1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeCalc.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/LowLevelType.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/RegisterBank.h"
53 #include "llvm/CodeGen/RegisterBankInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/EHPersonalities.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/InlineAsm.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/InitializePasses.h"
67 #include "llvm/MC/LaneBitmask.h"
68 #include "llvm/MC/MCAsmInfo.h"
69 #include "llvm/MC/MCDwarf.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCRegisterInfo.h"
72 #include "llvm/MC/MCTargetOptions.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/ModRef.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Target/TargetMachine.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <string>
86 #include <utility>
87 
88 using namespace llvm;
89 
90 namespace {
91 
92   struct MachineVerifier {
MachineVerifier__anoncaf807cd0111::MachineVerifier93     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
94 
MachineVerifier__anoncaf807cd0111::MachineVerifier95     MachineVerifier(const char *b, LiveVariables *LiveVars,
96                     LiveIntervals *LiveInts, LiveStacks *LiveStks,
97                     SlotIndexes *Indexes)
98         : Banner(b), LiveVars(LiveVars), LiveInts(LiveInts), LiveStks(LiveStks),
99           Indexes(Indexes) {}
100 
101     unsigned verify(const MachineFunction &MF);
102 
103     Pass *const PASS = nullptr;
104     const char *Banner;
105     const MachineFunction *MF = nullptr;
106     const TargetMachine *TM = nullptr;
107     const TargetInstrInfo *TII = nullptr;
108     const TargetRegisterInfo *TRI = nullptr;
109     const MachineRegisterInfo *MRI = nullptr;
110     const RegisterBankInfo *RBI = nullptr;
111 
112     unsigned foundErrors = 0;
113 
114     // Avoid querying the MachineFunctionProperties for each operand.
115     bool isFunctionRegBankSelected = false;
116     bool isFunctionSelected = false;
117     bool isFunctionTracksDebugUserValues = false;
118 
119     using RegVector = SmallVector<Register, 16>;
120     using RegMaskVector = SmallVector<const uint32_t *, 4>;
121     using RegSet = DenseSet<Register>;
122     using RegMap = DenseMap<Register, const MachineInstr *>;
123     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
124 
125     const MachineInstr *FirstNonPHI = nullptr;
126     const MachineInstr *FirstTerminator = nullptr;
127     BlockSet FunctionBlocks;
128 
129     BitVector regsReserved;
130     RegSet regsLive;
131     RegVector regsDefined, regsDead, regsKilled;
132     RegMaskVector regMasks;
133 
134     SlotIndex lastIndex;
135 
136     // Add Reg and any sub-registers to RV
addRegWithSubRegs__anoncaf807cd0111::MachineVerifier137     void addRegWithSubRegs(RegVector &RV, Register Reg) {
138       RV.push_back(Reg);
139       if (Reg.isPhysical())
140         append_range(RV, TRI->subregs(Reg.asMCReg()));
141     }
142 
143     struct BBInfo {
144       // Is this MBB reachable from the MF entry point?
145       bool reachable = false;
146 
147       // Vregs that must be live in because they are used without being
148       // defined. Map value is the user. vregsLiveIn doesn't include regs
149       // that only are used by PHI nodes.
150       RegMap vregsLiveIn;
151 
152       // Regs killed in MBB. They may be defined again, and will then be in both
153       // regsKilled and regsLiveOut.
154       RegSet regsKilled;
155 
156       // Regs defined in MBB and live out. Note that vregs passing through may
157       // be live out without being mentioned here.
158       RegSet regsLiveOut;
159 
160       // Vregs that pass through MBB untouched. This set is disjoint from
161       // regsKilled and regsLiveOut.
162       RegSet vregsPassed;
163 
164       // Vregs that must pass through MBB because they are needed by a successor
165       // block. This set is disjoint from regsLiveOut.
166       RegSet vregsRequired;
167 
168       // Set versions of block's predecessor and successor lists.
169       BlockSet Preds, Succs;
170 
171       BBInfo() = default;
172 
173       // Add register to vregsRequired if it belongs there. Return true if
174       // anything changed.
addRequired__anoncaf807cd0111::MachineVerifier::BBInfo175       bool addRequired(Register Reg) {
176         if (!Reg.isVirtual())
177           return false;
178         if (regsLiveOut.count(Reg))
179           return false;
180         return vregsRequired.insert(Reg).second;
181       }
182 
183       // Same for a full set.
addRequired__anoncaf807cd0111::MachineVerifier::BBInfo184       bool addRequired(const RegSet &RS) {
185         bool Changed = false;
186         for (Register Reg : RS)
187           Changed |= addRequired(Reg);
188         return Changed;
189       }
190 
191       // Same for a full map.
addRequired__anoncaf807cd0111::MachineVerifier::BBInfo192       bool addRequired(const RegMap &RM) {
193         bool Changed = false;
194         for (const auto &I : RM)
195           Changed |= addRequired(I.first);
196         return Changed;
197       }
198 
199       // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anoncaf807cd0111::MachineVerifier::BBInfo200       bool isLiveOut(Register Reg) const {
201         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
202       }
203     };
204 
205     // Extra register info per MBB.
206     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
207 
isReserved__anoncaf807cd0111::MachineVerifier208     bool isReserved(Register Reg) {
209       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
210     }
211 
isAllocatable__anoncaf807cd0111::MachineVerifier212     bool isAllocatable(Register Reg) const {
213       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
214              !regsReserved.test(Reg.id());
215     }
216 
217     // Analysis information if available
218     LiveVariables *LiveVars = nullptr;
219     LiveIntervals *LiveInts = nullptr;
220     LiveStacks *LiveStks = nullptr;
221     SlotIndexes *Indexes = nullptr;
222 
223     void visitMachineFunctionBefore();
224     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
225     void visitMachineBundleBefore(const MachineInstr *MI);
226 
227     /// Verify that all of \p MI's virtual register operands are scalars.
228     /// \returns True if all virtual register operands are scalar. False
229     /// otherwise.
230     bool verifyAllRegOpsScalar(const MachineInstr &MI,
231                                const MachineRegisterInfo &MRI);
232     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
233 
234     bool verifyGIntrinsicSideEffects(const MachineInstr *MI);
235     bool verifyGIntrinsicConvergence(const MachineInstr *MI);
236     void verifyPreISelGenericInstruction(const MachineInstr *MI);
237 
238     void visitMachineInstrBefore(const MachineInstr *MI);
239     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
240     void visitMachineBundleAfter(const MachineInstr *MI);
241     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
242     void visitMachineFunctionAfter();
243 
244     void report(const char *msg, const MachineFunction *MF);
245     void report(const char *msg, const MachineBasicBlock *MBB);
246     void report(const char *msg, const MachineInstr *MI);
247     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
248                 LLT MOVRegType = LLT{});
249     void report(const Twine &Msg, const MachineInstr *MI);
250 
251     void report_context(const LiveInterval &LI) const;
252     void report_context(const LiveRange &LR, Register VRegUnit,
253                         LaneBitmask LaneMask) const;
254     void report_context(const LiveRange::Segment &S) const;
255     void report_context(const VNInfo &VNI) const;
256     void report_context(SlotIndex Pos) const;
257     void report_context(MCPhysReg PhysReg) const;
258     void report_context_liverange(const LiveRange &LR) const;
259     void report_context_lanemask(LaneBitmask LaneMask) const;
260     void report_context_vreg(Register VReg) const;
261     void report_context_vreg_regunit(Register VRegOrUnit) const;
262 
263     void verifyInlineAsm(const MachineInstr *MI);
264 
265     void checkLiveness(const MachineOperand *MO, unsigned MONum);
266     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
267                             SlotIndex UseIdx, const LiveRange &LR,
268                             Register VRegOrUnit,
269                             LaneBitmask LaneMask = LaneBitmask::getNone());
270     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
271                             SlotIndex DefIdx, const LiveRange &LR,
272                             Register VRegOrUnit, bool SubRangeCheck = false,
273                             LaneBitmask LaneMask = LaneBitmask::getNone());
274 
275     void markReachable(const MachineBasicBlock *MBB);
276     void calcRegsPassed();
277     void checkPHIOps(const MachineBasicBlock &MBB);
278 
279     void calcRegsRequired();
280     void verifyLiveVariables();
281     void verifyLiveIntervals();
282     void verifyLiveInterval(const LiveInterval&);
283     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
284                               LaneBitmask);
285     void verifyLiveRangeSegment(const LiveRange &,
286                                 const LiveRange::const_iterator I, Register,
287                                 LaneBitmask);
288     void verifyLiveRange(const LiveRange &, Register,
289                          LaneBitmask LaneMask = LaneBitmask::getNone());
290 
291     void verifyStackFrame();
292 
293     void verifySlotIndexes() const;
294     void verifyProperties(const MachineFunction &MF);
295   };
296 
297   struct MachineVerifierPass : public MachineFunctionPass {
298     static char ID; // Pass ID, replacement for typeid
299 
300     const std::string Banner;
301 
MachineVerifierPass__anoncaf807cd0111::MachineVerifierPass302     MachineVerifierPass(std::string banner = std::string())
303       : MachineFunctionPass(ID), Banner(std::move(banner)) {
304         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
305       }
306 
getAnalysisUsage__anoncaf807cd0111::MachineVerifierPass307     void getAnalysisUsage(AnalysisUsage &AU) const override {
308       AU.addUsedIfAvailable<LiveStacks>();
309       AU.addUsedIfAvailable<LiveVariables>();
310       AU.addUsedIfAvailable<SlotIndexes>();
311       AU.addUsedIfAvailable<LiveIntervals>();
312       AU.setPreservesAll();
313       MachineFunctionPass::getAnalysisUsage(AU);
314     }
315 
runOnMachineFunction__anoncaf807cd0111::MachineVerifierPass316     bool runOnMachineFunction(MachineFunction &MF) override {
317       // Skip functions that have known verification problems.
318       // FIXME: Remove this mechanism when all problematic passes have been
319       // fixed.
320       if (MF.getProperties().hasProperty(
321               MachineFunctionProperties::Property::FailsVerification))
322         return false;
323 
324       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
325       if (FoundErrors)
326         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327       return false;
328     }
329   };
330 
331 } // end anonymous namespace
332 
333 char MachineVerifierPass::ID = 0;
334 
335 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
336                 "Verify generated machine code", false, false)
337 
createMachineVerifierPass(const std::string & Banner)338 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
339   return new MachineVerifierPass(Banner);
340 }
341 
verifyMachineFunction(MachineFunctionAnalysisManager *,const std::string & Banner,const MachineFunction & MF)342 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
343                                  const std::string &Banner,
344                                  const MachineFunction &MF) {
345   // TODO: Use MFAM after porting below analyses.
346   // LiveVariables *LiveVars;
347   // LiveIntervals *LiveInts;
348   // LiveStacks *LiveStks;
349   // SlotIndexes *Indexes;
350   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
351   if (FoundErrors)
352     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
353 }
354 
verify(Pass * p,const char * Banner,bool AbortOnErrors) const355 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
356     const {
357   MachineFunction &MF = const_cast<MachineFunction&>(*this);
358   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
359   if (AbortOnErrors && FoundErrors)
360     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
361   return FoundErrors == 0;
362 }
363 
verify(LiveIntervals * LiveInts,SlotIndexes * Indexes,const char * Banner,bool AbortOnErrors) const364 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes,
365                              const char *Banner, bool AbortOnErrors) const {
366   MachineFunction &MF = const_cast<MachineFunction &>(*this);
367   unsigned FoundErrors =
368       MachineVerifier(Banner, nullptr, LiveInts, nullptr, Indexes).verify(MF);
369   if (AbortOnErrors && FoundErrors)
370     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
371   return FoundErrors == 0;
372 }
373 
verifySlotIndexes() const374 void MachineVerifier::verifySlotIndexes() const {
375   if (Indexes == nullptr)
376     return;
377 
378   // Ensure the IdxMBB list is sorted by slot indexes.
379   SlotIndex Last;
380   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
381        E = Indexes->MBBIndexEnd(); I != E; ++I) {
382     assert(!Last.isValid() || I->first > Last);
383     Last = I->first;
384   }
385 }
386 
verifyProperties(const MachineFunction & MF)387 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
388   // If a pass has introduced virtual registers without clearing the
389   // NoVRegs property (or set it without allocating the vregs)
390   // then report an error.
391   if (MF.getProperties().hasProperty(
392           MachineFunctionProperties::Property::NoVRegs) &&
393       MRI->getNumVirtRegs())
394     report("Function has NoVRegs property but there are VReg operands", &MF);
395 }
396 
verify(const MachineFunction & MF)397 unsigned MachineVerifier::verify(const MachineFunction &MF) {
398   foundErrors = 0;
399 
400   this->MF = &MF;
401   TM = &MF.getTarget();
402   TII = MF.getSubtarget().getInstrInfo();
403   TRI = MF.getSubtarget().getRegisterInfo();
404   RBI = MF.getSubtarget().getRegBankInfo();
405   MRI = &MF.getRegInfo();
406 
407   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
408       MachineFunctionProperties::Property::FailedISel);
409 
410   // If we're mid-GlobalISel and we already triggered the fallback path then
411   // it's expected that the MIR is somewhat broken but that's ok since we'll
412   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
413   if (isFunctionFailedISel)
414     return foundErrors;
415 
416   isFunctionRegBankSelected = MF.getProperties().hasProperty(
417       MachineFunctionProperties::Property::RegBankSelected);
418   isFunctionSelected = MF.getProperties().hasProperty(
419       MachineFunctionProperties::Property::Selected);
420   isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
421       MachineFunctionProperties::Property::TracksDebugUserValues);
422 
423   if (PASS) {
424     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
425     // We don't want to verify LiveVariables if LiveIntervals is available.
426     if (!LiveInts)
427       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
428     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
429     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
430   }
431 
432   verifySlotIndexes();
433 
434   verifyProperties(MF);
435 
436   visitMachineFunctionBefore();
437   for (const MachineBasicBlock &MBB : MF) {
438     visitMachineBasicBlockBefore(&MBB);
439     // Keep track of the current bundle header.
440     const MachineInstr *CurBundle = nullptr;
441     // Do we expect the next instruction to be part of the same bundle?
442     bool InBundle = false;
443 
444     for (const MachineInstr &MI : MBB.instrs()) {
445       if (MI.getParent() != &MBB) {
446         report("Bad instruction parent pointer", &MBB);
447         errs() << "Instruction: " << MI;
448         continue;
449       }
450 
451       // Check for consistent bundle flags.
452       if (InBundle && !MI.isBundledWithPred())
453         report("Missing BundledPred flag, "
454                "BundledSucc was set on predecessor",
455                &MI);
456       if (!InBundle && MI.isBundledWithPred())
457         report("BundledPred flag is set, "
458                "but BundledSucc not set on predecessor",
459                &MI);
460 
461       // Is this a bundle header?
462       if (!MI.isInsideBundle()) {
463         if (CurBundle)
464           visitMachineBundleAfter(CurBundle);
465         CurBundle = &MI;
466         visitMachineBundleBefore(CurBundle);
467       } else if (!CurBundle)
468         report("No bundle header", &MI);
469       visitMachineInstrBefore(&MI);
470       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
471         const MachineOperand &Op = MI.getOperand(I);
472         if (Op.getParent() != &MI) {
473           // Make sure to use correct addOperand / removeOperand / ChangeTo
474           // functions when replacing operands of a MachineInstr.
