1//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for AArch64 architecture.
10//
11//===----------------------------------------------------------------------===//
12
13/// CCIfAlign - Match of the original alignment of the arg
14class CCIfAlign<string Align, CCAction A> :
15  CCIf<!strconcat("ArgFlags.getOrigAlign() == ", Align), A>;
16/// CCIfBigEndian - Match only if we're in big endian mode.
17class CCIfBigEndian<CCAction A> :
18  CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
19
20class CCIfILP32<CCAction A> :
21  CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
22
23
24//===----------------------------------------------------------------------===//
25// ARM AAPCS64 Calling Convention
26//===----------------------------------------------------------------------===//
27
28let Entry = 1 in
29def CC_AArch64_AAPCS : CallingConv<[
30  CCIfType<[iPTR], CCBitConvertToType<i64>>,
31  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
32  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
33
34  // Big endian vectors must be passed as if they were 1-element vectors so that
35  // their lanes are in a consistent order.
36  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
37                         CCBitConvertToType<f64>>>,
38  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
39                         CCBitConvertToType<f128>>>,
40
41  // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
42  // However, on windows, in some circumstances, the SRet is passed in X0 or X1
43  // instead.  The presence of the inreg attribute indicates that SRet is
44  // passed in the alternative register (X0 or X1), not X8:
45  // - X0 for non-instance methods.
46  // - X1 for instance methods.
47
48  // The "sret" attribute identifies indirect returns.
49  // The "inreg" attribute identifies non-aggregate types.
50  // The position of the "sret" attribute identifies instance/non-instance
51  // methods.
52  // "sret" on argument 0 means non-instance methods.
53  // "sret" on argument 1 means instance methods.
54
55  CCIfInReg<CCIfType<[i64],
56    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1], [W0, W1]>>>>>,
57
58  CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
59
60  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
61  // slot is 64-bit.
62  CCIfByVal<CCPassByVal<8, 8>>,
63
64  // The 'nest' parameter, if any, is passed in X18.
65  // Darwin uses X18 as the platform register and hence 'nest' isn't currently
66  // supported there.
67  CCIfNest<CCAssignToReg<[X18]>>,
68
69  // Pass SwiftSelf in a callee saved register.
70  CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
71
72  // A SwiftError is passed in X21.
73  CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
74
75  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
76
77  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
78            nxv2f32, nxv4f32, nxv2f64],
79           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
80  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
81            nxv2f32, nxv4f32, nxv2f64],
82           CCPassIndirect<i64>>,
83
84  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
85           CCAssignToReg<[P0, P1, P2, P3]>>,
86  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
87           CCPassIndirect<i64>>,
88
89  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
90  // up to eight each of GPR and FPR.
91  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
92  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
93                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
94  // i128 is split to two i64s, we can't fit half to register X7.
95  CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
96                                                    [X0, X1, X3, X5]>>>,
97
98  // i128 is split to two i64s, and its stack alignment is 16 bytes.
99  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
100
101  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
102                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
103  CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
104                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
105  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
106                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
107  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
108                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
109  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
110           CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
111                                   [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
112  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
113           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
114
115  // If more than will fit in registers, pass them on the stack instead.
116  CCIfType<[i1, i8, i16, f16], CCAssignToStack<8, 8>>,
117  CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
118  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16],
119           CCAssignToStack<8, 8>>,
120  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
121           CCAssignToStack<16, 16>>
122]>;
123
124let Entry = 1 in
125def RetCC_AArch64_AAPCS : CallingConv<[
126  CCIfType<[iPTR], CCBitConvertToType<i64>>,
127  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
128  CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
129
130  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
131  CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
132
133  // Big endian vectors must be passed as if they were 1-element vectors so that
134  // their lanes are in a consistent order.
135  CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
136                         CCBitConvertToType<f64>>>,
137  CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
138                         CCBitConvertToType<f128>>>,
139
140  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
141  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
142                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
143  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
144                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
145  CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
146                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
147  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
148                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
149  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
150                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
151  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
152      CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
153                              [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
154  CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
155      CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
156
157  CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
158            nxv2f32, nxv4f32, nxv2f64],
159           CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
160
161  CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
162           CCAssignToReg<[P0, P1, P2, P3]>>
163]>;
164
165// Vararg functions on windows pass floats in integer registers
166let Entry = 1 in
167def CC_AArch64_Win64_VarArg : CallingConv<[
168  CCIfType<[f16, f32], CCPromoteToType<f64>>,
169  CCIfType<[f64], CCBitConvertToType<i64>>,
170  CCDelegateTo<CC_AArch64_AAPCS>
171]>;
172
173// Windows Control Flow Guard checks take a single argument (the target function
174// address) and have no return value.
175let Entry = 1 in
176def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
177  CCIfType<[i64], CCAssignToReg<[X15]>>
178]>;
179
180
181// Darwin uses a calling convention which differs in only two ways
182// from the standard one at this level:
183//     + i128s (i.e. split i64s) don't need even registers.
184//     + Stack slots are sized as needed rather than being at least 64-bit.
