1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonISelDAGToDAG.h"
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsHexagon.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "hexagon-isel"
28 #define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection"
29 
30 static
31 cl::opt<bool>
32 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
33   cl::desc("Rebalance address calculation trees to improve "
34           "instruction selection"));
35 
36 // Rebalance only if this allows e.g. combining a GA with an offset or
37 // factoring out a shift.
38 static
39 cl::opt<bool>
40 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
41   cl::desc("Rebalance address tree only if this allows optimizations"));
42 
43 static
44 cl::opt<bool>
45 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
46   cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
47 
48 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
49   cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
50 
51 //===----------------------------------------------------------------------===//
52 // Instruction Selector Implementation
53 //===----------------------------------------------------------------------===//
54 
55 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
56 #include "HexagonGenDAGISel.inc"
57 
58 namespace llvm {
59 /// createHexagonISelDag - This pass converts a legalized DAG into a
60 /// Hexagon-specific DAG, ready for instruction scheduling.
createHexagonISelDag(HexagonTargetMachine & TM,CodeGenOptLevel OptLevel)61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62                                    CodeGenOptLevel OptLevel) {
63   return new HexagonDAGToDAGISel(TM, OptLevel);
64 }
65 }
66 
67 char HexagonDAGToDAGISel::ID = 0;
68 
INITIALIZE_PASS(HexagonDAGToDAGISel,DEBUG_TYPE,PASS_NAME,false,false)69 INITIALIZE_PASS(HexagonDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
70 
71 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
72   SDValue Chain = LD->getChain();
73   SDValue Base = LD->getBasePtr();
74   SDValue Offset = LD->getOffset();
75   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
76   EVT LoadedVT = LD->getMemoryVT();
77   unsigned Opcode = 0;
78 
79   // Check for zero extended loads. Treat any-extend loads as zero extended
80   // loads.
81   ISD::LoadExtType ExtType = LD->getExtensionType();
82   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
83   bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
84 
85   assert(LoadedVT.isSimple());
86   switch (LoadedVT.getSimpleVT().SimpleTy) {
87   case MVT::i8:
88     if (IsZeroExt)
89       Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
90     else
91       Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
92     break;
93   case MVT::i16:
94     if (IsZeroExt)
95       Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
96     else
97       Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
98     break;
99   case MVT::i32:
100   case MVT::f32:
101   case MVT::v2i16:
102   case MVT::v4i8:
103     Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
104     break;
105   case MVT::i64:
106   case MVT::f64:
107   case MVT::v2i32:
108   case MVT::v4i16:
109   case MVT::v8i8:
110     Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
111     break;
112   case MVT::v64i8:
113   case MVT::v32i16:
114   case MVT::v16i32:
115   case MVT::v8i64:
116   case MVT::v128i8:
117   case MVT::v64i16:
118   case MVT::v32i32:
119   case MVT::v16i64:
120     if (isAlignedMemNode(LD)) {
121       if (LD->isNonTemporal())
122         Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
123       else
124         Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
125     } else {
126       Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
127     }
128     break;
129   default:
130     llvm_unreachable("Unexpected memory type in indexed load");
131   }
132 
133   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
134   MachineMemOperand *MemOp = LD->getMemOperand();
135 
136   auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
137         -> MachineSDNode* {
138     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
139       SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
140       return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
141                                     Zero, SDValue(N, 0));
142     }
143     if (ExtType == ISD::SEXTLOAD)
144       return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
145                                     SDValue(N, 0));
146     return N;
147   };
148 
149   //                  Loaded value   Next address   Chain
150   SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
151   SDValue To[3];
152 
153   EVT ValueVT = LD->getValueType(0);
154   if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
155     // A load extending to i64 will actually produce i32, which will then
156     // need to be extended to i64.
157     assert(LoadedVT.getSizeInBits() <= 32);
158     ValueVT = MVT::i32;
159   }
160 
161   if (IsValidInc) {
162     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
163                                               MVT::i32, MVT::Other, Base,
164                                               IncV, Chain);
165     CurDAG->setNodeMemRefs(L, {MemOp});
166     To[1] = SDValue(L, 1); // Next address.
167     To[2] = SDValue(L, 2); // Chain.
168     // Handle special case for extension to i64.
169     if (LD->getValueType(0) == MVT::i64)
170       L = getExt64(L, dl);
171     To[0] = SDValue(L, 0); // Loaded (extended) value.
172   } else {
173     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
174     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
175                                               Base, Zero, Chain);
176     CurDAG->setNodeMemRefs(L, {MemOp});
177     To[2] = SDValue(L, 1); // Chain.
178     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
179                                               Base, IncV);
180     To[1] = SDValue(A, 0); // Next address.
181     // Handle special case for extension to i64.