475           report("Instruction has operand with wrong parent set", &MI);
476         }
477 
478         visitMachineOperand(&Op, I);
479       }
480 
481       // Was this the last bundled instruction?
482       InBundle = MI.isBundledWithSucc();
483     }
484     if (CurBundle)
485       visitMachineBundleAfter(CurBundle);
486     if (InBundle)
487       report("BundledSucc flag set on last instruction in block", &MBB.back());
488     visitMachineBasicBlockAfter(&MBB);
489   }
490   visitMachineFunctionAfter();
491 
492   // Clean up.
493   regsLive.clear();
494   regsDefined.clear();
495   regsDead.clear();
496   regsKilled.clear();
497   regMasks.clear();
498   MBBInfoMap.clear();
499 
500   return foundErrors;
501 }
502 
report(const char * msg,const MachineFunction * MF)503 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
504   assert(MF);
505   errs() << '\n';
506   if (!foundErrors++) {
507     if (Banner)
508       errs() << "# " << Banner << '\n';
509     if (LiveInts != nullptr)
510       LiveInts->print(errs());
511     else
512       MF->print(errs(), Indexes);
513   }
514   errs() << "*** Bad machine code: " << msg << " ***\n"
515       << "- function:    " << MF->getName() << "\n";
516 }
517 
report(const char * msg,const MachineBasicBlock * MBB)518 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
519   assert(MBB);
520   report(msg, MBB->getParent());
521   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
522          << MBB->getName() << " (" << (const void *)MBB << ')';
523   if (Indexes)
524     errs() << " [" << Indexes->getMBBStartIdx(MBB)
525         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
526   errs() << '\n';
527 }
528 
report(const char * msg,const MachineInstr * MI)529 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
530   assert(MI);
531   report(msg, MI->getParent());
532   errs() << "- instruction: ";
533   if (Indexes && Indexes->hasIndex(*MI))
534     errs() << Indexes->getInstructionIndex(*MI) << '\t';
535   MI->print(errs(), /*IsStandalone=*/true);
536 }
537 
report(const char * msg,const MachineOperand * MO,unsigned MONum,LLT MOVRegType)538 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
539                              unsigned MONum, LLT MOVRegType) {
540   assert(MO);
541   report(msg, MO->getParent());
542   errs() << "- operand " << MONum << ":   ";
543   MO->print(errs(), MOVRegType, TRI);
544   errs() << "\n";
545 }
546 
report(const Twine & Msg,const MachineInstr * MI)547 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
548   report(Msg.str().c_str(), MI);
549 }
550 
report_context(SlotIndex Pos) const551 void MachineVerifier::report_context(SlotIndex Pos) const {
552   errs() << "- at:          " << Pos << '\n';
553 }
554 
report_context(const LiveInterval & LI) const555 void MachineVerifier::report_context(const LiveInterval &LI) const {
556   errs() << "- interval:    " << LI << '\n';
557 }
558 
report_context(const LiveRange & LR,Register VRegUnit,LaneBitmask LaneMask) const559 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
560                                      LaneBitmask LaneMask) const {
561   report_context_liverange(LR);
562   report_context_vreg_regunit(VRegUnit);
563   if (LaneMask.any())
564     report_context_lanemask(LaneMask);
565 }
566 
report_context(const LiveRange::Segment & S) const567 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
568   errs() << "- segment:     " << S << '\n';
569 }
570 
report_context(const VNInfo & VNI) const571 void MachineVerifier::report_context(const VNInfo &VNI) const {
572   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
573 }
574 
report_context_liverange(const LiveRange & LR) const575 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
576   errs() << "- liverange:   " << LR << '\n';
577 }
578 
report_context(MCPhysReg PReg) const579 void MachineVerifier::report_context(MCPhysReg PReg) const {
580   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
581 }
582 
report_context_vreg(Register VReg) const583 void MachineVerifier::report_context_vreg(Register VReg) const {
584   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
585 }
586 
report_context_vreg_regunit(Register VRegOrUnit) const587 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
588   if (VRegOrUnit.isVirtual()) {
589     report_context_vreg(VRegOrUnit);
590   } else {
591     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
592   }
593 }
594 
report_context_lanemask(LaneBitmask LaneMask) const595 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
596   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
597 }
598 
markReachable(const MachineBasicBlock * MBB)599 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
600   BBInfo &MInfo = MBBInfoMap[MBB];
601   if (!MInfo.reachable) {
602     MInfo.reachable = true;
603     for (const MachineBasicBlock *Succ : MBB->successors())
604       markReachable(Succ);
605   }
606 }
607 
visitMachineFunctionBefore()608 void MachineVerifier::visitMachineFunctionBefore() {
609   lastIndex = SlotIndex();
610   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
611                                            : TRI->getReservedRegs(*MF);
612 
613   if (!MF->empty())
614     markReachable(&MF->front());
615 
616   // Build a set of the basic blocks in the function.
617   FunctionBlocks.clear();
618   for (const auto &MBB : *MF) {
619     FunctionBlocks.insert(&MBB);
620     BBInfo &MInfo = MBBInfoMap[&MBB];
621 
622     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
623     if (MInfo.Preds.size() != MBB.pred_size())
624       report("MBB has duplicate entries in its predecessor list.", &MBB);
625 
626     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
627     if (MInfo.Succs.size() != MBB.succ_size())
628       report("MBB has duplicate entries in its successor list.", &MBB);
629   }
630 
631   // Check that the register use lists are sane.
632   MRI->verifyUseLists();
633 
634   if (!MF->empty())
635     verifyStackFrame();
636 }
637 
638 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)639 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
640   FirstTerminator = nullptr;
641   FirstNonPHI = nullptr;
642 
643   if (!MF->getProperties().hasProperty(
644       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
645     // If this block has allocatable physical registers live-in, check that
646     // it is an entry block or landing pad.
647     for (const auto &LI : MBB->liveins()) {
648       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
649           MBB->getIterator() != MBB->getParent()->begin() &&
650           !MBB->isInlineAsmBrIndirectTarget()) {
651         report("MBB has allocatable live-in, but isn't entry, landing-pad, or "
652                "inlineasm-br-indirect-target.",
653                MBB);
654         report_context(LI.PhysReg);
655       }
656     }
657   }
658 
659   if (MBB->isIRBlockAddressTaken()) {
660     if (!MBB->getAddressTakenIRBlock()->hasAddressTaken())
661       report("ir-block-address-taken is associated with basic block not used by "
662              "a blockaddress.",
663              MBB);
664   }
665 
666   // Count the number of landing pad successors.
667   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
668   for (const auto *succ : MBB->successors()) {
669     if (succ->isEHPad())
670       LandingPadSuccs.insert(succ);
671     if (!FunctionBlocks.count(succ))
672       report("MBB has successor that isn't part of the function.", MBB);
673     if (!MBBInfoMap[succ].Preds.count(MBB)) {
674       report("Inconsistent CFG", MBB);
675       errs() << "MBB is not in the predecessor list of the successor "
676              << printMBBReference(*succ) << ".\n";
677     }
678   }
679 
680   // Check the predecessor list.
681   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
682     if (!FunctionBlocks.count(Pred))
683       report("MBB has predecessor that isn't part of the function.", MBB);
684     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
685       report("Inconsistent CFG", MBB);
686       errs() << "MBB is not in the successor list of the predecessor "
687              << printMBBReference(*Pred) << ".\n";
688     }
689   }
690 
691   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
692   const BasicBlock *BB = MBB->getBasicBlock();
693   const Function &F = MF->getFunction();
694   if (LandingPadSuccs.size() > 1 &&
695       !(AsmInfo &&
696         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
697         BB && isa<SwitchInst>(BB->getTerminator())) &&
698       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
699     report("MBB has more than one landing pad successor", MBB);
700 
701   // Call analyzeBranch. If it succeeds, there several more conditions to check.
702   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
703   SmallVector<MachineOperand, 4> Cond;
704   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
705                           Cond)) {
706     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
707     // check whether its answers match up with reality.
708     if (!TBB && !FBB) {
709       // Block falls through to its successor.
710       if (!MBB->empty() && MBB->back().isBarrier() &&
711           !TII->isPredicated(MBB->back())) {
712         report("MBB exits via unconditional fall-through but ends with a "
713                "barrier instruction!", MBB);
714       }
715       if (!Cond.empty()) {
716         report("MBB exits via unconditional fall-through but has a condition!",
717                MBB);
718       }
719     } else if (TBB && !FBB && Cond.empty()) {
720       // Block unconditionally branches somewhere.
721       if (MBB->empty()) {
722         report("MBB exits via unconditional branch but doesn't contain "
723                "any instructions!", MBB);
724       } else if (!MBB->back().isBarrier()) {
725         report("MBB exits via unconditional branch but doesn't end with a "
726                "barrier instruction!", MBB);
727       } else if (!MBB->back().isTerminator()) {
728         report("MBB exits via unconditional branch but the branch isn't a "
729                "terminator instruction!", MBB);
730       }
731     } else if (TBB && !FBB && !Cond.empty()) {
732       // Block conditionally branches somewhere, otherwise falls through.
733       if (MBB->empty()) {
734         report("MBB exits via conditional branch/fall-through but doesn't "
735                "contain any instructions!", MBB);
736       } else if (MBB->back().isBarrier()) {
737         report("MBB exits via conditional branch/fall-through but ends with a "
738                "barrier instruction!", MBB);
739       } else if (!MBB->back().isTerminator()) {
740         report("MBB exits via conditional branch/fall-through but the branch "
741                "isn't a terminator instruction!", MBB);
742       }
743     } else if (TBB && FBB) {
744       // Block conditionally branches somewhere, otherwise branches
745       // somewhere else.
746       if (MBB->empty()) {
747         report("MBB exits via conditional branch/branch but doesn't "
748                "contain any instructions!", MBB);
749       } else if (!MBB->back().isBarrier()) {
750         report("MBB exits via conditional branch/branch but doesn't end with a "
751                "barrier instruction!", MBB);
752       } else if (!MBB->back().isTerminator()) {
753         report("MBB exits via conditional branch/branch but the branch "
754                "isn't a terminator instruction!", MBB);
755       }
756       if (Cond.empty()) {
757         report("MBB exits via conditional branch/branch but there's no "
758                "condition!", MBB);
759       }
760     } else {
761       report("analyzeBranch returned invalid data!", MBB);
762     }
763 
764     // Now check that the successors match up with the answers reported by
765     // analyzeBranch.
766     if (TBB && !MBB->isSuccessor(TBB))
767       report("MBB exits via jump or conditional branch, but its target isn't a "
768              "CFG successor!",
769              MBB);
770     if (FBB && !MBB->isSuccessor(FBB))
771       report("MBB exits via conditional branch, but its target isn't a CFG "
772              "successor!",
773              MBB);
774 
775     // There might be a fallthrough to the next block if there's either no
776     // unconditional true branch, or if there's a condition, and one of the
777     // branches is missing.
778     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
779 
780     // A conditional fallthrough must be an actual CFG successor, not
781     // unreachable. (Conversely, an unconditional fallthrough might not really
782     // be a successor, because the block might end in unreachable.)
783     if (!Cond.empty() && !FBB) {
784       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
785       if (MBBI == MF->end()) {
786         report("MBB conditionally falls through out of function!", MBB);
787       } else if (!MBB->isSuccessor(&*MBBI))
788         report("MBB exits via conditional branch/fall-through but the CFG "
789                "successors don't match the actual successors!",
790                MBB);
791     }
792 
793     // Verify that there aren't any extra un-accounted-for successors.
794     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
795       // If this successor is one of the branch targets, it's okay.
796       if (SuccMBB == TBB || SuccMBB == FBB)
797         continue;
798       // If we might have a fallthrough, and the successor is the fallthrough
799       // block, that's also ok.
800       if (Fallthrough && SuccMBB == MBB->getNextNode())
801         continue;
802       // Also accept successors which are for exception-handling or might be
803       // inlineasm_br targets.
804       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
805         continue;
806       report("MBB has unexpected successors which are not branch targets, "
807              "fallthrough, EHPads, or inlineasm_br targets.",
808              MBB);
809     }
810   }
811 
812   regsLive.clear();
813   if (MRI->tracksLiveness()) {
814     for (const auto &LI : MBB->liveins()) {
815       if (!Register::isPhysicalRegister(LI.PhysReg)) {
816         report("MBB live-in list contains non-physical register", MBB);
817         continue;
818       }
819       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
820         regsLive.insert(SubReg);
821     }
822   }
823 
824   const MachineFrameInfo &MFI = MF->getFrameInfo();
825   BitVector PR = MFI.getPristineRegs(*MF);
826   for (unsigned I : PR.set_bits()) {
827     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
828       regsLive.insert(SubReg);
829   }
830 
831   regsKilled.clear();
832   regsDefined.clear();
833 
834   if (Indexes)
835     lastIndex = Indexes->getMBBStartIdx(MBB);
836 }
837 
838 // This function gets called for all bundle headers, including normal
839 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)840 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
841   if (Indexes && Indexes->hasIndex(*MI)) {
842     SlotIndex idx = Indexes->getInstructionIndex(*MI);
843     if (!(idx > lastIndex)) {
844       report("Instruction index out of order", MI);
845       errs() << "Last instruction was at " << lastIndex << '\n';
846     }
847     lastIndex = idx;
848   }
849 
850   // Ensure non-terminators don't follow terminators.
851   if (MI->isTerminator()) {
852     if (!FirstTerminator)
853       FirstTerminator = MI;
854   } else if (FirstTerminator) {
855     // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to
856     // precede non-terminators.
857     if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) {
858       report("Non-terminator instruction after the first terminator", MI);
859       errs() << "First terminator was:\t" << *FirstTerminator;
860     }
861   }
862 }
863 
864 // The operands on an INLINEASM instruction must follow a template.
865 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)866 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
867   // The first two operands on INLINEASM are the asm string and global flags.
868   if (MI->getNumOperands() < 2) {
869     report("Too few operands on inline asm", MI);
870     return;
871   }
872   if (!MI->getOperand(0).isSymbol())
873     report("Asm string must be an external symbol", MI);
874   if (!MI->getOperand(1).isImm())
875     report("Asm flags must be an immediate", MI);
876   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
877   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
878   // and Extra_IsConvergent = 32.
879   if (!isUInt<6>(MI->getOperand(1).getImm()))
880     report("Unknown asm flags", &MI->getOperand(1), 1);
881 
882   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
883 
884   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
885   unsigned NumOps;
886   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
887     const MachineOperand &MO = MI->getOperand(OpNo);
888     // There may be implicit ops after the fixed operands.
889     if (!MO.isImm())
890       break;
891     const InlineAsm::Flag F(MO.getImm());
892     NumOps = 1 + F.getNumOperandRegisters();
893   }
894 
895   if (OpNo > MI->getNumOperands())
896     report("Missing operands in last group", MI);
897 
898   // An optional MDNode follows the groups.
899   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
900     ++OpNo;
901 
902   // All trailing operands must be implicit registers.
903   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
904     const MachineOperand &MO = MI->getOperand(OpNo);
905     if (!MO.isReg() || !MO.isImplicit())
906       report("Expected implicit register after groups", &MO, OpNo);
907   }
908 
909   if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) {
910     const MachineBasicBlock *MBB = MI->getParent();
911 
912     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
913          i != e; ++i) {
914       const MachineOperand &MO = MI->getOperand(i);
915 
916       if (!MO.isMBB())
917         continue;
918 
919       // Check the successor & predecessor lists look ok, assume they are
920       // not. Find the indirect target without going through the successors.
