1//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for AArch64 architecture.
10//
11//===----------------------------------------------------------------------===//
12
13/// CCIfBigEndian - Match only if we're in big endian mode.
14class CCIfBigEndian<CCAction A> :
15  CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
16
17class CCIfILP32<CCAction A> :
18  CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
19
20
21//===----------------------------------------------------------------------===//
22// ARM AAPCS64 Calling Convention
23//===----------------------------------------------------------------------===//
24
25defvar AArch64_Common = [
26  CCIfType<[iPTR], CCBitConvertToType<i64>>,
27  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
28  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
29
30  // Big endian vectors must be passed as if they were 1-element vectors so that
31  // their lanes are in a consistent order.
32  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
33                         CCBitConvertToType<f64>>>,
34  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
35                         CCBitConvertToType<f128>>>,
36
37  // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
38  // However, on windows, in some circumstances, the SRet is passed in X0 or X1
39  // instead.  The presence of the inreg attribute indicates that SRet is
40  // passed in the alternative register (X0 or X1), not X8:
41  // - X0 for non-instance methods.
42  // - X1 for instance methods.
43
44  // The "sret" attribute identifies indirect returns.
45  // The "inreg" attribute identifies non-aggregate types.
46  // The position of the "sret" attribute identifies instance/non-instance
47  // methods.
48  // "sret" on argument 0 means non-instance methods.
49  // "sret" on argument 1 means instance methods.
50
51  CCIfInReg<CCIfType<[i64],
52    CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
53
54  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
55
56  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
57  // slot is 64-bit.
58  CCIfByVal<CCPassByVal<8, 8>>,
59
60  // Pass SwiftSelf in a callee saved register.
61  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
62
63  // A SwiftError is passed in X21.
64  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
65
66  // Pass SwiftAsync in an otherwise callee saved register so that it will be
67  // preserved for normal function calls.
68  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
69
70  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
71
72  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
73            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
74           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
75  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
76            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
77           CCPassIndirect<i64>>,
78
79  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount],
80           CCAssignToReg<[P0, P1, P2, P3]>>,
81  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount],
82           CCPassIndirect<i64>>,
83
84  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
85  // up to eight each of GPR and FPR.
86  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
87  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
88  // i128 is split to two i64s, we can't fit half to register X7.
89  CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
90                                                    [X0, X1, X3, X5]>>>,
91
92  // i128 is split to two i64s, and its stack alignment is 16 bytes.
93  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
94
95  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
96  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
97  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
98  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
99  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
100  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
101           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
102  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
103           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
104
105  // If more than will fit in registers, pass them on the stack instead.
106  CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
107  CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
108  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
109           CCAssignToStack<8, 8>>,
110  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
111           CCAssignToStack<16, 16>>
112];
113
114let Entry = 1 in
115def CC_AArch64_AAPCS : CallingConv<!listconcat(
116  // The 'nest' parameter, if any, is passed in X18.
117  // Darwin and Windows use X18 as the platform register and hence 'nest' isn't
118  // currently supported there.
119  [CCIfNest<CCAssignToReg<[X18]>>],
120  AArch64_Common
121)>;
122
123let Entry = 1 in
124def RetCC_AArch64_AAPCS : CallingConv<[
125  CCIfType<[iPTR], CCBitConvertToType<i64>>,
126  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
127  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
128
129  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
130  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
131
132  // Big endian vectors must be passed as if they were 1-element vectors so that
133  // their lanes are in a consistent order.