185let Entry = 1 in
186def CC_AArch64_DarwinPCS : CallingConv<[
187  CCIfType<[iPTR], CCBitConvertToType<i64>>,
188  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
189  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
190
191  // An SRet is passed in X8, not X0 like a normal pointer parameter.
192  CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
193
194  // Put ByVal arguments directly on the stack. Minimum size and alignment of a
195  // slot is 64-bit.
196  CCIfByVal<CCPassByVal<8, 8>>,
197
198  // Pass SwiftSelf in a callee saved register.
199  CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
200
201  // A SwiftError is passed in X21.
202  CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
203
204  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
205
206  // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
207  // up to eight each of GPR and FPR.
208  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
209  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
210                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
211  // i128 is split to two i64s, we can't fit half to register X7.
212  CCIfType<[i64],
213           CCIfSplit<CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6],
214                                             [W0, W1, W2, W3, W4, W5, W6]>>>,
215  // i128 is split to two i64s, and its stack alignment is 16 bytes.
216  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
217
218  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
219                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
220  CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
221                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
222  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
223                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
224  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
225                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
226  CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
227           CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
228                                   [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
229  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
230           CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
231
232  // If more than will fit in registers, pass them on the stack instead.
233  CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
234  CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16", CCAssignToStack<2, 2>>,
235  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
236
237  // Re-demote pointers to 32-bits so we don't end up storing 64-bit
238  // values and clobbering neighbouring stack locations. Not very pretty.
239  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
240  CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
241
242  CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16],
243           CCAssignToStack<8, 8>>,
244  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
245           CCAssignToStack<16, 16>>
246]>;
247
248let Entry = 1 in
249def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
250  CCIfType<[iPTR], CCBitConvertToType<i64>>,
251  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
252  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
253
254  CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
255
256  // Handle all scalar types as either i64 or f64.
257  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
258  CCIfType<[f16, f32],     CCPromoteToType<f64>>,
259
260  // Everything is on the stack.
261  // i128 is split to two i64s, and its stack alignment is 16 bytes.
262  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
263  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
264           CCAssignToStack<8, 8>>,
265  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
266           CCAssignToStack<16, 16>>
267]>;
268
269// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
270// same as the normal Darwin VarArgs handling.
271let Entry = 1 in
272def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
273  CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
274  CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
275
276  // Handle all scalar types as either i32 or f32.
277  CCIfType<[i8, i16], CCPromoteToType<i32>>,
278  CCIfType<[f16],     CCPromoteToType<f32>>,
279
280  // Everything is on the stack.
281  // i128 is split to two i64s, and its stack alignment is 16 bytes.
282  CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
283  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
284  CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
285  CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16],
286           CCAssignToStack<8, 8>>,
287  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16],
288           CCAssignToStack<16, 16>>
289]>;
290
291
292// The WebKit_JS calling convention only passes the first argument (the callee)
293// in register and the remaining arguments on stack. We allow 32bit stack slots,
294// so that WebKit can write partial values in the stack and define the other
295// 32bit quantity as undef.
296let Entry = 1 in
297def CC_AArch64_WebKit_JS : CallingConv<[
298  // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
299  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
300  CCIfType<[i32], CCAssignToRegWithShadow<[W0], [X0]>>,
301  CCIfType<[i64], CCAssignToRegWithShadow<[X0], [W0]>>,
302
303  // Pass the remaining arguments on the stack instead.
304  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
305  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
306]>;
307
308let Entry = 1 in
309def RetCC_AArch64_WebKit_JS : CallingConv<[
310  CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
311                                          [X0, X1, X2, X3, X4, X5, X6, X7]>>,
312  CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
313                                          [W0, W1, W2, W3, W4, W5, W6, W7]>>,
314  CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
315                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
316  CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
317                                          [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
318]>;
319
320//===----------------------------------------------------------------------===//
321// ARM64 Calling Convention for GHC
322//===----------------------------------------------------------------------===//
323
324// This calling convention is specific to the Glasgow Haskell Compiler.
325// The only documentation is the GHC source code, specifically the C header
326// file:
327//
328//     https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
329//
330// which defines the registers for the Spineless Tagless G-Machine (STG) that
331// GHC uses to implement lazy evaluation. The generic STG machine has a set of
332// registers which are mapped to appropriate set of architecture specific
333// registers for each CPU architecture.
334//
335// The STG Machine is documented here:
336//
337//    https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
338//
339// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
340// register mapping".
341
342let Entry = 1 in
343def CC_AArch64_GHC : CallingConv<[
344  CCIfType<[iPTR], CCBitConvertToType<i64>>,
345
346  // Handle all vector types as either f64 or v2f64.
347  CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
348  CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
349
350  CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
351  CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
352  CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
353
354  // Promote i8/i16/i32 arguments to i64.
355  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
356
357  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
358  CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
359]>;
360
361// The order of the callee-saves in this file is important, because the
362// FrameLowering code will use this order to determine the layout the
363// callee-save area in the stack frame. As can be observed below, Darwin
364// requires the frame-record (LR, FP) to be at the top the callee-save area,
365// whereas for other platforms they are at the bottom.