182     if (LD->getValueType(0) == MVT::i64)
183       L = getExt64(L, dl);
184     To[0] = SDValue(L, 0); // Loaded (extended) value.
185   }
186   ReplaceUses(From, To, 3);
187   CurDAG->RemoveDeadNode(LD);
188 }
189 
LoadInstrForLoadIntrinsic(SDNode * IntN)190 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
191   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
192     return nullptr;
193 
194   SDLoc dl(IntN);
195   unsigned IntNo = IntN->getConstantOperandVal(1);
196 
197   static std::map<unsigned,unsigned> LoadPciMap = {
198     { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  },
199     { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
200     { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  },
201     { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
202     { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  },
203     { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  },
204   };
205   auto FLC = LoadPciMap.find(IntNo);
206   if (FLC != LoadPciMap.end()) {
207     EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
208     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
209     // Operands: { Base, Increment, Modifier, Chain }
210     auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
211     SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
212     MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
213           { IntN->getOperand(2), I, IntN->getOperand(4),
214             IntN->getOperand(0) });
215     return Res;
216   }
217 
218   return nullptr;
219 }
220 
StoreInstrForLoadIntrinsic(MachineSDNode * LoadN,SDNode * IntN)221 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
222       SDNode *IntN) {
223   // The "LoadN" is just a machine load instruction. The intrinsic also
224   // involves storing it. Generate an appropriate store to the location
225   // given in the intrinsic's operand(3).
226   uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
227   unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
228                       HexagonII::MemAccesSizeMask;
229   unsigned Size = 1U << (SizeBits-1);
230 
231   SDLoc dl(IntN);
232   MachinePointerInfo PI;
233   SDValue TS;
234   SDValue Loc = IntN->getOperand(3);
235 
236   if (Size >= 4)
237     TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
238                           Align(Size));
239   else
240     TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
241                                PI, MVT::getIntegerVT(Size * 8), Align(Size));
242 
243   SDNode *StoreN;
244   {
245     HandleSDNode Handle(TS);
246     SelectStore(TS.getNode());
247     StoreN = Handle.getValue().getNode();
248   }
249 
250   // Load's results are { Loaded value, Updated pointer, Chain }
251   ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
252   ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
253   return StoreN;
254 }
255 
tryLoadOfLoadIntrinsic(LoadSDNode * N)256 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
257   // The intrinsics for load circ/brev perform two operations:
258   // 1. Load a value V from the specified location, using the addressing
259   //    mode corresponding to the intrinsic.
260   // 2. Store V into a specified location. This location is typically a
261   //    local, temporary object.
262   // In many cases, the program using these intrinsics will immediately
263   // load V again from the local object. In those cases, when certain
264   // conditions are met, the last load can be removed.
265   // This function identifies and optimizes this pattern. If the pattern
266   // cannot be optimized, it returns nullptr, which will cause the load
267   // to be selected separately from the intrinsic (which will be handled
268   // in SelectIntrinsicWChain).
269 
270   SDValue Ch = N->getOperand(0);
271   SDValue Loc = N->getOperand(1);
272 
273   // Assume that the load and the intrinsic are connected directly with a
274   // chain:
275   //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C
276   //   t2: i32,ch = load t1:1, Loc, ...
277   SDNode *C = Ch.getNode();
278 
279   if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
280     return false;
281 
282   // The second load can only be eliminated if its extension type matches
283   // that of the load instruction corresponding to the intrinsic. The user
284   // can provide an address of an unsigned variable to store the result of
285   // a sign-extending intrinsic into (or the other way around).
286   ISD::LoadExtType IntExt;
287   switch (C->getConstantOperandVal(1)) {
288   case Intrinsic::hexagon_circ_ldub:
289   case Intrinsic::hexagon_circ_lduh:
290     IntExt = ISD::ZEXTLOAD;
291     break;
292   case Intrinsic::hexagon_circ_ldw:
293   case Intrinsic::hexagon_circ_ldd:
294     IntExt = ISD::NON_EXTLOAD;
295     break;
296   default:
297     IntExt = ISD::SEXTLOAD;
298     break;
299   }
300   if (N->getExtensionType() != IntExt)
301     return false;
302 
303   // Make sure the target location for the loaded value in the load intrinsic
304   // is the location from which LD (or N) is loading.
305   if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
306     return false;
307 
308   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
309     SDNode *S = StoreInstrForLoadIntrinsic(L, C);
310     SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
311     SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
312     ReplaceUses(F, T, std::size(T));
313     // This transformation will leave the intrinsic dead. If it remains in
314     // the DAG, the selection code will see it again, but without the load,
315     // and it will generate a store that is normally required for it.
316     CurDAG->RemoveDeadNode(C);
317     return true;
318   }
319   return false;
320 }
321 
322 // Convert the bit-reverse load intrinsic to appropriate target instruction.