921       const MachineBasicBlock *IndirectTargetMBB = MO.getMBB();
922       if (!IndirectTargetMBB) {
923         report("INLINEASM_BR indirect target does not exist", &MO, i);
924         break;
925       }
926 
927       if (!MBB->isSuccessor(IndirectTargetMBB))
928         report("INLINEASM_BR indirect target missing from successor list", &MO,
929                i);
930 
931       if (!IndirectTargetMBB->isPredecessor(MBB))
932         report("INLINEASM_BR indirect target predecessor list missing parent",
933                &MO, i);
934     }
935   }
936 }
937 
verifyAllRegOpsScalar(const MachineInstr & MI,const MachineRegisterInfo & MRI)938 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
939                                             const MachineRegisterInfo &MRI) {
940   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
941         if (!Op.isReg())
942           return false;
943         const auto Reg = Op.getReg();
944         if (Reg.isPhysical())
945           return false;
946         return !MRI.getType(Reg).isScalar();
947       }))
948     return true;
949   report("All register operands must have scalar types", &MI);
950   return false;
951 }
952 
953 /// Check that types are consistent when two operands need to have the same
954 /// number of vector elements.
955 /// \return true if the types are valid.
verifyVectorElementMatch(LLT Ty0,LLT Ty1,const MachineInstr * MI)956 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
957                                                const MachineInstr *MI) {
958   if (Ty0.isVector() != Ty1.isVector()) {
959     report("operand types must be all-vector or all-scalar", MI);
960     // Generally we try to report as many issues as possible at once, but in
961     // this case it's not clear what should we be comparing the size of the
962     // scalar with: the size of the whole vector or its lane. Instead of
963     // making an arbitrary choice and emitting not so helpful message, let's
964     // avoid the extra noise and stop here.
965     return false;
966   }
967 
968   if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) {
969     report("operand types must preserve number of vector elements", MI);
970     return false;
971   }
972 
973   return true;
974 }
975 
verifyGIntrinsicSideEffects(const MachineInstr * MI)976 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) {
977   auto Opcode = MI->getOpcode();
978   bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC ||
979                        Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT;
980   unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
981   if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
982     AttributeList Attrs = Intrinsic::getAttributes(
983         MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
984     bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
985     if (NoSideEffects && DeclHasSideEffects) {
986       report(Twine(TII->getName(Opcode),
987                    " used with intrinsic that accesses memory"),
988              MI);
989       return false;
990     }
991     if (!NoSideEffects && !DeclHasSideEffects) {
992       report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI);
993       return false;
994     }
995   }
996 
997   return true;
998 }
999 
verifyGIntrinsicConvergence(const MachineInstr * MI)1000 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) {
1001   auto Opcode = MI->getOpcode();
1002   bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC ||
1003                        Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS;
1004   unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
1005   if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1006     AttributeList Attrs = Intrinsic::getAttributes(
1007         MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
1008     bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent);
1009     if (NotConvergent && DeclIsConvergent) {
1010       report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"),
1011              MI);
1012       return false;
1013     }
1014     if (!NotConvergent && !DeclIsConvergent) {
1015       report(
1016           Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"),
1017           MI);
1018       return false;
1019     }
1020   }
1021 
1022   return true;
1023 }
1024 
verifyPreISelGenericInstruction(const MachineInstr * MI)1025 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
1026   if (isFunctionSelected)
1027     report("Unexpected generic instruction in a Selected function", MI);
1028 
1029   const MCInstrDesc &MCID = MI->getDesc();
1030   unsigned NumOps = MI->getNumOperands();
1031 
1032   // Branches must reference a basic block if they are not indirect
1033   if (MI->isBranch() && !MI->isIndirectBranch()) {
1034     bool HasMBB = false;
1035     for (const MachineOperand &Op : MI->operands()) {
1036       if (Op.isMBB()) {
1037         HasMBB = true;
1038         break;
1039       }
1040     }
1041 
1042     if (!HasMBB) {
1043       report("Branch instruction is missing a basic block operand or "
1044              "isIndirectBranch property",
1045              MI);
1046     }
1047   }
1048 
1049   // Check types.
1050   SmallVector<LLT, 4> Types;
1051   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
1052        I != E; ++I) {
1053     if (!MCID.operands()[I].isGenericType())
1054       continue;
1055     // Generic instructions specify type equality constraints between some of
1056     // their operands. Make sure these are consistent.
1057     size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex();
1058     Types.resize(std::max(TypeIdx + 1, Types.size()));
1059 
1060     const MachineOperand *MO = &MI->getOperand(I);
1061     if (!MO->isReg()) {
1062       report("generic instruction must use register operands", MI);
1063       continue;
1064     }
1065 
1066     LLT OpTy = MRI->getType(MO->getReg());
1067     // Don't report a type mismatch if there is no actual mismatch, only a
1068     // type missing, to reduce noise:
1069     if (OpTy.isValid()) {
1070       // Only the first valid type for a type index will be printed: don't
1071       // overwrite it later so it's always clear which type was expected:
1072       if (!Types[TypeIdx].isValid())
1073         Types[TypeIdx] = OpTy;
1074       else if (Types[TypeIdx] != OpTy)
1075         report("Type mismatch in generic instruction", MO, I, OpTy);
1076     } else {
1077       // Generic instructions must have types attached to their operands.
1078       report("Generic instruction is missing a virtual register type", MO, I);
1079     }
1080   }
1081 
1082   // Generic opcodes must not have physical register operands.
1083   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
1084     const MachineOperand *MO = &MI->getOperand(I);
1085     if (MO->isReg() && MO->getReg().isPhysical())
1086       report("Generic instruction cannot have physical register", MO, I);
1087   }
1088 
1089   // Avoid out of bounds in checks below. This was already reported earlier.
1090   if (MI->getNumOperands() < MCID.getNumOperands())
1091     return;
1092 
1093   StringRef ErrorInfo;
1094   if (!TII->verifyInstruction(*MI, ErrorInfo))
1095     report(ErrorInfo.data(), MI);
1096 
1097   // Verify properties of various specific instruction types
1098   unsigned Opc = MI->getOpcode();
1099   switch (Opc) {
1100   case TargetOpcode::G_ASSERT_SEXT:
1101   case TargetOpcode::G_ASSERT_ZEXT: {
1102     std::string OpcName =
1103         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
1104     if (!MI->getOperand(2).isImm()) {
1105       report(Twine(OpcName, " expects an immediate operand #2"), MI);
1106       break;
1107     }
1108 
1109     Register Dst = MI->getOperand(0).getReg();
1110     Register Src = MI->getOperand(1).getReg();
1111     LLT SrcTy = MRI->getType(Src);
1112     int64_t Imm = MI->getOperand(2).getImm();
1113     if (Imm <= 0) {
1114       report(Twine(OpcName, " size must be >= 1"), MI);
1115       break;
1116     }
1117 
1118     if (Imm >= SrcTy.getScalarSizeInBits()) {
1119       report(Twine(OpcName, " size must be less than source bit width"), MI);
1120       break;
1121     }
1122 
1123     const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI);
1124     const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI);
1125 
1126     // Allow only the source bank to be set.
1127     if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1128       report(Twine(OpcName, " cannot change register bank"), MI);
1129       break;
1130     }
1131 
1132     // Don't allow a class change. Do allow member class->regbank.
1133     const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst);
1134     if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) {
1135       report(
1136           Twine(OpcName, " source and destination register classes must match"),
1137           MI);
1138       break;
1139     }
1140 
1141     break;
1142   }
1143 
1144   case TargetOpcode::G_CONSTANT:
1145   case TargetOpcode::G_FCONSTANT: {
1146     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1147     if (DstTy.isVector())
1148       report("Instruction cannot use a vector result type", MI);
1149 
1150     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1151       if (!MI->getOperand(1).isCImm()) {
1152         report("G_CONSTANT operand must be cimm", MI);
1153         break;
1154       }
1155 
1156       const ConstantInt *CI = MI->getOperand(1).getCImm();
1157       if (CI->getBitWidth() != DstTy.getSizeInBits())
1158         report("inconsistent constant size", MI);
1159     } else {
1160       if (!MI->getOperand(1).isFPImm()) {
1161         report("G_FCONSTANT operand must be fpimm", MI);
1162         break;
1163       }
1164       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1165 
1166       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1167           DstTy.getSizeInBits()) {
1168         report("inconsistent constant size", MI);
1169       }
1170     }
1171 
1172     break;
1173   }
1174   case TargetOpcode::G_LOAD:
1175   case TargetOpcode::G_STORE:
1176   case TargetOpcode::G_ZEXTLOAD:
1177   case TargetOpcode::G_SEXTLOAD: {
1178     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1179     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1180     if (!PtrTy.isPointer())
1181       report("Generic memory instruction must access a pointer", MI);
1182 
1183     // Generic loads and stores must have a single MachineMemOperand
1184     // describing that access.
1185     if (!MI->hasOneMemOperand()) {
1186       report("Generic instruction accessing memory must have one mem operand",
1187              MI);
1188     } else {
1189       const MachineMemOperand &MMO = **MI->memoperands_begin();
1190       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1191           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1192         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1193           report("Generic extload must have a narrower memory type", MI);
1194       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1195         if (MMO.getSize() > ValTy.getSizeInBytes())
1196           report("load memory size cannot exceed result size", MI);
1197       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1198         if (ValTy.getSizeInBytes() < MMO.getSize())
1199           report("store memory size cannot exceed value size", MI);
1200       }
1201 
1202       const AtomicOrdering Order = MMO.getSuccessOrdering();
1203       if (Opc == TargetOpcode::G_STORE) {
1204         if (Order == AtomicOrdering::Acquire ||
1205             Order == AtomicOrdering::AcquireRelease)
1206           report("atomic store cannot use acquire ordering", MI);
1207 
1208       } else {
1209         if (Order == AtomicOrdering::Release ||
1210             Order == AtomicOrdering::AcquireRelease)
1211           report("atomic load cannot use release ordering", MI);
1212       }
1213     }
1214 
1215     break;
1216   }
1217   case TargetOpcode::G_PHI: {
1218     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1219     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1220                                     [this, &DstTy](const MachineOperand &MO) {
1221                                       if (!MO.isReg())
1222                                         return true;
1223                                       LLT Ty = MRI->getType(MO.getReg());
1224                                       if (!Ty.isValid() || (Ty != DstTy))
1225                                         return false;
1226                                       return true;
1227                                     }))
1228       report("Generic Instruction G_PHI has operands with incompatible/missing "
1229              "types",
1230              MI);
1231     break;
1232   }
1233   case TargetOpcode::G_BITCAST: {
1234     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1235     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1236     if (!DstTy.isValid() || !SrcTy.isValid())
1237       break;
1238 
1239     if (SrcTy.isPointer() != DstTy.isPointer())
1240       report("bitcast cannot convert between pointers and other types", MI);
1241 
1242     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1243       report("bitcast sizes must match", MI);
1244 
1245     if (SrcTy == DstTy)
1246       report("bitcast must change the type", MI);
1247 
1248     break;
1249   }
1250   case TargetOpcode::G_INTTOPTR:
1251   case TargetOpcode::G_PTRTOINT:
1252   case TargetOpcode::G_ADDRSPACE_CAST: {
1253     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1254     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1255     if (!DstTy.isValid() || !SrcTy.isValid())
1256       break;
1257 
1258     verifyVectorElementMatch(DstTy, SrcTy, MI);
1259 
1260     DstTy = DstTy.getScalarType();
1261     SrcTy = SrcTy.getScalarType();
1262 
1263     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1264       if (!DstTy.isPointer())
1265         report("inttoptr result type must be a pointer", MI);
1266       if (SrcTy.isPointer())
1267         report("inttoptr source type must not be a pointer", MI);
1268     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1269       if (!SrcTy.isPointer())
1270         report("ptrtoint source type must be a pointer", MI);
1271       if (DstTy.isPointer())
1272         report("ptrtoint result type must not be a pointer", MI);
1273     } else {
1274       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1275       if (!SrcTy.isPointer() || !DstTy.isPointer())
1276         report("addrspacecast types must be pointers", MI);
1277       else {
1278         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1279           report("addrspacecast must convert different address spaces", MI);
1280       }
1281     }
1282 
1283     break;
1284   }
1285   case TargetOpcode::G_PTR_ADD: {
1286     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1287     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1288     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1289     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1290       break;
1291 
1292     if (!PtrTy.getScalarType().isPointer())
1293       report("gep first operand must be a pointer", MI);
1294 
1295     if (OffsetTy.getScalarType().isPointer())
1296       report("gep offset operand must not be a pointer", MI);
1297 
1298     // TODO: Is the offset allowed to be a scalar with a vector?
1299     break;
1300   }
1301   case TargetOpcode::G_PTRMASK: {
1302     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1303     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1304     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1305     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1306       break;
1307 
1308     if (!DstTy.getScalarType().isPointer())
1309       report("ptrmask result type must be a pointer", MI);
1310 
1311     if (!MaskTy.getScalarType().isScalar())
1312       report("ptrmask mask type must be an integer", MI);
1313 
1314     verifyVectorElementMatch(DstTy, MaskTy, MI);
1315     break;
1316   }
1317   case TargetOpcode::G_SEXT:
1318   case TargetOpcode::G_ZEXT:
1319   case TargetOpcode::G_ANYEXT:
1320   case TargetOpcode::G_TRUNC:
1321   case TargetOpcode::G_FPEXT:
1322   case TargetOpcode::G_FPTRUNC: {
1323     // Number of operands and presense of types is already checked (and
1324     // reported in case of any issues), so no need to report them again. As
1325     // we're trying to report as many issues as possible at once, however, the
1326     // instructions aren't guaranteed to have the right number of operands or
1327     // types attached to them at this point
1328     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1329     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1330     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1331     if (!DstTy.isValid() || !SrcTy.isValid())
1332       break;
1333 
1334     LLT DstElTy = DstTy.getScalarType();
1335     LLT SrcElTy = SrcTy.getScalarType();
1336     if (DstElTy.isPointer() || SrcElTy.isPointer())
1337       report("Generic extend/truncate can not operate on pointers", MI);
1338 
1339     verifyVectorElementMatch(DstTy, SrcTy, MI);
1340 
1341     unsigned DstSize = DstElTy.getSizeInBits();
1342     unsigned SrcSize = SrcElTy.getSizeInBits();
1343     switch (MI->getOpcode()) {
1344     default:
1345       if (DstSize <= SrcSize)
1346         report("Generic extend has destination type no larger than source", MI);
1347       break;
1348     case TargetOpcode::G_TRUNC:
1349     case TargetOpcode::G_FPTRUNC:
1350       if (DstSize >= SrcSize)
1351         report("Generic truncate has destination type no smaller than source",
1352                MI);
1353       break;
1354     }
1355     break;
1356   }
1357   case TargetOpcode::G_SELECT: {
1358     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1359     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1360     if (!SelTy.isValid() || !CondTy.isValid())
1361       break;
1362 
1363     // Scalar condition select on a vector is valid.
1364     if (CondTy.isVector())
1365       verifyVectorElementMatch(SelTy, CondTy, MI);
1366     break;
1367   }
1368   case TargetOpcode::G_MERGE_VALUES: {
1369     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1370     // e.g. s2N = MERGE sN, sN
1371     // Merging multiple scalars into a vector is not allowed, should use
1372     // G_BUILD_VECTOR for that.