134  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
135                         CCBitConvertToType<f64>>>,
136  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
137                         CCBitConvertToType<f128>>>,
138
139  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
140  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
141  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
142  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
143  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
144  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
145  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
146  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
147      CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
148  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
149      CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
150
151  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
152            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
153           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
154
155  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount],
156           CCAssignToReg<[P0, P1, P2, P3]>>
157]>;
158
159let Entry = 1 in
160def CC_AArch64_Win64PCS : CallingConv<AArch64_Common>;
161
162// Vararg functions on windows pass floats in integer registers
163let Entry = 1 in
164def CC_AArch64_Win64_VarArg : CallingConv<[
165  CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
166  CCIfType<[f32], CCBitConvertToType<i32>>,
167  CCIfType<[f64], CCBitConvertToType<i64>>,
168  CCDelegateTo<CC_AArch64_Win64PCS>
169]>;
170
171// Vararg functions on Arm64EC ABI use a different convention, using
172// a stack layout compatible with the x64 calling convention.
173let Entry = 1 in
174def CC_AArch64_Arm64EC_VarArg : CallingConv<[
175  // Convert small floating-point values to integer.
176  CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
177  CCIfType<[f32], CCBitConvertToType<i32>>,
178  CCIfType<[f64, v1f64, v1i64, v2f32, v2i32, v4i16, v4f16, v4bf16, v8i8, iPTR],
179           CCBitConvertToType<i64>>,
180
181  // Larger floating-point/vector values are passed indirectly.
182  CCIfType<[f128, v2f64, v2i64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
183           CCPassIndirect<i64>>,
184  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
185            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
186           CCPassIndirect<i64>>,
187  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
188           CCPassIndirect<i64>>,
189
190  // Handle SRet. See comment in CC_AArch64_AAPCS.
191  CCIfInReg<CCIfType<[i64],
192    CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
193  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
194
195  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
196  // slot is 64-bit. (Shouldn't normally come up; the Microsoft ABI doesn't
197  // use byval.)
198  CCIfByVal<CCPassByVal<8, 8>>,
199
200  // Promote small integers to i32
201  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
202
203  // Pass first four arguments in x0-x3.
204  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3]>>,
205  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3]>>,
206
207  // Put remaining arguments on stack.
208  CCIfType<[i32, i64], CCAssignToStack<8, 8>>,
209]>;
210
211// Arm64EC thunks use a calling convention that's precisely the x64 calling
212// convention, except that the registers have different names, and the callee
213// address is passed in X9.
214let Entry = 1 in
215def CC_AArch64_Arm64EC_Thunk : CallingConv<[
216  // ARM64EC-specific: the InReg attribute can be used to access the x64 sp passed into entry thunks in x4 from the IR.
217  CCIfInReg<CCIfType<[i64], CCAssignToReg<[X4]>>>,
218
219  // Byval aggregates are passed by pointer
220  CCIfByVal<CCPassIndirect<i64>>,
221
222  // ARM64EC-specific: promote small integers to i32. (x86 only promotes i1,
223  // but that would confuse ARM64 lowering code.)
224  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
225
226  // The 'nest' parameter, if any, is passed in R10 (X4).
227  CCIfNest<CCAssignToReg<[X4]>>,
228
229  // A SwiftError is passed in R12 (X19).
230  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X19]>>>,
231
232  // Pass SwiftSelf in R13 (X20).
233  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
234
235  // Pass SwiftAsync in an otherwise callee saved register so that calls to
236  // normal functions don't need to save it somewhere.
237  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X21]>>>,
238
239  // The 'CFGuardTarget' parameter, if any, is passed in RAX (R8).
240  CCIfCFGuardTarget<CCAssignToReg<[X8]>>,
241
242  // 128 bit vectors are passed by pointer
243  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCPassIndirect<i64>>,
244
245  // 256 bit vectors are passed by pointer
246  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCPassIndirect<i64>>,
247
248  // 512 bit vectors are passed by pointer
249  CCIfType<[v64i8, v32i16, v16i32, v32f16, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
250
251  // Long doubles are passed by pointer
252  CCIfType<[f80], CCPassIndirect<i64>>,
253
254  // The first 4 MMX vector arguments are passed in GPRs.
255  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
256
257  // The first 4 FP/Vector arguments are passed in XMM registers.
