 
562   // Emit the Action Table.
563   int Entry = 0;
564   for (SmallVectorImpl<ActionEntry>::const_iterator
565          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
566     const ActionEntry &Action = *I;
567 
568     if (VerboseAsm) {
569       // Emit comments that decode the action table.
570       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
571     }
572 
573     // Type Filter
574     //
575     //   Used by the runtime to match the type of the thrown exception to the
576     //   type of the catch clauses or the types in the exception specification.
577     if (VerboseAsm) {
578       if (Action.ValueForTypeID > 0)
579         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
580                                      Twine(Action.ValueForTypeID));
581       else if (Action.ValueForTypeID < 0)
582         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
583                                      Twine(Action.ValueForTypeID));
584       else
585         Asm->OutStreamer->AddComment("  Cleanup");
586     }
587     Asm->EmitSLEB128(Action.ValueForTypeID);
588 
589     // Action Record
590     //
591     //   Self-relative signed displacement in bytes of the next action record,
592     //   or 0 if there is no next action record.
593     if (VerboseAsm) {
594       if (Action.NextAction == 0) {
595         Asm->OutStreamer->AddComment("  No further actions");
596       } else {
597         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
598         Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
599       }
600     }
601     Asm->EmitSLEB128(Action.NextAction);
602   }
603 
604   if (HaveTTData) {
605     Asm->EmitAlignment(Align(4));
606     emitTypeInfos(TTypeEncoding, TTBaseLabel);
607   }
608 
609   Asm->EmitAlignment(Align(4));
610   return GCCETSym;
611 }
612 
613 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
614   const MachineFunction *MF = Asm->MF;
615   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
616   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
617 
618   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
619 
620   int Entry = 0;
621   // Emit the Catch TypeInfos.
622   if (VerboseAsm && !TypeInfos.empty()) {
623     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
624     Asm->OutStreamer->AddBlankLine();
625     Entry = TypeInfos.size();
626   }
627 
628   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
629                                           TypeInfos.rend())) {
630     if (VerboseAsm)
631       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
632     Asm->EmitTTypeReference(GV, TTypeEncoding);
633   }
634 
635   Asm->OutStreamer->EmitLabel(TTBaseLabel);
636 
637   // Emit the Exception Specifications.
638   if (VerboseAsm && !FilterIds.empty()) {
639     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
640     Asm->OutStreamer->AddBlankLine();
641     Entry = 0;
642   }
643   for (std::vector<unsigned>::const_iterator
644          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
645     unsigned TypeID = *I;
646     if (VerboseAsm) {
647       --Entry;
648       if (isFilterEHSelector(TypeID))
649         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
650     }
651 
652     Asm->EmitULEB128(TypeID);
653   }
654 }
655