1373     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1374     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1375     if (DstTy.isVector() || SrcTy.isVector())
1376       report("G_MERGE_VALUES cannot operate on vectors", MI);
1377 
1378     const unsigned NumOps = MI->getNumOperands();
1379     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1380       report("G_MERGE_VALUES result size is inconsistent", MI);
1381 
1382     for (unsigned I = 2; I != NumOps; ++I) {
1383       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1384         report("G_MERGE_VALUES source types do not match", MI);
1385     }
1386 
1387     break;
1388   }
1389   case TargetOpcode::G_UNMERGE_VALUES: {
1390     unsigned NumDsts = MI->getNumOperands() - 1;
1391     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1392     for (unsigned i = 1; i < NumDsts; ++i) {
1393       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) {
1394         report("G_UNMERGE_VALUES destination types do not match", MI);
1395         break;
1396       }
1397     }
1398 
1399     LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg());
1400     if (DstTy.isVector()) {
1401       // This case is the converse of G_CONCAT_VECTORS.
1402       if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() ||
1403           SrcTy.getNumElements() != NumDsts * DstTy.getNumElements())
1404         report("G_UNMERGE_VALUES source operand does not match vector "
1405                "destination operands",
1406                MI);
1407     } else if (SrcTy.isVector()) {
1408       // This case is the converse of G_BUILD_VECTOR, but relaxed to allow
1409       // mismatched types as long as the total size matches:
1410       //   %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>)
1411       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1412         report("G_UNMERGE_VALUES vector source operand does not match scalar "
1413                "destination operands",
1414                MI);
1415     } else {
1416       // This case is the converse of G_MERGE_VALUES.
1417       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) {
1418         report("G_UNMERGE_VALUES scalar source operand does not match scalar "
1419                "destination operands",
1420                MI);
1421       }
1422     }
1423     break;
1424   }
1425   case TargetOpcode::G_BUILD_VECTOR: {
1426     // Source types must be scalars, dest type a vector. Total size of scalars
1427     // must match the dest vector size.
1428     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1429     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1430     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1431       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1432       break;
1433     }
1434 
1435     if (DstTy.getElementType() != SrcEltTy)
1436       report("G_BUILD_VECTOR result element type must match source type", MI);
1437 
1438     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1439       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1440 
1441     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1442       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1443         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1444 
1445     break;
1446   }
1447   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1448     // Source types must be scalars, dest type a vector. Scalar types must be
1449     // larger than the dest vector elt type, as this is a truncating operation.
1450     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1451     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1452     if (!DstTy.isVector() || SrcEltTy.isVector())
1453       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1454              MI);
1455     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1456       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1457         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1458                MI);
1459     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1460       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1461              "dest elt type",
1462              MI);
1463     break;
1464   }
1465   case TargetOpcode::G_CONCAT_VECTORS: {
1466     // Source types should be vectors, and total size should match the dest
1467     // vector size.
1468     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1469     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1470     if (!DstTy.isVector() || !SrcTy.isVector())
1471       report("G_CONCAT_VECTOR requires vector source and destination operands",
1472              MI);
1473 
1474     if (MI->getNumOperands() < 3)
1475       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1476 
1477     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1478       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1479         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1480     if (DstTy.getNumElements() !=
1481         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1482       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1483     break;
1484   }
1485   case TargetOpcode::G_ICMP:
1486   case TargetOpcode::G_FCMP: {
1487     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1488     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1489 
1490     if ((DstTy.isVector() != SrcTy.isVector()) ||
1491         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1492       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1493 
1494     break;
1495   }
1496   case TargetOpcode::G_EXTRACT: {
1497     const MachineOperand &SrcOp = MI->getOperand(1);
1498     if (!SrcOp.isReg()) {
1499       report("extract source must be a register", MI);
1500       break;
1501     }
1502 
1503     const MachineOperand &OffsetOp = MI->getOperand(2);
1504     if (!OffsetOp.isImm()) {
1505       report("extract offset must be a constant", MI);
1506       break;
1507     }
1508 
1509     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1510     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1511     if (SrcSize == DstSize)
1512       report("extract source must be larger than result", MI);
1513 
1514     if (DstSize + OffsetOp.getImm() > SrcSize)
1515       report("extract reads past end of register", MI);
1516     break;
1517   }
1518   case TargetOpcode::G_INSERT: {
1519     const MachineOperand &SrcOp = MI->getOperand(2);
1520     if (!SrcOp.isReg()) {
1521       report("insert source must be a register", MI);
1522       break;
1523     }
1524 
1525     const MachineOperand &OffsetOp = MI->getOperand(3);
1526     if (!OffsetOp.isImm()) {
1527       report("insert offset must be a constant", MI);
1528       break;
1529     }
1530 
1531     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1532     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1533 
1534     if (DstSize <= SrcSize)
1535       report("inserted size must be smaller than total register", MI);
1536 
1537     if (SrcSize + OffsetOp.getImm() > DstSize)
1538       report("insert writes past end of register", MI);
1539 
1540     break;
1541   }
1542   case TargetOpcode::G_JUMP_TABLE: {
1543     if (!MI->getOperand(1).isJTI())
1544       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1545     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1546     if (!DstTy.isPointer())
1547       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1548     break;
1549   }
1550   case TargetOpcode::G_BRJT: {
1551     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1552       report("G_BRJT src operand 0 must be a pointer type", MI);
1553 
1554     if (!MI->getOperand(1).isJTI())
1555       report("G_BRJT src operand 1 must be a jump table index", MI);
1556 
1557     const auto &IdxOp = MI->getOperand(2);
1558     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1559       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1560     break;
1561   }
1562   case TargetOpcode::G_INTRINSIC:
1563   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
1564   case TargetOpcode::G_INTRINSIC_CONVERGENT:
1565   case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: {
1566     // TODO: Should verify number of def and use operands, but the current
1567     // interface requires passing in IR types for mangling.
1568     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1569     if (!IntrIDOp.isIntrinsicID()) {
1570       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1571       break;
1572     }
1573 
1574     if (!verifyGIntrinsicSideEffects(MI))
1575       break;
1576     if (!verifyGIntrinsicConvergence(MI))
1577       break;
1578 
1579     break;
1580   }
1581   case TargetOpcode::G_SEXT_INREG: {
1582     if (!MI->getOperand(2).isImm()) {
1583       report("G_SEXT_INREG expects an immediate operand #2", MI);
1584       break;
1585     }
1586 
1587     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1588     int64_t Imm = MI->getOperand(2).getImm();
1589     if (Imm <= 0)
1590       report("G_SEXT_INREG size must be >= 1", MI);
1591     if (Imm >= SrcTy.getScalarSizeInBits())
1592       report("G_SEXT_INREG size must be less than source bit width", MI);
1593     break;
1594   }
1595   case TargetOpcode::G_BSWAP: {
1596     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1597     if (DstTy.getScalarSizeInBits() % 16 != 0)
1598       report("G_BSWAP size must be a multiple of 16 bits", MI);
1599     break;
1600   }
1601   case TargetOpcode::G_SHUFFLE_VECTOR: {
1602     const MachineOperand &MaskOp = MI->getOperand(3);
1603     if (!MaskOp.isShuffleMask()) {
1604       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1605       break;
1606     }
1607 
1608     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1609     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1610     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1611 
1612     if (Src0Ty != Src1Ty)
1613       report("Source operands must be the same type", MI);
1614 
1615     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1616       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1617 
1618     // Don't check that all operands are vector because scalars are used in
1619     // place of 1 element vectors.
1620     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1621     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1622 
1623     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1624 
1625     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1626       report("Wrong result type for shufflemask", MI);
1627 
1628     for (int Idx : MaskIdxes) {
1629       if (Idx < 0)
1630         continue;
1631 
1632       if (Idx >= 2 * SrcNumElts)
1633         report("Out of bounds shuffle index", MI);
1634     }
1635 
1636     break;
1637   }
1638   case TargetOpcode::G_DYN_STACKALLOC: {
1639     const MachineOperand &DstOp = MI->getOperand(0);
1640     const MachineOperand &AllocOp = MI->getOperand(1);
1641     const MachineOperand &AlignOp = MI->getOperand(2);
1642 
1643     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1644       report("dst operand 0 must be a pointer type", MI);
1645       break;
1646     }
1647 
1648     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1649       report("src operand 1 must be a scalar reg type", MI);
1650       break;
1651     }
1652 
1653     if (!AlignOp.isImm()) {
1654       report("src operand 2 must be an immediate type", MI);
1655       break;
1656     }
1657     break;
1658   }
1659   case TargetOpcode::G_MEMCPY_INLINE:
1660   case TargetOpcode::G_MEMCPY:
1661   case TargetOpcode::G_MEMMOVE: {
1662     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1663     if (MMOs.size() != 2) {
1664       report("memcpy/memmove must have 2 memory operands", MI);
1665       break;
1666     }
1667 
1668     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1669         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1670       report("wrong memory operand types", MI);
1671       break;
1672     }
1673 
1674     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1675       report("inconsistent memory operand sizes", MI);
1676 
1677     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1678     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1679 
1680     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1681       report("memory instruction operand must be a pointer", MI);
1682       break;
1683     }
1684 
1685     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1686       report("inconsistent store address space", MI);
1687     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1688       report("inconsistent load address space", MI);
1689 
1690     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1691       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1692         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1693 
1694     break;
1695   }
1696   case TargetOpcode::G_BZERO:
1697   case TargetOpcode::G_MEMSET: {
1698     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1699     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1700     if (MMOs.size() != 1) {
1701       report(Twine(Name, " must have 1 memory operand"), MI);
1702       break;
1703     }
1704 
1705     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1706       report(Twine(Name, " memory operand must be a store"), MI);
1707       break;
1708     }
1709 
1710     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1711     if (!DstPtrTy.isPointer()) {
1712       report(Twine(Name, " operand must be a pointer"), MI);
1713       break;
1714     }
1715 
1716     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1717       report("inconsistent " + Twine(Name, " address space"), MI);
1718 
1719     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1720         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1721       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1722 
1723     break;
1724   }
1725   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1726   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1727     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1728     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1729     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1730     if (!DstTy.isScalar())
1731       report("Vector reduction requires a scalar destination type", MI);
1732     if (!Src1Ty.isScalar())
1733       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1734     if (!Src2Ty.isVector())
1735       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1736     break;
1737   }
1738   case TargetOpcode::G_VECREDUCE_FADD:
1739   case TargetOpcode::G_VECREDUCE_FMUL:
1740   case TargetOpcode::G_VECREDUCE_FMAX:
1741   case TargetOpcode::G_VECREDUCE_FMIN:
1742   case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1743   case TargetOpcode::G_VECREDUCE_FMINIMUM:
1744   case TargetOpcode::G_VECREDUCE_ADD:
1745   case TargetOpcode::G_VECREDUCE_MUL:
1746   case TargetOpcode::G_VECREDUCE_AND:
1747   case TargetOpcode::G_VECREDUCE_OR:
1748   case TargetOpcode::G_VECREDUCE_XOR:
1749   case TargetOpcode::G_VECREDUCE_SMAX:
1750   case TargetOpcode::G_VECREDUCE_SMIN:
1751   case TargetOpcode::G_VECREDUCE_UMAX:
1752   case TargetOpcode::G_VECREDUCE_UMIN: {
1753     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1754     if (!DstTy.isScalar())
1755       report("Vector reduction requires a scalar destination type", MI);
1756     break;
1757   }
1758 
1759   case TargetOpcode::G_SBFX:
1760   case TargetOpcode::G_UBFX: {
1761     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1762     if (DstTy.isVector()) {
1763       report("Bitfield extraction is not supported on vectors", MI);
1764       break;
1765     }
1766     break;
1767   }
1768   case TargetOpcode::G_SHL:
1769   case TargetOpcode::G_LSHR:
1770   case TargetOpcode::G_ASHR:
1771   case TargetOpcode::G_ROTR:
1772   case TargetOpcode::G_ROTL: {
1773     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1774     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1775     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1776       report("Shifts and rotates require operands to be either all scalars or "
1777              "all vectors",
1778              MI);
1779       break;
1780     }
1781     break;
1782   }
1783   case TargetOpcode::G_LLROUND:
1784   case TargetOpcode::G_LROUND: {
1785     verifyAllRegOpsScalar(*MI, *MRI);
1786     break;
1787   }
1788   case TargetOpcode::G_IS_FPCLASS: {
1789     LLT DestTy = MRI->getType(MI->getOperand(0).getReg());
1790     LLT DestEltTy = DestTy.getScalarType();
1791     if (!DestEltTy.isScalar()) {
1792       report("Destination must be a scalar or vector of scalars", MI);
1793       break;
1794     }
1795     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1796     LLT SrcEltTy = SrcTy.getScalarType();
1797     if (!SrcEltTy.isScalar()) {
1798       report("Source must be a scalar or vector of scalars", MI);
1799       break;
1800     }
1801     if (!verifyVectorElementMatch(DestTy, SrcTy, MI))
1802       break;
1803     const MachineOperand &TestMO = MI->getOperand(2);
1804     if (!TestMO.isImm()) {
1805       report("floating-point class set (operand 2) must be an immediate", MI);
1806       break;
1807     }
1808     int64_t Test = TestMO.getImm();
1809     if (Test < 0 || Test > fcAllFlags) {
1810       report("Incorrect floating-point class set (operand 2)", MI);
1811       break;
1812     }
1813     break;
1814   }
1815   case TargetOpcode::G_PREFETCH: {
1816     const MachineOperand &AddrOp = MI->getOperand(0);
1817     if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) {
1818       report("addr operand must be a pointer", &AddrOp, 0);
1819       break;
1820     }
1821     const MachineOperand &RWOp = MI->getOperand(1);
1822     if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) {
1823       report("rw operand must be an immediate 0-1", &RWOp, 1);
1824       break;
1825     }
1826     const MachineOperand &LocalityOp = MI->getOperand(2);
1827     if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) {
1828       report("locality operand must be an immediate 0-3", &LocalityOp, 2);
1829       break;
1830     }
1831     const MachineOperand &CacheTypeOp = MI->getOperand(3);
1832     if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) {
1833       report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3);
1834       break;
1835     }
1836     break;
1837   }
1838   case TargetOpcode::G_ASSERT_ALIGN: {
1839     if (MI->getOperand(2).getImm() < 1)
1840       report("alignment immediate must be >= 1", MI);
1841     break;
1842   }
1843   case TargetOpcode::G_CONSTANT_POOL: {
1844     if (!MI->getOperand(1).isCPI())
1845       report("Src operand 1 must be a constant pool index", MI);
1846     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1847       report("Dst operand 0 must be a pointer", MI);
1848     break;
1849   }
1850   default:
1851     break;
1852   }
1853 }
1854 
visitMachineInstrBefore(const MachineInstr * MI)1855 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1856   const MCInstrDesc &MCID = MI->getDesc();
1857   if (MI->getNumOperands() < MCID.getNumOperands()) {
1858     report("Too few operands", MI);
1859     errs() << MCID.getNumOperands() << " operands expected, but "
1860            << MI->getNumOperands() << " given.\n";
1861   }
1862 
1863   if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent())
1864     report("NoConvergent flag expected only on convergent instructions.", MI);
1865 
1866   if (MI->isPHI()) {
1867     if (MF->getProperties().hasProperty(
1868             MachineFunctionProperties::Property::NoPHIs))
1869       report("Found PHI instruction with NoPHIs property set", MI);
1870 
1871     if (FirstNonPHI)
1872       report("Found PHI instruction after non-PHI", MI);
1873   } else if (FirstNonPHI == nullptr)
1874     FirstNonPHI = MI;
1875 
1876   // Check the tied operands.
