1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF).
10 //
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineDominanceFrontier.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/RDFGraph.h"
22 #include "llvm/CodeGen/RDFRegisters.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <cstring>
36 #include <iterator>
37 #include <set>
38 #include <utility>
39 #include <vector>
40 
41 // Printing functions. Have them here first, so that the rest of the code
42 // can use them.
43 namespace llvm::rdf {
44 
operator <<(raw_ostream & OS,const Print<RegisterRef> & P)45 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) {
46   P.G.getPRI().print(OS, P.Obj);
47   return OS;
48 }
49 
operator <<(raw_ostream & OS,const Print<NodeId> & P)50 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) {
51   if (P.Obj == 0)
52     return OS << "null";
53   auto NA = P.G.addr<NodeBase *>(P.Obj);
54   uint16_t Attrs = NA.Addr->getAttrs();
55   uint16_t Kind = NodeAttrs::kind(Attrs);
56   uint16_t Flags = NodeAttrs::flags(Attrs);
57   switch (NodeAttrs::type(Attrs)) {
58   case NodeAttrs::Code:
59     switch (Kind) {
60     case NodeAttrs::Func:
61       OS << 'f';
62       break;
63     case NodeAttrs::Block:
64       OS << 'b';
65       break;
66     case NodeAttrs::Stmt:
67       OS << 's';
68       break;
69     case NodeAttrs::Phi:
70       OS << 'p';
71       break;
72     default:
73       OS << "c?";
74       break;
75     }
76     break;
77   case NodeAttrs::Ref:
78     if (Flags & NodeAttrs::Undef)
79       OS << '/';
80     if (Flags & NodeAttrs::Dead)
81       OS << '\\';
82     if (Flags & NodeAttrs::Preserving)
83       OS << '+';
84     if (Flags & NodeAttrs::Clobbering)
85       OS << '~';
86     switch (Kind) {
87     case NodeAttrs::Use:
88       OS << 'u';
89       break;
90     case NodeAttrs::Def:
91       OS << 'd';
92       break;
93     case NodeAttrs::Block:
94       OS << 'b';
95       break;
96     default:
97       OS << "r?";
98       break;
99     }
100     break;
101   default:
102     OS << '?';
103     break;
104   }
105   OS << P.Obj;
106   if (Flags & NodeAttrs::Shadow)
107     OS << '"';
108   return OS;
109 }
110 
printRefHeader(raw_ostream & OS,const Ref RA,const DataFlowGraph & G)111 static void printRefHeader(raw_ostream &OS, const Ref RA,
112                            const DataFlowGraph &G) {
113   OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>';
114   if (RA.Addr->getFlags() & NodeAttrs::Fixed)
115     OS << '!';
116 }
117 
operator <<(raw_ostream & OS,const Print<Def> & P)118 raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) {
119   printRefHeader(OS, P.Obj, P.G);
120   OS << '(';
121   if (NodeId N = P.Obj.Addr->getReachingDef())
122     OS << Print(N, P.G);
123   OS << ',';
124   if (NodeId N = P.Obj.Addr->getReachedDef())
125     OS << Print(N, P.G);
126   OS << ',';
127   if (NodeId N = P.Obj.Addr->getReachedUse())
128     OS << Print(N, P.G);
129   OS << "):";
130   if (NodeId N = P.Obj.Addr->getSibling())
131     OS << Print(N, P.G);
132   return OS;
133 }
134 
operator <<(raw_ostream & OS,const Print<Use> & P)135 raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) {
136   printRefHeader(OS, P.Obj, P.G);
137   OS << '(';
138   if (NodeId N = P.Obj.Addr->getReachingDef())
139     OS << Print(N, P.G);
140   OS << "):";
141   if (NodeId N = P.Obj.Addr->getSibling())
142     OS << Print(N, P.G);
143   return OS;
144 }
145 
operator <<(raw_ostream & OS,const Print<PhiUse> & P)146 raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) {
147   printRefHeader(OS, P.Obj, P.G);
148   OS << '(';
149   if (NodeId N = P.Obj.Addr->getReachingDef())
150     OS << Print(N, P.G);
151   OS << ',';
152   if (NodeId N = P.Obj.Addr->getPredecessor())
153     OS << Print(N, P.G);
154   OS << "):";
155   if (NodeId N = P.Obj.Addr->getSibling())
156     OS << Print(N, P.G);
157   return OS;
158 }
159 
operator <<(raw_ostream & OS,const Print<Ref> & P)160 raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) {
161   switch (P.Obj.Addr->getKind()) {
162   case NodeAttrs::Def:
163     OS << PrintNode<DefNode *>(P.Obj, P.G);
164     break;
165   case NodeAttrs::Use:
166     if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
167       OS << PrintNode<PhiUseNode *>(P.Obj, P.G);
168     else
169       OS << PrintNode<UseNode *>(P.Obj, P.G);
170     break;
171   }
172   return OS;
173 }
174 
operator <<(raw_ostream & OS,const Print<NodeList> & P)175 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) {
176   unsigned N = P.Obj.size();
177   for (auto I : P.Obj) {
178     OS << Print(I.Id, P.G);
179     if (--N)
180       OS << ' ';
181   }
182   return OS;
183 }
184 
operator <<(raw_ostream & OS,const Print<NodeSet> & P)185 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) {
186   unsigned N = P.Obj.size();
187   for (auto I : P.Obj) {
188     OS << Print(I, P.G);
189     if (--N)
190       OS << ' ';
191   }
192   return OS;
193 }
194 
195 namespace {
196 
197 template <typename T> struct PrintListV {
PrintListVllvm::rdf::__anon2decc8ca0111::PrintListV198   PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
199 
200   using Type = T;
201   const NodeList &List;
202   const DataFlowGraph &G;
203 };
204 
205 template <typename T>
operator <<(raw_ostream & OS,const PrintListV<T> & P)206 raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) {
207   unsigned N = P.List.size();
208   for (NodeAddr<T> A : P.List) {
209     OS << PrintNode<T>(A, P.G);
210     if (--N)
211       OS << ", ";
212   }
213   return OS;
214 }
215 
216 } // end anonymous namespace
217 
operator <<(raw_ostream & OS,const Print<Phi> & P)218 raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) {
219   OS << Print(P.Obj.Id, P.G) << ": phi ["
220      << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']';
221   return OS;
222 }
223 
operator <<(raw_ostream & OS,const Print<Stmt> & P)224 raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) {
225   const MachineInstr &MI = *P.Obj.Addr->getCode();
226   unsigned Opc = MI.getOpcode();
227   OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
228   // Print the target for calls and branches (for readability).
229   if (MI.isCall() || MI.isBranch()) {
230     MachineInstr::const_mop_iterator T =
231         llvm::find_if(MI.operands(), [](const MachineOperand &Op) -> bool {
232           return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
233         });
234     if (T != MI.operands_end()) {
235       OS << ' ';
236       if (T->isMBB())
237         OS << printMBBReference(*T->getMBB());
238       else if (T->isGlobal())
239         OS << T->getGlobal()->getName();
240       else if (T->isSymbol())
241         OS << T->getSymbolName();
242     }
243   }
244   OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']';
245   return OS;
246 }
247 
operator <<(raw_ostream & OS,const Print<Instr> & P)248 raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) {
249   switch (P.Obj.Addr->getKind()) {
250   case NodeAttrs::Phi:
251     OS << PrintNode<PhiNode *>(P.Obj, P.G);
252     break;
253   case NodeAttrs::Stmt:
254     OS << PrintNode<StmtNode *>(P.Obj, P.G);
255     break;
256   default:
257     OS << "instr? " << Print(P.Obj.Id, P.G);
258     break;
259   }
260   return OS;
261 }
262 
operator <<(raw_ostream & OS,const Print<Block> & P)263 raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) {
264   MachineBasicBlock *BB = P.Obj.Addr->getCode();
265   unsigned NP = BB->pred_size();
266   std::vector<int> Ns;
267   auto PrintBBs = [&OS](std::vector<int> Ns) -> void {
268     unsigned N = Ns.size();
269     for (int I : Ns) {
270       OS << "%bb." << I;
271       if (--N)
272         OS << ", ";
273     }
274   };
275 
276   OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
277      << " --- preds(" << NP << "): ";
278   for (MachineBasicBlock *B : BB->predecessors())
279     Ns.push_back(B->getNumber());
280   PrintBBs(Ns);
281 
282   unsigned NS = BB->succ_size();
283   OS << "  succs(" << NS << "): ";
284   Ns.clear();
285   for (MachineBasicBlock *B : BB->successors())
286     Ns.push_back(B->getNumber());
287   PrintBBs(Ns);
288   OS << '\n';
289 
290   for (auto I : P.Obj.Addr->members(P.G))
291     OS << PrintNode<InstrNode *>(I, P.G) << '\n';
292   return OS;
293 }
294 
operator <<(raw_ostream & OS,const Print<Func> & P)295 raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) {
296   OS << "DFG dump:[\n"
297      << Print(P.Obj.Id, P.G)
298      << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n';
299   for (auto I : P.Obj.Addr->members(P.G))
300     OS << PrintNode<BlockNode *>(I, P.G) << '\n';
301   OS << "]\n";
302   return OS;
303 }
304 
operator <<(raw_ostream & OS,const Print<RegisterSet> & P)305 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) {
306   OS << '{';
307   for (auto I : P.Obj)
308     OS << ' ' << Print(I, P.G);
309   OS << " }";
310   return OS;
311 }
312 
operator <<(raw_ostream & OS,const Print<RegisterAggr> & P)313 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) {
314   OS << P.Obj;
315   return OS;
316 }
317 
operator <<(raw_ostream & OS,const Print<DataFlowGraph::DefStack> & P)318 raw_ostream &operator<<(raw_ostream &OS,
319                         const Print<DataFlowGraph::DefStack> &P) {
320   for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) {
321     OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(P.G), P.G)
322        << '>';
323     I.down();
324     if (I != E)
325       OS << ' ';
326   }
327   return OS;
328 }
329 
330 // Node allocation functions.
