1//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for AArch64 architecture.
10//
11//===----------------------------------------------------------------------===//
12
13/// CCIfBigEndian - Match only if we're in big endian mode.
14class CCIfBigEndian<CCAction A> :
15  CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
16
17class CCIfILP32<CCAction A> :
18  CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
19
20
21//===----------------------------------------------------------------------===//
22// ARM AAPCS64 Calling Convention
23//===----------------------------------------------------------------------===//
24
25let Entry = 1 in
26def CC_AArch64_AAPCS : CallingConv<[
27  CCIfType<[iPTR], CCBitConvertToType<i64>>,
28  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
29  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
30
31  // Big endian vectors must be passed as if they were 1-element vectors so that
32  // their lanes are in a consistent order.
33  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
34                         CCBitConvertToType<f64>>>,
35  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
36                         CCBitConvertToType<f128>>>,
37
38  // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
39  // However, on windows, in some circumstances, the SRet is passed in X0 or X1
40  // instead.  The presence of the inreg attribute indicates that SRet is
41  // passed in the alternative register (X0 or X1), not X8:
42  // - X0 for non-instance methods.
43  // - X1 for instance methods.
44
45  // The "sret" attribute identifies indirect returns.
46  // The "inreg" attribute identifies non-aggregate types.
47  // The position of the "sret" attribute identifies instance/non-instance
48  // methods.
49  // "sret" on argument 0 means non-instance methods.
50  // "sret" on argument 1 means instance methods.
51
52  CCIfInReg<CCIfType<[i64],
53    CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
54
55  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
56
57  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
58  // slot is 64-bit.
59  CCIfByVal<CCPassByVal<8, 8>>,
60
61  // The 'nest' parameter, if any, is passed in X18.
62  // Darwin uses X18 as the platform register and hence 'nest' isn't currently
63  // supported there.
64  CCIfNest<CCAssignToReg<[X18]>>,
65
66  // Pass SwiftSelf in a callee saved register.
67  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
68
69  // A SwiftError is passed in X21.
70  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
71
72  // Pass SwiftAsync in an otherwise callee saved register so that it will be
73  // preserved for normal function calls.
74  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
75
76  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
77
78  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
79            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
80           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
81  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
82            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
83           CCPassIndirect<i64>>,
84
85  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
86           CCAssignToReg<[P0, P1, P2, P3]>>,
87  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
88           CCPassIndirect<i64>>,
89
90  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
91  // up to eight each of GPR and FPR.
92  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
93  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
94  // i128 is split to two i64s, we can't fit half to register X7.
95  CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
96                                                    [X0, X1, X3, X5]>>>,
97
98  // i128 is split to two i64s, and its stack alignment is 16 bytes.
99  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
100
101  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
102  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
103  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
104  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
105  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
106  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
107           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
108  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
109           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
110
111  // If more than will fit in registers, pass them on the stack instead.
112  CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
113  CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
114  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
115           CCAssignToStack<8, 8>>,
116  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
117           CCAssignToStack<16, 16>>
118]>;
119
120let Entry = 1 in
121def RetCC_AArch64_AAPCS : CallingConv<[
122  CCIfType<[iPTR], CCBitConvertToType<i64>>,
123  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
124  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
125
126  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
127  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
128
129  // Big endian vectors must be passed as if they were 1-element vectors so that
130  // their lanes are in a consistent order.
131  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
132                         CCBitConvertToType<f64>>>,
133  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
134                         CCBitConvertToType<f128>>>,
135
136  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
137  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
138  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
139  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
140  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
141  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
142  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
143  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
144      CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
145  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
146      CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
147
148  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
149            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
150           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
151
152  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
153           CCAssignToReg<[P0, P1, P2, P3]>>
154]>;
155
156// Vararg functions on windows pass floats in integer registers
157let Entry = 1 in
158def CC_AArch64_Win64_VarArg : CallingConv<[
159  CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
160  CCIfType<[f32], CCBitConvertToType<i32>>,
161  CCIfType<[f64], CCBitConvertToType<i64>>,
162  CCDelegateTo<CC_AArch64_AAPCS>
163]>;
164
165// Windows Control Flow Guard checks take a single argument (the target function
166// address) and have no return value.
167let Entry = 1 in
168def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
169  CCIfType<[i64], CCAssignToReg<[X15]>>
170]>;
171
172
173// Darwin uses a calling convention which differs in only two ways
174// from the standard one at this level:
175//     + i128s (i.e. split i64s) don't need even registers.
176//     + Stack slots are sized as needed rather than being at least 64-bit.
177let Entry = 1 in
178def CC_AArch64_DarwinPCS : CallingConv<[
179  CCIfType<[iPTR], CCBitConvertToType<i64>>,
180  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
181  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
182
183  // An SRet is passed in X8, not X0 like a normal pointer parameter.
184  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
185
186  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
187  // slot is 64-bit.