258  CCIfType<[f16],
259           CCAssignToRegWithShadow<[H0, H1, H2, H3],
260                                   [X0, X1, X2, X3]>>,
261  CCIfType<[f32],
262           CCAssignToRegWithShadow<[S0, S1, S2, S3],
263                                   [X0, X1, X2, X3]>>,
264  CCIfType<[f64],
265           CCAssignToRegWithShadow<[D0, D1, D2, D3],
266                                   [X0, X1, X2, X3]>>,
267
268  // The first 4 integer arguments are passed in integer registers.
269  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3],
270                                          [Q0, Q1, Q2, Q3]>>,
271
272  // Arm64EC thunks: the first argument is always a pointer to the destination
273  // address, stored in x9.
274  CCIfType<[i64], CCAssignToReg<[X9]>>,
275
276  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3],
277                                          [Q0, Q1, Q2, Q3]>>,
278
279  // Integer/FP values get stored in stack slots that are 8 bytes in size and
280  // 8-byte aligned if there are no more registers to hold them.
281  CCIfType<[i8, i16, i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>
282]>;
283
284// The native side of ARM64EC thunks
285let Entry = 1 in
286def CC_AArch64_Arm64EC_Thunk_Native : CallingConv<[
287  CCIfType<[i64], CCAssignToReg<[X9]>>,
288  CCDelegateTo<CC_AArch64_AAPCS>
289]>;
290
291let Entry = 1 in
292def RetCC_AArch64_Arm64EC_Thunk : CallingConv<[
293  // The X86-Win64 calling convention always returns __m64 values in RAX.
294  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
295
296  // Otherwise, everything is the same as 'normal' X86-64 C CC.
297
298  // The X86-64 calling convention always returns FP values in XMM0.
299  CCIfType<[f16], CCAssignToReg<[H0, H1]>>,
300  CCIfType<[f32], CCAssignToReg<[S0, S1]>>,
301  CCIfType<[f64], CCAssignToReg<[D0, D1]>>,
302  CCIfType<[f128], CCAssignToReg<[Q0, Q1]>>,
303
304  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X19]>>>,
305
306  // Scalar values are returned in AX first, then DX.  For i8, the ABI
307  // requires the values to be in AL and AH, however this code uses AL and DL
308  // instead. This is because using AH for the second register conflicts with
309  // the way LLVM does multiple return values -- a return of {i16,i8} would end
310  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
311  // for functions that return two i8 values are currently expected to pack the
312  // values into an i16 (which uses AX, and thus AL:AH).
313  //
314  // For code that doesn't care about the ABI, we allow returning more than two
315  // integer values in registers.
316  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
317  CCIfType<[i32], CCAssignToReg<[W8, W1, W0]>>,
318  CCIfType<[i64], CCAssignToReg<[X8, X1, X0]>>,
319
320  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
321  // can only be used by ABI non-compliant code. If the target doesn't have XMM
322  // registers, it won't have vector types.
323  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
324            CCAssignToReg<[Q0, Q1, Q2, Q3]>>
325]>;
326
327// Windows Control Flow Guard checks take a single argument (the target function
328// address) and have no return value.
329let Entry = 1 in
330def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
331  CCIfType<[i64], CCAssignToReg<[X15]>>
332]>;
333
334let Entry = 1 in
335def CC_AArch64_Arm64EC_CFGuard_Check : CallingConv<[
336  CCIfType<[i64], CCAssignToReg<[X11, X10]>>
337]>;
338
339let Entry = 1 in
340def RetCC_AArch64_Arm64EC_CFGuard_Check : CallingConv<[
341  CCIfType<[i64], CCAssignToReg<[X11]>>
342]>;
343
344
345// Darwin uses a calling convention which differs in only two ways
346// from the standard one at this level:
347//     + i128s (i.e. split i64s) don't need even registers.
348//     + Stack slots are sized as needed rather than being at least 64-bit.
