1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226 
227     void report_context(const LiveInterval &LI) const;
228     void report_context(const LiveRange &LR, Register VRegUnit,
229                         LaneBitmask LaneMask) const;
230     void report_context(const LiveRange::Segment &S) const;
231     void report_context(const VNInfo &VNI) const;
232     void report_context(SlotIndex Pos) const;
233     void report_context(MCPhysReg PhysReg) const;
234     void report_context_liverange(const LiveRange &LR) const;
235     void report_context_lanemask(LaneBitmask LaneMask) const;
236     void report_context_vreg(Register VReg) const;
237     void report_context_vreg_regunit(Register VRegOrUnit) const;
238 
239     void verifyInlineAsm(const MachineInstr *MI);
240 
241     void checkLiveness(const MachineOperand *MO, unsigned MONum);
242     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
243                             SlotIndex UseIdx, const LiveRange &LR,
244                             Register VRegOrUnit,
245                             LaneBitmask LaneMask = LaneBitmask::getNone());
246     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
247                             SlotIndex DefIdx, const LiveRange &LR,
248                             Register VRegOrUnit, bool SubRangeCheck = false,
249                             LaneBitmask LaneMask = LaneBitmask::getNone());
250 
251     void markReachable(const MachineBasicBlock *MBB);
252     void calcRegsPassed();
253     void checkPHIOps(const MachineBasicBlock &MBB);
254 
255     void calcRegsRequired();
256     void verifyLiveVariables();
257     void verifyLiveIntervals();
258     void verifyLiveInterval(const LiveInterval&);
259     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
260                               LaneBitmask);
261     void verifyLiveRangeSegment(const LiveRange &,
262                                 const LiveRange::const_iterator I, Register,
263                                 LaneBitmask);
264     void verifyLiveRange(const LiveRange &, Register,
265                          LaneBitmask LaneMask = LaneBitmask::getNone());
266 
267     void verifyStackFrame();
268 
269     void verifySlotIndexes() const;
270     void verifyProperties(const MachineFunction &MF);
271   };
272 
273   struct MachineVerifierPass : public MachineFunctionPass {
274     static char ID; // Pass ID, replacement for typeid
275 
276     const std::string Banner;
277 
278     MachineVerifierPass(std::string banner = std::string())
279       : MachineFunctionPass(ID), Banner(std::move(banner)) {
280         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
281       }
282 
283     void getAnalysisUsage(AnalysisUsage &AU) const override {
284       AU.setPreservesAll();
285       MachineFunctionPass::getAnalysisUsage(AU);
286     }
287 
288     bool runOnMachineFunction(MachineFunction &MF) override {
289       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
290       if (FoundErrors)
291         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
292       return false;
293     }
294   };
295 
296 } // end anonymous namespace
297 
298 char MachineVerifierPass::ID = 0;
299 
300 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
301                 "Verify generated machine code", false, false)
302 
303 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
304   return new MachineVerifierPass(Banner);
305 }
306 
307 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
308                                  const std::string &Banner,
309                                  const MachineFunction &MF) {
310   // TODO: Use MFAM after porting below analyses.
311   // LiveVariables *LiveVars;
312   // LiveIntervals *LiveInts;
313   // LiveStacks *LiveStks;
314   // SlotIndexes *Indexes;
315   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
316   if (FoundErrors)
317     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
318 }
319 
320 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
321     const {
322   MachineFunction &MF = const_cast<MachineFunction&>(*this);
323   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
324   if (AbortOnErrors && FoundErrors)
325     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
326   return FoundErrors == 0;
327 }
328 
329 void MachineVerifier::verifySlotIndexes() const {
330   if (Indexes == nullptr)
331     return;
332 
333   // Ensure the IdxMBB list is sorted by slot indexes.
334   SlotIndex Last;
335   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
336        E = Indexes->MBBIndexEnd(); I != E; ++I) {
337     assert(!Last.isValid() || I->first > Last);
338     Last = I->first;
339   }
340 }
341 
342 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
343   // If a pass has introduced virtual registers without clearing the
344   // NoVRegs property (or set it without allocating the vregs)
345   // then report an error.
346   if (MF.getProperties().hasProperty(
347           MachineFunctionProperties::Property::NoVRegs) &&
348       MRI->getNumVirtRegs())
349     report("Function has NoVRegs property but there are VReg operands", &MF);
350 }
351 
352 unsigned MachineVerifier::verify(const MachineFunction &MF) {
353   foundErrors = 0;
354 
355   this->MF = &MF;
356   TM = &MF.getTarget();
357   TII = MF.getSubtarget().getInstrInfo();
358   TRI = MF.getSubtarget().getRegisterInfo();
359   MRI = &MF.getRegInfo();
360 
361   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
362       MachineFunctionProperties::Property::FailedISel);
363 
364   // If we're mid-GlobalISel and we already triggered the fallback path then
365   // it's expected that the MIR is somewhat broken but that's ok since we'll
366   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
367   if (isFunctionFailedISel)
368     return foundErrors;
369 
370   isFunctionRegBankSelected = MF.getProperties().hasProperty(
371       MachineFunctionProperties::Property::RegBankSelected);
372   isFunctionSelected = MF.getProperties().hasProperty(
373       MachineFunctionProperties::Property::Selected);
374 
375   LiveVars = nullptr;
376   LiveInts = nullptr;
377   LiveStks = nullptr;
378   Indexes = nullptr;
379   if (PASS) {
380     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
381     // We don't want to verify LiveVariables if LiveIntervals is available.
382     if (!LiveInts)
383       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
384     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
385     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
386   }
387 
388   verifySlotIndexes();
389 
390   verifyProperties(MF);
391 
392   visitMachineFunctionBefore();
393   for (const MachineBasicBlock &MBB : MF) {
394     visitMachineBasicBlockBefore(&MBB);
395     // Keep track of the current bundle header.
396     const MachineInstr *CurBundle = nullptr;
397     // Do we expect the next instruction to be part of the same bundle?
398     bool InBundle = false;
399 
400     for (const MachineInstr &MI : MBB.instrs()) {
401       if (MI.getParent() != &MBB) {
402         report("Bad instruction parent pointer", &MBB);
403         errs() << "Instruction: " << MI;
404         continue;
405       }
406 
407       // Check for consistent bundle flags.
408       if (InBundle && !MI.isBundledWithPred())
409         report("Missing BundledPred flag, "
410                "BundledSucc was set on predecessor",
411                &MI);
412       if (!InBundle && MI.isBundledWithPred())
413         report("BundledPred flag is set, "
414                "but BundledSucc not set on predecessor",
415                &MI);
416 
417       // Is this a bundle header?
418       if (!MI.isInsideBundle()) {
419         if (CurBundle)
420           visitMachineBundleAfter(CurBundle);
421         CurBundle = &MI;
422         visitMachineBundleBefore(CurBundle);
423       } else if (!CurBundle)
424         report("No bundle header", &MI);
425       visitMachineInstrBefore(&MI);
426       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
427         const MachineOperand &Op = MI.getOperand(I);
428         if (Op.getParent() != &MI) {
429           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
430           // functions when replacing operands of a MachineInstr.
431           report("Instruction has operand with wrong parent set", &MI);
432         }
433 
434         visitMachineOperand(&Op, I);
435       }
436 
437       // Was this the last bundled instruction?
438       InBundle = MI.isBundledWithSucc();
439     }
440     if (CurBundle)
441       visitMachineBundleAfter(CurBundle);
442     if (InBundle)
443       report("BundledSucc flag set on last instruction in block", &MBB.back());
444     visitMachineBasicBlockAfter(&MBB);
445   }
446   visitMachineFunctionAfter();
447 
448   // Clean up.
449   regsLive.clear();
450   regsDefined.clear();
451   regsDead.clear();
452   regsKilled.clear();
453   regMasks.clear();
454   MBBInfoMap.clear();
455 
456   return foundErrors;
457 }
458 
459 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
460   assert(MF);
461   errs() << '\n';
462   if (!foundErrors++) {
463     if (Banner)
464       errs() << "# " << Banner << '\n';
465     if (LiveInts != nullptr)
466       LiveInts->print(errs());
467     else
468       MF->print(errs(), Indexes);
469   }
470   errs() << "*** Bad machine code: " << msg << " ***\n"
471       << "- function:    " << MF->getName() << "\n";
472 }
473 
474 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
475   assert(MBB);
476   report(msg, MBB->getParent());
477   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
478          << MBB->getName() << " (" << (const void *)MBB << ')';
479   if (Indexes)
480     errs() << " [" << Indexes->getMBBStartIdx(MBB)
481         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
482   errs() << '\n';
483 }
484 
485 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
486   assert(MI);
487   report(msg, MI->getParent());
488   errs() << "- instruction: ";
489   if (Indexes && Indexes->hasIndex(*MI))
490     errs() << Indexes->getInstructionIndex(*MI) << '\t';
491   MI->print(errs(), /*IsStandalone=*/true);
492 }
493 
494 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
495                              unsigned MONum, LLT MOVRegType) {
496   assert(MO);
497   report(msg, MO->getParent());
498   errs() << "- operand " << MONum << ":   ";
499   MO->print(errs(), MOVRegType, TRI);
500   errs() << "\n";
501 }
502 
503 void MachineVerifier::report_context(SlotIndex Pos) const {
504   errs() << "- at:          " << Pos << '\n';
505 }
506 
507 void MachineVerifier::report_context(const LiveInterval &LI) const {
508   errs() << "- interval:    " << LI << '\n';
509 }
510 
511 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
512                                      LaneBitmask LaneMask) const {
513   report_context_liverange(LR);
514   report_context_vreg_regunit(VRegUnit);
515   if (LaneMask.any())
516     report_context_lanemask(LaneMask);
517 }
518 
519 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
520   errs() << "- segment:     " << S << '\n';
521 }
522 
523 void MachineVerifier::report_context(const VNInfo &VNI) const {
524   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
525 }
526 
527 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
528   errs() << "- liverange:   " << LR << '\n';
529 }
530 
531 void MachineVerifier::report_context(MCPhysReg PReg) const {
532   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
533 }
534 
535 void MachineVerifier::report_context_vreg(Register VReg) const {
536   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
537 }
538 
539 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
540   if (Register::isVirtualRegister(VRegOrUnit)) {
541     report_context_vreg(VRegOrUnit);
542   } else {
543     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
544   }
545 }
546 
547 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
548   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
549 }
550 
551 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
552   BBInfo &MInfo = MBBInfoMap[MBB];
553   if (!MInfo.reachable) {
554     MInfo.reachable = true;
555     for (const MachineBasicBlock *Succ : MBB->successors())
556       markReachable(Succ);
557   }
558 }
559 
560 void MachineVerifier::visitMachineFunctionBefore() {
561   lastIndex = SlotIndex();
562   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
563                                            : TRI->getReservedRegs(*MF);
564 
565   if (!MF->empty())
566     markReachable(&MF->front());
567 
568   // Build a set of the basic blocks in the function.
569   FunctionBlocks.clear();
570   for (const auto &MBB : *MF) {
571     FunctionBlocks.insert(&MBB);
572     BBInfo &MInfo = MBBInfoMap[&MBB];
573 
574     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
575     if (MInfo.Preds.size() != MBB.pred_size())
576       report("MBB has duplicate entries in its predecessor list.", &MBB);
577 
578     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
579     if (MInfo.Succs.size() != MBB.succ_size())
580       report("MBB has duplicate entries in its successor list.", &MBB);
581   }
582 
583   // Check that the register use lists are sane.
584   MRI->verifyUseLists();
585 
586   if (!MF->empty())
587     verifyStackFrame();
588 }
589 
590 void
591 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
592   FirstTerminator = nullptr;
593   FirstNonPHI = nullptr;
594 
595   if (!MF->getProperties().hasProperty(
596       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
597     // If this block has allocatable physical registers live-in, check that
598     // it is an entry block or landing pad.
599     for (const auto &LI : MBB->liveins()) {
600       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
601           MBB->getIterator() != MBB->getParent()->begin()) {
602         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
603         report_context(LI.PhysReg);
604       }
605     }
606   }
607 
608   // Count the number of landing pad successors.