188  CCIfByVal<CCPassByVal<8, 8>>,
189
190  // Pass SwiftSelf in a callee saved register.
191  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
192
193  // A SwiftError is passed in X21.
194  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
195
196  // Pass SwiftAsync in an otherwise callee saved register so that it will be
197  // preserved for normal function calls.
198  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
199
200  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
201
202  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
203  // up to eight each of GPR and FPR.
204  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
205  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
206  // i128 is split to two i64s, we can't fit half to register X7.
207  CCIfType<[i64],
208           CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>,
209  // i128 is split to two i64s, and its stack alignment is 16 bytes.
210  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
211
212  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
213  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
214  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
215  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
216  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
217  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
218           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
219  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
220           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
221
222  // If more than will fit in registers, pass them on the stack instead.
223  CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
224  CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
225  CCAssignToStack<2, 2>>,
226  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
227
228  // Re-demote pointers to 32-bits so we don't end up storing 64-bit
229  // values and clobbering neighbouring stack locations. Not very pretty.
230  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
231  CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
232
233  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
234           CCAssignToStack<8, 8>>,
235  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
236           CCAssignToStack<16, 16>>
237]>;
238
239let Entry = 1 in
240def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
241  CCIfType<[iPTR], CCBitConvertToType<i64>>,
242  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
243  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
244
245  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
246
247  // Handle all scalar types as either i64 or f64.
248  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
249  CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
250
251  // Everything is on the stack.
252  // i128 is split to two i64s, and its stack alignment is 16 bytes.
253  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
254  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
255           CCAssignToStack<8, 8>>,
256  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
257           CCAssignToStack<16, 16>>
258]>;
259
260// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
261// same as the normal Darwin VarArgs handling.
262let Entry = 1 in
263def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
264  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
265  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
266
267  // Handle all scalar types as either i32 or f32.
268  CCIfType<[i8, i16], CCPromoteToType<i32>>,
269  CCIfType<[f16, bf16], CCPromoteToType<f32>>,
270
271  // Everything is on the stack.
272  // i128 is split to two i64s, and its stack alignment is 16 bytes.
273  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
274  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
275  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
276  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
277           CCAssignToStack<8, 8>>,
278  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
279           CCAssignToStack<16, 16>>
280]>;
281
282
283// The WebKit_JS calling convention only passes the first argument (the callee)
284// in register and the remaining arguments on stack. We allow 32bit stack slots,
285// so that WebKit can write partial values in the stack and define the other
286// 32bit quantity as undef.
287let Entry = 1 in
288def CC_AArch64_WebKit_JS : CallingConv<[
289  // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
290  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
291  CCIfType<[i32], CCAssignToReg<[W0]>>,
292  CCIfType<[i64], CCAssignToReg<[X0]>>,
293
294  // Pass the remaining arguments on the stack instead.
295  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
296  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
297]>;
298
299let Entry = 1 in
300def RetCC_AArch64_WebKit_JS : CallingConv<[
301  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
302  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
303  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
304  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>
305]>;
306
307//===----------------------------------------------------------------------===//
308// ARM64 Calling Convention for GHC
309//===----------------------------------------------------------------------===//
310
311// This calling convention is specific to the Glasgow Haskell Compiler.
312// The only documentation is the GHC source code, specifically the C header
313// file:
314//
315//     https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
316//
317// which defines the registers for the Spineless Tagless G-Machine (STG) that
318// GHC uses to implement lazy evaluation. The generic STG machine has a set of
319// registers which are mapped to appropriate set of architecture specific
320// registers for each CPU architecture.
321//
322// The STG Machine is documented here:
323//
324//    https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
325//
326// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
327// register mapping".
328
329let Entry = 1 in
330def CC_AArch64_GHC : CallingConv<[
331  CCIfType<[iPTR], CCBitConvertToType<i64>>,
332
333  // Handle all vector types as either f64 or v2f64.
334  CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
335  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
336
337  CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
338  CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
339  CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
340
341  // Promote i8/i16/i32 arguments to i64.
342  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
343
344  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
345  CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
346]>;
347
348// The order of the callee-saves in this file is important, because the
349// FrameLowering code will use this order to determine the layout the
350// callee-save area in the stack frame. As can be observed below, Darwin
351// requires the frame-record (LR, FP) to be at the top the callee-save area,
352// whereas for other platforms they are at the bottom.
353
354// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
355// presumably a callee to someone. External functions may not do so, but this
356// is currently safe since BL has LR as an implicit-def and what happens after a
357// tail call doesn't matter.
358//
359// It would be better to model its preservation semantics properly (create a
360// vreg on entry, use it in RET & tail call generation; make that vreg def if we
361// end up saving LR as part of a call frame). Watch this space...