331 //
332 // Node allocator is like a slab memory allocator: it allocates blocks of
333 // memory in sizes that are multiples of the size of a node. Each block has
334 // the same size. Nodes are allocated from the currently active block, and
335 // when it becomes full, a new one is created.
336 // There is a mapping scheme between node id and its location in a block,
337 // and within that block is described in the header file.
338 //
startNewBlock()339 void NodeAllocator::startNewBlock() {
340   void *T = MemPool.Allocate(NodesPerBlock * NodeMemSize, NodeMemSize);
341   char *P = static_cast<char *>(T);
342   Blocks.push_back(P);
343   // Check if the block index is still within the allowed range, i.e. less
344   // than 2^N, where N is the number of bits in NodeId for the block index.
345   // BitsPerIndex is the number of bits per node index.
346   assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) &&
347          "Out of bits for block index");
348   ActiveEnd = P;
349 }
350 
needNewBlock()351 bool NodeAllocator::needNewBlock() {
352   if (Blocks.empty())
353     return true;
354 
355   char *ActiveBegin = Blocks.back();
356   uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize;
357   return Index >= NodesPerBlock;
358 }
359 
New()360 Node NodeAllocator::New() {
361   if (needNewBlock())
362     startNewBlock();
363 
364   uint32_t ActiveB = Blocks.size() - 1;
365   uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize;
366   Node NA = {reinterpret_cast<NodeBase *>(ActiveEnd), makeId(ActiveB, Index)};
367   ActiveEnd += NodeMemSize;
368   return NA;
369 }
370 
id(const NodeBase * P) const371 NodeId NodeAllocator::id(const NodeBase *P) const {
372   uintptr_t A = reinterpret_cast<uintptr_t>(P);
373   for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
374     uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
375     if (A < B || A >= B + NodesPerBlock * NodeMemSize)
376       continue;
377     uint32_t Idx = (A - B) / NodeMemSize;
378     return makeId(i, Idx);
379   }
380   llvm_unreachable("Invalid node address");
381 }
382 
clear()383 void NodeAllocator::clear() {
384   MemPool.Reset();
385   Blocks.clear();
386   ActiveEnd = nullptr;
387 }
388 
389 // Insert node NA after "this" in the circular chain.
append(Node NA)390 void NodeBase::append(Node NA) {
391   NodeId Nx = Next;
392   // If NA is already "next", do nothing.
393   if (Next != NA.Id) {
394     Next = NA.Id;
395     NA.Addr->Next = Nx;
396   }
397 }
398 
399 // Fundamental node manipulator functions.
400 
401 // Obtain the register reference from a reference node.
getRegRef(const DataFlowGraph & G) const402 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
403   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
404   if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
405     return G.unpack(RefData.PR);
406   assert(RefData.Op != nullptr);
407   return G.makeRegRef(*RefData.Op);
408 }
409 
410 // Set the register reference in the reference node directly (for references
411 // in phi nodes).
setRegRef(RegisterRef RR,DataFlowGraph & G)412 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
413   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
414   assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
415   RefData.PR = G.pack(RR);
416 }
417 
418 // Set the register reference in the reference node based on a machine
419 // operand (for references in statement nodes).
setRegRef(MachineOperand * Op,DataFlowGraph & G)420 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
421   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
422   assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
423   (void)G;
424   RefData.Op = Op;
425 }
426 
427 // Get the owner of a given reference node.
getOwner(const DataFlowGraph & G)428 Node RefNode::getOwner(const DataFlowGraph &G) {
429   Node NA = G.addr<NodeBase *>(getNext());
430 
431   while (NA.Addr != this) {
432     if (NA.Addr->getType() == NodeAttrs::Code)
433       return NA;
434     NA = G.addr<NodeBase *>(NA.Addr->getNext());
435   }
436   llvm_unreachable("No owner in circular list");
437 }
438 
439 // Connect the def node to the reaching def node.
linkToDef(NodeId Self,Def DA)440 void DefNode::linkToDef(NodeId Self, Def DA) {
441   RefData.RD = DA.Id;
442   RefData.Sib = DA.Addr->getReachedDef();
443   DA.Addr->setReachedDef(Self);
444 }
445 
446 // Connect the use node to the reaching def node.
linkToDef(NodeId Self,Def DA)447 void UseNode::linkToDef(NodeId Self, Def DA) {
448   RefData.RD = DA.Id;
449   RefData.Sib = DA.Addr->getReachedUse();
450   DA.Addr->setReachedUse(Self);
451 }
452 
453 // Get the first member of the code node.
getFirstMember(const DataFlowGraph & G) const454 Node CodeNode::getFirstMember(const DataFlowGraph &G) const {
455   if (CodeData.FirstM == 0)
456     return Node();
457   return G.addr<NodeBase *>(CodeData.FirstM);
458 }
459 
460 // Get the last member of the code node.
getLastMember(const DataFlowGraph & G) const461 Node CodeNode::getLastMember(const DataFlowGraph &G) const {
462   if (CodeData.LastM == 0)
463     return Node();
464   return G.addr<NodeBase *>(CodeData.LastM);
465 }
466 
467 // Add node NA at the end of the member list of the given code node.
addMember(Node NA,const DataFlowGraph & G)468 void CodeNode::addMember(Node NA, const DataFlowGraph &G) {
469   Node ML = getLastMember(G);
470   if (ML.Id != 0) {
471     ML.Addr->append(NA);
472   } else {
473     CodeData.FirstM = NA.Id;
474     NodeId Self = G.id(this);
475     NA.Addr->setNext(Self);
476   }
477   CodeData.LastM = NA.Id;
478 }
479 
480 // Add node NA after member node MA in the given code node.
addMemberAfter(Node MA,Node NA,const DataFlowGraph & G)481 void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) {
482   MA.Addr->append(NA);
483   if (CodeData.LastM == MA.Id)
484     CodeData.LastM = NA.Id;
485 }
486 
487 // Remove member node NA from the given code node.
removeMember(Node NA,const DataFlowGraph & G)488 void CodeNode::removeMember(Node NA, const DataFlowGraph &G) {
489   Node MA = getFirstMember(G);
490   assert(MA.Id != 0);
491 
492   // Special handling if the member to remove is the first member.
493   if (MA.Id == NA.Id) {
494     if (CodeData.LastM == MA.Id) {
495       // If it is the only member, set both first and last to 0.
496       CodeData.FirstM = CodeData.LastM = 0;
497     } else {
498       // Otherwise, advance the first member.
499       CodeData.FirstM = MA.Addr->getNext();
500     }
501     return;
502   }
503 
504   while (MA.Addr != this) {
505     NodeId MX = MA.Addr->getNext();
506     if (MX == NA.Id) {
507       MA.Addr->setNext(NA.Addr->getNext());
508       // If the member to remove happens to be the last one, update the
509       // LastM indicator.