366
367// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
368// presumably a callee to someone. External functions may not do so, but this
369// is currently safe since BL has LR as an implicit-def and what happens after a
370// tail call doesn't matter.
371//
372// It would be better to model its preservation semantics properly (create a
373// vreg on entry, use it in RET & tail call generation; make that vreg def if we
374// end up saving LR as part of a call frame). Watch this space...
375def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
376                                           X25, X26, X27, X28, LR, FP,
377                                           D8,  D9,  D10, D11,
378                                           D12, D13, D14, D15)>;
379
380// Darwin puts the frame-record at the top of the callee-save area.
381def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
382                                           X23, X24, X25, X26, X27, X28,
383                                           D8,  D9,  D10, D11,
384                                           D12, D13, D14, D15)>;
385
386// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
387// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
388// and not (LR,FP) pairs.
389def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
390                                               X25, X26, X27, X28, FP, LR,
391                                               D8, D9, D10, D11,
392                                               D12, D13, D14, D15)>;
393
394// The Control Flow Guard check call uses a custom calling convention that also
395// preserves X0-X8 and Q0-Q7.
396def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
397                                               (sequence "X%u", 0, 8),
398                                               (sequence "Q%u", 0, 7))>;
399
400// AArch64 PCS for vector functions (VPCS)
401// must (additionally) preserve full Q8-Q23 registers
402def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
403                                          X25, X26, X27, X28, LR, FP,
404                                          (sequence "Q%u", 8, 23))>;
405
406// Functions taking SVE arguments or returning an SVE type
407// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
408def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
409                                                 (sequence "P%u", 4, 15),
410                                                 X19, X20, X21, X22, X23, X24,
411                                                 X25, X26, X27, X28, LR, FP)>;
412
413// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
414// 'this' and the pointer return value are both passed in X0 in these cases,
415// this can be partially modelled by treating X0 as a callee-saved register;
416// only the resulting RegMask is used; the SaveList is ignored
417//
418// (For generic ARM 64-bit ABI code, clang will not generate constructors or
419// destructors with 'this' returns, so this RegMask will not be used in that
420// case)
421def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
422
423def CSR_AArch64_AAPCS_SwiftError
424    : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
425
426// The function used by Darwin to obtain the address of a thread-local variable
427// guarantees more than a normal AAPCS function. x16 and x17 are used on the
428// fast path for calculation, but other registers except X0 (argument/return)
429// and LR (it is a call, after all) are preserved.
430def CSR_AArch64_TLS_Darwin
431    : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
432                           FP,
433                           (sequence "Q%u", 0, 31))>;
434
435// We can only handle a register pair with adjacent registers, the register pair
436// should belong to the same class as well. Since the access function on the
437// fast path calls a function that follows CSR_AArch64_TLS_Darwin,
438// CSR_AArch64_CXX_TLS_Darwin should be a subset of CSR_AArch64_TLS_Darwin.
439def CSR_AArch64_CXX_TLS_Darwin
440    : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
441                           (sub (sequence "X%u", 1, 28), X15, X16, X17, X18),
442                           (sequence "D%u", 0, 31))>;
443
444// CSRs that are handled by prologue, epilogue.
445def CSR_AArch64_CXX_TLS_Darwin_PE
446    : CalleeSavedRegs<(add LR, FP)>;
447
448// CSRs that are handled explicitly via copies.
449def CSR_AArch64_CXX_TLS_Darwin_ViaCopy
450    : CalleeSavedRegs<(sub CSR_AArch64_CXX_TLS_Darwin, LR, FP)>;
451
452// The ELF stub used for TLS-descriptor access saves every feasible
453// register. Only X0 and LR are clobbered.
454def CSR_AArch64_TLS_ELF
455    : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
456                           (sequence "Q%u", 0, 31))>;
457
458def CSR_AArch64_AllRegs
459    : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
460                           (sequence "X%u", 0, 28), FP, LR, SP,
461                           (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
462                           (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
463                           (sequence "Q%u", 0, 31))>;
464
465def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
466
467def CSR_AArch64_RT_MostRegs :  CalleeSavedRegs<(add CSR_AArch64_AAPCS,
468                                                (sequence "X%u", 9, 15))>;
469
470def CSR_AArch64_StackProbe_Windows
471    : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
472                           (sequence "X%u", 18, 28), FP, SP,
473                           (sequence "Q%u", 0, 31))>;
474
475// Variants of the standard calling conventions for shadow call stack.
476// These all preserve x18 in addition to any other registers.
477def CSR_AArch64_NoRegs_SCS
478    : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
479def CSR_AArch64_AllRegs_SCS
480    : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
481def CSR_AArch64_CXX_TLS_Darwin_SCS
482    : CalleeSavedRegs<(add CSR_AArch64_CXX_TLS_Darwin, X18)>;
483def CSR_AArch64_AAPCS_SwiftError_SCS
484    : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
485def CSR_AArch64_RT_MostRegs_SCS
486    : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
487def CSR_AArch64_AAVPCS_SCS
488    : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
489def CSR_AArch64_SVE_AAPCS_SCS
490    : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
491def CSR_AArch64_AAPCS_SCS
492    : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
493