609   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
610   for (const auto *succ : MBB->successors()) {
611     if (succ->isEHPad())
612       LandingPadSuccs.insert(succ);
613     if (!FunctionBlocks.count(succ))
614       report("MBB has successor that isn't part of the function.", MBB);
615     if (!MBBInfoMap[succ].Preds.count(MBB)) {
616       report("Inconsistent CFG", MBB);
617       errs() << "MBB is not in the predecessor list of the successor "
618              << printMBBReference(*succ) << ".\n";
619     }
620   }
621 
622   // Check the predecessor list.
623   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
624     if (!FunctionBlocks.count(Pred))
625       report("MBB has predecessor that isn't part of the function.", MBB);
626     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
627       report("Inconsistent CFG", MBB);
628       errs() << "MBB is not in the successor list of the predecessor "
629              << printMBBReference(*Pred) << ".\n";
630     }
631   }
632 
633   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
634   const BasicBlock *BB = MBB->getBasicBlock();
635   const Function &F = MF->getFunction();
636   if (LandingPadSuccs.size() > 1 &&
637       !(AsmInfo &&
638         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
639         BB && isa<SwitchInst>(BB->getTerminator())) &&
640       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
641     report("MBB has more than one landing pad successor", MBB);
642 
643   // Call analyzeBranch. If it succeeds, there several more conditions to check.
644   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
645   SmallVector<MachineOperand, 4> Cond;
646   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
647                           Cond)) {
648     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
649     // check whether its answers match up with reality.
650     if (!TBB && !FBB) {
651       // Block falls through to its successor.
652       if (!MBB->empty() && MBB->back().isBarrier() &&
653           !TII->isPredicated(MBB->back())) {
654         report("MBB exits via unconditional fall-through but ends with a "
655                "barrier instruction!", MBB);
656       }
657       if (!Cond.empty()) {
658         report("MBB exits via unconditional fall-through but has a condition!",
659                MBB);
660       }
661     } else if (TBB && !FBB && Cond.empty()) {
662       // Block unconditionally branches somewhere.
663       if (MBB->empty()) {
664         report("MBB exits via unconditional branch but doesn't contain "
665                "any instructions!", MBB);
666       } else if (!MBB->back().isBarrier()) {
667         report("MBB exits via unconditional branch but doesn't end with a "
668                "barrier instruction!", MBB);
669       } else if (!MBB->back().isTerminator()) {
670         report("MBB exits via unconditional branch but the branch isn't a "
671                "terminator instruction!", MBB);
672       }
673     } else if (TBB && !FBB && !Cond.empty()) {
674       // Block conditionally branches somewhere, otherwise falls through.
675       if (MBB->empty()) {
676         report("MBB exits via conditional branch/fall-through but doesn't "
677                "contain any instructions!", MBB);
678       } else if (MBB->back().isBarrier()) {
679         report("MBB exits via conditional branch/fall-through but ends with a "
680                "barrier instruction!", MBB);
681       } else if (!MBB->back().isTerminator()) {
682         report("MBB exits via conditional branch/fall-through but the branch "
683                "isn't a terminator instruction!", MBB);
684       }
685     } else if (TBB && FBB) {
686       // Block conditionally branches somewhere, otherwise branches
687       // somewhere else.
688       if (MBB->empty()) {
689         report("MBB exits via conditional branch/branch but doesn't "
690                "contain any instructions!", MBB);
691       } else if (!MBB->back().isBarrier()) {
692         report("MBB exits via conditional branch/branch but doesn't end with a "
693                "barrier instruction!", MBB);
694       } else if (!MBB->back().isTerminator()) {
695         report("MBB exits via conditional branch/branch but the branch "
696                "isn't a terminator instruction!", MBB);
697       }
698       if (Cond.empty()) {
699         report("MBB exits via conditional branch/branch but there's no "
700                "condition!", MBB);
701       }
702     } else {
703       report("analyzeBranch returned invalid data!", MBB);
704     }
705 
706     // Now check that the successors match up with the answers reported by
707     // analyzeBranch.
708     if (TBB && !MBB->isSuccessor(TBB))
709       report("MBB exits via jump or conditional branch, but its target isn't a "
710              "CFG successor!",
711              MBB);
712     if (FBB && !MBB->isSuccessor(FBB))
713       report("MBB exits via conditional branch, but its target isn't a CFG "
714              "successor!",
715              MBB);
716 
717     // There might be a fallthrough to the next block if there's either no
718     // unconditional true branch, or if there's a condition, and one of the
719     // branches is missing.
720     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
721 
722     // A conditional fallthrough must be an actual CFG successor, not
723     // unreachable. (Conversely, an unconditional fallthrough might not really
724     // be a successor, because the block might end in unreachable.)
725     if (!Cond.empty() && !FBB) {
726       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
727       if (MBBI == MF->end()) {
728         report("MBB conditionally falls through out of function!", MBB);
729       } else if (!MBB->isSuccessor(&*MBBI))
730         report("MBB exits via conditional branch/fall-through but the CFG "
731                "successors don't match the actual successors!",
732                MBB);
733     }
734 
735     // Verify that there aren't any extra un-accounted-for successors.
736     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
737       // If this successor is one of the branch targets, it's okay.
738       if (SuccMBB == TBB || SuccMBB == FBB)
739         continue;
740       // If we might have a fallthrough, and the successor is the fallthrough
741       // block, that's also ok.
742       if (Fallthrough && SuccMBB == MBB->getNextNode())
743         continue;
744       // Also accept successors which are for exception-handling or might be
745       // inlineasm_br targets.
746       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
747         continue;
748       report("MBB has unexpected successors which are not branch targets, "
749              "fallthrough, EHPads, or inlineasm_br targets.",
750              MBB);
751     }
752   }
753 
754   regsLive.clear();
755   if (MRI->tracksLiveness()) {
756     for (const auto &LI : MBB->liveins()) {
757       if (!Register::isPhysicalRegister(LI.PhysReg)) {
758         report("MBB live-in list contains non-physical register", MBB);
759         continue;
760       }
761       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
762         regsLive.insert(SubReg);
763     }
764   }
765 
766   const MachineFrameInfo &MFI = MF->getFrameInfo();
767   BitVector PR = MFI.getPristineRegs(*MF);
768   for (unsigned I : PR.set_bits()) {
769     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
770       regsLive.insert(SubReg);
771   }
772 
773   regsKilled.clear();
774   regsDefined.clear();
775 
776   if (Indexes)
777     lastIndex = Indexes->getMBBStartIdx(MBB);
778 }
779 
780 // This function gets called for all bundle headers, including normal
781 // stand-alone unbundled instructions.
782 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
783   if (Indexes && Indexes->hasIndex(*MI)) {
784     SlotIndex idx = Indexes->getInstructionIndex(*MI);
785     if (!(idx > lastIndex)) {
786       report("Instruction index out of order", MI);
787       errs() << "Last instruction was at " << lastIndex << '\n';
788     }
789     lastIndex = idx;
790   }
791 
792   // Ensure non-terminators don't follow terminators.
793   if (MI->isTerminator()) {
794     if (!FirstTerminator)
795       FirstTerminator = MI;
796   } else if (FirstTerminator) {
797     report("Non-terminator instruction after the first terminator", MI);
798     errs() << "First terminator was:\t" << *FirstTerminator;
799   }
800 }
801 
802 // The operands on an INLINEASM instruction must follow a template.
803 // Verify that the flag operands make sense.
804 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
805   // The first two operands on INLINEASM are the asm string and global flags.
806   if (MI->getNumOperands() < 2) {
807     report("Too few operands on inline asm", MI);
808     return;
809   }
810   if (!MI->getOperand(0).isSymbol())
811     report("Asm string must be an external symbol", MI);
812   if (!MI->getOperand(1).isImm())
813     report("Asm flags must be an immediate", MI);
814   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
815   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
816   // and Extra_IsConvergent = 32.
817   if (!isUInt<6>(MI->getOperand(1).getImm()))
818     report("Unknown asm flags", &MI->getOperand(1), 1);
819 
820   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
821 
822   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
823   unsigned NumOps;
824   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
825     const MachineOperand &MO = MI->getOperand(OpNo);
826     // There may be implicit ops after the fixed operands.
827     if (!MO.isImm())
828       break;
829     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
830   }
831 
832   if (OpNo > MI->getNumOperands())
833     report("Missing operands in last group", MI);
834 
835   // An optional MDNode follows the groups.
836   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
837     ++OpNo;
838 
839   // All trailing operands must be implicit registers.
840   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
841     const MachineOperand &MO = MI->getOperand(OpNo);
842     if (!MO.isReg() || !MO.isImplicit())
843       report("Expected implicit register after groups", &MO, OpNo);
844   }
845 }
846 
847 /// Check that types are consistent when two operands need to have the same
848 /// number of vector elements.
849 /// \return true if the types are valid.
850 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
851                                                const MachineInstr *MI) {
852   if (Ty0.isVector() != Ty1.isVector()) {
853     report("operand types must be all-vector or all-scalar", MI);
854     // Generally we try to report as many issues as possible at once, but in
855     // this case it's not clear what should we be comparing the size of the
856     // scalar with: the size of the whole vector or its lane. Instead of
857     // making an arbitrary choice and emitting not so helpful message, let's
858     // avoid the extra noise and stop here.
859     return false;
860   }
861 
862   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
863     report("operand types must preserve number of vector elements", MI);
864     return false;
865   }
866 
867   return true;
868 }
869 
870 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
871   if (isFunctionSelected)
872     report("Unexpected generic instruction in a Selected function", MI);
873 
874   const MCInstrDesc &MCID = MI->getDesc();
875   unsigned NumOps = MI->getNumOperands();
876 
877   // Branches must reference a basic block if they are not indirect
878   if (MI->isBranch() && !MI->isIndirectBranch()) {
879     bool HasMBB = false;
880     for (const MachineOperand &Op : MI->operands()) {
881       if (Op.isMBB()) {
882         HasMBB = true;
883         break;
884       }
885     }
886 
887     if (!HasMBB) {
888       report("Branch instruction is missing a basic block operand or "
889              "isIndirectBranch property",
890              MI);
891     }
892   }
893 
894   // Check types.
895   SmallVector<LLT, 4> Types;
896   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
897        I != E; ++I) {
898     if (!MCID.OpInfo[I].isGenericType())
899       continue;
900     // Generic instructions specify type equality constraints between some of
901     // their operands. Make sure these are consistent.
902     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
903     Types.resize(std::max(TypeIdx + 1, Types.size()));
904 
905     const MachineOperand *MO = &MI->getOperand(I);
906     if (!MO->isReg()) {
907       report("generic instruction must use register operands", MI);
908       continue;
909     }
910 
911     LLT OpTy = MRI->getType(MO->getReg());
912     // Don't report a type mismatch if there is no actual mismatch, only a
913     // type missing, to reduce noise:
914     if (OpTy.isValid()) {
915       // Only the first valid type for a type index will be printed: don't
916       // overwrite it later so it's always clear which type was expected:
917       if (!Types[TypeIdx].isValid())
918         Types[TypeIdx] = OpTy;
919       else if (Types[TypeIdx] != OpTy)
920         report("Type mismatch in generic instruction", MO, I, OpTy);
921     } else {
922       // Generic instructions must have types attached to their operands.
923       report("Generic instruction is missing a virtual register type", MO, I);
924     }
925   }
926 
927   // Generic opcodes must not have physical register operands.
928   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
929     const MachineOperand *MO = &MI->getOperand(I);
930     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
931       report("Generic instruction cannot have physical register", MO, I);
932   }
933 
934   // Avoid out of bounds in checks below. This was already reported earlier.