510       if (CodeData.LastM == NA.Id)
511         CodeData.LastM = MA.Id;
512       return;
513     }
514     MA = G.addr<NodeBase *>(MX);
515   }
516   llvm_unreachable("No such member");
517 }
518 
519 // Return the list of all members of the code node.
members(const DataFlowGraph & G) const520 NodeList CodeNode::members(const DataFlowGraph &G) const {
521   static auto True = [](Node) -> bool { return true; };
522   return members_if(True, G);
523 }
524 
525 // Return the owner of the given instr node.
getOwner(const DataFlowGraph & G)526 Node InstrNode::getOwner(const DataFlowGraph &G) {
527   Node NA = G.addr<NodeBase *>(getNext());
528 
529   while (NA.Addr != this) {
530     assert(NA.Addr->getType() == NodeAttrs::Code);
531     if (NA.Addr->getKind() == NodeAttrs::Block)
532       return NA;
533     NA = G.addr<NodeBase *>(NA.Addr->getNext());
534   }
535   llvm_unreachable("No owner in circular list");
536 }
537 
538 // Add the phi node PA to the given block node.
addPhi(Phi PA,const DataFlowGraph & G)539 void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) {
540   Node M = getFirstMember(G);
541   if (M.Id == 0) {
542     addMember(PA, G);
543     return;
544   }
545 
546   assert(M.Addr->getType() == NodeAttrs::Code);
547   if (M.Addr->getKind() == NodeAttrs::Stmt) {
548     // If the first member of the block is a statement, insert the phi as
549     // the first member.
550     CodeData.FirstM = PA.Id;
551     PA.Addr->setNext(M.Id);
552   } else {
553     // If the first member is a phi, find the last phi, and append PA to it.
554     assert(M.Addr->getKind() == NodeAttrs::Phi);
555     Node MN = M;
556     do {
557       M = MN;
558       MN = G.addr<NodeBase *>(M.Addr->getNext());
559       assert(MN.Addr->getType() == NodeAttrs::Code);
560     } while (MN.Addr->getKind() == NodeAttrs::Phi);
561 
562     // M is the last phi.
563     addMemberAfter(M, PA, G);
564   }
565 }
566 
567 // Find the block node corresponding to the machine basic block BB in the
568 // given func node.
findBlock(const MachineBasicBlock * BB,const DataFlowGraph & G) const569 Block FuncNode::findBlock(const MachineBasicBlock *BB,
570                           const DataFlowGraph &G) const {
571   auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; };
572   NodeList Ms = members_if(EqBB, G);
573   if (!Ms.empty())
574     return Ms[0];
575   return Block();
576 }
577 
578 // Get the block node for the entry block in the given function.
getEntryBlock(const DataFlowGraph & G)579 Block FuncNode::getEntryBlock(const DataFlowGraph &G) {
580   MachineBasicBlock *EntryB = &getCode()->front();
581   return findBlock(EntryB, G);
582 }
583 
584 // Target operand information.
585 //
586 
587 // For a given instruction, check if there are any bits of RR that can remain
588 // unchanged across this def.
isPreserving(const MachineInstr & In,unsigned OpNum) const589 bool TargetOperandInfo::isPreserving(const MachineInstr &In,
590                                      unsigned OpNum) const {
591   return TII.isPredicated(In);
592 }
593 
594 // Check if the definition of RR produces an unspecified value.
isClobbering(const MachineInstr & In,unsigned OpNum) const595 bool TargetOperandInfo::isClobbering(const MachineInstr &In,
596                                      unsigned OpNum) const {
597   const MachineOperand &Op = In.getOperand(OpNum);
598   if (Op.isRegMask())
599     return true;
600   assert(Op.isReg());
601   if (In.isCall())
602     if (Op.isDef() && Op.isDead())
603       return true;
604   return false;
605 }
606 
607 // Check if the given instruction specifically requires
isFixedReg(const MachineInstr & In,unsigned OpNum) const608 bool TargetOperandInfo::isFixedReg(const MachineInstr &In,
609                                    unsigned OpNum) const {
610   if (In.isCall() || In.isReturn() || In.isInlineAsm())
611     return true;
612   // Check for a tail call.
613   if (In.isBranch())
614     for (const MachineOperand &O : In.operands())
615       if (O.isGlobal() || O.isSymbol())
616         return true;
617 
618   const MCInstrDesc &D = In.getDesc();
619   if (D.implicit_defs().empty() && D.implicit_uses().empty())
620     return false;
621   const MachineOperand &Op = In.getOperand(OpNum);
622   // If there is a sub-register, treat the operand as non-fixed. Currently,
623   // fixed registers are those that are listed in the descriptor as implicit
624   // uses or defs, and those lists do not allow sub-registers.
625   if (Op.getSubReg() != 0)
626     return false;
627   Register Reg = Op.getReg();
628   ArrayRef<MCPhysReg> ImpOps =
629       Op.isDef() ? D.implicit_defs() : D.implicit_uses();
630   return is_contained(ImpOps, Reg);
631 }
632 
633 //
634 // The data flow graph construction.
635 //
636 
DataFlowGraph(MachineFunction & mf,const TargetInstrInfo & tii,const TargetRegisterInfo & tri,const MachineDominatorTree & mdt,const MachineDominanceFrontier & mdf)637 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
638                              const TargetRegisterInfo &tri,
639                              const MachineDominatorTree &mdt,
640                              const MachineDominanceFrontier &mdf)
641     : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii),
642       TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI),
643       LiveIns(PRI) {}
644 
DataFlowGraph(MachineFunction & mf,const TargetInstrInfo & tii,const TargetRegisterInfo & tri,const MachineDominatorTree & mdt,const MachineDominanceFrontier & mdf,const TargetOperandInfo & toi)645 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
646                              const TargetRegisterInfo &tri,
647                              const MachineDominatorTree &mdt,
648                              const MachineDominanceFrontier &mdf,
649                              const TargetOperandInfo &toi)
650     : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
651       LiveIns(PRI) {}
652 
653 // The implementation of the definition stack.
654 // Each register reference has its own definition stack. In particular,
655 // for a register references "Reg" and "Reg:subreg" will each have their
656 // own definition stacks.
657 
658 // Construct a stack iterator.
Iterator(const DataFlowGraph::DefStack & S,bool Top)659 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
660                                             bool Top)
661     : DS(S) {
662   if (!Top) {
663     // Initialize to bottom.
664     Pos = 0;
665     return;
666   }
667   // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
668   Pos = DS.Stack.size();
669   while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos - 1]))
670     Pos--;
671 }
672 
673 // Return the size of the stack, including block delimiters.
size() const674 unsigned DataFlowGraph::DefStack::size() const {
675   unsigned S = 0;
676   for (auto I = top(), E = bottom(); I != E; I.down())
677     S++;
678   return S;
679 }
680 
681 // Remove the top entry from the stack. Remove all intervening delimiters
682 // so that after this, the stack is either empty, or the top of the stack
683 // is a non-delimiter.
pop()684 void DataFlowGraph::DefStack::pop() {
685   assert(!empty());
686   unsigned P = nextDown(Stack.size());
687   Stack.resize(P);
688 }
689 
690 // Push a delimiter for block node N on the stack.
start_block(NodeId N)691 void DataFlowGraph::DefStack::start_block(NodeId N) {
692   assert(N != 0);
693   Stack.push_back(Def(nullptr, N));
694 }
695 
696 // Remove all nodes from the top of the stack, until the delimited for
697 // block node N is encountered. Remove the delimiter as well. In effect,
698 // this will remove from the stack all definitions from block N.
clear_block(NodeId N)699 void DataFlowGraph::DefStack::clear_block(NodeId N) {
700   assert(N != 0);
701   unsigned P = Stack.size();
702   while (P > 0) {
703     bool Found = isDelimiter(Stack[P - 1], N);
704     P--;
705     if (Found)
706       break;
707   }
708   // This will also remove the delimiter, if found.
709   Stack.resize(P);
710 }
711 
712 // Move the stack iterator up by one.
nextUp(unsigned P) const713 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
714   // Get the next valid position after P (skipping all delimiters).
715   // The input position P does not have to point to a non-delimiter.
716   unsigned SS = Stack.size();
717   bool IsDelim;
718   assert(P < SS);
719   do {
720     P++;
721     IsDelim = isDelimiter(Stack[P - 1]);
722   } while (P < SS && IsDelim);
723   assert(!IsDelim);
724   return P;
725 }
726 
727 // Move the stack iterator down by one.
nextDown(unsigned P) const728 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
729   // Get the preceding valid position before P (skipping all delimiters).
