1//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for AArch64 architecture.
10//
11//===----------------------------------------------------------------------===//
12
13/// CCIfBigEndian - Match only if we're in big endian mode.
14class CCIfBigEndian<CCAction A> :
15  CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
16
17class CCIfILP32<CCAction A> :
18  CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
19
20
21//===----------------------------------------------------------------------===//
22// ARM AAPCS64 Calling Convention
23//===----------------------------------------------------------------------===//
24
25defvar AArch64_Common = [
26  CCIfType<[iPTR], CCBitConvertToType<i64>>,
27  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
28  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
29
30  // Big endian vectors must be passed as if they were 1-element vectors so that
31  // their lanes are in a consistent order.
32  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
33                         CCBitConvertToType<f64>>>,
34  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
35                         CCBitConvertToType<f128>>>,
36
37  // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
38  // However, on windows, in some circumstances, the SRet is passed in X0 or X1
39  // instead.  The presence of the inreg attribute indicates that SRet is
40  // passed in the alternative register (X0 or X1), not X8:
41  // - X0 for non-instance methods.
42  // - X1 for instance methods.
43
44  // The "sret" attribute identifies indirect returns.
45  // The "inreg" attribute identifies non-aggregate types.
46  // The position of the "sret" attribute identifies instance/non-instance
47  // methods.
48  // "sret" on argument 0 means non-instance methods.
49  // "sret" on argument 1 means instance methods.
50
51  CCIfInReg<CCIfType<[i64],
52    CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
53
54  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
55
56  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
57  // slot is 64-bit.
58  CCIfByVal<CCPassByVal<8, 8>>,
59
60  // Pass SwiftSelf in a callee saved register.
61  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
62
63  // A SwiftError is passed in X21.
64  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
65
66  // Pass SwiftAsync in an otherwise callee saved register so that it will be
67  // preserved for normal function calls.
68  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
69
70  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
71
72  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
73            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
74           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
75  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
76            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
77           CCPassIndirect<i64>>,
78
79  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount],
80           CCAssignToReg<[P0, P1, P2, P3]>>,
81  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount],
82           CCPassIndirect<i64>>,
83
84  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
85  // up to eight each of GPR and FPR.
86  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
87  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
88  // i128 is split to two i64s, we can't fit half to register X7.
89  CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
90                                                    [X0, X1, X3, X5]>>>,
91
92  // i128 is split to two i64s, and its stack alignment is 16 bytes.
93  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
94
95  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
96  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
97  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
98  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
99  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
100  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
101           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
102  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
103           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
104
105  // If more than will fit in registers, pass them on the stack instead.
106  CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
107  CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
108  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
109           CCAssignToStack<8, 8>>,
110  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
111           CCAssignToStack<16, 16>>
112];
113
114let Entry = 1 in
115def CC_AArch64_AAPCS : CallingConv<!listconcat(
116  // The 'nest' parameter, if any, is passed in X18.
117  // Darwin and Windows use X18 as the platform register and hence 'nest' isn't
118  // currently supported there.
119  [CCIfNest<CCAssignToReg<[X18]>>],
120  AArch64_Common
121)>;
122
123let Entry = 1 in
124def RetCC_AArch64_AAPCS : CallingConv<[
125  CCIfType<[iPTR], CCBitConvertToType<i64>>,
126  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
127  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
128
129  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
130  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
131
132  // Big endian vectors must be passed as if they were 1-element vectors so that
133  // their lanes are in a consistent order.
134  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
135                         CCBitConvertToType<f64>>>,
136  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
137                         CCBitConvertToType<f128>>>,
138
139  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
140  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
141  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
142  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
143  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
144  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
145  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
146  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
147      CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
148  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
149      CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
150
151  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
152            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
153           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
154
155  CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount],
156           CCAssignToReg<[P0, P1, P2, P3]>>
157]>;
158
159let Entry = 1 in
160def CC_AArch64_Win64PCS : CallingConv<AArch64_Common>;
161
162// Vararg functions on windows pass floats in integer registers
163let Entry = 1 in
164def CC_AArch64_Win64_VarArg : CallingConv<[
165  CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
166  CCIfType<[f32], CCBitConvertToType<i32>>,
167  CCIfType<[f64], CCBitConvertToType<i64>>,
168  CCDelegateTo<CC_AArch64_Win64PCS>
169]>;
170
171// Vararg functions on Arm64EC ABI use a different convention, using
172// a stack layout compatible with the x64 calling convention.