SelectBrevLdIntrinsic(SDNode * IntN)323 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
324   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
325     return false;
326 
327   const SDLoc &dl(IntN);
328   unsigned IntNo = IntN->getConstantOperandVal(1);
329 
330   static const std::map<unsigned, unsigned> LoadBrevMap = {
331     { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
332     { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
333     { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
334     { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
335     { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
336     { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
337   };
338   auto FLI = LoadBrevMap.find(IntNo);
339   if (FLI != LoadBrevMap.end()) {
340     EVT ValTy =
341         (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
342     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
343     // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
344     // modifier}.
345     // Operands of target instruction: { Base, Modifier, Chain }.
346     MachineSDNode *Res = CurDAG->getMachineNode(
347         FLI->second, dl, RTys,
348         {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
349 
350     MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
351     CurDAG->setNodeMemRefs(Res, {MemOp});
352 
353     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
354     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
355     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
356     CurDAG->RemoveDeadNode(IntN);
357     return true;
358   }
359   return false;
360 }
361 
362 /// Generate a machine instruction node for the new circular buffer intrinsics.
363 /// The new versions use a CSx register instead of the K field.
SelectNewCircIntrinsic(SDNode * IntN)364 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
365   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
366     return false;
367 
368   SDLoc DL(IntN);
369   unsigned IntNo = IntN->getConstantOperandVal(1);
370   SmallVector<SDValue, 7> Ops;
371 
372   static std::map<unsigned,unsigned> LoadNPcMap = {
373     { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
374     { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
375     { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
376     { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
377     { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
378     { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
379     { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
380     { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
381     { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
382     { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
383     { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
384     { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
385   };
386   auto FLI = LoadNPcMap.find (IntNo);
387   if (FLI != LoadNPcMap.end()) {
388     EVT ValTy = MVT::i32;
389     if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
390         IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
391       ValTy = MVT::i64;
392     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
393     // Handle load.*_pci case which has 6 operands.
394     if (IntN->getNumOperands() == 6) {
395       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
396       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
397       // Operands: { Base, Increment, Modifier, Start, Chain }.
398       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
399               IntN->getOperand(0) };
400     } else
401       // Handle load.*_pcr case which has 5 operands.
402       // Operands: { Base, Modifier, Start, Chain }.
403       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
404               IntN->getOperand(0) };
405     MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
406     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
407     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
408     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
409     CurDAG->RemoveDeadNode(IntN);
410     return true;
411   }
412 
413   static std::map<unsigned,unsigned> StoreNPcMap = {
414     { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
415     { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
416     { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
417     { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
418     { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
419     { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
420     { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
421     { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
422     { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
423     { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
424   };
425   auto FSI = StoreNPcMap.find (IntNo);
426   if (FSI != StoreNPcMap.end()) {
427     EVT RTys[] = { MVT::i32, MVT::Other };
428     // Handle store.*_pci case which has 7 operands.
429     if (IntN->getNumOperands() == 7) {
430       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
431       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
432       // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
433       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
434               IntN->getOperand(6), IntN->getOperand(0) };
435     } else
436       // Handle store.*_pcr case which has 6 operands.
437       // Operands: { Base, Modifier, Value, Start, Chain }.
438       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
439               IntN->getOperand(5), IntN->getOperand(0) };
440     MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
441     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
442     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
443     CurDAG->RemoveDeadNode(IntN);
444     return true;
445   }
446 
447   return false;
448 }
449 
SelectLoad(SDNode * N)450 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
451   SDLoc dl(N);
452   LoadSDNode *LD = cast<LoadSDNode>(N);
453 
454   // Handle indexed loads.
455   ISD::MemIndexedMode AM = LD->getAddressingMode();
456   if (AM != ISD::UNINDEXED) {
457     SelectIndexedLoad(LD, dl);
458     return;
459   }
460 
461   // Handle patterns using circ/brev load intrinsics.
462   if (tryLoadOfLoadIntrinsic(LD))
463     return;
464 
465   SelectCode(LD);
466 }
467 
SelectIndexedStore(StoreSDNode * ST,const SDLoc & dl)468 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
469   SDValue Chain = ST->getChain();
470   SDValue Base = ST->getBasePtr();
471   SDValue Offset = ST->getOffset();
472   SDValue Value = ST->getValue();
473   // Get the constant value.