730   // The input position P does not have to point to a non-delimiter.
731   assert(P > 0 && P <= Stack.size());
732   bool IsDelim = isDelimiter(Stack[P - 1]);
733   do {
734     if (--P == 0)
735       break;
736     IsDelim = isDelimiter(Stack[P - 1]);
737   } while (P > 0 && IsDelim);
738   assert(!IsDelim);
739   return P;
740 }
741 
742 // Register information.
743 
getLandingPadLiveIns() const744 RegisterAggr DataFlowGraph::getLandingPadLiveIns() const {
745   RegisterAggr LR(getPRI());
746   const Function &F = MF.getFunction();
747   const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr;
748   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
749   if (RegisterId R = TLI.getExceptionPointerRegister(PF))
750     LR.insert(RegisterRef(R));
751   if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
752     if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
753       LR.insert(RegisterRef(R));
754   }
755   return LR;
756 }
757 
758 // Node management functions.
759 
760 // Get the pointer to the node with the id N.
ptr(NodeId N) const761 NodeBase *DataFlowGraph::ptr(NodeId N) const {
762   if (N == 0)
763     return nullptr;
764   return Memory.ptr(N);
765 }
766 
767 // Get the id of the node at the address P.
id(const NodeBase * P) const768 NodeId DataFlowGraph::id(const NodeBase *P) const {
769   if (P == nullptr)
770     return 0;
771   return Memory.id(P);
772 }
773 
774 // Allocate a new node and set the attributes to Attrs.
newNode(uint16_t Attrs)775 Node DataFlowGraph::newNode(uint16_t Attrs) {
776   Node P = Memory.New();
777   P.Addr->init();
778   P.Addr->setAttrs(Attrs);
779   return P;
780 }
781 
782 // Make a copy of the given node B, except for the data-flow links, which
783 // are set to 0.
cloneNode(const Node B)784 Node DataFlowGraph::cloneNode(const Node B) {
785   Node NA = newNode(0);
786   memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
787   // Ref nodes need to have the data-flow links reset.
788   if (NA.Addr->getType() == NodeAttrs::Ref) {
789     Ref RA = NA;
790     RA.Addr->setReachingDef(0);
791     RA.Addr->setSibling(0);
792     if (NA.Addr->getKind() == NodeAttrs::Def) {
793       Def DA = NA;
794       DA.Addr->setReachedDef(0);
795       DA.Addr->setReachedUse(0);
796     }
797   }
798   return NA;
799 }
800 
801 // Allocation routines for specific node types/kinds.
802 
newUse(Instr Owner,MachineOperand & Op,uint16_t Flags)803 Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) {
804   Use UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
805   UA.Addr->setRegRef(&Op, *this);
806   return UA;
807 }
808 
newPhiUse(Phi Owner,RegisterRef RR,Block PredB,uint16_t Flags)809 PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
810                                 uint16_t Flags) {
811   PhiUse PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
812   assert(Flags & NodeAttrs::PhiRef);
813   PUA.Addr->setRegRef(RR, *this);
814   PUA.Addr->setPredecessor(PredB.Id);
815   return PUA;
816 }
817 
newDef(Instr Owner,MachineOperand & Op,uint16_t Flags)818 Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) {
819   Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
820   DA.Addr->setRegRef(&Op, *this);
821   return DA;
822 }
823 
newDef(Instr Owner,RegisterRef RR,uint16_t Flags)824 Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) {
825   Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
826   assert(Flags & NodeAttrs::PhiRef);
827   DA.Addr->setRegRef(RR, *this);
828   return DA;
829 }
830 
newPhi(Block Owner)831 Phi DataFlowGraph::newPhi(Block Owner) {
832   Phi PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
833   Owner.Addr->addPhi(PA, *this);
834   return PA;
835 }
836 
newStmt(Block Owner,MachineInstr * MI)837 Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) {
838   Stmt SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
839   SA.Addr->setCode(MI);
840   Owner.Addr->addMember(SA, *this);
841   return SA;
842 }
843 
newBlock(Func Owner,MachineBasicBlock * BB)844 Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) {
845   Block BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
846   BA.Addr->setCode(BB);
847   Owner.Addr->addMember(BA, *this);
848   return BA;
849 }
850 
newFunc(MachineFunction * MF)851 Func DataFlowGraph::newFunc(MachineFunction *MF) {
852   Func FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
853   FA.Addr->setCode(MF);
854   return FA;
855 }
856 
857 // Build the data flow graph.
build(const Config & config)858 void DataFlowGraph::build(const Config &config) {
859   reset();
860   BuildCfg = config;
861   MachineRegisterInfo &MRI = MF.getRegInfo();
862   ReservedRegs = MRI.getReservedRegs();
863   bool SkipReserved = BuildCfg.Options & BuildOptions::OmitReserved;
864 
865   auto Insert = [](auto &Set, auto &&Range) {
866     Set.insert(Range.begin(), Range.end());
867   };
868 
869   if (BuildCfg.TrackRegs.empty()) {
870     std::set<RegisterId> BaseSet;
871     if (BuildCfg.Classes.empty()) {
872       // Insert every register.
873       for (unsigned R = 0, E = getPRI().getTRI().getNumRegs(); R != E; ++R)
874         BaseSet.insert(R);
875     } else {
876       for (const TargetRegisterClass *RC : BuildCfg.Classes) {
877         for (MCPhysReg R : *RC)
878           BaseSet.insert(R);
879       }
880     }
881     for (RegisterId R : BaseSet) {
882       if (SkipReserved && ReservedRegs[R])
883         continue;
884       Insert(TrackedUnits, getPRI().getUnits(RegisterRef(R)));
885     }
886   } else {
887     // Track set in Config overrides everything.
888     for (unsigned R : BuildCfg.TrackRegs) {
889       if (SkipReserved && ReservedRegs[R])
890         continue;
891       Insert(TrackedUnits, getPRI().getUnits(RegisterRef(R)));
892     }
893   }
894 
895   TheFunc = newFunc(&MF);
896 
897   if (MF.empty())
898     return;
899 
900   for (MachineBasicBlock &B : MF) {
901     Block BA = newBlock(TheFunc, &B);
902     BlockNodes.insert(std::make_pair(&B, BA));
903     for (MachineInstr &I : B) {
904       if (I.isDebugInstr())
905         continue;
906       buildStmt(BA, I);
907     }
908   }
909 
910   Block EA = TheFunc.Addr->getEntryBlock(*this);
911   NodeList Blocks = TheFunc.Addr->members(*this);
912 
913   // Collect function live-ins and entry block live-ins.
914   MachineBasicBlock &EntryB = *EA.Addr->getCode();
915   assert(EntryB.pred_empty() && "Function entry block has predecessors");
916   for (std::pair<unsigned, unsigned> P : MRI.liveins())
917     LiveIns.insert(RegisterRef(P.first));
918   if (MRI.tracksLiveness()) {
919     for (auto I : EntryB.liveins())
920       LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
921   }
922 
923   // Add function-entry phi nodes for the live-in registers.
924   for (RegisterRef RR : LiveIns.refs()) {
925     if (RR.isReg() && !isTracked(RR)) // isReg is likely guaranteed
926       continue;
927     Phi PA = newPhi(EA);
928     uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
929     Def DA = newDef(PA, RR, PhiFlags);
930     PA.Addr->addMember(DA, *this);
931   }
932 
933   // Add phis for landing pads.
934   // Landing pads, unlike usual backs blocks, are not entered through
935   // branches in the program, or fall-throughs from other blocks. They
936   // are entered from the exception handling runtime and target's ABI
937   // may define certain registers as defined on entry to such a block.
938   RegisterAggr EHRegs = getLandingPadLiveIns();
939   if (!EHRegs.empty()) {
940     for (Block BA : Blocks) {
941       const MachineBasicBlock &B = *BA.Addr->getCode();
942       if (!B.isEHPad())
943         continue;
944 
945       // Prepare a list of NodeIds of the block's predecessors.
946       NodeList Preds;
947       for (MachineBasicBlock *PB : B.predecessors())
948         Preds.push_back(findBlock(PB));
949 
950       // Build phi nodes for each live-in.