173let Entry = 1 in
174def CC_AArch64_Arm64EC_VarArg : CallingConv<[
175  // Convert small floating-point values to integer.
176  CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
177  CCIfType<[f32], CCBitConvertToType<i32>>,
178  CCIfType<[f64, v1f64, v1i64, v2f32, v2i32, v4i16, v4f16, v4bf16, v8i8, iPTR],
179           CCBitConvertToType<i64>>,
180
181  // Larger floating-point/vector values are passed indirectly.
182  CCIfType<[f128, v2f64, v2i64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
183           CCPassIndirect<i64>>,
184  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
185            nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
186           CCPassIndirect<i64>>,
187  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
188           CCPassIndirect<i64>>,
189
190  // Handle SRet. See comment in CC_AArch64_AAPCS.
191  CCIfInReg<CCIfType<[i64],
192    CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
193  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
194
195  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
196  // slot is 64-bit. (Shouldn't normally come up; the Microsoft ABI doesn't
197  // use byval.)
198  CCIfByVal<CCPassByVal<8, 8>>,
199
200  // Promote small integers to i32
201  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
202
203  // Pass first four arguments in x0-x3.
204  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3]>>,
205  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3]>>,
206
207  // Put remaining arguments on stack.
208  CCIfType<[i32, i64], CCAssignToStack<8, 8>>,
209]>;
210
211// Windows Control Flow Guard checks take a single argument (the target function
212// address) and have no return value.
213let Entry = 1 in
214def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
215  CCIfType<[i64], CCAssignToReg<[X15]>>
216]>;
217
218
219// Darwin uses a calling convention which differs in only two ways
220// from the standard one at this level:
221//     + i128s (i.e. split i64s) don't need even registers.
222//     + Stack slots are sized as needed rather than being at least 64-bit.
223let Entry = 1 in
224def CC_AArch64_DarwinPCS : CallingConv<[
225  CCIfType<[iPTR], CCBitConvertToType<i64>>,
226  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
227  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
228
229  // An SRet is passed in X8, not X0 like a normal pointer parameter.
230  CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
231
232  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
233  // slot is 64-bit.
234  CCIfByVal<CCPassByVal<8, 8>>,
235
236  // Pass SwiftSelf in a callee saved register.
237  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
238
239  // A SwiftError is passed in X21.
240  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
241
242  // Pass SwiftAsync in an otherwise callee saved register so that it will be
243  // preserved for normal function calls.
244  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
245
246  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
247
248  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
249  // up to eight each of GPR and FPR.
250  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
251  CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
252  // i128 is split to two i64s, we can't fit half to register X7.
253  CCIfType<[i64],
254           CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>,
255  // i128 is split to two i64s, and its stack alignment is 16 bytes.
256  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
257
258  CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
259  CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
260  CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
261  CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
262  CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
263  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
264           CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
265  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
266           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
267
268  // If more than will fit in registers, pass them on the stack instead.
269  CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
270  CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
271  CCAssignToStack<2, 2>>,
272  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
273
274  // Re-demote pointers to 32-bits so we don't end up storing 64-bit
275  // values and clobbering neighbouring stack locations. Not very pretty.
276  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
277  CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
278
279  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
280           CCAssignToStack<8, 8>>,
281  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
282           CCAssignToStack<16, 16>>
283]>;
284
285let Entry = 1 in
286def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
287  CCIfType<[iPTR], CCBitConvertToType<i64>>,
288  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
289  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
290
291  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
292
293  // Handle all scalar types as either i64 or f64.
294  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
295  CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
296
297  // Everything is on the stack.
298  // i128 is split to two i64s, and its stack alignment is 16 bytes.
299  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
300  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
301           CCAssignToStack<8, 8>>,
302  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
303           CCAssignToStack<16, 16>>
304]>;
305
306// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
307// same as the normal Darwin VarArgs handling.
308let Entry = 1 in
309def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
310  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
311  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
312
313  // Handle all scalar types as either i32 or f32.
314  CCIfType<[i8, i16], CCPromoteToType<i32>>,
315  CCIfType<[f16, bf16], CCPromoteToType<f32>>,
316
317  // Everything is on the stack.
318  // i128 is split to two i64s, and its stack alignment is 16 bytes.