935   if (MI->getNumOperands() < MCID.getNumOperands())
936     return;
937 
938   StringRef ErrorInfo;
939   if (!TII->verifyInstruction(*MI, ErrorInfo))
940     report(ErrorInfo.data(), MI);
941 
942   // Verify properties of various specific instruction types
943   switch (MI->getOpcode()) {
944   case TargetOpcode::G_CONSTANT:
945   case TargetOpcode::G_FCONSTANT: {
946     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
947     if (DstTy.isVector())
948       report("Instruction cannot use a vector result type", MI);
949 
950     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
951       if (!MI->getOperand(1).isCImm()) {
952         report("G_CONSTANT operand must be cimm", MI);
953         break;
954       }
955 
956       const ConstantInt *CI = MI->getOperand(1).getCImm();
957       if (CI->getBitWidth() != DstTy.getSizeInBits())
958         report("inconsistent constant size", MI);
959     } else {
960       if (!MI->getOperand(1).isFPImm()) {
961         report("G_FCONSTANT operand must be fpimm", MI);
962         break;
963       }
964       const ConstantFP *CF = MI->getOperand(1).getFPImm();
965 
966       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
967           DstTy.getSizeInBits()) {
968         report("inconsistent constant size", MI);
969       }
970     }
971 
972     break;
973   }
974   case TargetOpcode::G_LOAD:
975   case TargetOpcode::G_STORE:
976   case TargetOpcode::G_ZEXTLOAD:
977   case TargetOpcode::G_SEXTLOAD: {
978     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
979     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
980     if (!PtrTy.isPointer())
981       report("Generic memory instruction must access a pointer", MI);
982 
983     // Generic loads and stores must have a single MachineMemOperand
984     // describing that access.
985     if (!MI->hasOneMemOperand()) {
986       report("Generic instruction accessing memory must have one mem operand",
987              MI);
988     } else {
989       const MachineMemOperand &MMO = **MI->memoperands_begin();
990       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
991           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
992         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
993           report("Generic extload must have a narrower memory type", MI);
994       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
995         if (MMO.getSize() > ValTy.getSizeInBytes())
996           report("load memory size cannot exceed result size", MI);
997       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
998         if (ValTy.getSizeInBytes() < MMO.getSize())
999           report("store memory size cannot exceed value size", MI);
1000       }
1001     }
1002 
1003     break;
1004   }
1005   case TargetOpcode::G_PHI: {
1006     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1007     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1008                                     [this, &DstTy](const MachineOperand &MO) {
1009                                       if (!MO.isReg())
1010                                         return true;
1011                                       LLT Ty = MRI->getType(MO.getReg());
1012                                       if (!Ty.isValid() || (Ty != DstTy))
1013                                         return false;
1014                                       return true;
1015                                     }))
1016       report("Generic Instruction G_PHI has operands with incompatible/missing "
1017              "types",
1018              MI);
1019     break;
1020   }
1021   case TargetOpcode::G_BITCAST: {
1022     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1023     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1024     if (!DstTy.isValid() || !SrcTy.isValid())
1025       break;
1026 
1027     if (SrcTy.isPointer() != DstTy.isPointer())
1028       report("bitcast cannot convert between pointers and other types", MI);
1029 
1030     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1031       report("bitcast sizes must match", MI);
1032 
1033     if (SrcTy == DstTy)
1034       report("bitcast must change the type", MI);
1035 
1036     break;
1037   }
1038   case TargetOpcode::G_INTTOPTR:
1039   case TargetOpcode::G_PTRTOINT:
1040   case TargetOpcode::G_ADDRSPACE_CAST: {
1041     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1042     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1043     if (!DstTy.isValid() || !SrcTy.isValid())
1044       break;
1045 
1046     verifyVectorElementMatch(DstTy, SrcTy, MI);
1047 
1048     DstTy = DstTy.getScalarType();
1049     SrcTy = SrcTy.getScalarType();
1050 
1051     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1052       if (!DstTy.isPointer())
1053         report("inttoptr result type must be a pointer", MI);
1054       if (SrcTy.isPointer())
1055         report("inttoptr source type must not be a pointer", MI);
1056     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1057       if (!SrcTy.isPointer())
1058         report("ptrtoint source type must be a pointer", MI);
1059       if (DstTy.isPointer())
1060         report("ptrtoint result type must not be a pointer", MI);
1061     } else {
1062       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1063       if (!SrcTy.isPointer() || !DstTy.isPointer())
1064         report("addrspacecast types must be pointers", MI);
1065       else {
1066         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1067           report("addrspacecast must convert different address spaces", MI);
1068       }
1069     }
1070 
1071     break;
1072   }
1073   case TargetOpcode::G_PTR_ADD: {
1074     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1075     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1076     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1077     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1078       break;
1079 
1080     if (!PtrTy.getScalarType().isPointer())
1081       report("gep first operand must be a pointer", MI);
1082 
1083     if (OffsetTy.getScalarType().isPointer())
1084       report("gep offset operand must not be a pointer", MI);
1085 
1086     // TODO: Is the offset allowed to be a scalar with a vector?
1087     break;
1088   }
1089   case TargetOpcode::G_PTRMASK: {
1090     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1091     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1092     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1093     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1094       break;
1095 
1096     if (!DstTy.getScalarType().isPointer())
1097       report("ptrmask result type must be a pointer", MI);
1098 
1099     if (!MaskTy.getScalarType().isScalar())
1100       report("ptrmask mask type must be an integer", MI);
1101 
1102     verifyVectorElementMatch(DstTy, MaskTy, MI);
1103     break;
1104   }
1105   case TargetOpcode::G_SEXT:
1106   case TargetOpcode::G_ZEXT:
1107   case TargetOpcode::G_ANYEXT:
1108   case TargetOpcode::G_TRUNC:
1109   case TargetOpcode::G_FPEXT:
1110   case TargetOpcode::G_FPTRUNC: {
1111     // Number of operands and presense of types is already checked (and
1112     // reported in case of any issues), so no need to report them again. As
1113     // we're trying to report as many issues as possible at once, however, the
1114     // instructions aren't guaranteed to have the right number of operands or
1115     // types attached to them at this point
1116     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1117     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1118     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1119     if (!DstTy.isValid() || !SrcTy.isValid())
1120       break;
1121 
1122     LLT DstElTy = DstTy.getScalarType();
1123     LLT SrcElTy = SrcTy.getScalarType();
1124     if (DstElTy.isPointer() || SrcElTy.isPointer())
1125       report("Generic extend/truncate can not operate on pointers", MI);
1126 
1127     verifyVectorElementMatch(DstTy, SrcTy, MI);
1128 
1129     unsigned DstSize = DstElTy.getSizeInBits();
1130     unsigned SrcSize = SrcElTy.getSizeInBits();
1131     switch (MI->getOpcode()) {
1132     default:
1133       if (DstSize <= SrcSize)
1134         report("Generic extend has destination type no larger than source", MI);
1135       break;
1136     case TargetOpcode::G_TRUNC:
1137     case TargetOpcode::G_FPTRUNC:
1138       if (DstSize >= SrcSize)
1139         report("Generic truncate has destination type no smaller than source",
1140                MI);
1141       break;
1142     }
1143     break;
1144   }
1145   case TargetOpcode::G_SELECT: {
1146     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1147     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1148     if (!SelTy.isValid() || !CondTy.isValid())
1149       break;
1150 
1151     // Scalar condition select on a vector is valid.
1152     if (CondTy.isVector())
1153       verifyVectorElementMatch(SelTy, CondTy, MI);
1154     break;
1155   }
1156   case TargetOpcode::G_MERGE_VALUES: {
1157     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1158     // e.g. s2N = MERGE sN, sN
1159     // Merging multiple scalars into a vector is not allowed, should use
1160     // G_BUILD_VECTOR for that.
1161     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163     if (DstTy.isVector() || SrcTy.isVector())
1164       report("G_MERGE_VALUES cannot operate on vectors", MI);
1165 
1166     const unsigned NumOps = MI->getNumOperands();
1167     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1168       report("G_MERGE_VALUES result size is inconsistent", MI);
1169 
1170     for (unsigned I = 2; I != NumOps; ++I) {
1171       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1172         report("G_MERGE_VALUES source types do not match", MI);
1173     }
1174 
1175     break;
1176   }
1177   case TargetOpcode::G_UNMERGE_VALUES: {
1178     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1179     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1180     // For now G_UNMERGE can split vectors.
1181     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1182       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1183         report("G_UNMERGE_VALUES destination types do not match", MI);
1184     }
1185     if (SrcTy.getSizeInBits() !=
1186         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1187       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1188              MI);
1189     }
1190     break;
1191   }
1192   case TargetOpcode::G_BUILD_VECTOR: {
1193     // Source types must be scalars, dest type a vector. Total size of scalars
1194     // must match the dest vector size.
1195     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1196     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1197     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1198       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1199       break;
1200     }
1201 
1202     if (DstTy.getElementType() != SrcEltTy)
1203       report("G_BUILD_VECTOR result element type must match source type", MI);
1204 
1205     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1206       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1207 
1208     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1209       if (MRI->getType(MI->getOperand(1).getReg()) !=
1210           MRI->getType(MI->getOperand(i).getReg()))
1211         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1212     }
1213 
1214     break;
1215   }
1216   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1217     // Source types must be scalars, dest type a vector. Scalar types must be
1218     // larger than the dest vector elt type, as this is a truncating operation.
1219     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1220     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1221     if (!DstTy.isVector() || SrcEltTy.isVector())
1222       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1223              MI);
1224     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1225       if (MRI->getType(MI->getOperand(1).getReg()) !=
1226           MRI->getType(MI->getOperand(i).getReg()))
1227         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1228                MI);
1229     }
1230     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1231       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1232              "dest elt type",
1233              MI);
1234     break;
1235   }
1236   case TargetOpcode::G_CONCAT_VECTORS: {
1237     // Source types should be vectors, and total size should match the dest
1238     // vector size.
1239     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1241     if (!DstTy.isVector() || !SrcTy.isVector())
1242       report("G_CONCAT_VECTOR requires vector source and destination operands",
1243              MI);
1244     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1245       if (MRI->getType(MI->getOperand(1).getReg()) !=
1246           MRI->getType(MI->getOperand(i).getReg()))
1247         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1248     }
1249     if (DstTy.getNumElements() !=
1250         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1251       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1252     break;
1253   }
1254   case TargetOpcode::G_ICMP:
1255   case TargetOpcode::G_FCMP: {
1256     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1257     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1258 
1259     if ((DstTy.isVector() != SrcTy.isVector()) ||
1260         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1261       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1262 
1263     break;
1264   }
1265   case TargetOpcode::G_EXTRACT: {
1266     const MachineOperand &SrcOp = MI->getOperand(1);
1267     if (!SrcOp.isReg()) {
1268       report("extract source must be a register", MI);
1269       break;
1270     }
1271 
1272     const MachineOperand &OffsetOp = MI->getOperand(2);
1273     if (!OffsetOp.isImm()) {
1274       report("extract offset must be a constant", MI);
1275       break;
1276     }
1277 
1278     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1279     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1280     if (SrcSize == DstSize)
1281       report("extract source must be larger than result", MI);
1282 
1283     if (DstSize + OffsetOp.getImm() > SrcSize)
1284       report("extract reads past end of register", MI);
1285     break;
1286   }
1287   case TargetOpcode::G_INSERT: {
1288     const MachineOperand &SrcOp = MI->getOperand(2);
1289     if (!SrcOp.isReg()) {
1290       report("insert source must be a register", MI);
1291       break;
1292     }
1293 
1294     const MachineOperand &OffsetOp = MI->getOperand(3);
1295     if (!OffsetOp.isImm()) {
1296       report("insert offset must be a constant", MI);
1297       break;
1298     }
1299 
1300     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1301     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1302 
1303     if (DstSize <= SrcSize)
1304       report("inserted size must be smaller than total register", MI);
1305 
1306     if (SrcSize + OffsetOp.getImm() > DstSize)
1307       report("insert writes past end of register", MI);
1308 
1309     break;
1310   }
1311   case TargetOpcode::G_JUMP_TABLE: {
1312     if (!MI->getOperand(1).isJTI())
1313       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1314     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1315     if (!DstTy.isPointer())
1316       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1317     break;
1318   }
1319   case TargetOpcode::G_BRJT: {
1320     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1321       report("G_BRJT src operand 0 must be a pointer type", MI);
1322 
1323     if (!MI->getOperand(1).isJTI())
1324       report("G_BRJT src operand 1 must be a jump table index", MI);
1325 
1326     const auto &IdxOp = MI->getOperand(2);
1327     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1328       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1329     break;
1330   }
1331   case TargetOpcode::G_INTRINSIC:
1332   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1333     // TODO: Should verify number of def and use operands, but the current
1334     // interface requires passing in IR types for mangling.