951       for (RegisterRef RR : EHRegs.refs()) {
952         if (RR.isReg() && !isTracked(RR))
953           continue;
954         Phi PA = newPhi(BA);
955         uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
956         // Add def:
957         Def DA = newDef(PA, RR, PhiFlags);
958         PA.Addr->addMember(DA, *this);
959         // Add uses (no reaching defs for phi uses):
960         for (Block PBA : Preds) {
961           PhiUse PUA = newPhiUse(PA, RR, PBA);
962           PA.Addr->addMember(PUA, *this);
963         }
964       }
965     }
966   }
967 
968   // Build a map "PhiM" which will contain, for each block, the set
969   // of references that will require phi definitions in that block.
970   BlockRefsMap PhiM(getPRI());
971   for (Block BA : Blocks)
972     recordDefsForDF(PhiM, BA);
973   for (Block BA : Blocks)
974     buildPhis(PhiM, BA);
975 
976   // Link all the refs. This will recursively traverse the dominator tree.
977   DefStackMap DM;
978   linkBlockRefs(DM, EA);
979 
980   // Finally, remove all unused phi nodes.
981   if (!(BuildCfg.Options & BuildOptions::KeepDeadPhis))
982     removeUnusedPhis();
983 }
984 
makeRegRef(unsigned Reg,unsigned Sub) const985 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
986   assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg));
987   assert(Reg != 0);
988   if (Sub != 0)
989     Reg = TRI.getSubReg(Reg, Sub);
990   return RegisterRef(Reg);
991 }
992 
makeRegRef(const MachineOperand & Op) const993 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
994   assert(Op.isReg() || Op.isRegMask());
995   if (Op.isReg())
996     return makeRegRef(Op.getReg(), Op.getSubReg());
997   return RegisterRef(getPRI().getRegMaskId(Op.getRegMask()),
998                      LaneBitmask::getAll());
999 }
1000 
1001 // For each stack in the map DefM, push the delimiter for block B on it.
markBlock(NodeId B,DefStackMap & DefM)1002 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1003   // Push block delimiters.
1004   for (auto &P : DefM)
1005     P.second.start_block(B);
1006 }
1007 
1008 // Remove all definitions coming from block B from each stack in DefM.
releaseBlock(NodeId B,DefStackMap & DefM)1009 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1010   // Pop all defs from this block from the definition stack. Defs that were
1011   // added to the map during the traversal of instructions will not have a
1012   // delimiter, but for those, the whole stack will be emptied.
1013   for (auto &P : DefM)
1014     P.second.clear_block(B);
1015 
1016   // Finally, remove empty stacks from the map.
1017   for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1018     NextI = std::next(I);
1019     // This preserves the validity of iterators other than I.
1020     if (I->second.empty())
1021       DefM.erase(I);
1022   }
1023 }
1024 
1025 // Push all definitions from the instruction node IA to an appropriate
1026 // stack in DefM.
pushAllDefs(Instr IA,DefStackMap & DefM)1027 void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) {
1028   pushClobbers(IA, DefM);
1029   pushDefs(IA, DefM);
1030 }
1031 
1032 // Push all definitions from the instruction node IA to an appropriate
1033 // stack in DefM.
pushClobbers(Instr IA,DefStackMap & DefM)1034 void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) {
1035   NodeSet Visited;
1036   std::set<RegisterId> Defined;
1037 
1038   // The important objectives of this function are:
1039   // - to be able to handle instructions both while the graph is being
1040   //   constructed, and after the graph has been constructed, and
1041   // - maintain proper ordering of definitions on the stack for each
1042   //   register reference:
1043   //   - if there are two or more related defs in IA (i.e. coming from
1044   //     the same machine operand), then only push one def on the stack,
1045   //   - if there are multiple unrelated defs of non-overlapping
1046   //     subregisters of S, then the stack for S will have both (in an
1047   //     unspecified order), but the order does not matter from the data-
1048   //     -flow perspective.
1049 
1050   for (Def DA : IA.Addr->members_if(IsDef, *this)) {
1051     if (Visited.count(DA.Id))
1052       continue;
1053     if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1054       continue;
1055 
1056     NodeList Rel = getRelatedRefs(IA, DA);
1057     Def PDA = Rel.front();
1058     RegisterRef RR = PDA.Addr->getRegRef(*this);
1059 
1060     // Push the definition on the stack for the register and all aliases.
1061     // The def stack traversal in linkNodeUp will check the exact aliasing.
1062     DefM[RR.Reg].push(DA);
1063     Defined.insert(RR.Reg);
1064     for (RegisterId A : getPRI().getAliasSet(RR.Reg)) {
1065       if (RegisterRef::isRegId(A) && !isTracked(RegisterRef(A)))
1066         continue;
1067       // Check that we don't push the same def twice.
1068       assert(A != RR.Reg);
1069       if (!Defined.count(A))
1070         DefM[A].push(DA);
1071     }
1072     // Mark all the related defs as visited.
1073     for (Node T : Rel)
1074       Visited.insert(T.Id);
1075   }
1076 }
1077 
1078 // Push all definitions from the instruction node IA to an appropriate
1079 // stack in DefM.
pushDefs(Instr IA,DefStackMap & DefM)1080 void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) {
1081   NodeSet Visited;
1082 #ifndef NDEBUG
1083   std::set<RegisterId> Defined;
1084 #endif
1085 
1086   // The important objectives of this function are:
1087   // - to be able to handle instructions both while the graph is being
1088   //   constructed, and after the graph has been constructed, and
1089   // - maintain proper ordering of definitions on the stack for each
1090   //   register reference:
1091   //   - if there are two or more related defs in IA (i.e. coming from
1092   //     the same machine operand), then only push one def on the stack,
1093   //   - if there are multiple unrelated defs of non-overlapping
1094   //     subregisters of S, then the stack for S will have both (in an
1095   //     unspecified order), but the order does not matter from the data-
1096   //     -flow perspective.
1097 
1098   for (Def DA : IA.Addr->members_if(IsDef, *this)) {
1099     if (Visited.count(DA.Id))
1100       continue;
1101     if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1102       continue;
1103 
1104     NodeList Rel = getRelatedRefs(IA, DA);
1105     Def PDA = Rel.front();
1106     RegisterRef RR = PDA.Addr->getRegRef(*this);
1107 #ifndef NDEBUG
1108     // Assert if the register is defined in two or more unrelated defs.
1109     // This could happen if there are two or more def operands defining it.
1110     if (!Defined.insert(RR.Reg).second) {
1111       MachineInstr *MI = Stmt(IA).Addr->getCode();
1112       dbgs() << "Multiple definitions of register: " << Print(RR, *this)
1113              << " in\n  " << *MI << "in " << printMBBReference(*MI->getParent())
1114              << '\n';
1115       llvm_unreachable(nullptr);
1116     }
1117 #endif
1118     // Push the definition on the stack for the register and all aliases.
1119     // The def stack traversal in linkNodeUp will check the exact aliasing.
1120     DefM[RR.Reg].push(DA);
1121     for (RegisterId A : getPRI().getAliasSet(RR.Reg)) {
1122       if (RegisterRef::isRegId(A) && !isTracked(RegisterRef(A)))
1123         continue;
1124       // Check that we don't push the same def twice.
1125       assert(A != RR.Reg);
1126       DefM[A].push(DA);
1127     }
1128     // Mark all the related defs as visited.
1129     for (Node T : Rel)
1130       Visited.insert(T.Id);
1131   }
1132 }
1133 
1134 // Return the list of all reference nodes related to RA, including RA itself.
1135 // See "getNextRelated" for the meaning of a "related reference".
getRelatedRefs(Instr IA,Ref RA) const1136 NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const {
1137   assert(IA.Id != 0 && RA.Id != 0);
1138 
1139   NodeList Refs;
1140   NodeId Start = RA.Id;
1141   do {
1142     Refs.push_back(RA);
1143     RA = getNextRelated(IA, RA);
1144   } while (RA.Id != 0 && RA.Id != Start);
1145   return Refs;
1146 }
1147 
1148 // Clear all information in the graph.
reset()1149 void DataFlowGraph::reset() {
1150   Memory.clear();
1151   BlockNodes.clear();
1152   TrackedUnits.clear();
1153   ReservedRegs.clear();
1154   TheFunc = Func();
1155 }
1156 
1157 // Return the next reference node in the instruction node IA that is related
1158 // to RA. Conceptually, two reference nodes are related if they refer to the
1159 // same instance of a register access, but differ in flags or other minor
1160 // characteristics. Specific examples of related nodes are shadow reference
1161 // nodes.