319  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
320  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
321  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
322  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
323           CCAssignToStack<8, 8>>,
324  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
325           CCAssignToStack<16, 16>>
326]>;
327
328//===----------------------------------------------------------------------===//
329// ARM64 Calling Convention for GHC
330//===----------------------------------------------------------------------===//
331
332// This calling convention is specific to the Glasgow Haskell Compiler.
333// The only documentation is the GHC source code, specifically the C header
334// file:
335//
336//    https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs.h
337//
338// which defines the registers for the Spineless Tagless G-Machine (STG) that
339// GHC uses to implement lazy evaluation. The generic STG machine has a set of
340// registers which are mapped to appropriate set of architecture specific
341// registers for each CPU architecture.
342//
343// The STG Machine is documented here:
344//
345//    https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
346//
347// The AArch64 register mapping is defined in the following header file:
348//
349//    https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs/arm64.h
350//
351
352let Entry = 1 in
353def CC_AArch64_GHC : CallingConv<[
354  CCIfType<[iPTR], CCBitConvertToType<i64>>,
355
356  // Handle all vector types as either f64 or v2f64.
357  CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
358  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
359
360  CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
361  CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
362  CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
363
364  // Promote i8/i16/i32 arguments to i64.
365  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
366
367  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
368  CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
369]>;
370
371// The order of the callee-saves in this file is important, because the
372// FrameLowering code will use this order to determine the layout the
373// callee-save area in the stack frame. As can be observed below, Darwin
374// requires the frame-record (LR, FP) to be at the top the callee-save area,
375// whereas for other platforms they are at the bottom.
376
377// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
378// presumably a callee to someone. External functions may not do so, but this
379// is currently safe since BL has LR as an implicit-def and what happens after a
380// tail call doesn't matter.
381//
382// It would be better to model its preservation semantics properly (create a
383// vreg on entry, use it in RET & tail call generation; make that vreg def if we
384// end up saving LR as part of a call frame). Watch this space...
385def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
386                                           X25, X26, X27, X28, LR, FP,
387                                           D8,  D9,  D10, D11,
388                                           D12, D13, D14, D15)>;
389
390// A variant for treating X18 as callee saved, when interfacing with
391// code that needs X18 to be preserved.
392def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
393
394// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
395// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
396// and not (LR,FP) pairs.
397def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
398                                               X25, X26, X27, X28, FP, LR,
399                                               D8, D9, D10, D11,
400                                               D12, D13, D14, D15)>;
401
402def CSR_Win_AArch64_AAPCS_SwiftError
403    : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X21)>;
404
405def CSR_Win_AArch64_AAPCS_SwiftTail
406    : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X20, X22)>;
407
408// The Control Flow Guard check call uses a custom calling convention that also
409// preserves X0-X8 and Q0-Q7.
410def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
411                                               (sequence "X%u", 0, 8),
412                                               (sequence "Q%u", 0, 7))>;
413
414// AArch64 PCS for vector functions (VPCS)
415// must (additionally) preserve full Q8-Q23 registers
416def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
417                                          X25, X26, X27, X28, LR, FP,
418                                          (sequence "Q%u", 8, 23))>;
419
420// Functions taking SVE arguments or returning an SVE type
421// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
422def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
423                                                 (sequence "P%u", 4, 15),
424                                                 X19, X20, X21, X22, X23, X24,
425                                                 X25, X26, X27, X28, LR, FP)>;
426
427// SME ABI support routines such as __arm_tpidr2_save/restore preserve most registers.
428def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
429                          : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
430                                                 (sequence "P%u", 0, 15),
431                                                 (sequence "X%u", 0, 13),
432                                                 (sequence "X%u",19, 28),
433                                                 LR, FP)>;
434
435// SME ABI support routines __arm_sme_state preserves most registers.
436def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
437                          : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
438                                                 (sequence "P%u", 0, 15),
439                                                 (sequence "X%u", 2, 15),
440                                                 (sequence "X%u",19, 28),
441                                                 LR, FP)>;
442
443// The SMSTART/SMSTOP instructions preserve only GPR registers.