1335     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1336     if (!IntrIDOp.isIntrinsicID()) {
1337       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1338       break;
1339     }
1340 
1341     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1342     unsigned IntrID = IntrIDOp.getIntrinsicID();
1343     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1344       AttributeList Attrs
1345         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1346                                    static_cast<Intrinsic::ID>(IntrID));
1347       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1348       if (NoSideEffects && DeclHasSideEffects) {
1349         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1350         break;
1351       }
1352       if (!NoSideEffects && !DeclHasSideEffects) {
1353         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1354         break;
1355       }
1356     }
1357 
1358     break;
1359   }
1360   case TargetOpcode::G_SEXT_INREG: {
1361     if (!MI->getOperand(2).isImm()) {
1362       report("G_SEXT_INREG expects an immediate operand #2", MI);
1363       break;
1364     }
1365 
1366     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1367     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1368     verifyVectorElementMatch(DstTy, SrcTy, MI);
1369 
1370     int64_t Imm = MI->getOperand(2).getImm();
1371     if (Imm <= 0)
1372       report("G_SEXT_INREG size must be >= 1", MI);
1373     if (Imm >= SrcTy.getScalarSizeInBits())
1374       report("G_SEXT_INREG size must be less than source bit width", MI);
1375     break;
1376   }
1377   case TargetOpcode::G_SHUFFLE_VECTOR: {
1378     const MachineOperand &MaskOp = MI->getOperand(3);
1379     if (!MaskOp.isShuffleMask()) {
1380       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1381       break;
1382     }
1383 
1384     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1385     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1386     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1387 
1388     if (Src0Ty != Src1Ty)
1389       report("Source operands must be the same type", MI);
1390 
1391     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1392       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1393 
1394     // Don't check that all operands are vector because scalars are used in
1395     // place of 1 element vectors.
1396     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1397     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1398 
1399     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1400 
1401     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1402       report("Wrong result type for shufflemask", MI);
1403 
1404     for (int Idx : MaskIdxes) {
1405       if (Idx < 0)
1406         continue;
1407 
1408       if (Idx >= 2 * SrcNumElts)
1409         report("Out of bounds shuffle index", MI);
1410     }
1411 
1412     break;
1413   }
1414   case TargetOpcode::G_DYN_STACKALLOC: {
1415     const MachineOperand &DstOp = MI->getOperand(0);
1416     const MachineOperand &AllocOp = MI->getOperand(1);
1417     const MachineOperand &AlignOp = MI->getOperand(2);
1418 
1419     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1420       report("dst operand 0 must be a pointer type", MI);
1421       break;
1422     }
1423 
1424     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1425       report("src operand 1 must be a scalar reg type", MI);
1426       break;
1427     }
1428 
1429     if (!AlignOp.isImm()) {
1430       report("src operand 2 must be an immediate type", MI);
1431       break;
1432     }
1433     break;
1434   }
1435   case TargetOpcode::G_MEMCPY:
1436   case TargetOpcode::G_MEMMOVE: {
1437     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1438     if (MMOs.size() != 2) {
1439       report("memcpy/memmove must have 2 memory operands", MI);
1440       break;
1441     }
1442 
1443     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1444         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1445       report("wrong memory operand types", MI);
1446       break;
1447     }
1448 
1449     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1450       report("inconsistent memory operand sizes", MI);
1451 
1452     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1453     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1454 
1455     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1456       report("memory instruction operand must be a pointer", MI);
1457       break;
1458     }
1459 
1460     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1461       report("inconsistent store address space", MI);
1462     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1463       report("inconsistent load address space", MI);
1464 
1465     break;
1466   }
1467   case TargetOpcode::G_MEMSET: {
1468     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1469     if (MMOs.size() != 1) {
1470       report("memset must have 1 memory operand", MI);
1471       break;
1472     }
1473 
1474     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1475       report("memset memory operand must be a store", MI);
1476       break;
1477     }
1478 
1479     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1480     if (!DstPtrTy.isPointer()) {
1481       report("memset operand must be a pointer", MI);
1482       break;
1483     }
1484 
1485     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1486       report("inconsistent memset address space", MI);
1487 
1488     break;
1489   }
1490   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1491   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1492     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1493     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1494     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1495     if (!DstTy.isScalar())
1496       report("Vector reduction requires a scalar destination type", MI);
1497     if (!Src1Ty.isScalar())
1498       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1499     if (!Src2Ty.isVector())
1500       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1501     break;
1502   }
1503   case TargetOpcode::G_VECREDUCE_FADD:
1504   case TargetOpcode::G_VECREDUCE_FMUL:
1505   case TargetOpcode::G_VECREDUCE_FMAX:
1506   case TargetOpcode::G_VECREDUCE_FMIN:
1507   case TargetOpcode::G_VECREDUCE_ADD:
1508   case TargetOpcode::G_VECREDUCE_MUL:
1509   case TargetOpcode::G_VECREDUCE_AND:
1510   case TargetOpcode::G_VECREDUCE_OR:
1511   case TargetOpcode::G_VECREDUCE_XOR:
1512   case TargetOpcode::G_VECREDUCE_SMAX:
1513   case TargetOpcode::G_VECREDUCE_SMIN:
1514   case TargetOpcode::G_VECREDUCE_UMAX:
1515   case TargetOpcode::G_VECREDUCE_UMIN: {
1516     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1517     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1518     if (!DstTy.isScalar())
1519       report("Vector reduction requires a scalar destination type", MI);
1520     if (!SrcTy.isVector())
1521       report("Vector reduction requires vector source=", MI);
1522     break;
1523   }
1524   default:
1525     break;
1526   }
1527 }
1528 
1529 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1530   const MCInstrDesc &MCID = MI->getDesc();
1531   if (MI->getNumOperands() < MCID.getNumOperands()) {
1532     report("Too few operands", MI);
1533     errs() << MCID.getNumOperands() << " operands expected, but "
1534            << MI->getNumOperands() << " given.\n";
1535   }
1536 
1537   if (MI->isPHI()) {
1538     if (MF->getProperties().hasProperty(
1539             MachineFunctionProperties::Property::NoPHIs))
1540       report("Found PHI instruction with NoPHIs property set", MI);
1541 
1542     if (FirstNonPHI)
1543       report("Found PHI instruction after non-PHI", MI);
1544   } else if (FirstNonPHI == nullptr)
1545     FirstNonPHI = MI;
1546 
1547   // Check the tied operands.
1548   if (MI->isInlineAsm())
1549     verifyInlineAsm(MI);
1550 
1551   // Check that unspillable terminators define a reg and have at most one use.
1552   if (TII->isUnspillableTerminator(MI)) {
1553     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1554       report("Unspillable Terminator does not define a reg", MI);
1555     Register Def = MI->getOperand(0).getReg();
1556     if (Def.isVirtual() &&
1557         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1558       report("Unspillable Terminator expected to have at most one use!", MI);
1559   }
1560 
1561   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1562   // DBG_VALUEs: these are convenient to use in tests, but should never get
1563   // generated.
1564   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1565     if (!MI->getDebugLoc())
1566       report("Missing DebugLoc for debug instruction", MI);
1567 
1568   // Meta instructions should never be the subject of debug value tracking,
1569   // they don't create a value in the output program at all.
1570   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1571     report("Metadata instruction should not have a value tracking number", MI);
1572 
1573   // Check the MachineMemOperands for basic consistency.
1574   for (MachineMemOperand *Op : MI->memoperands()) {
1575     if (Op->isLoad() && !MI->mayLoad())
1576       report("Missing mayLoad flag", MI);
1577     if (Op->isStore() && !MI->mayStore())
1578       report("Missing mayStore flag", MI);
1579   }
1580 
1581   // Debug values must not have a slot index.
1582   // Other instructions must have one, unless they are inside a bundle.
1583   if (LiveInts) {
1584     bool mapped = !LiveInts->isNotInMIMap(*MI);
1585     if (MI->isDebugInstr()) {
1586       if (mapped)
1587         report("Debug instruction has a slot index", MI);
1588     } else if (MI->isInsideBundle()) {
1589       if (mapped)
1590         report("Instruction inside bundle has a slot index", MI);
1591     } else {
1592       if (!mapped)
1593         report("Missing slot index", MI);
1594     }
1595   }
1596 
1597   if (isPreISelGenericOpcode(MCID.getOpcode())) {
1598     verifyPreISelGenericInstruction(MI);
1599     return;
1600   }
1601 
1602   StringRef ErrorInfo;
1603   if (!TII->verifyInstruction(*MI, ErrorInfo))
1604     report(ErrorInfo.data(), MI);
1605 
1606   // Verify properties of various specific instruction types
1607   switch (MI->getOpcode()) {
1608   case TargetOpcode::COPY: {
1609     if (foundErrors)
1610       break;
1611     const MachineOperand &DstOp = MI->getOperand(0);
1612     const MachineOperand &SrcOp = MI->getOperand(1);
1613     LLT DstTy = MRI->getType(DstOp.getReg());
1614     LLT SrcTy = MRI->getType(SrcOp.getReg());
1615     if (SrcTy.isValid() && DstTy.isValid()) {
1616       // If both types are valid, check that the types are the same.
1617       if (SrcTy != DstTy) {
1618         report("Copy Instruction is illegal with mismatching types", MI);
1619         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1620       }
1621     }
1622     if (SrcTy.isValid() || DstTy.isValid()) {
1623       // If one of them have valid types, let's just check they have the same
1624       // size.
1625       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1626       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1627       assert(SrcSize && "Expecting size here");
1628       assert(DstSize && "Expecting size here");
1629       if (SrcSize != DstSize)
1630         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1631           report("Copy Instruction is illegal with mismatching sizes", MI);
1632           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1633                  << "\n";
1634         }
1635     }
1636     break;
1637   }
1638   case TargetOpcode::STATEPOINT: {
1639     StatepointOpers SO(MI);
1640     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1641         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1642         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1643       report("meta operands to STATEPOINT not constant!", MI);
1644       break;
1645     }
1646 
1647     auto VerifyStackMapConstant = [&](unsigned Offset) {
1648       if (Offset >= MI->getNumOperands()) {
1649         report("stack map constant to STATEPOINT is out of range!", MI);
1650         return;
1651       }
1652       if (!MI->getOperand(Offset - 1).isImm() ||
1653           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1654           !MI->getOperand(Offset).isImm())
1655         report("stack map constant to STATEPOINT not well formed!", MI);
1656     };
1657     VerifyStackMapConstant(SO.getCCIdx());
1658     VerifyStackMapConstant(SO.getFlagsIdx());
1659     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1660     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1661     VerifyStackMapConstant(SO.getNumAllocaIdx());
1662     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1663 
1664     // Verify that all explicit statepoint defs are tied to gc operands as
1665     // they are expected to be a relocation of gc operands.