474   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
475   EVT StoredVT = ST->getMemoryVT();
476   EVT ValueVT = Value.getValueType();
477 
478   bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
479   unsigned Opcode = 0;
480 
481   assert(StoredVT.isSimple());
482   switch (StoredVT.getSimpleVT().SimpleTy) {
483   case MVT::i8:
484     Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
485     break;
486   case MVT::i16:
487     Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
488     break;
489   case MVT::i32:
490   case MVT::f32:
491   case MVT::v2i16:
492   case MVT::v4i8:
493     Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
494     break;
495   case MVT::i64:
496   case MVT::f64:
497   case MVT::v2i32:
498   case MVT::v4i16:
499   case MVT::v8i8:
500     Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
501     break;
502   case MVT::v64i8:
503   case MVT::v32i16:
504   case MVT::v16i32:
505   case MVT::v8i64:
506   case MVT::v128i8:
507   case MVT::v64i16:
508   case MVT::v32i32:
509   case MVT::v16i64:
510     if (isAlignedMemNode(ST)) {
511       if (ST->isNonTemporal())
512         Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
513       else
514         Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
515     } else {
516       Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
517     }
518     break;
519   default:
520     llvm_unreachable("Unexpected memory type in indexed store");
521   }
522 
523   if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
524     assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
525     Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
526                                            dl, MVT::i32, Value);
527   }
528 
529   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
530   MachineMemOperand *MemOp = ST->getMemOperand();
531 
532   //                  Next address   Chain
533   SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
534   SDValue To[2];
535 
536   if (IsValidInc) {
537     // Build post increment store.
538     SDValue Ops[] = { Base, IncV, Value, Chain };
539     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
540                                               Ops);
541     CurDAG->setNodeMemRefs(S, {MemOp});
542     To[0] = SDValue(S, 0);
543     To[1] = SDValue(S, 1);
544   } else {
545     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
546     SDValue Ops[] = { Base, Zero, Value, Chain };
547     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
548     CurDAG->setNodeMemRefs(S, {MemOp});
549     To[1] = SDValue(S, 0);
550     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
551                                               Base, IncV);
552     To[0] = SDValue(A, 0);
553   }
554 
555   ReplaceUses(From, To, 2);
556   CurDAG->RemoveDeadNode(ST);
557 }
558 
SelectStore(SDNode * N)559 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
560   SDLoc dl(N);
561   StoreSDNode *ST = cast<StoreSDNode>(N);
562 
563   // Handle indexed stores.
564   ISD::MemIndexedMode AM = ST->getAddressingMode();
565   if (AM != ISD::UNINDEXED) {
566     SelectIndexedStore(ST, dl);
567     return;
568   }
569 
570   SelectCode(ST);
571 }
572 
SelectSHL(SDNode * N)573 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
574   SDLoc dl(N);
575   SDValue Shl_0 = N->getOperand(0);
576   SDValue Shl_1 = N->getOperand(1);
577 
578   auto Default = [this,N] () -> void { SelectCode(N); };
579 
580   if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
581     return Default();
582 
583   // RHS is const.
584   int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
585 
586   if (Shl_0.getOpcode() == ISD::MUL) {
587     SDValue Mul_0 = Shl_0.getOperand(0); // Val
588     SDValue Mul_1 = Shl_0.getOperand(1); // Const
589     // RHS of mul is const.
590     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
591       int32_t ValConst = C->getSExtValue() << ShlConst;
592       if (isInt<9>(ValConst)) {
593         SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
594         SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
595                                                 MVT::i32, Mul_0, Val);
596         ReplaceNode(N, Result);
597         return;
598       }
599     }
600     return Default();
601   }
602 
603   if (Shl_0.getOpcode() == ISD::SUB) {
604     SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
605     SDValue Sub_1 = Shl_0.getOperand(1); // Val
606     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
607       if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
608         return Default();
609       SDValue Shl2_0 = Sub_1.getOperand(0); // Val
610       SDValue Shl2_1 = Sub_1.getOperand(1); // Const
611       if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
612         int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
613         if (isInt<9>(-ValConst)) {
614           SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
615           SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
616                                                   MVT::i32, Shl2_0, Val);
617           ReplaceNode(N, Result);
618           return;
619         }
620       }
621     }
622   }
623 
624   return Default();
625 }
626 
627 //
628 // Handling intrinsics for circular load and bitreverse load.
629 //
SelectIntrinsicWChain(SDNode * N)630 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
631   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
632     StoreInstrForLoadIntrinsic(L, N);
633     CurDAG->RemoveDeadNode(N);
634     return;
635   }
636 
637   // Handle bit-reverse load intrinsics.