444def CSR_AArch64_SMStartStop : CalleeSavedRegs<(add (sequence "X%u", 0, 28),
445                                                   LR, FP)>;
446
447def CSR_AArch64_AAPCS_SwiftTail
448    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>;
449
450// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
451// 'this' and the pointer return value are both passed in X0 in these cases,
452// this can be partially modelled by treating X0 as a callee-saved register;
453// only the resulting RegMask is used; the SaveList is ignored
454//
455// (For generic ARM 64-bit ABI code, clang will not generate constructors or
456// destructors with 'this' returns, so this RegMask will not be used in that
457// case)
458def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
459
460def CSR_AArch64_AAPCS_SwiftError
461    : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
462
463// The ELF stub used for TLS-descriptor access saves every feasible
464// register. Only X0 and LR are clobbered.
465def CSR_AArch64_TLS_ELF
466    : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
467                           (sequence "Q%u", 0, 31))>;
468
469def CSR_AArch64_AllRegs
470    : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
471                           (sequence "X%u", 0, 28), FP, LR, SP,
472                           (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
473                           (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
474                           (sequence "Q%u", 0, 31))>;
475
476def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
477
478def CSR_AArch64_RT_MostRegs :  CalleeSavedRegs<(add CSR_AArch64_AAPCS,
479                                                (sequence "X%u", 9, 15))>;
480
481def CSR_AArch64_RT_AllRegs :  CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs,
482                                                (sequence "Q%u", 8, 31))>;
483
484def CSR_AArch64_StackProbe_Windows
485    : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
486                           (sequence "X%u", 18, 28), FP, SP,
487                           (sequence "Q%u", 0, 31))>;
488
489// Darwin variants of AAPCS.
490// Darwin puts the frame-record at the top of the callee-save area.
491def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
492                                                X23, X24, X25, X26, X27, X28,
493                                                D8,  D9,  D10, D11,
494                                                D12, D13, D14, D15)>;
495
496def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
497                                                 X22, X23, X24, X25, X26, X27,
498                                                 X28, (sequence "Q%u", 8, 23))>;
499
500// For Windows calling convention on a non-windows OS, where X18 is treated
501// as reserved, back up X18 when entering non-windows code (marked with the
502// Windows calling convention) and restore when returning regardless of
503// whether the individual function uses it - it might call other functions
504// that clobber it.
505def CSR_Darwin_AArch64_AAPCS_Win64
506    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X18)>;
507
508def CSR_Darwin_AArch64_AAPCS_ThisReturn
509    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
510
511def CSR_Darwin_AArch64_AAPCS_SwiftError
512    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
513
514def CSR_Darwin_AArch64_AAPCS_SwiftTail
515    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>;
516
517// The function used by Darwin to obtain the address of a thread-local variable
518// guarantees more than a normal AAPCS function. x16 and x17 are used on the
519// fast path for calculation, but other registers except X0 (argument/return)
520// and LR (it is a call, after all) are preserved.
521def CSR_Darwin_AArch64_TLS
522    : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
523                           FP,
524                           (sequence "Q%u", 0, 31))>;
525
526// We can only handle a register pair with adjacent registers, the register pair
527// should belong to the same class as well. Since the access function on the
528// fast path calls a function that follows CSR_Darwin_AArch64_TLS,
529// CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
530def CSR_Darwin_AArch64_CXX_TLS
531    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
532                           (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19),
533                           (sequence "D%u", 0, 31))>;
534
535// CSRs that are handled by prologue, epilogue.
536def CSR_Darwin_AArch64_CXX_TLS_PE
537    : CalleeSavedRegs<(add LR, FP)>;
538
539// CSRs that are handled explicitly via copies.
540def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
541    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
542
543def CSR_Darwin_AArch64_RT_MostRegs
544    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
545
546def CSR_Darwin_AArch64_RT_AllRegs
547    : CalleeSavedRegs<(add CSR_Darwin_AArch64_RT_MostRegs, (sequence "Q%u", 8, 31))>;
548
549// Variants of the standard calling conventions for shadow call stack.
550// These all preserve x18 in addition to any other registers.
551def CSR_AArch64_NoRegs_SCS
552    : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
553def CSR_AArch64_AllRegs_SCS
554    : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
555def CSR_AArch64_AAPCS_SwiftError_SCS
556    : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
557def CSR_AArch64_RT_MostRegs_SCS
558    : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
559def CSR_AArch64_RT_AllRegs_SCS
560    : CalleeSavedRegs<(add CSR_AArch64_RT_AllRegs, X18)>;
561def CSR_AArch64_AAVPCS_SCS
562    : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
563def CSR_AArch64_SVE_AAPCS_SCS
564    : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
565def CSR_AArch64_AAPCS_SCS
566    : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
567