1666     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1667     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1668     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1669       unsigned UseOpIdx;
1670       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1671         report("STATEPOINT defs expected to be tied", MI);
1672         break;
1673       }
1674       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1675         report("STATEPOINT def tied to non-gc operand", MI);
1676         break;
1677       }
1678     }
1679 
1680     // TODO: verify we have properly encoded deopt arguments
1681   } break;
1682   }
1683 }
1684 
1685 void
1686 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1687   const MachineInstr *MI = MO->getParent();
1688   const MCInstrDesc &MCID = MI->getDesc();
1689   unsigned NumDefs = MCID.getNumDefs();
1690   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1691     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1692 
1693   // The first MCID.NumDefs operands must be explicit register defines
1694   if (MONum < NumDefs) {
1695     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1696     if (!MO->isReg())
1697       report("Explicit definition must be a register", MO, MONum);
1698     else if (!MO->isDef() && !MCOI.isOptionalDef())
1699       report("Explicit definition marked as use", MO, MONum);
1700     else if (MO->isImplicit())
1701       report("Explicit definition marked as implicit", MO, MONum);
1702   } else if (MONum < MCID.getNumOperands()) {
1703     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1704     // Don't check if it's the last operand in a variadic instruction. See,
1705     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1706     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1707     if (!IsOptional) {
1708       if (MO->isReg()) {
1709         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1710           report("Explicit operand marked as def", MO, MONum);
1711         if (MO->isImplicit())
1712           report("Explicit operand marked as implicit", MO, MONum);
1713       }
1714 
1715       // Check that an instruction has register operands only as expected.
1716       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1717           !MO->isReg() && !MO->isFI())
1718         report("Expected a register operand.", MO, MONum);
1719       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1720            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1721         report("Expected a non-register operand.", MO, MONum);
1722     }
1723 
1724     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1725     if (TiedTo != -1) {
1726       if (!MO->isReg())
1727         report("Tied use must be a register", MO, MONum);
1728       else if (!MO->isTied())
1729         report("Operand should be tied", MO, MONum);
1730       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1731         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1732       else if (Register::isPhysicalRegister(MO->getReg())) {
1733         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1734         if (!MOTied.isReg())
1735           report("Tied counterpart must be a register", &MOTied, TiedTo);
1736         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1737                  MO->getReg() != MOTied.getReg())
1738           report("Tied physical registers must match.", &MOTied, TiedTo);
1739       }
1740     } else if (MO->isReg() && MO->isTied())
1741       report("Explicit operand should not be tied", MO, MONum);
1742   } else {
1743     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1744     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1745       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1746   }
1747 
1748   switch (MO->getType()) {
1749   case MachineOperand::MO_Register: {
1750     const Register Reg = MO->getReg();
1751     if (!Reg)
1752       return;
1753     if (MRI->tracksLiveness() && !MI->isDebugValue())
1754       checkLiveness(MO, MONum);
1755 
1756     // Verify the consistency of tied operands.
1757     if (MO->isTied()) {
1758       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1759       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1760       if (!OtherMO.isReg())
1761         report("Must be tied to a register", MO, MONum);
1762       if (!OtherMO.isTied())
1763         report("Missing tie flags on tied operand", MO, MONum);
1764       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1765         report("Inconsistent tie links", MO, MONum);
1766       if (MONum < MCID.getNumDefs()) {
1767         if (OtherIdx < MCID.getNumOperands()) {
1768           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1769             report("Explicit def tied to explicit use without tie constraint",
1770                    MO, MONum);
1771         } else {
1772           if (!OtherMO.isImplicit())
1773             report("Explicit def should be tied to implicit use", MO, MONum);
1774         }
1775       }
1776     }
1777 
1778     // Verify two-address constraints after the twoaddressinstruction pass.
1779     // Both twoaddressinstruction pass and phi-node-elimination pass call
1780     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1781     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1782     // shouldn't use the NoSSA as the condition, we should based on
1783     // TiedOpsRewritten property to verify two-address constraints, this
1784     // property will be set in twoaddressinstruction pass.
1785     unsigned DefIdx;
1786     if (MF->getProperties().hasProperty(
1787             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1788         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1789         Reg != MI->getOperand(DefIdx).getReg())
1790       report("Two-address instruction operands must be identical", MO, MONum);
1791 
1792     // Check register classes.
1793     unsigned SubIdx = MO->getSubReg();
1794 
1795     if (Register::isPhysicalRegister(Reg)) {
1796       if (SubIdx) {
1797         report("Illegal subregister index for physical register", MO, MONum);
1798         return;
1799       }
1800       if (MONum < MCID.getNumOperands()) {
1801         if (const TargetRegisterClass *DRC =
1802               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1803           if (!DRC->contains(Reg)) {
1804             report("Illegal physical register for instruction", MO, MONum);
1805             errs() << printReg(Reg, TRI) << " is not a "
1806                    << TRI->getRegClassName(DRC) << " register.\n";
1807           }
1808         }
1809       }
1810       if (MO->isRenamable()) {
1811         if (MRI->isReserved(Reg)) {
1812           report("isRenamable set on reserved register", MO, MONum);
1813           return;
1814         }
1815       }
1816       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1817         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1818         return;
1819       }
1820     } else {
1821       // Virtual register.
1822       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1823       if (!RC) {
1824         // This is a generic virtual register.
1825 
1826         // Do not allow undef uses for generic virtual registers. This ensures
1827         // getVRegDef can never fail and return null on a generic register.
1828         //
1829         // FIXME: This restriction should probably be broadened to all SSA
1830         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1831         // run on the SSA function just before phi elimination.
1832         if (MO->isUndef())
1833           report("Generic virtual register use cannot be undef", MO, MONum);
1834 
1835         // If we're post-Select, we can't have gvregs anymore.
1836         if (isFunctionSelected) {
1837           report("Generic virtual register invalid in a Selected function",
1838                  MO, MONum);
1839           return;
1840         }
1841 
1842         // The gvreg must have a type and it must not have a SubIdx.
1843         LLT Ty = MRI->getType(Reg);
1844         if (!Ty.isValid()) {
1845           report("Generic virtual register must have a valid type", MO,
1846                  MONum);
1847           return;
1848         }
1849 
1850         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1851 
1852         // If we're post-RegBankSelect, the gvreg must have a bank.
1853         if (!RegBank && isFunctionRegBankSelected) {
1854           report("Generic virtual register must have a bank in a "
1855                  "RegBankSelected function",
1856                  MO, MONum);
1857           return;
1858         }
1859 
1860         // Make sure the register fits into its register bank if any.
1861         if (RegBank && Ty.isValid() &&
1862             RegBank->getSize() < Ty.getSizeInBits()) {
1863           report("Register bank is too small for virtual register", MO,
1864                  MONum);
1865           errs() << "Register bank " << RegBank->getName() << " too small("
1866                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1867                  << "-bits\n";
1868           return;
1869         }
1870         if (SubIdx)  {
1871           report("Generic virtual register does not allow subregister index", MO,
1872                  MONum);
1873           return;
1874         }
1875 
1876         // If this is a target specific instruction and this operand
1877         // has register class constraint, the virtual register must
1878         // comply to it.
1879         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1880             MONum < MCID.getNumOperands() &&
1881             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1882           report("Virtual register does not match instruction constraint", MO,
1883                  MONum);
1884           errs() << "Expect register class "
1885                  << TRI->getRegClassName(
1886                         TII->getRegClass(MCID, MONum, TRI, *MF))
1887                  << " but got nothing\n";
1888           return;
1889         }
1890 
1891         break;
1892       }
1893       if (SubIdx) {
1894         const TargetRegisterClass *SRC =
1895           TRI->getSubClassWithSubReg(RC, SubIdx);
1896         if (!SRC) {
1897           report("Invalid subregister index for virtual register", MO, MONum);
1898           errs() << "Register class " << TRI->getRegClassName(RC)
1899               << " does not support subreg index " << SubIdx << "\n";
1900           return;
1901         }
1902         if (RC != SRC) {
1903           report("Invalid register class for subregister index", MO, MONum);
1904           errs() << "Register class " << TRI->getRegClassName(RC)
1905               << " does not fully support subreg index " << SubIdx << "\n";
1906           return;
1907         }
1908       }
1909       if (MONum < MCID.getNumOperands()) {
1910         if (const TargetRegisterClass *DRC =
1911               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1912           if (SubIdx) {
1913             const TargetRegisterClass *SuperRC =
1914                 TRI->getLargestLegalSuperClass(RC, *MF);
1915             if (!SuperRC) {
1916               report("No largest legal super class exists.", MO, MONum);
1917               return;
1918             }
1919             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1920             if (!DRC) {
1921               report("No matching super-reg register class.", MO, MONum);
1922               return;
1923             }
1924           }
1925           if (!RC->hasSuperClassEq(DRC)) {
1926             report("Illegal virtual register for instruction", MO, MONum);
1927             errs() << "Expected a " << TRI->getRegClassName(DRC)
1928                 << " register, but got a " << TRI->getRegClassName(RC)
1929                 << " register\n";
1930           }
1931         }
1932       }
1933     }
1934     break;
1935   }
1936 
1937   case MachineOperand::MO_RegisterMask:
1938     regMasks.push_back(MO->getRegMask());
1939     break;
1940 
1941   case MachineOperand::MO_MachineBasicBlock:
1942     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1943       report("PHI operand is not in the CFG", MO, MONum);
1944     break;
1945 
1946   case MachineOperand::MO_FrameIndex:
1947     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1948         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1949       int FI = MO->getIndex();
1950       LiveInterval &LI = LiveStks->getInterval(FI);
1951       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1952 
1953       bool stores = MI->mayStore();
1954       bool loads = MI->mayLoad();
1955       // For a memory-to-memory move, we need to check if the frame
1956       // index is used for storing or loading, by inspecting the
1957       // memory operands.
1958       if (stores && loads) {
1959         for (auto *MMO : MI->memoperands()) {
1960           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1961           if (PSV == nullptr) continue;
1962           const FixedStackPseudoSourceValue *Value =
1963             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1964           if (Value == nullptr) continue;
1965           if (Value->getFrameIndex() != FI) continue;
1966 
1967           if (MMO->isStore())
1968             loads = false;
1969           else
1970             stores = false;
1971           break;
1972         }
1973         if (loads == stores)
1974           report("Missing fixed stack memoperand.", MI);
1975       }
1976       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1977         report("Instruction loads from dead spill slot", MO, MONum);
1978         errs() << "Live stack: " << LI << '\n';
1979       }
1980       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1981         report("Instruction stores to dead spill slot", MO, MONum);
1982         errs() << "Live stack: " << LI << '\n';
1983       }
1984     }
1985     break;
1986 
1987   default:
1988     break;
1989   }
1990 }
1991 
1992 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1993                                          unsigned MONum, SlotIndex UseIdx,
1994                                          const LiveRange &LR,
1995                                          Register VRegOrUnit,
1996                                          LaneBitmask LaneMask) {
1997   LiveQueryResult LRQ = LR.Query(UseIdx);
1998   // Check if we have a segment at the use, note however that we only need one
1999   // live subregister range, the others may be dead.
2000   if (!LRQ.valueIn() && LaneMask.none()) {
2001     report("No live segment at use", MO, MONum);
2002     report_context_liverange(LR);
2003     report_context_vreg_regunit(VRegOrUnit);
2004     report_context(UseIdx);
2005   }
2006   if (MO->isKill() && !LRQ.isKill()) {
2007     report("Live range continues after kill flag", MO, MONum);
2008     report_context_liverange(LR);
2009     report_context_vreg_regunit(VRegOrUnit);
2010     if (LaneMask.any())
2011       report_context_lanemask(LaneMask);
2012     report_context(UseIdx);
2013   }
2014 }
2015 
2016 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2017                                          unsigned MONum, SlotIndex DefIdx,
2018                                          const LiveRange &LR,
2019                                          Register VRegOrUnit,
2020                                          bool SubRangeCheck,
2021                                          LaneBitmask LaneMask) {
2022   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2023     assert(VNI && "NULL valno is not allowed");
2024     if (VNI->def != DefIdx) {
2025       report("Inconsistent valno->def", MO, MONum);
2026       report_context_liverange(LR);
2027       report_context_vreg_regunit(VRegOrUnit);
2028       if (LaneMask.any())
2029         report_context_lanemask(LaneMask);
2030       report_context(*VNI);
2031       report_context(DefIdx);
2032     }
2033   } else {
2034     report("No live segment at def", MO, MONum);
2035     report_context_liverange(LR);
2036     report_context_vreg_regunit(VRegOrUnit);
2037     if (LaneMask.any())
2038       report_context_lanemask(LaneMask);
2039     report_context(DefIdx);
2040   }
2041   // Check that, if the dead def flag is present, LiveInts agree.