638   if (SelectBrevLdIntrinsic(N))
639     return;
640 
641   if (SelectNewCircIntrinsic(N))
642     return;
643 
644   unsigned IntNo = N->getConstantOperandVal(1);
645   if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
646       IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
647       IntNo == Intrinsic::hexagon_V6_vgathermh ||
648       IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
649       IntNo == Intrinsic::hexagon_V6_vgathermhw ||
650       IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
651     SelectV65Gather(N);
652     return;
653   }
654   if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
655       IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
656       IntNo == Intrinsic::hexagon_V6_vgathermhq ||
657       IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
658       IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
659       IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
660     SelectV65GatherPred(N);
661     return;
662   }
663 
664   SelectCode(N);
665 }
666 
SelectIntrinsicWOChain(SDNode * N)667 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
668   unsigned IID = N->getConstantOperandVal(0);
669   unsigned Bits;
670   switch (IID) {
671   case Intrinsic::hexagon_S2_vsplatrb:
672     Bits = 8;
673     break;
674   case Intrinsic::hexagon_S2_vsplatrh:
675     Bits = 16;
676     break;
677   case Intrinsic::hexagon_V6_vaddcarry:
678   case Intrinsic::hexagon_V6_vaddcarry_128B:
679   case Intrinsic::hexagon_V6_vsubcarry:
680   case Intrinsic::hexagon_V6_vsubcarry_128B:
681     SelectHVXDualOutput(N);
682     return;
683   default:
684     SelectCode(N);
685     return;
686   }
687 
688   SDValue V = N->getOperand(1);
689   SDValue U;
690   // Splat intrinsics.
691   if (keepsLowBits(V, Bits, U)) {
692     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
693                                 N->getOperand(0), U);
694     ReplaceNode(N, R.getNode());
695     SelectCode(R.getNode());
696     return;
697   }
698   SelectCode(N);
699 }
700 
SelectExtractSubvector(SDNode * N)701 void HexagonDAGToDAGISel::SelectExtractSubvector(SDNode *N) {
702   SDValue Inp = N->getOperand(0);
703   MVT ResTy = N->getValueType(0).getSimpleVT();
704   unsigned Idx = N->getConstantOperandVal(1);
705 
706   [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT();
707   [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements();
708   assert(InpTy.getVectorElementType() == ResTy.getVectorElementType());
709   assert(2 * ResLen == InpTy.getVectorNumElements());
710   assert(ResTy.getSizeInBits() == 32);
711   assert(Idx == 0 || Idx == ResLen);
712 
713   unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
714   SDValue Ext = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp);
715 
716   ReplaceNode(N, Ext.getNode());
717 }
718 
719 //
720 // Map floating point constant values.
721 //
SelectConstantFP(SDNode * N)722 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
723   SDLoc dl(N);
724   auto *CN = cast<ConstantFPSDNode>(N);
725   APInt A = CN->getValueAPF().bitcastToAPInt();
726   if (N->getValueType(0) == MVT::f32) {
727     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
728     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
729     return;
730   }
731   if (N->getValueType(0) == MVT::f64) {
732     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
733     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
734     return;
735   }
736 
737   SelectCode(N);
738 }
739 
740 //
741 // Map boolean values.
742 //
SelectConstant(SDNode * N)743 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
744   if (N->getValueType(0) == MVT::i1) {
745     assert(!(N->getAsZExtVal() >> 1));
746     unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
747                       ? Hexagon::PS_true
748                       : Hexagon::PS_false;
749     ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
750     return;
751   }
752 
753   SelectCode(N);
754 }
755 
SelectFrameIndex(SDNode * N)756 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
757   MachineFrameInfo &MFI = MF->getFrameInfo();
758   const HexagonFrameLowering *HFI = HST->getFrameLowering();
759   int FX = cast<FrameIndexSDNode>(N)->getIndex();
760   Align StkA = HFI->getStackAlign();
761   Align MaxA = MFI.getMaxAlign();
762   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
763   SDLoc DL(N);
764   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
765   SDNode *R = nullptr;
766 
767   // Use PS_fi when:
768   // - the object is fixed, or
769   // - there are no objects with higher-than-default alignment, or
770   // - there are no dynamically allocated objects.
771   // Otherwise, use PS_fia.
772   if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
773     R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
774   } else {
775     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
776     Register AR = HMFI.getStackAlignBaseReg();
777     SDValue CH = CurDAG->getEntryNode();
778     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
779     R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
780   }
781 
782   ReplaceNode(N, R);
783 }
784 
SelectAddSubCarry(SDNode * N)785 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
786   unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
787                                                          : Hexagon::A4_subp_c;
788   SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
789                                      { N->getOperand(0), N->getOperand(1),
790                                        N->getOperand(2) });
791   ReplaceNode(N, C);
792 }
793 
SelectVAlign(SDNode * N)794 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
795   MVT ResTy = N->getValueType(0).getSimpleVT();
796   if (HST->isHVXVectorType(ResTy, true))
797     return SelectHvxVAlign(N);
798 
799   const SDLoc &dl(N);
800   unsigned VecLen = ResTy.getSizeInBits();
801   if (VecLen == 32) {
802     SDValue Ops[] = {
803       CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
804       N->getOperand(0),
805       CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
806       N->getOperand(1),
807       CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
808     };
809     SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
810                                        MVT::i64, Ops);
811 
812     // Shift right by "(Addr & 0x3) * 8" bytes.