1877   if (MI->isInlineAsm())
1878     verifyInlineAsm(MI);
1879 
1880   // Check that unspillable terminators define a reg and have at most one use.
1881   if (TII->isUnspillableTerminator(MI)) {
1882     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1883       report("Unspillable Terminator does not define a reg", MI);
1884     Register Def = MI->getOperand(0).getReg();
1885     if (Def.isVirtual() &&
1886         !MF->getProperties().hasProperty(
1887             MachineFunctionProperties::Property::NoPHIs) &&
1888         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1889       report("Unspillable Terminator expected to have at most one use!", MI);
1890   }
1891 
1892   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1893   // DBG_VALUEs: these are convenient to use in tests, but should never get
1894   // generated.
1895   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1896     if (!MI->getDebugLoc())
1897       report("Missing DebugLoc for debug instruction", MI);
1898 
1899   // Meta instructions should never be the subject of debug value tracking,
1900   // they don't create a value in the output program at all.
1901   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1902     report("Metadata instruction should not have a value tracking number", MI);
1903 
1904   // Check the MachineMemOperands for basic consistency.
1905   for (MachineMemOperand *Op : MI->memoperands()) {
1906     if (Op->isLoad() && !MI->mayLoad())
1907       report("Missing mayLoad flag", MI);
1908     if (Op->isStore() && !MI->mayStore())
1909       report("Missing mayStore flag", MI);
1910   }
1911 
1912   // Debug values must not have a slot index.
1913   // Other instructions must have one, unless they are inside a bundle.
1914   if (LiveInts) {
1915     bool mapped = !LiveInts->isNotInMIMap(*MI);
1916     if (MI->isDebugOrPseudoInstr()) {
1917       if (mapped)
1918         report("Debug instruction has a slot index", MI);
1919     } else if (MI->isInsideBundle()) {
1920       if (mapped)
1921         report("Instruction inside bundle has a slot index", MI);
1922     } else {
1923       if (!mapped)
1924         report("Missing slot index", MI);
1925     }
1926   }
1927 
1928   unsigned Opc = MCID.getOpcode();
1929   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1930     verifyPreISelGenericInstruction(MI);
1931     return;
1932   }
1933 
1934   StringRef ErrorInfo;
1935   if (!TII->verifyInstruction(*MI, ErrorInfo))
1936     report(ErrorInfo.data(), MI);
1937 
1938   // Verify properties of various specific instruction types
1939   switch (MI->getOpcode()) {
1940   case TargetOpcode::COPY: {
1941     const MachineOperand &DstOp = MI->getOperand(0);
1942     const MachineOperand &SrcOp = MI->getOperand(1);
1943     const Register SrcReg = SrcOp.getReg();
1944     const Register DstReg = DstOp.getReg();
1945 
1946     LLT DstTy = MRI->getType(DstReg);
1947     LLT SrcTy = MRI->getType(SrcReg);
1948     if (SrcTy.isValid() && DstTy.isValid()) {
1949       // If both types are valid, check that the types are the same.
1950       if (SrcTy != DstTy) {
1951         report("Copy Instruction is illegal with mismatching types", MI);
1952         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1953       }
1954 
1955       break;
1956     }
1957 
1958     if (!SrcTy.isValid() && !DstTy.isValid())
1959       break;
1960 
1961     // If we have only one valid type, this is likely a copy between a virtual
1962     // and physical register.
1963     TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1964     TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1965     if (SrcReg.isPhysical() && DstTy.isValid()) {
1966       const TargetRegisterClass *SrcRC =
1967           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1968       if (SrcRC)
1969         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1970     }
1971 
1972     if (DstReg.isPhysical() && SrcTy.isValid()) {
1973       const TargetRegisterClass *DstRC =
1974           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1975       if (DstRC)
1976         DstSize = TRI->getRegSizeInBits(*DstRC);
1977     }
1978 
1979     // The next two checks allow COPY between physical and virtual registers,
1980     // when the virtual register has a scalable size and the physical register
1981     // has a fixed size. These checks allow COPY between *potentialy* mismatched
1982     // sizes. However, once RegisterBankSelection occurs, MachineVerifier should
1983     // be able to resolve a fixed size for the scalable vector, and at that
1984     // point this function will know for sure whether the sizes are mismatched
1985     // and correctly report a size mismatch.
1986     if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() &&
1987         !SrcSize.isScalable())
1988       break;
1989     if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() &&
1990         !DstSize.isScalable())
1991       break;
1992 
1993     if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) {
1994       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1995         report("Copy Instruction is illegal with mismatching sizes", MI);
1996         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1997                << "\n";
1998       }
1999     }
2000     break;
2001   }
2002   case TargetOpcode::STATEPOINT: {
2003     StatepointOpers SO(MI);
2004     if (!MI->getOperand(SO.getIDPos()).isImm() ||
2005         !MI->getOperand(SO.getNBytesPos()).isImm() ||
2006         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
2007       report("meta operands to STATEPOINT not constant!", MI);
2008       break;
2009     }
2010 
2011     auto VerifyStackMapConstant = [&](unsigned Offset) {
2012       if (Offset >= MI->getNumOperands()) {
2013         report("stack map constant to STATEPOINT is out of range!", MI);
2014         return;
2015       }
2016       if (!MI->getOperand(Offset - 1).isImm() ||
2017           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
2018           !MI->getOperand(Offset).isImm())
2019         report("stack map constant to STATEPOINT not well formed!", MI);
2020     };
2021     VerifyStackMapConstant(SO.getCCIdx());
2022     VerifyStackMapConstant(SO.getFlagsIdx());
2023     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
2024     VerifyStackMapConstant(SO.getNumGCPtrIdx());
2025     VerifyStackMapConstant(SO.getNumAllocaIdx());
2026     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
2027 
2028     // Verify that all explicit statepoint defs are tied to gc operands as
2029     // they are expected to be a relocation of gc operands.
2030     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
2031     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
2032     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
2033       unsigned UseOpIdx;
2034       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
2035         report("STATEPOINT defs expected to be tied", MI);
2036         break;
2037       }
2038       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
2039         report("STATEPOINT def tied to non-gc operand", MI);
2040         break;
2041       }
2042     }
2043 
2044     // TODO: verify we have properly encoded deopt arguments
2045   } break;
2046   case TargetOpcode::INSERT_SUBREG: {
2047     unsigned InsertedSize;
2048     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
2049       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
2050     else
2051       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
2052     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
2053     if (SubRegSize < InsertedSize) {
2054       report("INSERT_SUBREG expected inserted value to have equal or lesser "
2055              "size than the subreg it was inserted into", MI);
2056       break;
2057     }
2058   } break;
2059   case TargetOpcode::REG_SEQUENCE: {
2060     unsigned NumOps = MI->getNumOperands();
2061     if (!(NumOps & 1)) {
2062       report("Invalid number of operands for REG_SEQUENCE", MI);
2063       break;
2064     }
2065 
2066     for (unsigned I = 1; I != NumOps; I += 2) {
2067       const MachineOperand &RegOp = MI->getOperand(I);
2068       const MachineOperand &SubRegOp = MI->getOperand(I + 1);
2069 
2070       if (!RegOp.isReg())
2071         report("Invalid register operand for REG_SEQUENCE", &RegOp, I);
2072 
2073       if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 ||
2074           SubRegOp.getImm() >= TRI->getNumSubRegIndices()) {
2075         report("Invalid subregister index operand for REG_SEQUENCE",
2076                &SubRegOp, I + 1);
2077       }
2078     }
2079 
2080     Register DstReg = MI->getOperand(0).getReg();
2081     if (DstReg.isPhysical())
2082       report("REG_SEQUENCE does not support physical register results", MI);
2083 
2084     if (MI->getOperand(0).getSubReg())
2085       report("Invalid subreg result for REG_SEQUENCE", MI);
2086 
2087     break;
2088   }
2089   }
2090 }
2091 
2092 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)2093 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
2094   const MachineInstr *MI = MO->getParent();
2095   const MCInstrDesc &MCID = MI->getDesc();
2096   unsigned NumDefs = MCID.getNumDefs();
2097   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
2098     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
2099 
2100   // The first MCID.NumDefs operands must be explicit register defines
2101   if (MONum < NumDefs) {
2102     const MCOperandInfo &MCOI = MCID.operands()[MONum];
2103     if (!MO->isReg())
2104       report("Explicit definition must be a register", MO, MONum);
2105     else if (!MO->isDef() && !MCOI.isOptionalDef())
2106       report("Explicit definition marked as use", MO, MONum);
2107     else if (MO->isImplicit())
2108       report("Explicit definition marked as implicit", MO, MONum);
2109   } else if (MONum < MCID.getNumOperands()) {
2110     const MCOperandInfo &MCOI = MCID.operands()[MONum];
2111     // Don't check if it's the last operand in a variadic instruction. See,
2112     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
2113     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
2114     if (!IsOptional) {
2115       if (MO->isReg()) {
2116         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
2117           report("Explicit operand marked as def", MO, MONum);
2118         if (MO->isImplicit())
2119           report("Explicit operand marked as implicit", MO, MONum);
2120       }
2121 
2122       // Check that an instruction has register operands only as expected.
2123       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
2124           !MO->isReg() && !MO->isFI())
2125         report("Expected a register operand.", MO, MONum);
2126       if (MO->isReg()) {
2127         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
2128             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
2129              !TII->isPCRelRegisterOperandLegal(*MO)))
2130           report("Expected a non-register operand.", MO, MONum);
2131       }
2132     }
2133 
2134     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
2135     if (TiedTo != -1) {
2136       if (!MO->isReg())
2137         report("Tied use must be a register", MO, MONum);
2138       else if (!MO->isTied())
2139         report("Operand should be tied", MO, MONum);
2140       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
2141         report("Tied def doesn't match MCInstrDesc", MO, MONum);
2142       else if (MO->getReg().isPhysical()) {
2143         const MachineOperand &MOTied = MI->getOperand(TiedTo);
2144         if (!MOTied.isReg())
2145           report("Tied counterpart must be a register", &MOTied, TiedTo);
2146         else if (MOTied.getReg().isPhysical() &&
2147                  MO->getReg() != MOTied.getReg())
2148           report("Tied physical registers must match.", &MOTied, TiedTo);
2149       }
2150     } else if (MO->isReg() && MO->isTied())
2151       report("Explicit operand should not be tied", MO, MONum);
2152   } else if (!MI->isVariadic()) {
2153     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
2154     if (!MO->isValidExcessOperand())
2155       report("Extra explicit operand on non-variadic instruction", MO, MONum);
2156   }
2157 
2158   switch (MO->getType()) {
2159   case MachineOperand::MO_Register: {
2160     // Verify debug flag on debug instructions. Check this first because reg0
2161     // indicates an undefined debug value.
2162     if (MI->isDebugInstr() && MO->isUse()) {
2163       if (!MO->isDebug())
2164         report("Register operand must be marked debug", MO, MONum);
2165     } else if (MO->isDebug()) {
2166       report("Register operand must not be marked debug", MO, MONum);
2167     }
2168 
2169     const Register Reg = MO->getReg();
2170     if (!Reg)
2171       return;
2172     if (MRI->tracksLiveness() && !MI->isDebugInstr())
2173       checkLiveness(MO, MONum);
2174 
2175     if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
2176         MO->getReg().isVirtual()) // TODO: Apply to physregs too
2177       report("Undef virtual register def operands require a subregister", MO, MONum);
2178 
2179     // Verify the consistency of tied operands.
2180     if (MO->isTied()) {
2181       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
2182       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
2183       if (!OtherMO.isReg())
2184         report("Must be tied to a register", MO, MONum);
2185       if (!OtherMO.isTied())
2186         report("Missing tie flags on tied operand", MO, MONum);
2187       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
2188         report("Inconsistent tie links", MO, MONum);
2189       if (MONum < MCID.getNumDefs()) {
2190         if (OtherIdx < MCID.getNumOperands()) {
2191           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
2192             report("Explicit def tied to explicit use without tie constraint",
2193                    MO, MONum);
2194         } else {
2195           if (!OtherMO.isImplicit())
2196             report("Explicit def should be tied to implicit use", MO, MONum);
2197         }
2198       }
2199     }
2200 
2201     // Verify two-address constraints after the twoaddressinstruction pass.
2202     // Both twoaddressinstruction pass and phi-node-elimination pass call
2203     // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification
2204     // after twoaddressinstruction pass not after phi-node-elimination pass. So
2205     // we shouldn't use the IsSSA as the condition, we should based on
2206     // TiedOpsRewritten property to verify two-address constraints, this
2207     // property will be set in twoaddressinstruction pass.
2208     unsigned DefIdx;
2209     if (MF->getProperties().hasProperty(
2210             MachineFunctionProperties::Property::TiedOpsRewritten) &&
2211         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
2212         Reg != MI->getOperand(DefIdx).getReg())
2213       report("Two-address instruction operands must be identical", MO, MONum);
2214 
2215     // Check register classes.
2216     unsigned SubIdx = MO->getSubReg();
2217 
2218     if (Reg.isPhysical()) {
2219       if (SubIdx) {
2220         report("Illegal subregister index for physical register", MO, MONum);
2221         return;
2222       }
2223       if (MONum < MCID.getNumOperands()) {
2224         if (const TargetRegisterClass *DRC =
2225               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2226           if (!DRC->contains(Reg)) {
2227             report("Illegal physical register for instruction", MO, MONum);
2228             errs() << printReg(Reg, TRI) << " is not a "
2229                    << TRI->getRegClassName(DRC) << " register.\n";
2230           }
2231         }
2232       }
2233       if (MO->isRenamable()) {
2234         if (MRI->isReserved(Reg)) {
2235           report("isRenamable set on reserved register", MO, MONum);
2236           return;
2237         }
2238       }
2239     } else {
2240       // Virtual register.
2241       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2242       if (!RC) {
2243         // This is a generic virtual register.
2244 
2245         // Do not allow undef uses for generic virtual registers. This ensures
2246         // getVRegDef can never fail and return null on a generic register.
2247         //
2248         // FIXME: This restriction should probably be broadened to all SSA
2249         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2250         // run on the SSA function just before phi elimination.
2251         if (MO->isUndef())
2252           report("Generic virtual register use cannot be undef", MO, MONum);
2253 
2254         // Debug value instruction is permitted to use undefined vregs.
2255         // This is a performance measure to skip the overhead of immediately
2256         // pruning unused debug operands. The final undef substitution occurs
2257         // when debug values are allocated in LDVImpl::handleDebugValue, so
2258         // these verifications always apply after this pass.
2259         if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2260             !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2261           // If we're post-Select, we can't have gvregs anymore.
2262           if (isFunctionSelected) {
2263             report("Generic virtual register invalid in a Selected function",
2264                    MO, MONum);
2265             return;
2266           }
2267 
2268           // The gvreg must have a type and it must not have a SubIdx.
2269           LLT Ty = MRI->getType(Reg);
2270           if (!Ty.isValid()) {
2271             report("Generic virtual register must have a valid type", MO,
2272                    MONum);
2273             return;
2274           }
2275 
2276           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2277           const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo();
2278 
2279           // If we're post-RegBankSelect, the gvreg must have a bank.