2042   if (MO->isDead()) {
2043     LiveQueryResult LRQ = LR.Query(DefIdx);
2044     if (!LRQ.isDeadDef()) {
2045       assert(Register::isVirtualRegister(VRegOrUnit) &&
2046              "Expecting a virtual register.");
2047       // A dead subreg def only tells us that the specific subreg is dead. There
2048       // could be other non-dead defs of other subregs, or we could have other
2049       // parts of the register being live through the instruction. So unless we
2050       // are checking liveness for a subrange it is ok for the live range to
2051       // continue, given that we have a dead def of a subregister.
2052       if (SubRangeCheck || MO->getSubReg() == 0) {
2053         report("Live range continues after dead def flag", MO, MONum);
2054         report_context_liverange(LR);
2055         report_context_vreg_regunit(VRegOrUnit);
2056         if (LaneMask.any())
2057           report_context_lanemask(LaneMask);
2058       }
2059     }
2060   }
2061 }
2062 
2063 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2064   const MachineInstr *MI = MO->getParent();
2065   const Register Reg = MO->getReg();
2066 
2067   // Both use and def operands can read a register.
2068   if (MO->readsReg()) {
2069     if (MO->isKill())
2070       addRegWithSubRegs(regsKilled, Reg);
2071 
2072     // Check that LiveVars knows this kill.
2073     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2074       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2075       if (!is_contained(VI.Kills, MI))
2076         report("Kill missing from LiveVariables", MO, MONum);
2077     }
2078 
2079     // Check LiveInts liveness and kill.
2080     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2081       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2082       // Check the cached regunit intervals.
2083       if (Reg.isPhysical() && !isReserved(Reg)) {
2084         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2085              ++Units) {
2086           if (MRI->isReservedRegUnit(*Units))
2087             continue;
2088           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2089             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2090         }
2091       }
2092 
2093       if (Register::isVirtualRegister(Reg)) {
2094         if (LiveInts->hasInterval(Reg)) {
2095           // This is a virtual register interval.
2096           const LiveInterval &LI = LiveInts->getInterval(Reg);
2097           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2098 
2099           if (LI.hasSubRanges() && !MO->isDef()) {
2100             unsigned SubRegIdx = MO->getSubReg();
2101             LaneBitmask MOMask = SubRegIdx != 0
2102                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2103                                : MRI->getMaxLaneMaskForVReg(Reg);
2104             LaneBitmask LiveInMask;
2105             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2106               if ((MOMask & SR.LaneMask).none())
2107                 continue;
2108               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2109               LiveQueryResult LRQ = SR.Query(UseIdx);
2110               if (LRQ.valueIn())
2111                 LiveInMask |= SR.LaneMask;
2112             }
2113             // At least parts of the register has to be live at the use.
2114             if ((LiveInMask & MOMask).none()) {
2115               report("No live subrange at use", MO, MONum);
2116               report_context(LI);
2117               report_context(UseIdx);
2118             }
2119           }
2120         } else {
2121           report("Virtual register has no live interval", MO, MONum);
2122         }
2123       }
2124     }
2125 
2126     // Use of a dead register.
2127     if (!regsLive.count(Reg)) {
2128       if (Register::isPhysicalRegister(Reg)) {
2129         // Reserved registers may be used even when 'dead'.
2130         bool Bad = !isReserved(Reg);
2131         // We are fine if just any subregister has a defined value.
2132         if (Bad) {
2133 
2134           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2135             if (regsLive.count(SubReg)) {
2136               Bad = false;
2137               break;
2138             }
2139           }
2140         }
2141         // If there is an additional implicit-use of a super register we stop
2142         // here. By definition we are fine if the super register is not
2143         // (completely) dead, if the complete super register is dead we will
2144         // get a report for its operand.
2145         if (Bad) {
2146           for (const MachineOperand &MOP : MI->uses()) {
2147             if (!MOP.isReg() || !MOP.isImplicit())
2148               continue;
2149 
2150             if (!Register::isPhysicalRegister(MOP.getReg()))
2151               continue;
2152 
2153             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2154               if (SubReg == Reg) {
2155                 Bad = false;
2156                 break;
2157               }
2158             }
2159           }
2160         }
2161         if (Bad)
2162           report("Using an undefined physical register", MO, MONum);
2163       } else if (MRI->def_empty(Reg)) {
2164         report("Reading virtual register without a def", MO, MONum);
2165       } else {
2166         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2167         // We don't know which virtual registers are live in, so only complain
2168         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2169         // must be live in. PHI instructions are handled separately.
2170         if (MInfo.regsKilled.count(Reg))
2171           report("Using a killed virtual register", MO, MONum);
2172         else if (!MI->isPHI())
2173           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2174       }
2175     }
2176   }
2177 
2178   if (MO->isDef()) {
2179     // Register defined.
2180     // TODO: verify that earlyclobber ops are not used.
2181     if (MO->isDead())
2182       addRegWithSubRegs(regsDead, Reg);
2183     else
2184       addRegWithSubRegs(regsDefined, Reg);
2185 
2186     // Verify SSA form.
2187     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2188         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2189       report("Multiple virtual register defs in SSA form", MO, MONum);
2190 
2191     // Check LiveInts for a live segment, but only for virtual registers.
2192     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2193       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2194       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2195 
2196       if (Register::isVirtualRegister(Reg)) {
2197         if (LiveInts->hasInterval(Reg)) {
2198           const LiveInterval &LI = LiveInts->getInterval(Reg);
2199           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2200 
2201           if (LI.hasSubRanges()) {
2202             unsigned SubRegIdx = MO->getSubReg();
2203             LaneBitmask MOMask = SubRegIdx != 0
2204               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2205               : MRI->getMaxLaneMaskForVReg(Reg);
2206             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2207               if ((SR.LaneMask & MOMask).none())
2208                 continue;
2209               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2210             }
2211           }
2212         } else {
2213           report("Virtual register has no Live interval", MO, MONum);
2214         }
2215       }
2216     }
2217   }
2218 }
2219 
2220 // This function gets called after visiting all instructions in a bundle. The
2221 // argument points to the bundle header.
2222 // Normal stand-alone instructions are also considered 'bundles', and this
2223 // function is called for all of them.
2224 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2225   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2226   set_union(MInfo.regsKilled, regsKilled);
2227   set_subtract(regsLive, regsKilled); regsKilled.clear();
2228   // Kill any masked registers.
2229   while (!regMasks.empty()) {
2230     const uint32_t *Mask = regMasks.pop_back_val();
2231     for (Register Reg : regsLive)
2232       if (Reg.isPhysical() &&
2233           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2234         regsDead.push_back(Reg);
2235   }
2236   set_subtract(regsLive, regsDead);   regsDead.clear();
2237   set_union(regsLive, regsDefined);   regsDefined.clear();
2238 }
2239 
2240 void
2241 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2242   MBBInfoMap[MBB].regsLiveOut = regsLive;
2243   regsLive.clear();
2244 
2245   if (Indexes) {
2246     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2247     if (!(stop > lastIndex)) {
2248       report("Block ends before last instruction index", MBB);
2249       errs() << "Block ends at " << stop
2250           << " last instruction was at " << lastIndex << '\n';
2251     }
2252     lastIndex = stop;
2253   }
2254 }
2255 
2256 namespace {
2257 // This implements a set of registers that serves as a filter: can filter other
2258 // sets by passing through elements not in the filter and blocking those that
2259 // are. Any filter implicitly includes the full set of physical registers upon
2260 // creation, thus filtering them all out. The filter itself as a set only grows,
2261 // and needs to be as efficient as possible.
2262 struct VRegFilter {
2263   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2264   // no duplicates. Both virtual and physical registers are fine.
2265   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2266     SmallVector<Register, 0> VRegsBuffer;
2267     filterAndAdd(FromRegSet, VRegsBuffer);
2268   }
2269   // Filter \p FromRegSet through the filter and append passed elements into \p
2270   // ToVRegs. All elements appended are then added to the filter itself.
2271   // \returns true if anything changed.
2272   template <typename RegSetT>
2273   bool filterAndAdd(const RegSetT &FromRegSet,
2274                     SmallVectorImpl<Register> &ToVRegs) {
2275     unsigned SparseUniverse = Sparse.size();
2276     unsigned NewSparseUniverse = SparseUniverse;
2277     unsigned NewDenseSize = Dense.size();
2278     size_t Begin = ToVRegs.size();
2279     for (Register Reg : FromRegSet) {
2280       if (!Reg.isVirtual())
2281         continue;
2282       unsigned Index = Register::virtReg2Index(Reg);
2283       if (Index < SparseUniverseMax) {
2284         if (Index < SparseUniverse && Sparse.test(Index))
2285           continue;
2286         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2287       } else {
2288         if (Dense.count(Reg))
2289           continue;
2290         ++NewDenseSize;
2291       }
2292       ToVRegs.push_back(Reg);
2293     }
2294     size_t End = ToVRegs.size();
2295     if (Begin == End)
2296       return false;
2297     // Reserving space in sets once performs better than doing so continuously
2298     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2299     // tuned all the way down) and double iteration (the second one is over a
2300     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2301     Sparse.resize(NewSparseUniverse);
2302     Dense.reserve(NewDenseSize);
2303     for (unsigned I = Begin; I < End; ++I) {
2304       Register Reg = ToVRegs[I];
2305       unsigned Index = Register::virtReg2Index(Reg);
2306       if (Index < SparseUniverseMax)
2307         Sparse.set(Index);
2308       else
2309         Dense.insert(Reg);
2310     }
2311     return true;
2312   }
2313 
2314 private:
2315   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2316   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2317   // are tracked by Dense. The only purpose of the threashold and the Dense set
2318   // is to have a reasonably growing memory usage in pathological cases (large
2319   // number of very sparse VRegFilter instances live at the same time). In
2320   // practice even in the worst-by-execution time cases having all elements
2321   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2322   // space efficient than if tracked by Dense. The threashold is set to keep the
2323   // worst-case memory usage within 2x of figures determined empirically for
2324   // "all Dense" scenario in such worst-by-execution-time cases.
2325   BitVector Sparse;
2326   DenseSet<unsigned> Dense;
2327 };
2328 
2329 // Implements both a transfer function and a (binary, in-place) join operator
2330 // for a dataflow over register sets with set union join and filtering transfer
2331 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2332 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2333 // time, where n is the size of the set (as opposed to O(U) where U is the
2334 // universe). filter_b implicitly contains all physical registers at all times.
2335 class FilteringVRegSet {
2336   VRegFilter Filter;
2337   SmallVector<Register, 0> VRegs;
2338 
2339 public:
2340   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2341   // Both virtual and physical registers are fine.
2342   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2343     Filter.add(RS);
2344   }
2345   // Passes \p RS through the filter_b (transfer function) and adds what's left
2346   // to itself (out_b).
2347   template <typename RegSetT> bool add(const RegSetT &RS) {
2348     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2349     // a set union) just add everything being added here to the Filter as well.
2350     return Filter.filterAndAdd(RS, VRegs);
2351   }
2352   using const_iterator = decltype(VRegs)::const_iterator;
2353   const_iterator begin() const { return VRegs.begin(); }
2354   const_iterator end() const { return VRegs.end(); }
2355   size_t size() const { return VRegs.size(); }
2356 };
2357 } // namespace
2358 
2359 // Calculate the largest possible vregsPassed sets. These are the registers that
2360 // can pass through an MBB live, but may not be live every time. It is assumed
2361 // that all vregsPassed sets are empty before the call.
2362 void MachineVerifier::calcRegsPassed() {
2363   if (MF->empty())
2364     // ReversePostOrderTraversal doesn't handle empty functions.