813     SDNode *C;
814     SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
815     SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
816     if (HST->useCompound()) {
817       C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
818                                  M0, N->getOperand(2), M1);
819     } else {
820       SDNode *T = CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32,
821                                          N->getOperand(2), M1);
822       C = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
823                                  SDValue(T, 0), M0);
824     }
825     SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
826                                        SDValue(R, 0), SDValue(C, 0));
827     SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
828                                                SDValue(S, 0));
829     ReplaceNode(N, E.getNode());
830   } else {
831     assert(VecLen == 64);
832     SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
833                                         N->getOperand(2));
834     SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
835                                         N->getOperand(0), N->getOperand(1),
836                                         SDValue(Pu,0));
837     ReplaceNode(N, VA);
838   }
839 }
840 
SelectVAlignAddr(SDNode * N)841 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
842   const SDLoc &dl(N);
843   SDValue A = N->getOperand(1);
844   int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
845   assert(isPowerOf2_32(-Mask));
846 
847   SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
848   SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
849                                       N->getOperand(0), M);
850   ReplaceNode(N, AA);
851 }
852 
853 // Handle these nodes here to avoid having to write patterns for all
854 // combinations of input/output types. In all cases, the resulting
855 // instruction is the same.
SelectTypecast(SDNode * N)856 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
857   SDValue Op = N->getOperand(0);
858   MVT OpTy = Op.getValueType().getSimpleVT();
859   SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
860                                   CurDAG->getVTList(OpTy), {Op});
861   ReplaceNode(T, Op.getNode());
862 }
863 
SelectP2D(SDNode * N)864 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
865   MVT ResTy = N->getValueType(0).getSimpleVT();
866   SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
867                                      N->getOperand(0));
868   ReplaceNode(N, T);
869 }
870 
SelectD2P(SDNode * N)871 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
872   const SDLoc &dl(N);
873   MVT ResTy = N->getValueType(0).getSimpleVT();
874   SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
875   SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
876                                      N->getOperand(0), Zero);
877   ReplaceNode(N, T);
878 }
879 
SelectV2Q(SDNode * N)880 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
881   const SDLoc &dl(N);
882   MVT ResTy = N->getValueType(0).getSimpleVT();
883   // The argument to V2Q should be a single vector.
884   MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
885   assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
886 
887   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
888   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
889   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
890                                      N->getOperand(0), SDValue(R,0));
891   ReplaceNode(N, T);
892 }
893 
SelectQ2V(SDNode * N)894 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
895   const SDLoc &dl(N);
896   MVT ResTy = N->getValueType(0).getSimpleVT();
897   // The result of V2Q should be a single vector.
898   assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
899 
900   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
901   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
902   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
903                                      N->getOperand(0), SDValue(R,0));
904   ReplaceNode(N, T);
905 }
906 
Select(SDNode * N)907 void HexagonDAGToDAGISel::Select(SDNode *N) {
908   if (N->isMachineOpcode())
909     return N->setNodeId(-1);  // Already selected.
910 
911   auto isHvxOp = [this](SDNode *N) {
912     for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
913       if (HST->isHVXVectorType(N->getValueType(i), true))
914         return true;
915     }
916     for (SDValue I : N->ops()) {
917       if (HST->isHVXVectorType(I.getValueType(), true))
918         return true;
919     }
920     return false;
921   };
922 
923   if (HST->useHVXOps() && isHvxOp(N)) {
924     switch (N->getOpcode()) {
925     case ISD::EXTRACT_SUBVECTOR:  return SelectHvxExtractSubvector(N);
926     case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N);
927 
928     case HexagonISD::VROR:        return SelectHvxRor(N);
929     }
930   }
931 
932   switch (N->getOpcode()) {
933   case ISD::Constant:             return SelectConstant(N);
934   case ISD::ConstantFP:           return SelectConstantFP(N);
935   case ISD::FrameIndex:           return SelectFrameIndex(N);
936   case ISD::SHL:                  return SelectSHL(N);
937   case ISD::LOAD:                 return SelectLoad(N);
938   case ISD::STORE:                return SelectStore(N);
939   case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N);
940   case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N);
941   case ISD::EXTRACT_SUBVECTOR:    return SelectExtractSubvector(N);
942 
943   case HexagonISD::ADDC:
944   case HexagonISD::SUBC:          return SelectAddSubCarry(N);
945   case HexagonISD::VALIGN:        return SelectVAlign(N);
946   case HexagonISD::VALIGNADDR:    return SelectVAlignAddr(N);
947   case HexagonISD::TYPECAST:      return SelectTypecast(N);
948   case HexagonISD::P2D:           return SelectP2D(N);
949   case HexagonISD::D2P:           return SelectD2P(N);
950   case HexagonISD::Q2V:           return SelectQ2V(N);
951   case HexagonISD::V2Q:           return SelectV2Q(N);
952   }
953 
954   SelectCode(N);
955 }
956 
SelectInlineAsmMemoryOperand(const SDValue & Op,InlineAsm::ConstraintCode ConstraintID,std::vector<SDValue> & OutOps)957 bool HexagonDAGToDAGISel::SelectInlineAsmMemoryOperand(
958     const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
959     std::vector<SDValue> &OutOps) {
960   SDValue Inp = Op, Res;
961 
962   switch (ConstraintID) {
963   default:
964     return true;
965   case InlineAsm::ConstraintCode::o: // Offsetable.