1162 // Return the equivalent of nullptr if there are no more related references.
getNextRelated(Instr IA,Ref RA) const1163 Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const {
1164   assert(IA.Id != 0 && RA.Id != 0);
1165 
1166   auto IsRelated = [this, RA](Ref TA) -> bool {
1167     if (TA.Addr->getKind() != RA.Addr->getKind())
1168       return false;
1169     if (!getPRI().equal_to(TA.Addr->getRegRef(*this),
1170                            RA.Addr->getRegRef(*this))) {
1171       return false;
1172     }
1173     return true;
1174   };
1175 
1176   RegisterRef RR = RA.Addr->getRegRef(*this);
1177   if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1178     auto Cond = [&IsRelated, RA](Ref TA) -> bool {
1179       return IsRelated(TA) && &RA.Addr->getOp() == &TA.Addr->getOp();
1180     };
1181     return RA.Addr->getNextRef(RR, Cond, true, *this);
1182   }
1183 
1184   assert(IA.Addr->getKind() == NodeAttrs::Phi);
1185   auto Cond = [&IsRelated, RA](Ref TA) -> bool {
1186     if (!IsRelated(TA))
1187       return false;
1188     if (TA.Addr->getKind() != NodeAttrs::Use)
1189       return true;
1190     // For phi uses, compare predecessor blocks.
1191     return PhiUse(TA).Addr->getPredecessor() ==
1192            PhiUse(RA).Addr->getPredecessor();
1193   };
1194   return RA.Addr->getNextRef(RR, Cond, true, *this);
1195 }
1196 
1197 // Find the next node related to RA in IA that satisfies condition P.
1198 // If such a node was found, return a pair where the second element is the
1199 // located node. If such a node does not exist, return a pair where the
1200 // first element is the element after which such a node should be inserted,
1201 // and the second element is a null-address.
1202 template <typename Predicate>
locateNextRef(Instr IA,Ref RA,Predicate P) const1203 std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA,
1204                                                  Predicate P) const {
1205   assert(IA.Id != 0 && RA.Id != 0);
1206 
1207   Ref NA;
1208   NodeId Start = RA.Id;
1209   while (true) {
1210     NA = getNextRelated(IA, RA);
1211     if (NA.Id == 0 || NA.Id == Start)
1212       break;
1213     if (P(NA))
1214       break;
1215     RA = NA;
1216   }
1217 
1218   if (NA.Id != 0 && NA.Id != Start)
1219     return std::make_pair(RA, NA);
1220   return std::make_pair(RA, Ref());
1221 }
1222 
1223 // Get the next shadow node in IA corresponding to RA, and optionally create
1224 // such a node if it does not exist.
getNextShadow(Instr IA,Ref RA,bool Create)1225 Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) {
1226   assert(IA.Id != 0 && RA.Id != 0);
1227 
1228   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1229   auto IsShadow = [Flags](Ref TA) -> bool {
1230     return TA.Addr->getFlags() == Flags;
1231   };
1232   auto Loc = locateNextRef(IA, RA, IsShadow);
1233   if (Loc.second.Id != 0 || !Create)
1234     return Loc.second;
1235 
1236   // Create a copy of RA and mark is as shadow.
1237   Ref NA = cloneNode(RA);
1238   NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1239   IA.Addr->addMemberAfter(Loc.first, NA, *this);
1240   return NA;
1241 }
1242 
1243 // Create a new statement node in the block node BA that corresponds to
1244 // the machine instruction MI.
buildStmt(Block BA,MachineInstr & In)1245 void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) {
1246   Stmt SA = newStmt(BA, &In);
1247 
1248   auto isCall = [](const MachineInstr &In) -> bool {
1249     if (In.isCall())
1250       return true;
1251     // Is tail call?
1252     if (In.isBranch()) {
1253       for (const MachineOperand &Op : In.operands())
1254         if (Op.isGlobal() || Op.isSymbol())
1255           return true;
1256       // Assume indirect branches are calls. This is for the purpose of
1257       // keeping implicit operands, and so it won't hurt on intra-function
1258       // indirect branches.
1259       if (In.isIndirectBranch())
1260         return true;
1261     }
1262     return false;
1263   };
1264 
1265   auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool {
1266     // This instruction defines DR. Check if there is a use operand that
1267     // would make DR live on entry to the instruction.
1268     for (const MachineOperand &Op : In.all_uses()) {
1269       if (Op.getReg() == 0 || Op.isUndef())
1270         continue;
1271       RegisterRef UR = makeRegRef(Op);
1272       if (getPRI().alias(DR, UR))
1273         return false;
1274     }
1275     return true;
1276   };
1277 
1278   bool IsCall = isCall(In);
1279   unsigned NumOps = In.getNumOperands();
1280 
1281   // Avoid duplicate implicit defs. This will not detect cases of implicit
1282   // defs that define registers that overlap, but it is not clear how to
1283   // interpret that in the absence of explicit defs. Overlapping explicit
1284   // defs are likely illegal already.
1285   BitVector DoneDefs(TRI.getNumRegs());
1286   // Process explicit defs first.
1287   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1288     MachineOperand &Op = In.getOperand(OpN);
1289     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1290       continue;
1291     Register R = Op.getReg();
1292     if (!R || !R.isPhysical() || !isTracked(RegisterRef(R)))
1293       continue;
1294     uint16_t Flags = NodeAttrs::None;
1295     if (TOI.isPreserving(In, OpN)) {
1296       Flags |= NodeAttrs::Preserving;
1297       // If the def is preserving, check if it is also undefined.
1298       if (isDefUndef(In, makeRegRef(Op)))
1299         Flags |= NodeAttrs::Undef;
1300     }
1301     if (TOI.isClobbering(In, OpN))
1302       Flags |= NodeAttrs::Clobbering;
1303     if (TOI.isFixedReg(In, OpN))
1304       Flags |= NodeAttrs::Fixed;
1305     if (IsCall && Op.isDead())
1306       Flags |= NodeAttrs::Dead;
1307     Def DA = newDef(SA, Op, Flags);
1308     SA.Addr->addMember(DA, *this);
1309     assert(!DoneDefs.test(R));
1310     DoneDefs.set(R);
1311   }
1312 
1313   // Process reg-masks (as clobbers).
1314   BitVector DoneClobbers(TRI.getNumRegs());
1315   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1316     MachineOperand &Op = In.getOperand(OpN);
1317     if (!Op.isRegMask())
1318       continue;
1319     uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead;
1320     Def DA = newDef(SA, Op, Flags);
1321     SA.Addr->addMember(DA, *this);
1322     // Record all clobbered registers in DoneDefs.
1323     const uint32_t *RM = Op.getRegMask();
1324     for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
1325       if (!isTracked(RegisterRef(i)))
1326         continue;
1327       if (!(RM[i / 32] & (1u << (i % 32))))
1328         DoneClobbers.set(i);
1329     }
1330   }
1331 
1332   // Process implicit defs, skipping those that have already been added
1333   // as explicit.
1334   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1335     MachineOperand &Op = In.getOperand(OpN);
1336     if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1337       continue;
1338     Register R = Op.getReg();
1339     if (!R || !R.isPhysical() || !isTracked(RegisterRef(R)) || DoneDefs.test(R))
1340       continue;
1341     RegisterRef RR = makeRegRef(Op);
1342     uint16_t Flags = NodeAttrs::None;
1343     if (TOI.isPreserving(In, OpN)) {
1344       Flags |= NodeAttrs::Preserving;
1345       // If the def is preserving, check if it is also undefined.
1346       if (isDefUndef(In, RR))
1347         Flags |= NodeAttrs::Undef;
1348     }
1349     if (TOI.isClobbering(In, OpN))
1350       Flags |= NodeAttrs::Clobbering;
1351     if (TOI.isFixedReg(In, OpN))
1352       Flags |= NodeAttrs::Fixed;
1353     if (IsCall && Op.isDead()) {
1354       if (DoneClobbers.test(R))
1355         continue;
1356       Flags |= NodeAttrs::Dead;
1357     }
1358     Def DA = newDef(SA, Op, Flags);
1359     SA.Addr->addMember(DA, *this);
1360     DoneDefs.set(R);
1361   }
1362 
1363   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1364     MachineOperand &Op = In.getOperand(OpN);
1365     if (!Op.isReg() || !Op.isUse())
1366       continue;
1367     Register R = Op.getReg();
1368     if (!R || !R.isPhysical() || !isTracked(RegisterRef(R)))
1369       continue;
1370     uint16_t Flags = NodeAttrs::None;
1371     if (Op.isUndef())
1372       Flags |= NodeAttrs::Undef;
1373     if (TOI.isFixedReg(In, OpN))
1374       Flags |= NodeAttrs::Fixed;
1375     Use UA = newUse(SA, Op, Flags);
1376     SA.Addr->addMember(UA, *this);
1377   }
1378 }
1379 
1380 // Scan all defs in the block node BA and record in PhiM the locations of
1381 // phi nodes corresponding to these defs.
recordDefsForDF(BlockRefsMap & PhiM,Block BA)1382 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) {
1383   // Check all defs from block BA and record them in each block in BA's
1384   // iterated dominance frontier. This information will later be used to
1385   // create phi nodes.