2365     return;
2366 
2367   for (const MachineBasicBlock *MB :
2368        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2369     FilteringVRegSet VRegs;
2370     BBInfo &Info = MBBInfoMap[MB];
2371     assert(Info.reachable);
2372 
2373     VRegs.addToFilter(Info.regsKilled);
2374     VRegs.addToFilter(Info.regsLiveOut);
2375     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2376       const BBInfo &PredInfo = MBBInfoMap[Pred];
2377       if (!PredInfo.reachable)
2378         continue;
2379 
2380       VRegs.add(PredInfo.regsLiveOut);
2381       VRegs.add(PredInfo.vregsPassed);
2382     }
2383     Info.vregsPassed.reserve(VRegs.size());
2384     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2385   }
2386 }
2387 
2388 // Calculate the set of virtual registers that must be passed through each basic
2389 // block in order to satisfy the requirements of successor blocks. This is very
2390 // similar to calcRegsPassed, only backwards.
2391 void MachineVerifier::calcRegsRequired() {
2392   // First push live-in regs to predecessors' vregsRequired.
2393   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2394   for (const auto &MBB : *MF) {
2395     BBInfo &MInfo = MBBInfoMap[&MBB];
2396     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2397       BBInfo &PInfo = MBBInfoMap[Pred];
2398       if (PInfo.addRequired(MInfo.vregsLiveIn))
2399         todo.insert(Pred);
2400     }
2401 
2402     // Handle the PHI node.
2403     for (const MachineInstr &MI : MBB.phis()) {
2404       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2405         // Skip those Operands which are undef regs or not regs.
2406         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2407           continue;
2408 
2409         // Get register and predecessor for one PHI edge.
2410         Register Reg = MI.getOperand(i).getReg();
2411         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2412 
2413         BBInfo &PInfo = MBBInfoMap[Pred];
2414         if (PInfo.addRequired(Reg))
2415           todo.insert(Pred);
2416       }
2417     }
2418   }
2419 
2420   // Iteratively push vregsRequired to predecessors. This will converge to the
2421   // same final state regardless of DenseSet iteration order.
2422   while (!todo.empty()) {
2423     const MachineBasicBlock *MBB = *todo.begin();
2424     todo.erase(MBB);
2425     BBInfo &MInfo = MBBInfoMap[MBB];
2426     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2427       if (Pred == MBB)
2428         continue;
2429       BBInfo &SInfo = MBBInfoMap[Pred];
2430       if (SInfo.addRequired(MInfo.vregsRequired))
2431         todo.insert(Pred);
2432     }
2433   }
2434 }
2435 
2436 // Check PHI instructions at the beginning of MBB. It is assumed that
2437 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2438 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2439   BBInfo &MInfo = MBBInfoMap[&MBB];
2440 
2441   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2442   for (const MachineInstr &Phi : MBB) {
2443     if (!Phi.isPHI())
2444       break;
2445     seen.clear();
2446 
2447     const MachineOperand &MODef = Phi.getOperand(0);
2448     if (!MODef.isReg() || !MODef.isDef()) {
2449       report("Expected first PHI operand to be a register def", &MODef, 0);
2450       continue;
2451     }
2452     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2453         MODef.isEarlyClobber() || MODef.isDebug())
2454       report("Unexpected flag on PHI operand", &MODef, 0);
2455     Register DefReg = MODef.getReg();
2456     if (!Register::isVirtualRegister(DefReg))
2457       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2458 
2459     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2460       const MachineOperand &MO0 = Phi.getOperand(I);
2461       if (!MO0.isReg()) {
2462         report("Expected PHI operand to be a register", &MO0, I);
2463         continue;
2464       }
2465       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2466           MO0.isDebug() || MO0.isTied())
2467         report("Unexpected flag on PHI operand", &MO0, I);
2468 
2469       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2470       if (!MO1.isMBB()) {
2471         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2472         continue;
2473       }
2474 
2475       const MachineBasicBlock &Pre = *MO1.getMBB();
2476       if (!Pre.isSuccessor(&MBB)) {
2477         report("PHI input is not a predecessor block", &MO1, I + 1);
2478         continue;
2479       }
2480 
2481       if (MInfo.reachable) {
2482         seen.insert(&Pre);
2483         BBInfo &PrInfo = MBBInfoMap[&Pre];
2484         if (!MO0.isUndef() && PrInfo.reachable &&
2485             !PrInfo.isLiveOut(MO0.getReg()))
2486           report("PHI operand is not live-out from predecessor", &MO0, I);
2487       }
2488     }
2489 
2490     // Did we see all predecessors?
2491     if (MInfo.reachable) {
2492       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2493         if (!seen.count(Pred)) {
2494           report("Missing PHI operand", &Phi);
2495           errs() << printMBBReference(*Pred)
2496                  << " is a predecessor according to the CFG.\n";
2497         }
2498       }
2499     }
2500   }
2501 }
2502 
2503 void MachineVerifier::visitMachineFunctionAfter() {
2504   calcRegsPassed();
2505 
2506   for (const MachineBasicBlock &MBB : *MF)
2507     checkPHIOps(MBB);
2508 
2509   // Now check liveness info if available
2510   calcRegsRequired();
2511 
2512   // Check for killed virtual registers that should be live out.
2513   for (const auto &MBB : *MF) {
2514     BBInfo &MInfo = MBBInfoMap[&MBB];
2515     for (Register VReg : MInfo.vregsRequired)
2516       if (MInfo.regsKilled.count(VReg)) {
2517         report("Virtual register killed in block, but needed live out.", &MBB);
2518         errs() << "Virtual register " << printReg(VReg)
2519                << " is used after the block.\n";
2520       }
2521   }
2522 
2523   if (!MF->empty()) {
2524     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2525     for (Register VReg : MInfo.vregsRequired) {
2526       report("Virtual register defs don't dominate all uses.", MF);
2527       report_context_vreg(VReg);
2528     }
2529   }
2530 
2531   if (LiveVars)
2532     verifyLiveVariables();
2533   if (LiveInts)
2534     verifyLiveIntervals();
2535 
2536   // Check live-in list of each MBB. If a register is live into MBB, check
2537   // that the register is in regsLiveOut of each predecessor block. Since
2538   // this must come from a definition in the predecesssor or its live-in
2539   // list, this will catch a live-through case where the predecessor does not
2540   // have the register in its live-in list.  This currently only checks
2541   // registers that have no aliases, are not allocatable and are not
2542   // reserved, which could mean a condition code register for instance.
2543   if (MRI->tracksLiveness())
2544     for (const auto &MBB : *MF)
2545       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2546         MCPhysReg LiveInReg = P.PhysReg;
2547         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2548         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2549           continue;
2550         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2551           BBInfo &PInfo = MBBInfoMap[Pred];
2552           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2553             report("Live in register not found to be live out from predecessor.",
2554                    &MBB);
2555             errs() << TRI->getName(LiveInReg)
2556                    << " not found to be live out from "
2557                    << printMBBReference(*Pred) << "\n";
2558           }
2559         }
2560       }
2561 
2562   for (auto CSInfo : MF->getCallSitesInfo())
2563     if (!CSInfo.first->isCall())
2564       report("Call site info referencing instruction that is not call", MF);
2565 
2566   // If there's debug-info, check that we don't have any duplicate value
2567   // tracking numbers.
2568   if (MF->getFunction().getSubprogram()) {
2569     DenseSet<unsigned> SeenNumbers;
2570     for (auto &MBB : *MF) {
2571       for (auto &MI : MBB) {
2572         if (auto Num = MI.peekDebugInstrNum()) {
2573           auto Result = SeenNumbers.insert((unsigned)Num);
2574           if (!Result.second)
2575             report("Instruction has a duplicated value tracking number", &MI);
2576         }
2577       }
2578     }
2579   }
2580 }
2581 
2582 void MachineVerifier::verifyLiveVariables() {
2583   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2584   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2585     Register Reg = Register::index2VirtReg(I);
2586     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2587     for (const auto &MBB : *MF) {
2588       BBInfo &MInfo = MBBInfoMap[&MBB];
2589 
2590       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2591       if (MInfo.vregsRequired.count(Reg)) {
2592         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2593           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2594           errs() << "Virtual register " << printReg(Reg)
2595                  << " must be live through the block.\n";
2596         }
2597       } else {
2598         if (VI.AliveBlocks.test(MBB.getNumber())) {
2599           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2600           errs() << "Virtual register " << printReg(Reg)
2601                  << " is not needed live through the block.\n";
2602         }
2603       }
2604     }
2605   }
2606 }
2607 
2608 void MachineVerifier::verifyLiveIntervals() {
2609   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2610   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2611     Register Reg = Register::index2VirtReg(I);
2612 
2613     // Spilling and splitting may leave unused registers around. Skip them.
2614     if (MRI->reg_nodbg_empty(Reg))
2615       continue;
2616 
2617     if (!LiveInts->hasInterval(Reg)) {
2618       report("Missing live interval for virtual register", MF);
2619       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2620       continue;
2621     }
2622 
2623     const LiveInterval &LI = LiveInts->getInterval(Reg);
2624     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2625     verifyLiveInterval(LI);
2626   }
2627 
2628   // Verify all the cached regunit intervals.
2629   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2630     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2631       verifyLiveRange(*LR, i);
2632 }
2633 
2634 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2635                                            const VNInfo *VNI, Register Reg,
2636                                            LaneBitmask LaneMask) {
2637   if (VNI->isUnused())
2638     return;
2639 
2640   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2641 
2642   if (!DefVNI) {
2643     report("Value not live at VNInfo def and not marked unused", MF);
2644     report_context(LR, Reg, LaneMask);
2645     report_context(*VNI);
2646     return;
2647   }
2648 
2649   if (DefVNI != VNI) {
2650     report("Live segment at def has different VNInfo", MF);
2651     report_context(LR, Reg, LaneMask);
2652     report_context(*VNI);
2653     return;
2654   }
2655 
2656   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2657   if (!MBB) {
2658     report("Invalid VNInfo definition index", MF);
2659     report_context(LR, Reg, LaneMask);
2660     report_context(*VNI);
2661     return;
2662   }
2663 
2664   if (VNI->isPHIDef()) {
2665     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2666       report("PHIDef VNInfo is not defined at MBB start", MBB);
2667       report_context(LR, Reg, LaneMask);
2668       report_context(*VNI);
2669     }
2670     return;
2671   }
2672 
2673   // Non-PHI def.
2674   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2675   if (!MI) {
2676     report("No instruction at VNInfo def index", MBB);
2677     report_context(LR, Reg, LaneMask);
2678     report_context(*VNI);
2679     return;
2680   }
2681 
2682   if (Reg != 0) {
2683     bool hasDef = false;
2684     bool isEarlyClobber = false;
2685     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2686       if (!MOI->isReg() || !MOI->isDef())
2687         continue;
2688       if (Register::isVirtualRegister(Reg)) {
2689         if (MOI->getReg() != Reg)
2690           continue;
2691       } else {
2692         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2693             !TRI->hasRegUnit(MOI->getReg(), Reg))
2694           continue;
2695       }
2696       if (LaneMask.any() &&
2697           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2698         continue;
2699       hasDef = true;
2700       if (MOI->isEarlyClobber())
2701         isEarlyClobber = true;
2702     }
2703 
2704     if (!hasDef) {
2705       report("Defining instruction does not modify register", MI);
2706       report_context(LR, Reg, LaneMask);
2707       report_context(*VNI);
2708     }
2709 
2710     // Early clobber defs begin at USE slots, but other defs must begin at
2711     // DEF slots.