966   case InlineAsm::ConstraintCode::v: // Not offsetable.
967   case InlineAsm::ConstraintCode::m: // Memory.
968     if (SelectAddrFI(Inp, Res))
969       OutOps.push_back(Res);
970     else
971       OutOps.push_back(Inp);
972     break;
973   }
974 
975   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
976   return false;
977 }
978 
isMemOPCandidate(SDNode * I,SDNode * U)979 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
980   // I is an operand of U. Check if U is an arithmetic (binary) operation
981   // usable in a memop, where the other operand is a loaded value, and the
982   // result of U is stored in the same location.
983 
984   if (!U->hasOneUse())
985     return false;
986   unsigned Opc = U->getOpcode();
987   switch (Opc) {
988     case ISD::ADD:
989     case ISD::SUB:
990     case ISD::AND:
991     case ISD::OR:
992       break;
993     default:
994       return false;
995   }
996 
997   SDValue S0 = U->getOperand(0);
998   SDValue S1 = U->getOperand(1);
999   SDValue SY = (S0.getNode() == I) ? S1 : S0;
1000 
1001   SDNode *UUse = *U->use_begin();
1002   if (UUse->getNumValues() != 1)
1003     return false;
1004 
1005   // Check if one of the inputs to U is a load instruction and the output
1006   // is used by a store instruction. If so and they also have the same
1007   // base pointer, then don't preoprocess this node sequence as it
1008   // can be matched to a memop.
1009   SDNode *SYNode = SY.getNode();
1010   if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
1011     SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
1012     SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
1013     if (LDBasePtr == STBasePtr)
1014       return true;
1015   }
1016   return false;
1017 }
1018 
1019 
1020 // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1021 //            (or (select c 0 y) z)  ->  (select c z (or y z))
ppSimplifyOrSelect0(std::vector<SDNode * > && Nodes)1022 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
1023   SelectionDAG &DAG = *CurDAG;
1024 
1025   for (auto *I : Nodes) {
1026     if (I->getOpcode() != ISD::OR)
1027       continue;
1028 
1029     auto IsSelect0 = [](const SDValue &Op) -> bool {
1030       if (Op.getOpcode() != ISD::SELECT)
1031         return false;
1032       return isNullConstant(Op.getOperand(1)) ||
1033              isNullConstant(Op.getOperand(2));
1034     };
1035 
1036     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
1037     EVT VT = I->getValueType(0);
1038     bool SelN0 = IsSelect0(N0);
1039     SDValue SOp = SelN0 ? N0 : N1;
1040     SDValue VOp = SelN0 ? N1 : N0;
1041 
1042     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1043       SDValue SC = SOp.getOperand(0);
1044       SDValue SX = SOp.getOperand(1);
1045       SDValue SY = SOp.getOperand(2);
1046       SDLoc DLS = SOp;
1047       if (isNullConstant(SY)) {
1048         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1049         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1050         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1051       } else if (isNullConstant(SX)) {
1052         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1053         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1054         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1055       }
1056     }
1057   }
1058 }
1059 
1060 // Transform: (store ch val (add x (add (shl y c) e)))
1061 //        to: (store ch val (add x (shl (add y d) c))),
1062 // where e = (shl d c) for some integer d.