349let Entry = 1 in
350def CC_AArch64_DarwinPCS : CallingConv<[
351  CCIfType<[iPTR], CCBitConvertToType<i64>>,
352  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
353  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
354
355  // An SRet is passed in X8, not X0 like a normal pointer parameter.
356  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
357
358  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
359  // slot is 64-bit.
360  CCIfByVal<CCPassByVal<8, 8>>,
361
362  // Pass SwiftSelf in a callee saved register.
363  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
364
365  // A SwiftError is passed in X21.
366  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
367
368  // Pass SwiftAsync in an otherwise callee saved register so that it will be
369  // preserved for normal function calls.
370  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
371
372  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
373
374  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
375  // up to eight each of GPR and FPR.
376  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
377  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
378  // i128 is split to two i64s, we can't fit half to register X7.
379  CCIfType<[i64],
380           CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>,
381  // i128 is split to two i64s, and its stack alignment is 16 bytes.
382  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
383
384  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
385  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
386  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
387  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
388  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
389  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
390           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
391  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
392           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
393
394  // If more than will fit in registers, pass them on the stack instead.
395  CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
396  CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
397  CCAssignToStack<2, 2>>,
398  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
399
400  // Re-demote pointers to 32-bits so we don't end up storing 64-bit
401  // values and clobbering neighbouring stack locations. Not very pretty.
402  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
403  CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
404
405  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
406           CCAssignToStack<8, 8>>,
407  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
408           CCAssignToStack<16, 16>>
409]>;
410
411let Entry = 1 in
412def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
413  CCIfType<[iPTR], CCBitConvertToType<i64>>,
414  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
415  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
416
417  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
418
419  // Handle all scalar types as either i64 or f64.
420  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
421  CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
422
423  // Everything is on the stack.
424  // i128 is split to two i64s, and its stack alignment is 16 bytes.
425  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
426  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
427           CCAssignToStack<8, 8>>,
428  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
429           CCAssignToStack<16, 16>>
430]>;
431
432// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
433// same as the normal Darwin VarArgs handling.
434let Entry = 1 in
435def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
436  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
437  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
438
439  // Handle all scalar types as either i32 or f32.
440  CCIfType<[i8, i16], CCPromoteToType<i32>>,
441  CCIfType<[f16, bf16], CCPromoteToType<f32>>,
442
443  // Everything is on the stack.
444  // i128 is split to two i64s, and its stack alignment is 16 bytes.
445  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
446  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
447  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
448  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
449           CCAssignToStack<8, 8>>,
450  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
451           CCAssignToStack<16, 16>>
452]>;
453
454//===----------------------------------------------------------------------===//
455// ARM64 Calling Convention for GHC
456//===----------------------------------------------------------------------===//
457
458// This calling convention is specific to the Glasgow Haskell Compiler.
459// The only documentation is the GHC source code, specifically the C header
460// file:
461//
462//    https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs.h
463//
464// which defines the registers for the Spineless Tagless G-Machine (STG) that
465// GHC uses to implement lazy evaluation. The generic STG machine has a set of
466// registers which are mapped to appropriate set of architecture specific
467// registers for each CPU architecture.
468//
469// The STG Machine is documented here:
470//
471//    https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
472//
473// The AArch64 register mapping is defined in the following header file:
474//
475//    https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs/arm64.h
476//
477
478let Entry = 1 in
479def CC_AArch64_GHC : CallingConv<[
480  CCIfType<[iPTR], CCBitConvertToType<i64>>,
481
482  // Handle all vector types as either f64 or v2f64.
483  CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
484  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
485
486  CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
487  CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
488  CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
489
490  // Promote i8/i16/i32 arguments to i64.
491  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
492
493  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
494  CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
495]>;
496
497// The order of the callee-saves in this file is important, because the
498// FrameLowering code will use this order to determine the layout the
499// callee-save area in the stack frame. As can be observed below, Darwin
500// requires the frame-record (LR, FP) to be at the top the callee-save area,
501// whereas for other platforms they are at the bottom.