2712     if (isEarlyClobber) {
2713       if (!VNI->def.isEarlyClobber()) {
2714         report("Early clobber def must be at an early-clobber slot", MBB);
2715         report_context(LR, Reg, LaneMask);
2716         report_context(*VNI);
2717       }
2718     } else if (!VNI->def.isRegister()) {
2719       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2720       report_context(LR, Reg, LaneMask);
2721       report_context(*VNI);
2722     }
2723   }
2724 }
2725 
2726 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2727                                              const LiveRange::const_iterator I,
2728                                              Register Reg,
2729                                              LaneBitmask LaneMask) {
2730   const LiveRange::Segment &S = *I;
2731   const VNInfo *VNI = S.valno;
2732   assert(VNI && "Live segment has no valno");
2733 
2734   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2735     report("Foreign valno in live segment", MF);
2736     report_context(LR, Reg, LaneMask);
2737     report_context(S);
2738     report_context(*VNI);
2739   }
2740 
2741   if (VNI->isUnused()) {
2742     report("Live segment valno is marked unused", MF);
2743     report_context(LR, Reg, LaneMask);
2744     report_context(S);
2745   }
2746 
2747   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2748   if (!MBB) {
2749     report("Bad start of live segment, no basic block", MF);
2750     report_context(LR, Reg, LaneMask);
2751     report_context(S);
2752     return;
2753   }
2754   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2755   if (S.start != MBBStartIdx && S.start != VNI->def) {
2756     report("Live segment must begin at MBB entry or valno def", MBB);
2757     report_context(LR, Reg, LaneMask);
2758     report_context(S);
2759   }
2760 
2761   const MachineBasicBlock *EndMBB =
2762     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2763   if (!EndMBB) {
2764     report("Bad end of live segment, no basic block", MF);
2765     report_context(LR, Reg, LaneMask);
2766     report_context(S);
2767     return;
2768   }
2769 
2770   // No more checks for live-out segments.
2771   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2772     return;
2773 
2774   // RegUnit intervals are allowed dead phis.
2775   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2776       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2777     return;
2778 
2779   // The live segment is ending inside EndMBB
2780   const MachineInstr *MI =
2781     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2782   if (!MI) {
2783     report("Live segment doesn't end at a valid instruction", EndMBB);
2784     report_context(LR, Reg, LaneMask);
2785     report_context(S);
2786     return;
2787   }
2788 
2789   // The block slot must refer to a basic block boundary.
2790   if (S.end.isBlock()) {
2791     report("Live segment ends at B slot of an instruction", EndMBB);
2792     report_context(LR, Reg, LaneMask);
2793     report_context(S);
2794   }
2795 
2796   if (S.end.isDead()) {
2797     // Segment ends on the dead slot.
2798     // That means there must be a dead def.
2799     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2800       report("Live segment ending at dead slot spans instructions", EndMBB);
2801       report_context(LR, Reg, LaneMask);
2802       report_context(S);
2803     }
2804   }
2805 
2806   // A live segment can only end at an early-clobber slot if it is being
2807   // redefined by an early-clobber def.
2808   if (S.end.isEarlyClobber()) {
2809     if (I+1 == LR.end() || (I+1)->start != S.end) {
2810       report("Live segment ending at early clobber slot must be "
2811              "redefined by an EC def in the same instruction", EndMBB);
2812       report_context(LR, Reg, LaneMask);
2813       report_context(S);
2814     }
2815   }
2816 
2817   // The following checks only apply to virtual registers. Physreg liveness
2818   // is too weird to check.
2819   if (Register::isVirtualRegister(Reg)) {
2820     // A live segment can end with either a redefinition, a kill flag on a
2821     // use, or a dead flag on a def.
2822     bool hasRead = false;
2823     bool hasSubRegDef = false;
2824     bool hasDeadDef = false;
2825     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2826       if (!MOI->isReg() || MOI->getReg() != Reg)
2827         continue;
2828       unsigned Sub = MOI->getSubReg();
2829       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2830                                  : LaneBitmask::getAll();
2831       if (MOI->isDef()) {
2832         if (Sub != 0) {
2833           hasSubRegDef = true;
2834           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2835           // mask for subregister defs. Read-undef defs will be handled by
2836           // readsReg below.
2837           SLM = ~SLM;
2838         }
2839         if (MOI->isDead())
2840           hasDeadDef = true;
2841       }
2842       if (LaneMask.any() && (LaneMask & SLM).none())
2843         continue;
2844       if (MOI->readsReg())
2845         hasRead = true;
2846     }
2847     if (S.end.isDead()) {
2848       // Make sure that the corresponding machine operand for a "dead" live
2849       // range has the dead flag. We cannot perform this check for subregister
2850       // liveranges as partially dead values are allowed.
2851       if (LaneMask.none() && !hasDeadDef) {
2852         report("Instruction ending live segment on dead slot has no dead flag",
2853                MI);
2854         report_context(LR, Reg, LaneMask);
2855         report_context(S);
2856       }
2857     } else {
2858       if (!hasRead) {
2859         // When tracking subregister liveness, the main range must start new
2860         // values on partial register writes, even if there is no read.
2861         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2862             !hasSubRegDef) {
2863           report("Instruction ending live segment doesn't read the register",
2864                  MI);
2865           report_context(LR, Reg, LaneMask);
2866           report_context(S);
2867         }
2868       }
2869     }
2870   }
2871 
2872   // Now check all the basic blocks in this live segment.
2873   MachineFunction::const_iterator MFI = MBB->getIterator();
2874   // Is this live segment the beginning of a non-PHIDef VN?
2875   if (S.start == VNI->def && !VNI->isPHIDef()) {
2876     // Not live-in to any blocks.
2877     if (MBB == EndMBB)
2878       return;
2879     // Skip this block.
2880     ++MFI;
2881   }
2882 
2883   SmallVector<SlotIndex, 4> Undefs;
2884   if (LaneMask.any()) {
2885     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2886     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2887   }
2888 
2889   while (true) {
2890     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2891     // We don't know how to track physregs into a landing pad.
2892     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2893       if (&*MFI == EndMBB)
2894         break;
2895       ++MFI;
2896       continue;
2897     }
2898 
2899     // Is VNI a PHI-def in the current block?
2900     bool IsPHI = VNI->isPHIDef() &&
2901       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2902 
2903     // Check that VNI is live-out of all predecessors.
2904     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2905       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2906       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2907 
2908       // All predecessors must have a live-out value. However for a phi
2909       // instruction with subregister intervals
2910       // only one of the subregisters (not necessarily the current one) needs to
2911       // be defined.
2912       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2913         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2914           continue;
2915         report("Register not marked live out of predecessor", Pred);
2916         report_context(LR, Reg, LaneMask);
2917         report_context(*VNI);
2918         errs() << " live into " << printMBBReference(*MFI) << '@'
2919                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2920                << PEnd << '\n';
2921         continue;
2922       }
2923 
2924       // Only PHI-defs can take different predecessor values.
2925       if (!IsPHI && PVNI != VNI) {
2926         report("Different value live out of predecessor", Pred);
2927         report_context(LR, Reg, LaneMask);
2928         errs() << "Valno #" << PVNI->id << " live out of "
2929                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2930                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2931                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2932       }
2933     }
2934     if (&*MFI == EndMBB)
2935       break;
2936     ++MFI;
2937   }
2938 }
2939 
2940 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
2941                                       LaneBitmask LaneMask) {
2942   for (const VNInfo *VNI : LR.valnos)
2943     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2944 
2945   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2946     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2947 }
2948 
2949 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2950   Register Reg = LI.reg();
2951   assert(Register::isVirtualRegister(Reg));
2952   verifyLiveRange(LI, Reg);
2953 
2954   LaneBitmask Mask;
2955   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2956   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2957     if ((Mask & SR.LaneMask).any()) {
2958       report("Lane masks of sub ranges overlap in live interval", MF);
2959       report_context(LI);
2960     }
2961     if ((SR.LaneMask & ~MaxMask).any()) {
2962       report("Subrange lanemask is invalid", MF);
2963       report_context(LI);
2964     }
2965     if (SR.empty()) {
2966       report("Subrange must not be empty", MF);
2967       report_context(SR, LI.reg(), SR.LaneMask);
2968     }
2969     Mask |= SR.LaneMask;
2970     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
2971     if (!LI.covers(SR)) {
2972       report("A Subrange is not covered by the main range", MF);
2973       report_context(LI);
2974     }
2975   }
2976 
2977   // Check the LI only has one connected component.
2978   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2979   unsigned NumComp = ConEQ.Classify(LI);
2980   if (NumComp > 1) {
2981     report("Multiple connected components in live interval", MF);
2982     report_context(LI);
2983     for (unsigned comp = 0; comp != NumComp; ++comp) {
2984       errs() << comp << ": valnos";
2985       for (const VNInfo *I : LI.valnos)
2986         if (comp == ConEQ.getEqClass(I))
2987           errs() << ' ' << I->id;
2988       errs() << '\n';
2989     }
2990   }
2991 }
2992 
2993 namespace {
2994 
2995   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2996   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2997   // value is zero.
2998   // We use a bool plus an integer to capture the stack state.
2999   struct StackStateOfBB {
3000     StackStateOfBB() = default;
3001     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3002       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3003       ExitIsSetup(ExitSetup) {}
3004 
3005     // Can be negative, which means we are setting up a frame.
3006     int EntryValue = 0;
3007     int ExitValue = 0;
3008     bool EntryIsSetup = false;
3009     bool ExitIsSetup = false;
3010   };
3011 
3012 } // end anonymous namespace
3013 
3014 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3015 /// by a FrameDestroy <n>, stack adjustments are identical on all
3016 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3017 void MachineVerifier::verifyStackFrame() {
3018   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3019   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3020   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3021     return;
3022 
3023   SmallVector<StackStateOfBB, 8> SPState;
3024   SPState.resize(MF->getNumBlockIDs());
3025   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3026 
3027   // Visit the MBBs in DFS order.
3028   for (df_ext_iterator<const MachineFunction *,
3029                        df_iterator_default_set<const MachineBasicBlock *>>
3030        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3031        DFI != DFE; ++DFI) {
3032     const MachineBasicBlock *MBB = *DFI;
3033 
3034     StackStateOfBB BBState;
3035     // Check the exit state of the DFS stack predecessor.
3036     if (DFI.getPathLength() >= 2) {
3037       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3038       assert(Reachable.count(StackPred) &&
3039              "DFS stack predecessor is already visited.\n");
3040       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3041       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3042       BBState.ExitValue = BBState.EntryValue;
3043       BBState.ExitIsSetup = BBState.EntryIsSetup;
3044     }
3045 
3046     // Update stack state by checking contents of MBB.
3047     for (const auto &I : *MBB) {
3048       if (I.getOpcode() == FrameSetupOpcode) {
3049         if (BBState.ExitIsSetup)
3050           report("FrameSetup is after another FrameSetup", &I);
3051         BBState.ExitValue -= TII->getFrameTotalSize(I);
3052         BBState.ExitIsSetup = true;
3053       }
3054 
3055       if (I.getOpcode() == FrameDestroyOpcode) {
3056         int Size = TII->getFrameTotalSize(I);
3057         if (!BBState.ExitIsSetup)
3058           report("FrameDestroy is not after a FrameSetup", &I);
3059         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3060                                                BBState.ExitValue;
3061         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3062           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3063           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3064               << AbsSPAdj << ">.\n";
3065         }
3066         BBState.ExitValue += Size;
3067         BBState.ExitIsSetup = false;
3068       }
3069     }
3070     SPState[MBB->getNumber()] = BBState;
3071 
3072     // Make sure the exit state of any predecessor is consistent with the entry
3073     // state.
3074     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3075       if (Reachable.count(Pred) &&
3076           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3077            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3078         report("The exit stack state of a predecessor is inconsistent.", MBB);
3079         errs() << "Predecessor " << printMBBReference(*Pred)
3080                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3081                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3082                << printMBBReference(*MBB) << " has entry state ("
3083                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3084       }
3085     }
3086 
3087     // Make sure the entry state of any successor is consistent with the exit
3088     // state.
3089     for (const MachineBasicBlock *Succ : MBB->successors()) {
3090       if (Reachable.count(Succ) &&
3091           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3092            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3093         report("The entry stack state of a successor is inconsistent.", MBB);
3094         errs() << "Successor " << printMBBReference(*Succ)
3095                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3096                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3097                << printMBBReference(*MBB) << " has exit state ("
3098                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3099       }
3100     }
3101 
3102     // Make sure a basic block with return ends with zero stack adjustment.
3103     if (!MBB->empty() && MBB->back().isReturn()) {
3104       if (BBState.ExitIsSetup)
3105         report("A return block ends with a FrameSetup.", MBB);
3106       if (BBState.ExitValue)
3107         report("A return block ends with a nonzero stack adjustment.", MBB);
3108     }
3109   }
3110 }
3111