1386   MachineBasicBlock *BB = BA.Addr->getCode();
1387   assert(BB);
1388   auto DFLoc = MDF.find(BB);
1389   if (DFLoc == MDF.end() || DFLoc->second.empty())
1390     return;
1391 
1392   // Traverse all instructions in the block and collect the set of all
1393   // defined references. For each reference there will be a phi created
1394   // in the block's iterated dominance frontier.
1395   // This is done to make sure that each defined reference gets only one
1396   // phi node, even if it is defined multiple times.
1397   RegisterAggr Defs(getPRI());
1398   for (Instr IA : BA.Addr->members(*this)) {
1399     for (Ref RA : IA.Addr->members_if(IsDef, *this)) {
1400       RegisterRef RR = RA.Addr->getRegRef(*this);
1401       if (RR.isReg() && isTracked(RR))
1402         Defs.insert(RR);
1403     }
1404   }
1405 
1406   // Calculate the iterated dominance frontier of BB.
1407   const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1408   SetVector<MachineBasicBlock *> IDF(DF.begin(), DF.end());
1409   for (unsigned i = 0; i < IDF.size(); ++i) {
1410     auto F = MDF.find(IDF[i]);
1411     if (F != MDF.end())
1412       IDF.insert(F->second.begin(), F->second.end());
1413   }
1414 
1415   // Finally, add the set of defs to each block in the iterated dominance
1416   // frontier.
1417   for (auto *DB : IDF) {
1418     Block DBA = findBlock(DB);
1419     PhiM[DBA.Id].insert(Defs);
1420   }
1421 }
1422 
1423 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1424 // that are located in the block node BA.
buildPhis(BlockRefsMap & PhiM,Block BA)1425 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, Block BA) {
1426   // Check if this blocks has any DF defs, i.e. if there are any defs
1427   // that this block is in the iterated dominance frontier of.
1428   auto HasDF = PhiM.find(BA.Id);
1429   if (HasDF == PhiM.end() || HasDF->second.empty())
1430     return;
1431 
1432   // Prepare a list of NodeIds of the block's predecessors.
1433   NodeList Preds;
1434   const MachineBasicBlock *MBB = BA.Addr->getCode();
1435   for (MachineBasicBlock *PB : MBB->predecessors())
1436     Preds.push_back(findBlock(PB));
1437 
1438   const RegisterAggr &Defs = PhiM[BA.Id];
1439   uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1440 
1441   for (RegisterRef RR : Defs.refs()) {
1442     Phi PA = newPhi(BA);
1443     PA.Addr->addMember(newDef(PA, RR, PhiFlags), *this);
1444 
1445     // Add phi uses.
1446     for (Block PBA : Preds) {
1447       PA.Addr->addMember(newPhiUse(PA, RR, PBA), *this);
1448     }
1449   }
1450 }
1451 
1452 // Remove any unneeded phi nodes that were created during the build process.
removeUnusedPhis()1453 void DataFlowGraph::removeUnusedPhis() {
1454   // This will remove unused phis, i.e. phis where each def does not reach
1455   // any uses or other defs. This will not detect or remove circular phi
1456   // chains that are otherwise dead. Unused/dead phis are created during
1457   // the build process and this function is intended to remove these cases
1458   // that are easily determinable to be unnecessary.
1459 
1460   SetVector<NodeId> PhiQ;
1461   for (Block BA : TheFunc.Addr->members(*this)) {
1462     for (auto P : BA.Addr->members_if(IsPhi, *this))
1463       PhiQ.insert(P.Id);
1464   }
1465 
1466   static auto HasUsedDef = [](NodeList &Ms) -> bool {
1467     for (Node M : Ms) {
1468       if (M.Addr->getKind() != NodeAttrs::Def)
1469         continue;
1470       Def DA = M;
1471       if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1472         return true;
1473     }
1474     return false;
1475   };
1476 
1477   // Any phi, if it is removed, may affect other phis (make them dead).
1478   // For each removed phi, collect the potentially affected phis and add
1479   // them back to the queue.
1480   while (!PhiQ.empty()) {
1481     auto PA = addr<PhiNode *>(PhiQ[0]);
1482     PhiQ.remove(PA.Id);
1483     NodeList Refs = PA.Addr->members(*this);
1484     if (HasUsedDef(Refs))
1485       continue;
1486     for (Ref RA : Refs) {
1487       if (NodeId RD = RA.Addr->getReachingDef()) {
1488         auto RDA = addr<DefNode *>(RD);
1489         Instr OA = RDA.Addr->getOwner(*this);
1490         if (IsPhi(OA))
1491           PhiQ.insert(OA.Id);
1492       }
1493       if (RA.Addr->isDef())
1494         unlinkDef(RA, true);
1495       else
1496         unlinkUse(RA, true);
1497     }
1498     Block BA = PA.Addr->getOwner(*this);
1499     BA.Addr->removeMember(PA, *this);
1500   }
1501 }
1502 
1503 // For a given reference node TA in an instruction node IA, connect the
1504 // reaching def of TA to the appropriate def node. Create any shadow nodes
1505 // as appropriate.
1506 template <typename T>
linkRefUp(Instr IA,NodeAddr<T> TA,DefStack & DS)1507 void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) {
1508   if (DS.empty())
1509     return;
1510   RegisterRef RR = TA.Addr->getRegRef(*this);
1511   NodeAddr<T> TAP;
1512 
1513   // References from the def stack that have been examined so far.
1514   RegisterAggr Defs(getPRI());
1515 
1516   for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1517     RegisterRef QR = I->Addr->getRegRef(*this);
1518 
1519     // Skip all defs that are aliased to any of the defs that we have already
1520     // seen. If this completes a cover of RR, stop the stack traversal.
1521     bool Alias = Defs.hasAliasOf(QR);
1522     bool Cover = Defs.insert(QR).hasCoverOf(RR);
1523     if (Alias) {
1524       if (Cover)
1525         break;
1526       continue;
1527     }
1528 
1529     // The reaching def.
1530     Def RDA = *I;
1531 
1532     // Pick the reached node.
1533     if (TAP.Id == 0) {
1534       TAP = TA;
1535     } else {
1536       // Mark the existing ref as "shadow" and create a new shadow.
1537       TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1538       TAP = getNextShadow(IA, TAP, true);
1539     }
1540 
1541     // Create the link.
1542     TAP.Addr->linkToDef(TAP.Id, RDA);
1543 
1544     if (Cover)
1545       break;
1546   }
1547 }
1548 
1549 // Create data-flow links for all reference nodes in the statement node SA.
1550 template <typename Predicate>
linkStmtRefs(DefStackMap & DefM,Stmt SA,Predicate P)1551 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) {
1552 #ifndef NDEBUG
1553   RegisterSet Defs(getPRI());
1554 #endif
1555 
1556   // Link all nodes (upwards in the data-flow) with their reaching defs.
1557   for (Ref RA : SA.Addr->members_if(P, *this)) {
1558     uint16_t Kind = RA.Addr->getKind();
1559     assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1560     RegisterRef RR = RA.Addr->getRegRef(*this);
1561 #ifndef NDEBUG
1562     // Do not expect multiple defs of the same reference.
1563     assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1564     Defs.insert(RR);
1565 #endif
1566 
1567     auto F = DefM.find(RR.Reg);
1568     if (F == DefM.end())
1569       continue;
1570     DefStack &DS = F->second;
1571     if (Kind == NodeAttrs::Use)
1572       linkRefUp<UseNode *>(SA, RA, DS);
1573     else if (Kind == NodeAttrs::Def)
1574       linkRefUp<DefNode *>(SA, RA, DS);
1575     else
1576       llvm_unreachable("Unexpected node in instruction");
1577   }
1578 }
1579 
1580 // Create data-flow links for all instructions in the block node BA. This
1581 // will include updating any phi nodes in BA.
linkBlockRefs(DefStackMap & DefM,Block BA)1582 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) {
1583   // Push block delimiters.