502
503// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
504// presumably a callee to someone. External functions may not do so, but this
505// is currently safe since BL has LR as an implicit-def and what happens after a
506// tail call doesn't matter.
507//
508// It would be better to model its preservation semantics properly (create a
509// vreg on entry, use it in RET & tail call generation; make that vreg def if we
510// end up saving LR as part of a call frame). Watch this space...
511def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
512                                           X25, X26, X27, X28, LR, FP,
513                                           D8,  D9,  D10, D11,
514                                           D12, D13, D14, D15)>;
515
516// A variant for treating X18 as callee saved, when interfacing with
517// code that needs X18 to be preserved.
518def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
519
520// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
521// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
522// and not (LR,FP) pairs.
523def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
524                                               X25, X26, X27, X28, FP, LR,
525                                               D8, D9, D10, D11,
526                                               D12, D13, D14, D15)>;
527
528def CSR_Win_AArch64_AAPCS_SwiftError
529    : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X21)>;
530
531def CSR_Win_AArch64_AAPCS_SwiftTail
532    : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X20, X22)>;
533
534// The Control Flow Guard check call uses a custom calling convention that also
535// preserves X0-X8 and Q0-Q7.
536def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
537                                               (sequence "X%u", 0, 8),
538                                               (sequence "Q%u", 0, 7))>;
539
540// To match the x64 calling convention, Arm64EC thunks preserve q6-q15.
541def CSR_Win_AArch64_Arm64EC_Thunk : CalleeSavedRegs<(add (sequence "Q%u", 6, 15),
542                                                         X19, X20, X21, X22, X23, X24,
543                                                         X25, X26, X27, X28, FP, LR)>;
544
545// AArch64 PCS for vector functions (VPCS)
546// must (additionally) preserve full Q8-Q23 registers
547def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
548                                          X25, X26, X27, X28, LR, FP,
549                                          (sequence "Q%u", 8, 23))>;
550
551// Functions taking SVE arguments or returning an SVE type
552// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
553def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
554                                                 (sequence "P%u", 4, 15),
555                                                 X19, X20, X21, X22, X23, X24,
556                                                 X25, X26, X27, X28, LR, FP)>;
557
558// SME ABI support routines such as __arm_tpidr2_save/restore preserve most registers.
559def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
560                          : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
561                                                 (sequence "P%u", 0, 15),
562                                                 (sequence "X%u", 0, 13),
563                                                 (sequence "X%u",19, 28),
564                                                 LR, FP)>;
565
566// SME ABI support routines __arm_sme_state preserves most registers.
567def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
568                          : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
569                                                 (sequence "P%u", 0, 15),
570                                                 (sequence "X%u", 2, 15),
571                                                 (sequence "X%u",19, 28),
572                                                 LR, FP)>;
573
574// The SMSTART/SMSTOP instructions preserve only GPR registers.
575def CSR_AArch64_SMStartStop : CalleeSavedRegs<(add (sequence "X%u", 0, 28),
576                                                   LR, FP)>;
577
578def CSR_AArch64_AAPCS_SwiftTail
579    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>;
580
581// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
582// 'this' and the pointer return value are both passed in X0 in these cases,
583// this can be partially modelled by treating X0 as a callee-saved register;
584// only the resulting RegMask is used; the SaveList is ignored
585//
586// (For generic ARM 64-bit ABI code, clang will not generate constructors or
587// destructors with 'this' returns, so this RegMask will not be used in that
588// case)
589def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
590
591def CSR_AArch64_AAPCS_SwiftError
592    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
593
594// The ELF stub used for TLS-descriptor access saves every feasible
595// register. Only X0 and LR are clobbered.