362def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
363                                           X25, X26, X27, X28, LR, FP,
364                                           D8,  D9,  D10, D11,
365                                           D12, D13, D14, D15)>;
366
367// A variant for treating X18 as callee saved, when interfacing with
368// code that needs X18 to be preserved.
369def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
370
371// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
372// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
373// and not (LR,FP) pairs.
374def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
375                                               X25, X26, X27, X28, FP, LR,
376                                               D8, D9, D10, D11,
377                                               D12, D13, D14, D15)>;
378
379// The Control Flow Guard check call uses a custom calling convention that also
380// preserves X0-X8 and Q0-Q7.
381def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
382                                               (sequence "X%u", 0, 8),
383                                               (sequence "Q%u", 0, 7))>;
384
385// AArch64 PCS for vector functions (VPCS)
386// must (additionally) preserve full Q8-Q23 registers
387def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
388                                          X25, X26, X27, X28, LR, FP,
389                                          (sequence "Q%u", 8, 23))>;
390
391// Functions taking SVE arguments or returning an SVE type
392// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
393def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
394                                                 (sequence "P%u", 4, 15),
395                                                 X19, X20, X21, X22, X23, X24,
396                                                 X25, X26, X27, X28, LR, FP)>;
397
398def CSR_AArch64_AAPCS_SwiftTail
399    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>;
400
401// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
402// 'this' and the pointer return value are both passed in X0 in these cases,
403// this can be partially modelled by treating X0 as a callee-saved register;
404// only the resulting RegMask is used; the SaveList is ignored
405//
406// (For generic ARM 64-bit ABI code, clang will not generate constructors or
407// destructors with 'this' returns, so this RegMask will not be used in that
408// case)
409def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
410
411def CSR_AArch64_AAPCS_SwiftError
412    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
413
414// The ELF stub used for TLS-descriptor access saves every feasible
415// register. Only X0 and LR are clobbered.
416def CSR_AArch64_TLS_ELF
417    : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
418                           (sequence "Q%u", 0, 31))>;
419
420def CSR_AArch64_AllRegs
421    : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
422                           (sequence "X%u", 0, 28), FP, LR, SP,
423                           (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
424                           (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
425                           (sequence "Q%u", 0, 31))>;
426
427def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
428
429def CSR_AArch64_RT_MostRegs :  CalleeSavedRegs<(add CSR_AArch64_AAPCS,
430                                                (sequence "X%u", 9, 15))>;
431
432def CSR_AArch64_StackProbe_Windows
433    : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
434                           (sequence "X%u", 18, 28), FP, SP,
435                           (sequence "Q%u", 0, 31))>;
436
437// Darwin variants of AAPCS.
438// Darwin puts the frame-record at the top of the callee-save area.
439def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
440                                                X23, X24, X25, X26, X27, X28,
441                                                D8,  D9,  D10, D11,
442                                                D12, D13, D14, D15)>;
443
444def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
445                                                 X22, X23, X24, X25, X26, X27,
446                                                 X28, (sequence "Q%u", 8, 23))>;
447def CSR_Darwin_AArch64_AAPCS_ThisReturn
448    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
449
450def CSR_Darwin_AArch64_AAPCS_SwiftError
451    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
452
453def CSR_Darwin_AArch64_AAPCS_SwiftTail
454    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>;
455
456// The function used by Darwin to obtain the address of a thread-local variable
457// guarantees more than a normal AAPCS function. x16 and x17 are used on the
458// fast path for calculation, but other registers except X0 (argument/return)
459// and LR (it is a call, after all) are preserved.
460def CSR_Darwin_AArch64_TLS
461    : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
462                           FP,
463                           (sequence "Q%u", 0, 31))>;
464
465// We can only handle a register pair with adjacent registers, the register pair
466// should belong to the same class as well. Since the access function on the
467// fast path calls a function that follows CSR_Darwin_AArch64_TLS,
468// CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
469def CSR_Darwin_AArch64_CXX_TLS
470    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
471                           (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19),
472                           (sequence "D%u", 0, 31))>;
473
474// CSRs that are handled by prologue, epilogue.
475def CSR_Darwin_AArch64_CXX_TLS_PE
476    : CalleeSavedRegs<(add LR, FP)>;
477
478// CSRs that are handled explicitly via copies.
479def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
480    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
481
482def CSR_Darwin_AArch64_RT_MostRegs
483    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
484
485// Variants of the standard calling conventions for shadow call stack.
486// These all preserve x18 in addition to any other registers.
487def CSR_AArch64_NoRegs_SCS
488    : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
489def CSR_AArch64_AllRegs_SCS
490    : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
491def CSR_AArch64_AAPCS_SwiftError_SCS
492    : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
493def CSR_AArch64_RT_MostRegs_SCS
494    : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
495def CSR_AArch64_AAVPCS_SCS
496    : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
497def CSR_AArch64_SVE_AAPCS_SCS
498    : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
499def CSR_AArch64_AAPCS_SCS
500    : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
501