1584   markBlock(BA.Id, DefM);
1585 
1586   auto IsClobber = [](Ref RA) -> bool {
1587     return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1588   };
1589   auto IsNoClobber = [](Ref RA) -> bool {
1590     return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1591   };
1592 
1593   assert(BA.Addr && "block node address is needed to create a data-flow link");
1594   // For each non-phi instruction in the block, link all the defs and uses
1595   // to their reaching defs. For any member of the block (including phis),
1596   // push the defs on the corresponding stacks.
1597   for (Instr IA : BA.Addr->members(*this)) {
1598     // Ignore phi nodes here. They will be linked part by part from the
1599     // predecessors.
1600     if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1601       linkStmtRefs(DefM, IA, IsUse);
1602       linkStmtRefs(DefM, IA, IsClobber);
1603     }
1604 
1605     // Push the definitions on the stack.
1606     pushClobbers(IA, DefM);
1607 
1608     if (IA.Addr->getKind() == NodeAttrs::Stmt)
1609       linkStmtRefs(DefM, IA, IsNoClobber);
1610 
1611     pushDefs(IA, DefM);
1612   }
1613 
1614   // Recursively process all children in the dominator tree.
1615   MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1616   for (auto *I : *N) {
1617     MachineBasicBlock *SB = I->getBlock();
1618     Block SBA = findBlock(SB);
1619     linkBlockRefs(DefM, SBA);
1620   }
1621 
1622   // Link the phi uses from the successor blocks.
1623   auto IsUseForBA = [BA](Node NA) -> bool {
1624     if (NA.Addr->getKind() != NodeAttrs::Use)
1625       return false;
1626     assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1627     return PhiUse(NA).Addr->getPredecessor() == BA.Id;
1628   };
1629 
1630   RegisterAggr EHLiveIns = getLandingPadLiveIns();
1631   MachineBasicBlock *MBB = BA.Addr->getCode();
1632 
1633   for (MachineBasicBlock *SB : MBB->successors()) {
1634     bool IsEHPad = SB->isEHPad();
1635     Block SBA = findBlock(SB);
1636     for (Instr IA : SBA.Addr->members_if(IsPhi, *this)) {
1637       // Do not link phi uses for landing pad live-ins.
1638       if (IsEHPad) {
1639         // Find what register this phi is for.
1640         Ref RA = IA.Addr->getFirstMember(*this);
1641         assert(RA.Id != 0);
1642         if (EHLiveIns.hasCoverOf(RA.Addr->getRegRef(*this)))
1643           continue;
1644       }
1645       // Go over each phi use associated with MBB, and link it.
1646       for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1647         PhiUse PUA = U;
1648         RegisterRef RR = PUA.Addr->getRegRef(*this);
1649         linkRefUp<UseNode *>(IA, PUA, DefM[RR.Reg]);
1650       }
1651     }
1652   }
1653 
1654   // Pop all defs from this block from the definition stacks.
1655   releaseBlock(BA.Id, DefM);
1656 }
1657 
1658 // Remove the use node UA from any data-flow and structural links.
unlinkUseDF(Use UA)1659 void DataFlowGraph::unlinkUseDF(Use UA) {
1660   NodeId RD = UA.Addr->getReachingDef();
1661   NodeId Sib = UA.Addr->getSibling();
1662 
1663   if (RD == 0) {
1664     assert(Sib == 0);
1665     return;
1666   }
1667 
1668   auto RDA = addr<DefNode *>(RD);
1669   auto TA = addr<UseNode *>(RDA.Addr->getReachedUse());
1670   if (TA.Id == UA.Id) {
1671     RDA.Addr->setReachedUse(Sib);
1672     return;
1673   }
1674 
1675   while (TA.Id != 0) {
1676     NodeId S = TA.Addr->getSibling();
1677     if (S == UA.Id) {
1678       TA.Addr->setSibling(UA.Addr->getSibling());
1679       return;
1680     }
1681     TA = addr<UseNode *>(S);
1682   }
1683 }
1684 
1685 // Remove the def node DA from any data-flow and structural links.
unlinkDefDF(Def DA)1686 void DataFlowGraph::unlinkDefDF(Def DA) {
1687   //
1688   //         RD
1689   //         | reached
1690   //         | def
1691   //         :
1692   //         .
1693   //        +----+
1694   // ... -- | DA | -- ... -- 0  : sibling chain of DA
1695   //        +----+
1696   //         |  | reached
1697   //         |  : def
1698   //         |  .
1699   //         | ...  : Siblings (defs)
1700   //         |
1701   //         : reached
1702   //         . use
1703   //        ... : sibling chain of reached uses
1704 
1705   NodeId RD = DA.Addr->getReachingDef();
1706 
1707   // Visit all siblings of the reached def and reset their reaching defs.
1708   // Also, defs reached by DA are now "promoted" to being reached by RD,
1709   // so all of them will need to be spliced into the sibling chain where
1710   // DA belongs.
1711   auto getAllNodes = [this](NodeId N) -> NodeList {
1712     NodeList Res;
1713     while (N) {
1714       auto RA = addr<RefNode *>(N);
1715       // Keep the nodes in the exact sibling order.
1716       Res.push_back(RA);
1717       N = RA.Addr->getSibling();
1718     }
1719     return Res;
1720   };
1721   NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1722   NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1723 
1724   if (RD == 0) {
1725     for (Ref I : ReachedDefs)
1726       I.Addr->setSibling(0);
1727     for (Ref I : ReachedUses)
1728       I.Addr->setSibling(0);
1729   }
1730   for (Def I : ReachedDefs)
1731     I.Addr->setReachingDef(RD);
1732   for (Use I : ReachedUses)
1733     I.Addr->setReachingDef(RD);
1734 
1735   NodeId Sib = DA.Addr->getSibling();
1736   if (RD == 0) {
1737     assert(Sib == 0);
1738     return;
1739   }
1740 
1741   // Update the reaching def node and remove DA from the sibling list.
1742   auto RDA = addr<DefNode *>(RD);
1743   auto TA = addr<DefNode *>(RDA.Addr->getReachedDef());
1744   if (TA.Id == DA.Id) {
1745     // If DA is the first reached def, just update the RD's reached def
1746     // to the DA's sibling.
1747     RDA.Addr->setReachedDef(Sib);
1748   } else {
1749     // Otherwise, traverse the sibling list of the reached defs and remove
1750     // DA from it.
1751     while (TA.Id != 0) {
1752       NodeId S = TA.Addr->getSibling();
1753       if (S == DA.Id) {
1754         TA.Addr->setSibling(Sib);
1755         break;
1756       }
1757       TA = addr<DefNode *>(S);
1758     }
1759   }
1760 
1761   // Splice the DA's reached defs into the RDA's reached def chain.
1762   if (!ReachedDefs.empty()) {
1763     auto Last = Def(ReachedDefs.back());
1764     Last.Addr->setSibling(RDA.Addr->getReachedDef());
1765     RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1766   }
1767   // Splice the DA's reached uses into the RDA's reached use chain.
1768   if (!ReachedUses.empty()) {
1769     auto Last = Use(ReachedUses.back());
1770     Last.Addr->setSibling(RDA.Addr->getReachedUse());
1771     RDA.Addr->setReachedUse(ReachedUses.front().Id);
1772   }
1773 }
1774 
isTracked(RegisterRef RR) const1775 bool DataFlowGraph::isTracked(RegisterRef RR) const {
1776   return !disjoint(getPRI().getUnits(RR), TrackedUnits);
1777 }
1778 
hasUntrackedRef(Stmt S,bool IgnoreReserved) const1779 bool DataFlowGraph::hasUntrackedRef(Stmt S, bool IgnoreReserved) const {
1780   SmallVector<MachineOperand *> Ops;
1781 
1782   for (Ref R : S.Addr->members(*this)) {
1783     Ops.push_back(&R.Addr->getOp());
1784     RegisterRef RR = R.Addr->getRegRef(*this);
1785     if (IgnoreReserved && RR.isReg() && ReservedRegs[RR.idx()])
1786       continue;
1787     if (!isTracked(RR))
1788       return true;
1789   }
1790   for (const MachineOperand &Op : S.Addr->getCode()->operands()) {
1791     if (!Op.isReg() && !Op.isRegMask())
1792       continue;
1793     if (!llvm::is_contained(Ops, &Op))
1794       return true;
1795   }
1796   return false;
1797 }
1798 
1799 } // end namespace llvm::rdf
1800