596def CSR_AArch64_TLS_ELF
597    : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
598                           (sequence "Q%u", 0, 31))>;
599
600def CSR_AArch64_AllRegs
601    : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
602                           (sequence "X%u", 0, 28), FP, LR, SP,
603                           (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
604                           (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
605                           (sequence "Q%u", 0, 31))>;
606
607def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
608
609def CSR_AArch64_RT_MostRegs :  CalleeSavedRegs<(add CSR_AArch64_AAPCS,
610                                                (sequence "X%u", 9, 15))>;
611
612def CSR_AArch64_RT_AllRegs :  CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs,
613                                                (sequence "Q%u", 8, 31))>;
614
615def CSR_AArch64_StackProbe_Windows
616    : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
617                           (sequence "X%u", 18, 28), FP, SP,
618                           (sequence "Q%u", 0, 31))>;
619
620// Darwin variants of AAPCS.
621// Darwin puts the frame-record at the top of the callee-save area.
622def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
623                                                X23, X24, X25, X26, X27, X28,
624                                                D8,  D9,  D10, D11,
625                                                D12, D13, D14, D15)>;
626
627def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
628                                                 X22, X23, X24, X25, X26, X27,
629                                                 X28, (sequence "Q%u", 8, 23))>;
630
631// For Windows calling convention on a non-windows OS, where X18 is treated
632// as reserved, back up X18 when entering non-windows code (marked with the
633// Windows calling convention) and restore when returning regardless of
634// whether the individual function uses it - it might call other functions
635// that clobber it.
636def CSR_Darwin_AArch64_AAPCS_Win64
637    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X18)>;
638
639def CSR_Darwin_AArch64_AAPCS_ThisReturn
640    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
641
642def CSR_Darwin_AArch64_AAPCS_SwiftError
643    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
644
645def CSR_Darwin_AArch64_AAPCS_SwiftTail
646    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>;
647
648// The function used by Darwin to obtain the address of a thread-local variable
649// guarantees more than a normal AAPCS function. x16 and x17 are used on the
650// fast path for calculation, but other registers except X0 (argument/return)
651// and LR (it is a call, after all) are preserved.
652def CSR_Darwin_AArch64_TLS
653    : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
654                           FP,
655                           (sequence "Q%u", 0, 31))>;
656
657// We can only handle a register pair with adjacent registers, the register pair
658// should belong to the same class as well. Since the access function on the
659// fast path calls a function that follows CSR_Darwin_AArch64_TLS,
660// CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
661def CSR_Darwin_AArch64_CXX_TLS
662    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
663                           (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19),
664                           (sequence "D%u", 0, 31))>;
665
666// CSRs that are handled by prologue, epilogue.
667def CSR_Darwin_AArch64_CXX_TLS_PE
668    : CalleeSavedRegs<(add LR, FP)>;
669
670// CSRs that are handled explicitly via copies.
671def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
672    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
673
674def CSR_Darwin_AArch64_RT_MostRegs
675    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
676
677def CSR_Darwin_AArch64_RT_AllRegs
678    : CalleeSavedRegs<(add CSR_Darwin_AArch64_RT_MostRegs, (sequence "Q%u", 8, 31))>;
679
680// Variants of the standard calling conventions for shadow call stack.
681// These all preserve x18 in addition to any other registers.
682def CSR_AArch64_NoRegs_SCS
683    : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
684def CSR_AArch64_AllRegs_SCS
685    : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
686def CSR_AArch64_AAPCS_SwiftError_SCS
687    : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
688def CSR_AArch64_RT_MostRegs_SCS
689    : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
690def CSR_AArch64_RT_AllRegs_SCS
691    : CalleeSavedRegs<(add CSR_AArch64_RT_AllRegs, X18)>;
692def CSR_AArch64_AAVPCS_SCS
693    : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
694def CSR_AArch64_SVE_AAPCS_SCS
695    : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
696def CSR_AArch64_AAPCS_SCS
697    : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
698