2280           if (!RegBank && isFunctionRegBankSelected) {
2281             report("Generic virtual register must have a bank in a "
2282                    "RegBankSelected function",
2283                    MO, MONum);
2284             return;
2285           }
2286 
2287           // Make sure the register fits into its register bank if any.
2288           if (RegBank && Ty.isValid() && !Ty.isScalableVector() &&
2289               RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) {
2290             report("Register bank is too small for virtual register", MO,
2291                    MONum);
2292             errs() << "Register bank " << RegBank->getName() << " too small("
2293                    << RBI->getMaximumSize(RegBank->getID()) << ") to fit "
2294                    << Ty.getSizeInBits() << "-bits\n";
2295             return;
2296           }
2297         }
2298 
2299         if (SubIdx)  {
2300           report("Generic virtual register does not allow subregister index", MO,
2301                  MONum);
2302           return;
2303         }
2304 
2305         // If this is a target specific instruction and this operand
2306         // has register class constraint, the virtual register must
2307         // comply to it.
2308         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2309             MONum < MCID.getNumOperands() &&
2310             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2311           report("Virtual register does not match instruction constraint", MO,
2312                  MONum);
2313           errs() << "Expect register class "
2314                  << TRI->getRegClassName(
2315                         TII->getRegClass(MCID, MONum, TRI, *MF))
2316                  << " but got nothing\n";
2317           return;
2318         }
2319 
2320         break;
2321       }
2322       if (SubIdx) {
2323         const TargetRegisterClass *SRC =
2324           TRI->getSubClassWithSubReg(RC, SubIdx);
2325         if (!SRC) {
2326           report("Invalid subregister index for virtual register", MO, MONum);
2327           errs() << "Register class " << TRI->getRegClassName(RC)
2328               << " does not support subreg index " << SubIdx << "\n";
2329           return;
2330         }
2331         if (RC != SRC) {
2332           report("Invalid register class for subregister index", MO, MONum);
2333           errs() << "Register class " << TRI->getRegClassName(RC)
2334               << " does not fully support subreg index " << SubIdx << "\n";
2335           return;
2336         }
2337       }
2338       if (MONum < MCID.getNumOperands()) {
2339         if (const TargetRegisterClass *DRC =
2340               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2341           if (SubIdx) {
2342             const TargetRegisterClass *SuperRC =
2343                 TRI->getLargestLegalSuperClass(RC, *MF);
2344             if (!SuperRC) {
2345               report("No largest legal super class exists.", MO, MONum);
2346               return;
2347             }
2348             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2349             if (!DRC) {
2350               report("No matching super-reg register class.", MO, MONum);
2351               return;
2352             }
2353           }
2354           if (!RC->hasSuperClassEq(DRC)) {
2355             report("Illegal virtual register for instruction", MO, MONum);
2356             errs() << "Expected a " << TRI->getRegClassName(DRC)
2357                 << " register, but got a " << TRI->getRegClassName(RC)
2358                 << " register\n";
2359           }
2360         }
2361       }
2362     }
2363     break;
2364   }
2365 
2366   case MachineOperand::MO_RegisterMask:
2367     regMasks.push_back(MO->getRegMask());
2368     break;
2369 
2370   case MachineOperand::MO_MachineBasicBlock:
2371     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2372       report("PHI operand is not in the CFG", MO, MONum);
2373     break;
2374 
2375   case MachineOperand::MO_FrameIndex:
2376     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2377         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2378       int FI = MO->getIndex();
2379       LiveInterval &LI = LiveStks->getInterval(FI);
2380       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2381 
2382       bool stores = MI->mayStore();
2383       bool loads = MI->mayLoad();
2384       // For a memory-to-memory move, we need to check if the frame
2385       // index is used for storing or loading, by inspecting the
2386       // memory operands.
2387       if (stores && loads) {
2388         for (auto *MMO : MI->memoperands()) {
2389           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2390           if (PSV == nullptr) continue;
2391           const FixedStackPseudoSourceValue *Value =
2392             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2393           if (Value == nullptr) continue;
2394           if (Value->getFrameIndex() != FI) continue;
2395 
2396           if (MMO->isStore())
2397             loads = false;
2398           else
2399             stores = false;
2400           break;
2401         }
2402         if (loads == stores)
2403           report("Missing fixed stack memoperand.", MI);
2404       }
2405       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2406         report("Instruction loads from dead spill slot", MO, MONum);
2407         errs() << "Live stack: " << LI << '\n';
2408       }
2409       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2410         report("Instruction stores to dead spill slot", MO, MONum);
2411         errs() << "Live stack: " << LI << '\n';
2412       }
2413     }
2414     break;
2415 
2416   case MachineOperand::MO_CFIIndex:
2417     if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2418       report("CFI instruction has invalid index", MO, MONum);
2419     break;
2420 
2421   default:
2422     break;
2423   }
2424 }
2425 
checkLivenessAtUse(const MachineOperand * MO,unsigned MONum,SlotIndex UseIdx,const LiveRange & LR,Register VRegOrUnit,LaneBitmask LaneMask)2426 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2427                                          unsigned MONum, SlotIndex UseIdx,
2428                                          const LiveRange &LR,
2429                                          Register VRegOrUnit,
2430                                          LaneBitmask LaneMask) {
2431   const MachineInstr *MI = MO->getParent();
2432   LiveQueryResult LRQ = LR.Query(UseIdx);
2433   bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut());
2434   // Check if we have a segment at the use, note however that we only need one
2435   // live subregister range, the others may be dead.
2436   if (!HasValue && LaneMask.none()) {
2437     report("No live segment at use", MO, MONum);
2438     report_context_liverange(LR);
2439     report_context_vreg_regunit(VRegOrUnit);
2440     report_context(UseIdx);
2441   }
2442   if (MO->isKill() && !LRQ.isKill()) {
2443     report("Live range continues after kill flag", MO, MONum);
2444     report_context_liverange(LR);
2445     report_context_vreg_regunit(VRegOrUnit);
2446     if (LaneMask.any())
2447       report_context_lanemask(LaneMask);
2448     report_context(UseIdx);
2449   }
2450 }
2451 
checkLivenessAtDef(const MachineOperand * MO,unsigned MONum,SlotIndex DefIdx,const LiveRange & LR,Register VRegOrUnit,bool SubRangeCheck,LaneBitmask LaneMask)2452 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2453                                          unsigned MONum, SlotIndex DefIdx,
2454                                          const LiveRange &LR,
2455                                          Register VRegOrUnit,
2456                                          bool SubRangeCheck,
2457                                          LaneBitmask LaneMask) {
2458   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2459     // The LR can correspond to the whole reg and its def slot is not obliged
2460     // to be the same as the MO' def slot. E.g. when we check here "normal"
2461     // subreg MO but there is other EC subreg MO in the same instruction so the
2462     // whole reg has EC def slot and differs from the currently checked MO' def
2463     // slot. For example:
2464     // %0 [16e,32r:0) 0@16e  L..3 [16e,32r:0) 0@16e  L..C [16r,32r:0) 0@16r
2465     // Check that there is an early-clobber def of the same superregister
2466     // somewhere is performed in visitMachineFunctionAfter()
2467     if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) ||
2468         !SlotIndex::isSameInstr(VNI->def, DefIdx) ||
2469         (VNI->def != DefIdx &&
2470          (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) {
2471       report("Inconsistent valno->def", MO, MONum);
2472       report_context_liverange(LR);
2473       report_context_vreg_regunit(VRegOrUnit);
2474       if (LaneMask.any())
2475         report_context_lanemask(LaneMask);
2476       report_context(*VNI);
2477       report_context(DefIdx);
2478     }
2479   } else {
2480     report("No live segment at def", MO, MONum);
2481     report_context_liverange(LR);
2482     report_context_vreg_regunit(VRegOrUnit);
2483     if (LaneMask.any())
2484       report_context_lanemask(LaneMask);
2485     report_context(DefIdx);
2486   }
2487   // Check that, if the dead def flag is present, LiveInts agree.
2488   if (MO->isDead()) {
2489     LiveQueryResult LRQ = LR.Query(DefIdx);
2490     if (!LRQ.isDeadDef()) {
2491       assert(VRegOrUnit.isVirtual() && "Expecting a virtual register.");
2492       // A dead subreg def only tells us that the specific subreg is dead. There
2493       // could be other non-dead defs of other subregs, or we could have other
2494       // parts of the register being live through the instruction. So unless we
2495       // are checking liveness for a subrange it is ok for the live range to
2496       // continue, given that we have a dead def of a subregister.
2497       if (SubRangeCheck || MO->getSubReg() == 0) {
2498         report("Live range continues after dead def flag", MO, MONum);
2499         report_context_liverange(LR);
2500         report_context_vreg_regunit(VRegOrUnit);
2501         if (LaneMask.any())
2502           report_context_lanemask(LaneMask);
2503       }
2504     }
2505   }
2506 }
2507 
checkLiveness(const MachineOperand * MO,unsigned MONum)2508 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2509   const MachineInstr *MI = MO->getParent();
2510   const Register Reg = MO->getReg();
2511   const unsigned SubRegIdx = MO->getSubReg();
2512 
2513   const LiveInterval *LI = nullptr;
2514   if (LiveInts && Reg.isVirtual()) {
2515     if (LiveInts->hasInterval(Reg)) {
2516       LI = &LiveInts->getInterval(Reg);
2517       if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2518           !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2519         report("Live interval for subreg operand has no subranges", MO, MONum);
2520     } else {
2521       report("Virtual register has no live interval", MO, MONum);
2522     }
2523   }
2524 
2525   // Both use and def operands can read a register.
2526   if (MO->readsReg()) {
2527     if (MO->isKill())
2528       addRegWithSubRegs(regsKilled, Reg);
2529 
2530     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2531     // which case we have already checked that LiveVars knows any kills on the
2532     // bundle header instead).
2533     if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2534         !MI->isBundledWithPred()) {
2535       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2536       if (!is_contained(VI.Kills, MI))
2537         report("Kill missing from LiveVariables", MO, MONum);
2538     }
2539 
2540     // Check LiveInts liveness and kill.
2541     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2542       SlotIndex UseIdx;
2543       if (MI->isPHI()) {
2544         // PHI use occurs on the edge, so check for live out here instead.
2545         UseIdx = LiveInts->getMBBEndIdx(
2546           MI->getOperand(MONum + 1).getMBB()).getPrevSlot();
2547       } else {
2548         UseIdx = LiveInts->getInstructionIndex(*MI);
2549       }
2550       // Check the cached regunit intervals.
2551       if (Reg.isPhysical() && !isReserved(Reg)) {
2552         for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) {
2553           if (MRI->isReservedRegUnit(Unit))
2554             continue;
2555           if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit))
2556             checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit);
2557         }
2558       }
2559 
2560       if (Reg.isVirtual()) {
2561         // This is a virtual register interval.
2562         checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2563 
2564         if (LI->hasSubRanges() && !MO->isDef()) {
2565           LaneBitmask MOMask = SubRegIdx != 0
2566                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2567                                    : MRI->getMaxLaneMaskForVReg(Reg);
2568           LaneBitmask LiveInMask;
2569           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2570             if ((MOMask & SR.LaneMask).none())
2571               continue;
2572             checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2573             LiveQueryResult LRQ = SR.Query(UseIdx);
2574             if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()))
2575               LiveInMask |= SR.LaneMask;
2576           }
2577           // At least parts of the register has to be live at the use.
2578           if ((LiveInMask & MOMask).none()) {
2579             report("No live subrange at use", MO, MONum);
2580             report_context(*LI);
2581             report_context(UseIdx);
2582           }
2583           // For PHIs all lanes should be live
2584           if (MI->isPHI() && LiveInMask != MOMask) {
2585             report("Not all lanes of PHI source live at use", MO, MONum);
2586             report_context(*LI);
2587             report_context(UseIdx);
2588           }
2589         }
2590       }
2591     }
2592 
2593     // Use of a dead register.
2594     if (!regsLive.count(Reg)) {
2595       if (Reg.isPhysical()) {
2596         // Reserved registers may be used even when 'dead'.
2597         bool Bad = !isReserved(Reg);
2598         // We are fine if just any subregister has a defined value.
2599         if (Bad) {
2600 
2601           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2602             if (regsLive.count(SubReg)) {
2603               Bad = false;
2604               break;
2605             }
2606           }
2607         }
2608         // If there is an additional implicit-use of a super register we stop
2609         // here. By definition we are fine if the super register is not
2610         // (completely) dead, if the complete super register is dead we will
2611         // get a report for its operand.
2612         if (Bad) {
2613           for (const MachineOperand &MOP : MI->uses()) {
2614             if (!MOP.isReg() || !MOP.isImplicit())
2615               continue;
2616 
2617             if (!MOP.getReg().isPhysical())
2618               continue;
2619 
2620             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2621               Bad = false;
2622           }
2623         }
2624         if (Bad)
2625           report("Using an undefined physical register", MO, MONum);
2626       } else if (MRI->def_empty(Reg)) {
2627         report("Reading virtual register without a def", MO, MONum);
2628       } else {
2629         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2630         // We don't know which virtual registers are live in, so only complain
2631         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2632         // must be live in. PHI instructions are handled separately.
2633         if (MInfo.regsKilled.count(Reg))
2634           report("Using a killed virtual register", MO, MONum);
2635         else if (!MI->isPHI())
2636           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2637       }
2638     }
2639   }
2640 
2641   if (MO->isDef()) {
2642     // Register defined.
2643     // TODO: verify that earlyclobber ops are not used.
2644     if (MO->isDead())
2645       addRegWithSubRegs(regsDead, Reg);
2646     else
2647       addRegWithSubRegs(regsDefined, Reg);
2648 
2649     // Verify SSA form.
2650     if (MRI->isSSA() && Reg.isVirtual() &&
2651         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2652       report("Multiple virtual register defs in SSA form", MO, MONum);
2653 
2654     // Check LiveInts for a live segment, but only for virtual registers.
2655     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2656       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2657       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2658 
2659       if (Reg.isVirtual()) {
2660         checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
2661 
2662         if (LI->hasSubRanges()) {
2663           LaneBitmask MOMask = SubRegIdx != 0
2664                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2665                                    : MRI->getMaxLaneMaskForVReg(Reg);
2666           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2667             if ((SR.LaneMask & MOMask).none())
2668               continue;
2669             checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2670           }
2671         }
2672       }
2673     }
2674   }
2675 }
2676 
2677 // This function gets called after visiting all instructions in a bundle. The
2678 // argument points to the bundle header.
2679 // Normal stand-alone instructions are also considered 'bundles', and this
2680 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)2681 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2682   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2683   set_union(MInfo.regsKilled, regsKilled);
2684   set_subtract(regsLive, regsKilled); regsKilled.clear();
2685   // Kill any masked registers.
2686   while (!regMasks.empty()) {
2687     const uint32_t *Mask = regMasks.pop_back_val();
2688     for (Register Reg : regsLive)
2689       if (Reg.isPhysical() &&
2690           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2691         regsDead.push_back(Reg);
2692   }
2693   set_subtract(regsLive, regsDead);   regsDead.clear();
2694   set_union(regsLive, regsDefined);   regsDefined.clear();
2695 }
2696 
2697 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)2698 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2699   MBBInfoMap[MBB].regsLiveOut = regsLive;
2700   regsLive.clear();
2701 
2702   if (Indexes) {
2703     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2704     if (!(stop > lastIndex)) {
2705       report("Block ends before last instruction index", MBB);
2706       errs() << "Block ends at " << stop
2707           << " last instruction was at " << lastIndex << '\n';
2708     }
2709     lastIndex = stop;
2710   }
2711 }
2712 
2713 namespace {
2714 // This implements a set of registers that serves as a filter: can filter other
2715 // sets by passing through elements not in the filter and blocking those that
2716 // are. Any filter implicitly includes the full set of physical registers upon
2717 // creation, thus filtering them all out. The filter itself as a set only grows,
2718 // and needs to be as efficient as possible.
2719 struct VRegFilter {
2720   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2721   // no duplicates. Both virtual and physical registers are fine.
add__anoncaf807cd0511::VRegFilter2722   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2723     SmallVector<Register, 0> VRegsBuffer;
2724     filterAndAdd(FromRegSet, VRegsBuffer);
2725   }
2726   // Filter \p FromRegSet through the filter and append passed elements into \p
2727   // ToVRegs. All elements appended are then added to the filter itself.
2728   // \returns true if anything changed.
2729   template <typename RegSetT>
filterAndAdd__anoncaf807cd0511::VRegFilter2730   bool filterAndAdd(const RegSetT &FromRegSet,
2731                     SmallVectorImpl<Register> &ToVRegs) {
2732     unsigned SparseUniverse = Sparse.size();
2733     unsigned NewSparseUniverse = SparseUniverse;
2734     unsigned NewDenseSize = Dense.size();
2735     size_t Begin = ToVRegs.size();
2736     for (Register Reg : FromRegSet) {
2737       if (!Reg.isVirtual())
2738         continue;
2739       unsigned Index = Register::virtReg2Index(Reg);
2740       if (Index < SparseUniverseMax) {
2741         if (Index < SparseUniverse && Sparse.test(Index))
2742           continue;
2743         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2744       } else {
2745         if (Dense.count(Reg))
2746           continue;
2747         ++NewDenseSize;
2748       }
2749       ToVRegs.push_back(Reg);
2750     }
2751     size_t End = ToVRegs.size();
2752     if (Begin == End)
2753       return false;
2754     // Reserving space in sets once performs better than doing so continuously
2755     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2756     // tuned all the way down) and double iteration (the second one is over a
2757     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2758     Sparse.resize(NewSparseUniverse);
2759     Dense.reserve(NewDenseSize);
2760     for (unsigned I = Begin; I < End; ++I) {
2761       Register Reg = ToVRegs[I];
2762       unsigned Index = Register::virtReg2Index(Reg);
2763       if (Index < SparseUniverseMax)
2764         Sparse.set(Index);
2765       else
2766         Dense.insert(Reg);
2767     }
2768     return true;
2769   }
2770 
2771 private:
2772   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2773   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2774   // are tracked by Dense. The only purpose of the threashold and the Dense set
2775   // is to have a reasonably growing memory usage in pathological cases (large
2776   // number of very sparse VRegFilter instances live at the same time). In
2777   // practice even in the worst-by-execution time cases having all elements
2778   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2779   // space efficient than if tracked by Dense. The threashold is set to keep the
2780   // worst-case memory usage within 2x of figures determined empirically for
2781   // "all Dense" scenario in such worst-by-execution-time cases.
2782   BitVector Sparse;
2783   DenseSet<unsigned> Dense;
2784 };
2785 
2786 // Implements both a transfer function and a (binary, in-place) join operator
2787 // for a dataflow over register sets with set union join and filtering transfer
2788 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2789 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2790 // time, where n is the size of the set (as opposed to O(U) where U is the
2791 // universe). filter_b implicitly contains all physical registers at all times.
2792 class FilteringVRegSet {
2793   VRegFilter Filter;
2794   SmallVector<Register, 0> VRegs;
2795 
2796 public:
2797   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2798   // Both virtual and physical registers are fine.
addToFilter(const RegSetT & RS)2799   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2800     Filter.add(RS);
2801   }
2802   // Passes \p RS through the filter_b (transfer function) and adds what's left
2803   // to itself (out_b).
add(const RegSetT & RS)2804   template <typename RegSetT> bool add(const RegSetT &RS) {
2805     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2806     // a set union) just add everything being added here to the Filter as well.
2807     return Filter.filterAndAdd(RS, VRegs);
2808   }
2809   using const_iterator = decltype(VRegs)::const_iterator;
begin() const2810   const_iterator begin() const { return VRegs.begin(); }
end() const2811   const_iterator end() const { return VRegs.end(); }
size() const2812   size_t size() const { return VRegs.size(); }
2813 };
2814 } // namespace
2815 
2816 // Calculate the largest possible vregsPassed sets. These are the registers that
2817 // can pass through an MBB live, but may not be live every time. It is assumed
2818 // that all vregsPassed sets are empty before the call.
calcRegsPassed()2819 void MachineVerifier::calcRegsPassed() {
2820   if (MF->empty())
2821     // ReversePostOrderTraversal doesn't handle empty functions.
2822     return;
2823 
2824   for (const MachineBasicBlock *MB :
2825        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2826     FilteringVRegSet VRegs;
2827     BBInfo &Info = MBBInfoMap[MB];
2828     assert(Info.reachable);
2829 
2830     VRegs.addToFilter(Info.regsKilled);
2831     VRegs.addToFilter(Info.regsLiveOut);
2832     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2833       const BBInfo &PredInfo = MBBInfoMap[Pred];
2834       if (!PredInfo.reachable)
2835         continue;
2836 
2837       VRegs.add(PredInfo.regsLiveOut);
2838       VRegs.add(PredInfo.vregsPassed);
2839     }
2840     Info.vregsPassed.reserve(VRegs.size());
2841     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2842   }
2843 }
2844 
2845 // Calculate the set of virtual registers that must be passed through each basic
2846 // block in order to satisfy the requirements of successor blocks. This is very
2847 // similar to calcRegsPassed, only backwards.
calcRegsRequired()2848 void MachineVerifier::calcRegsRequired() {
2849   // First push live-in regs to predecessors' vregsRequired.
2850   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2851   for (const auto &MBB : *MF) {
2852     BBInfo &MInfo = MBBInfoMap[&MBB];
2853     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2854       BBInfo &PInfo = MBBInfoMap[Pred];
2855       if (PInfo.addRequired(MInfo.vregsLiveIn))
2856         todo.insert(Pred);
2857     }
2858 
2859     // Handle the PHI node.
2860     for (const MachineInstr &MI : MBB.phis()) {
2861       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2862         // Skip those Operands which are undef regs or not regs.
2863         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2864           continue;
2865 
2866         // Get register and predecessor for one PHI edge.
2867         Register Reg = MI.getOperand(i).getReg();
2868         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2869 
2870         BBInfo &PInfo = MBBInfoMap[Pred];
2871         if (PInfo.addRequired(Reg))
2872           todo.insert(Pred);
2873       }
2874     }
2875   }
2876 
2877   // Iteratively push vregsRequired to predecessors. This will converge to the
2878   // same final state regardless of DenseSet iteration order.
2879   while (!todo.empty()) {
2880     const MachineBasicBlock *MBB = *todo.begin();
2881     todo.erase(MBB);
2882     BBInfo &MInfo = MBBInfoMap[MBB];
2883     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2884       if (Pred == MBB)
2885         continue;
2886       BBInfo &SInfo = MBBInfoMap[Pred];
2887       if (SInfo.addRequired(MInfo.vregsRequired))
2888         todo.insert(Pred);
2889     }
2890   }
2891 }
2892 
2893 // Check PHI instructions at the beginning of MBB. It is assumed that
2894 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock & MBB)2895 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2896   BBInfo &MInfo = MBBInfoMap[&MBB];
2897 
2898   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2899   for (const MachineInstr &Phi : MBB) {
2900     if (!Phi.isPHI())
2901       break;
2902     seen.clear();
2903 
2904     const MachineOperand &MODef = Phi.getOperand(0);
2905     if (!MODef.isReg() || !MODef.isDef()) {
2906       report("Expected first PHI operand to be a register def", &MODef, 0);
2907       continue;
2908     }
2909     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2910         MODef.isEarlyClobber() || MODef.isDebug())
2911       report("Unexpected flag on PHI operand", &MODef, 0);
2912     Register DefReg = MODef.getReg();
2913     if (!DefReg.isVirtual())
2914       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2915 
2916     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2917       const MachineOperand &MO0 = Phi.getOperand(I);
2918       if (!MO0.isReg()) {
2919         report("Expected PHI operand to be a register", &MO0, I);
2920         continue;
2921       }
2922       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2923           MO0.isDebug() || MO0.isTied())
2924         report("Unexpected flag on PHI operand", &MO0, I);
2925 
2926       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2927       if (!MO1.isMBB()) {
2928         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2929         continue;
2930       }
2931 
2932       const MachineBasicBlock &Pre = *MO1.getMBB();
2933       if (!Pre.isSuccessor(&MBB)) {
2934         report("PHI input is not a predecessor block", &MO1, I + 1);
2935         continue;
2936       }
2937 
2938       if (MInfo.reachable) {
2939         seen.insert(&Pre);
2940         BBInfo &PrInfo = MBBInfoMap[&Pre];
2941         if (!MO0.isUndef() && PrInfo.reachable &&
2942             !PrInfo.isLiveOut(MO0.getReg()))
2943           report("PHI operand is not live-out from predecessor", &MO0, I);
2944       }
2945     }
2946 
2947     // Did we see all predecessors?
2948     if (MInfo.reachable) {
2949       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2950         if (!seen.count(Pred)) {
2951           report("Missing PHI operand", &Phi);
2952           errs() << printMBBReference(*Pred)
2953                  << " is a predecessor according to the CFG.\n";
2954         }
2955       }
2956     }
2957   }
2958 }
2959 
visitMachineFunctionAfter()2960 void MachineVerifier::visitMachineFunctionAfter() {
2961   calcRegsPassed();
2962 
2963   for (const MachineBasicBlock &MBB : *MF)
2964     checkPHIOps(MBB);
2965 
2966   // Now check liveness info if available
2967   calcRegsRequired();
2968 
2969   // Check for killed virtual registers that should be live out.
2970   for (const auto &MBB : *MF) {
2971     BBInfo &MInfo = MBBInfoMap[&MBB];
2972     for (Register VReg : MInfo.vregsRequired)
2973       if (MInfo.regsKilled.count(VReg)) {
2974         report("Virtual register killed in block, but needed live out.", &MBB);
2975         errs() << "Virtual register " << printReg(VReg)
2976                << " is used after the block.\n";
2977       }
2978   }
2979 
2980   if (!MF->empty()) {
2981     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2982     for (Register VReg : MInfo.vregsRequired) {
2983       report("Virtual register defs don't dominate all uses.", MF);
2984       report_context_vreg(VReg);
2985     }
2986   }
2987 
2988   if (LiveVars)
2989     verifyLiveVariables();
2990   if (LiveInts)
2991     verifyLiveIntervals();
2992 
2993   // Check live-in list of each MBB. If a register is live into MBB, check
2994   // that the register is in regsLiveOut of each predecessor block. Since
2995   // this must come from a definition in the predecesssor or its live-in
2996   // list, this will catch a live-through case where the predecessor does not
2997   // have the register in its live-in list.  This currently only checks
2998   // registers that have no aliases, are not allocatable and are not
2999   // reserved, which could mean a condition code register for instance.
3000   if (MRI->tracksLiveness())
3001     for (const auto &MBB : *MF)
3002       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
3003         MCPhysReg LiveInReg = P.PhysReg;
3004         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
3005         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
3006           continue;
3007         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
3008           BBInfo &PInfo = MBBInfoMap[Pred];
3009           if (!PInfo.regsLiveOut.count(LiveInReg)) {
3010             report("Live in register not found to be live out from predecessor.",
3011                    &MBB);
3012             errs() << TRI->getName(LiveInReg)
3013                    << " not found to be live out from "
3014                    << printMBBReference(*Pred) << "\n";
3015           }
3016         }
3017       }
3018 
3019   for (auto CSInfo : MF->getCallSitesInfo())
3020     if (!CSInfo.first->isCall())
3021       report("Call site info referencing instruction that is not call", MF);
3022 
3023   // If there's debug-info, check that we don't have any duplicate value
3024   // tracking numbers.
3025   if (MF->getFunction().getSubprogram()) {
3026     DenseSet<unsigned> SeenNumbers;
3027     for (const auto &MBB : *MF) {
3028       for (const auto &MI : MBB) {
3029         if (auto Num = MI.peekDebugInstrNum()) {
3030           auto Result = SeenNumbers.insert((unsigned)Num);
3031           if (!Result.second)
3032             report("Instruction has a duplicated value tracking number", &MI);
3033         }
3034       }
3035     }
3036   }
3037 }
3038 
verifyLiveVariables()3039 void MachineVerifier::verifyLiveVariables() {
3040   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
3041   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3042     Register Reg = Register::index2VirtReg(I);
3043     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
3044     for (const auto &MBB : *MF) {
3045       BBInfo &MInfo = MBBInfoMap[&MBB];
3046 
3047       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
3048       if (MInfo.vregsRequired.count(Reg)) {
3049         if (!VI.AliveBlocks.test(MBB.getNumber())) {
3050           report("LiveVariables: Block missing from AliveBlocks", &MBB);
3051           errs() << "Virtual register " << printReg(Reg)
3052                  << " must be live through the block.\n";
3053         }
3054       } else {
3055         if (VI.AliveBlocks.test(MBB.getNumber())) {
3056           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
3057           errs() << "Virtual register " << printReg(Reg)
3058                  << " is not needed live through the block.\n";
3059         }
3060       }
3061     }
3062   }
3063 }
3064 
verifyLiveIntervals()3065 void MachineVerifier::verifyLiveIntervals() {
3066   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
3067   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3068     Register Reg = Register::index2VirtReg(I);
3069 
3070     // Spilling and splitting may leave unused registers around. Skip them.
3071     if (MRI->reg_nodbg_empty(Reg))
3072       continue;
3073 
3074     if (!LiveInts->hasInterval(Reg)) {
3075       report("Missing live interval for virtual register", MF);
3076       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
3077       continue;
3078     }
3079 
3080     const LiveInterval &LI = LiveInts->getInterval(Reg);
3081     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
3082     verifyLiveInterval(LI);
3083   }
3084 
3085   // Verify all the cached regunit intervals.
3086   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
3087     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
3088       verifyLiveRange(*LR, i);
3089 }
3090 
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,Register Reg,LaneBitmask LaneMask)3091 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
3092                                            const VNInfo *VNI, Register Reg,
3093                                            LaneBitmask LaneMask) {
3094   if (VNI->isUnused())
3095     return;
3096 
3097   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
3098 
3099   if (!DefVNI) {
3100     report("Value not live at VNInfo def and not marked unused", MF);
3101     report_context(LR, Reg, LaneMask);
3102     report_context(*VNI);
3103     return;
3104   }
3105 
3106   if (DefVNI != VNI) {
3107     report("Live segment at def has different VNInfo", MF);
3108     report_context(LR, Reg, LaneMask);
3109     report_context(*VNI);
3110     return;
3111   }
3112 
3113   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
3114   if (!MBB) {
3115     report("Invalid VNInfo definition index", MF);
3116     report_context(LR, Reg, LaneMask);
3117     report_context(*VNI);
3118     return;
3119   }
3120 
3121   if (VNI->isPHIDef()) {
3122     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
3123       report("PHIDef VNInfo is not defined at MBB start", MBB);
3124       report_context(LR, Reg, LaneMask);
3125       report_context(*VNI);
3126     }
3127     return;
3128   }
3129 
3130   // Non-PHI def.
3131   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
3132   if (!MI) {
3133     report("No instruction at VNInfo def index", MBB);
3134     report_context(LR, Reg, LaneMask);
3135     report_context(*VNI);
3136     return;
3137   }
3138 
3139   if (Reg != 0) {
3140     bool hasDef = false;
3141     bool isEarlyClobber = false;
3142     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3143       if (!MOI->isReg() || !MOI->isDef())
3144         continue;
3145       if (Reg.isVirtual()) {
3146         if (MOI->getReg() != Reg)
3147           continue;
3148       } else {
3149         if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg))
3150           continue;
3151       }
3152       if (LaneMask.any() &&
3153           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
3154         continue;
3155       hasDef = true;
3156       if (MOI->isEarlyClobber())
3157         isEarlyClobber = true;
3158     }
3159 
3160     if (!hasDef) {
3161       report("Defining instruction does not modify register", MI);
3162       report_context(LR, Reg, LaneMask);
3163       report_context(*VNI);
3164     }
3165 
3166     // Early clobber defs begin at USE slots, but other defs must begin at
3167     // DEF slots.
3168     if (isEarlyClobber) {
3169       if (!VNI->def.isEarlyClobber()) {
3170         report("Early clobber def must be at an early-clobber slot", MBB);
3171         report_context(LR, Reg, LaneMask);
3172         report_context(*VNI);
3173       }
3174     } else if (!VNI->def.isRegister()) {
3175       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
3176       report_context(LR, Reg, LaneMask);
3177       report_context(*VNI);
3178     }
3179   }
3180 }
3181 
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,Register Reg,LaneBitmask LaneMask)3182 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
3183                                              const LiveRange::const_iterator I,
3184                                              Register Reg,
3185                                              LaneBitmask LaneMask) {
3186   const LiveRange::Segment &S = *I;
3187   const VNInfo *VNI = S.valno;
3188   assert(VNI && "Live segment has no valno");
3189 
3190   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
3191     report("Foreign valno in live segment", MF);
3192     report_context(LR, Reg, LaneMask);
3193     report_context(S);
3194     report_context(*VNI);
3195   }
3196 
3197   if (VNI->isUnused()) {
3198     report("Live segment valno is marked unused", MF);
3199     report_context(LR, Reg, LaneMask);
3200     report_context(S);
3201   }
3202 
3203   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
3204   if (!MBB) {
3205     report("Bad start of live segment, no basic block", MF);
3206     report_context(LR, Reg, LaneMask);
3207     report_context(S);
3208     return;
3209   }
3210   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
3211   if (S.start != MBBStartIdx && S.start != VNI->def) {
3212     report("Live segment must begin at MBB entry or valno def", MBB);
3213     report_context(LR, Reg, LaneMask);
3214     report_context(S);
3215   }
3216 
3217   const MachineBasicBlock *EndMBB =
3218     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
3219   if (!EndMBB) {
3220     report("Bad end of live segment, no basic block", MF);
3221     report_context(LR, Reg, LaneMask);
3222     report_context(S);
3223     return;
3224   }
3225 
3226   // Checks for non-live-out segments.
3227   if (S.end != LiveInts->getMBBEndIdx(EndMBB)) {
3228     // RegUnit intervals are allowed dead phis.
3229     if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def &&
3230         S.end == VNI->def.getDeadSlot())
3231       return;
3232 
3233     // The live segment is ending inside EndMBB
3234     const MachineInstr *MI =
3235         LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
3236     if (!MI) {
3237       report("Live segment doesn't end at a valid instruction", EndMBB);
3238       report_context(LR, Reg, LaneMask);
3239       report_context(S);
3240       return;
3241     }
3242 
3243     // The block slot must refer to a basic block boundary.
3244     if (S.end.isBlock()) {
3245       report("Live segment ends at B slot of an instruction", EndMBB);
3246       report_context(LR, Reg, LaneMask);
3247       report_context(S);
3248     }
3249 
3250     if (S.end.isDead()) {
3251       // Segment ends on the dead slot.
3252       // That means there must be a dead def.
3253       if (!SlotIndex::isSameInstr(S.start, S.end)) {
3254         report("Live segment ending at dead slot spans instructions", EndMBB);
3255         report_context(LR, Reg, LaneMask);
3256         report_context(S);
3257       }
3258     }
3259 
3260     // After tied operands are rewritten, a live segment can only end at an
3261     // early-clobber slot if it is being redefined by an early-clobber def.
3262     // TODO: Before tied operands are rewritten, a live segment can only end at
3263     // an early-clobber slot if the last use is tied to an early-clobber def.
3264     if (MF->getProperties().hasProperty(
3265             MachineFunctionProperties::Property::TiedOpsRewritten) &&
3266         S.end.isEarlyClobber()) {
3267       if (I + 1 == LR.end() || (I + 1)->start != S.end) {
3268         report("Live segment ending at early clobber slot must be "
3269                "redefined by an EC def in the same instruction",
3270                EndMBB);
3271         report_context(LR, Reg, LaneMask);
3272         report_context(S);
3273       }
3274     }
3275 
3276     // The following checks only apply to virtual registers. Physreg liveness
3277     // is too weird to check.
3278     if (Reg.isVirtual()) {
3279       // A live segment can end with either a redefinition, a kill flag on a
3280       // use, or a dead flag on a def.
3281       bool hasRead = false;
3282       bool hasSubRegDef = false;
3283       bool hasDeadDef = false;
3284       for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3285         if (!MOI->isReg() || MOI->getReg() != Reg)
3286           continue;
3287         unsigned Sub = MOI->getSubReg();
3288         LaneBitmask SLM =
3289             Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll();
3290         if (MOI->isDef()) {
3291           if (Sub != 0) {
3292             hasSubRegDef = true;
3293             // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3294             // mask for subregister defs. Read-undef defs will be handled by
3295             // readsReg below.
3296             SLM = ~SLM;
3297           }
3298           if (MOI->isDead())
3299             hasDeadDef = true;
3300         }
3301         if (LaneMask.any() && (LaneMask & SLM).none())
3302           continue;
3303         if (MOI->readsReg())
3304           hasRead = true;
3305       }
3306       if (S.end.isDead()) {
3307         // Make sure that the corresponding machine operand for a "dead" live
3308         // range has the dead flag. We cannot perform this check for subregister
3309         // liveranges as partially dead values are allowed.
3310         if (LaneMask.none() && !hasDeadDef) {
3311           report(
3312               "Instruction ending live segment on dead slot has no dead flag",
3313               MI);
3314           report_context(LR, Reg, LaneMask);
3315           report_context(S);
3316         }
3317       } else {
3318         if (!hasRead) {
3319           // When tracking subregister liveness, the main range must start new
3320           // values on partial register writes, even if there is no read.
3321           if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3322               !hasSubRegDef) {
3323             report("Instruction ending live segment doesn't read the register",
3324                    MI);
3325             report_context(LR, Reg, LaneMask);
3326             report_context(S);
3327           }
3328         }
3329       }
3330     }
3331   }
3332 
3333   // Now check all the basic blocks in this live segment.
3334   MachineFunction::const_iterator MFI = MBB->getIterator();
3335   // Is this live segment the beginning of a non-PHIDef VN?
3336   if (S.start == VNI->def && !VNI->isPHIDef()) {
3337     // Not live-in to any blocks.
3338     if (MBB == EndMBB)
3339       return;
3340     // Skip this block.
3341     ++MFI;
3342   }
3343 
3344   SmallVector<SlotIndex, 4> Undefs;
3345   if (LaneMask.any()) {
3346     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3347     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3348   }
3349 
3350   while (true) {
3351     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3352     // We don't know how to track physregs into a landing pad.
3353     if (!Reg.isVirtual() && MFI->isEHPad()) {
3354       if (&*MFI == EndMBB)
3355         break;
3356       ++MFI;
3357       continue;
3358     }
3359 
3360     // Is VNI a PHI-def in the current block?
3361     bool IsPHI = VNI->isPHIDef() &&
3362       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3363 
3364     // Check that VNI is live-out of all predecessors.
3365     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3366       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3367       // Predecessor of landing pad live-out on last call.
3368       if (MFI->isEHPad()) {
3369         for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3370           if (MI.isCall()) {
3371             PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3372             break;
3373           }
3374         }
3375       }
3376       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3377 
3378       // All predecessors must have a live-out value. However for a phi
3379       // instruction with subregister intervals
3380       // only one of the subregisters (not necessarily the current one) needs to
3381       // be defined.
3382       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3383         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3384           continue;
3385         report("Register not marked live out of predecessor", Pred);
3386         report_context(LR, Reg, LaneMask);
3387         report_context(*VNI);
3388         errs() << " live into " << printMBBReference(*MFI) << '@'
3389                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3390                << PEnd << '\n';
3391         continue;
3392       }
3393 
3394       // Only PHI-defs can take different predecessor values.
3395       if (!IsPHI && PVNI != VNI) {
3396         report("Different value live out of predecessor", Pred);
3397         report_context(LR, Reg, LaneMask);
3398         errs() << "Valno #" << PVNI->id << " live out of "
3399                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3400                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3401                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3402       }
3403     }
3404     if (&*MFI == EndMBB)
3405       break;
3406     ++MFI;
3407   }
3408 }
3409 
verifyLiveRange(const LiveRange & LR,Register Reg,LaneBitmask LaneMask)3410 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3411                                       LaneBitmask LaneMask) {
3412   for (const VNInfo *VNI : LR.valnos)
3413     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3414 
3415   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3416     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3417 }
3418 
verifyLiveInterval(const LiveInterval & LI)3419 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3420   Register Reg = LI.reg();
3421   assert(Reg.isVirtual());
3422   verifyLiveRange(LI, Reg);
3423 
3424   if (LI.hasSubRanges()) {
3425     LaneBitmask Mask;
3426     LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3427     for (const LiveInterval::SubRange &SR : LI.subranges()) {
3428       if ((Mask & SR.LaneMask).any()) {
3429         report("Lane masks of sub ranges overlap in live interval", MF);
3430         report_context(LI);
3431       }
3432       if ((SR.LaneMask & ~MaxMask).any()) {
3433         report("Subrange lanemask is invalid", MF);
3434         report_context(LI);
3435       }
3436       if (SR.empty()) {
3437         report("Subrange must not be empty", MF);
3438         report_context(SR, LI.reg(), SR.LaneMask);
3439       }
3440       Mask |= SR.LaneMask;
3441       verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3442       if (!LI.covers(SR)) {
3443         report("A Subrange is not covered by the main range", MF);
3444         report_context(LI);
3445       }
3446     }
3447   }
3448 
3449   // Check the LI only has one connected component.
3450   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3451   unsigned NumComp = ConEQ.Classify(LI);
3452   if (NumComp > 1) {
3453     report("Multiple connected components in live interval", MF);
3454     report_context(LI);
3455     for (unsigned comp = 0; comp != NumComp; ++comp) {
3456       errs() << comp << ": valnos";
3457       for (const VNInfo *I : LI.valnos)
3458         if (comp == ConEQ.getEqClass(I))
3459           errs() << ' ' << I->id;
3460       errs() << '\n';
3461     }
3462   }
3463 }
3464 
3465 namespace {
3466 
3467   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3468   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3469   // value is zero.
3470   // We use a bool plus an integer to capture the stack state.
3471   struct StackStateOfBB {
3472     StackStateOfBB() = default;
StackStateOfBB__anoncaf807cd0611::StackStateOfBB3473     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3474       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3475       ExitIsSetup(ExitSetup) {}
3476 
3477     // Can be negative, which means we are setting up a frame.
3478     int EntryValue = 0;
3479     int ExitValue = 0;
3480     bool EntryIsSetup = false;
3481     bool ExitIsSetup = false;
3482   };
3483 
3484 } // end anonymous namespace
3485 
3486 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3487 /// by a FrameDestroy <n>, stack adjustments are identical on all
3488 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()3489 void MachineVerifier::verifyStackFrame() {
3490   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3491   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3492   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3493     return;
3494 
3495   SmallVector<StackStateOfBB, 8> SPState;
3496   SPState.resize(MF->getNumBlockIDs());
3497   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3498 
3499   // Visit the MBBs in DFS order.
3500   for (df_ext_iterator<const MachineFunction *,
3501                        df_iterator_default_set<const MachineBasicBlock *>>
3502        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3503        DFI != DFE; ++DFI) {
3504     const MachineBasicBlock *MBB = *DFI;
3505 
3506     StackStateOfBB BBState;
3507     // Check the exit state of the DFS stack predecessor.
3508     if (DFI.getPathLength() >= 2) {
3509       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3510       assert(Reachable.count(StackPred) &&
3511              "DFS stack predecessor is already visited.\n");
3512       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3513       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3514       BBState.ExitValue = BBState.EntryValue;
3515       BBState.ExitIsSetup = BBState.EntryIsSetup;
3516     }
3517 
3518     if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) {
3519       report("Call frame size on entry does not match value computed from "
3520              "predecessor",
3521              MBB);
3522       errs() << "Call frame size on entry " << MBB->getCallFrameSize()
3523              << " does not match value computed from predecessor "
3524              << -BBState.EntryValue << '\n';
3525     }
3526 
3527     // Update stack state by checking contents of MBB.
3528     for (const auto &I : *MBB) {
3529       if (I.getOpcode() == FrameSetupOpcode) {
3530         if (BBState.ExitIsSetup)
3531           report("FrameSetup is after another FrameSetup", &I);
3532         BBState.ExitValue -= TII->getFrameTotalSize(I);
3533         BBState.ExitIsSetup = true;
3534       }
3535 
3536       if (I.getOpcode() == FrameDestroyOpcode) {
3537         int Size = TII->getFrameTotalSize(I);
3538         if (!BBState.ExitIsSetup)
3539           report("FrameDestroy is not after a FrameSetup", &I);
3540         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3541                                                BBState.ExitValue;
3542         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3543           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3544           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3545               << AbsSPAdj << ">.\n";
3546         }
3547         BBState.ExitValue += Size;
3548         BBState.ExitIsSetup = false;
3549       }
3550     }
3551     SPState[MBB->getNumber()] = BBState;
3552 
3553     // Make sure the exit state of any predecessor is consistent with the entry
3554     // state.
3555     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3556       if (Reachable.count(Pred) &&
3557           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3558            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3559         report("The exit stack state of a predecessor is inconsistent.", MBB);
3560         errs() << "Predecessor " << printMBBReference(*Pred)
3561                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3562                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3563                << printMBBReference(*MBB) << " has entry state ("
3564                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3565       }
3566     }
3567 
3568     // Make sure the entry state of any successor is consistent with the exit
3569     // state.
3570     for (const MachineBasicBlock *Succ : MBB->successors()) {
3571       if (Reachable.count(Succ) &&
3572           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3573            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3574         report("The entry stack state of a successor is inconsistent.", MBB);
3575         errs() << "Successor " << printMBBReference(*Succ)
3576                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3577                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3578                << printMBBReference(*MBB) << " has exit state ("
3579                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3580       }
3581     }
3582 
3583     // Make sure a basic block with return ends with zero stack adjustment.
3584     if (!MBB->empty() && MBB->back().isReturn()) {
3585       if (BBState.ExitIsSetup)
3586         report("A return block ends with a FrameSetup.", MBB);
3587       if (BBState.ExitValue)
3588         report("A return block ends with a nonzero stack adjustment.", MBB);
3589     }
3590   }
3591 }
3592