1063 // The purpose of this is to enable generation of loads/stores with
1064 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1065 // value c must be 0, 1 or 2.
ppAddrReorderAddShl(std::vector<SDNode * > && Nodes)1066 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1067   SelectionDAG &DAG = *CurDAG;
1068 
1069   for (auto *I : Nodes) {
1070     if (I->getOpcode() != ISD::STORE)
1071       continue;
1072 
1073     // I matched: (store ch val Off)
1074     SDValue Off = I->getOperand(2);
1075     // Off needs to match: (add x (add (shl y c) (shl d c))))
1076     if (Off.getOpcode() != ISD::ADD)
1077       continue;
1078     // Off matched: (add x T0)
1079     SDValue T0 = Off.getOperand(1);
1080     // T0 needs to match: (add T1 T2):
1081     if (T0.getOpcode() != ISD::ADD)
1082       continue;
1083     // T0 matched: (add T1 T2)
1084     SDValue T1 = T0.getOperand(0);
1085     SDValue T2 = T0.getOperand(1);
1086     // T1 needs to match: (shl y c)
1087     if (T1.getOpcode() != ISD::SHL)
1088       continue;
1089     SDValue C = T1.getOperand(1);
1090     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1091     if (CN == nullptr)
1092       continue;
1093     unsigned CV = CN->getZExtValue();
1094     if (CV > 2)
1095       continue;
1096     // T2 needs to match e, where e = (shl d c) for some d.
1097     ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1098     if (EN == nullptr)
1099       continue;
1100     unsigned EV = EN->getZExtValue();
1101     if (EV % (1 << CV) != 0)
1102       continue;
1103     unsigned DV = EV / (1 << CV);
1104 
1105     // Replace T0 with: (shl (add y d) c)
1106     SDLoc DL = SDLoc(I);
1107     EVT VT = T0.getValueType();
1108     SDValue D = DAG.getConstant(DV, DL, VT);
1109     // NewAdd = (add y d)
1110     SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1111     // NewShl = (shl NewAdd c)
1112     SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1113     ReplaceNode(T0.getNode(), NewShl.getNode());
1114   }
1115 }
1116 
1117 // Transform: (load ch (add x (and (srl y c) Mask)))
1118 //        to: (load ch (add x (shl (srl y d) d-c)))
1119 // where
1120 // Mask = 00..0 111..1 0.0
1121 //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1122 //          |     +-------- 1s
1123 //          +-------------- at most c 0s
1124 // Motivating example:
1125 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1126 //                     to (add x (and (srl y 3) 1FFFFFFC))
1127 // which results in a constant-extended and(##...,lsr). This transformation
1128 // undoes this simplification for cases where the shl can be folded into
1129 // an addressing mode.
ppAddrRewriteAndSrl(std::vector<SDNode * > && Nodes)1130 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1131   SelectionDAG &DAG = *CurDAG;
1132 
1133   for (SDNode *N : Nodes) {
1134     unsigned Opc = N->getOpcode();
1135     if (Opc != ISD::LOAD && Opc != ISD::STORE)
1136       continue;
1137     SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1138     // Addr must match: (add x T0)
1139     if (Addr.getOpcode() != ISD::ADD)
1140       continue;
1141     SDValue T0 = Addr.getOperand(1);
1142     // T0 must match: (and T1 Mask)
1143     if (T0.getOpcode() != ISD::AND)
1144       continue;
1145 
1146     // We have an AND.
1147     //
1148     // Check the first operand. It must be: (srl y c).
1149     SDValue S = T0.getOperand(0);
1150     if (S.getOpcode() != ISD::SRL)
1151       continue;
1152     ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1153     if (SN == nullptr)
1154       continue;
1155     if (SN->getAPIntValue().getBitWidth() != 32)
1156       continue;
1157     uint32_t CV = SN->getZExtValue();
1158 
1159     // Check the second operand: the supposed mask.
1160     ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1161     if (MN == nullptr)
1162       continue;
1163     if (MN->getAPIntValue().getBitWidth() != 32)
1164       continue;
1165     uint32_t Mask = MN->getZExtValue();
1166     // Examine the mask.
1167     uint32_t TZ = llvm::countr_zero(Mask);
1168     uint32_t M1 = llvm::countr_one(Mask >> TZ);
1169     uint32_t LZ = llvm::countl_zero(Mask);
1170     // Trailing zeros + middle ones + leading zeros must equal the width.
1171     if (TZ + M1 + LZ != 32)
1172       continue;
1173     // The number of trailing zeros will be encoded in the addressing mode.
1174     if (TZ > 2)
1175       continue;
1176     // The number of leading zeros must be at most c.
1177     if (LZ > CV)
1178       continue;
1179 
1180     // All looks good.
1181     SDValue Y = S.getOperand(0);
1182     EVT VT = Addr.getValueType();
1183     SDLoc dl(S);
1184     // TZ = D-C, so D = TZ+C.
1185     SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1186     SDValue DC = DAG.getConstant(TZ, dl, VT);
1187     SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1188     SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1189     ReplaceNode(T0.getNode(), NewShl.getNode());
1190   }
1191 }
1192 
1193 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1194 //                                                  (op ... 1 ...))
ppHoistZextI1(std::vector<SDNode * > && Nodes)1195 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1196   SelectionDAG &DAG = *CurDAG;
1197 
1198   for (SDNode *N : Nodes) {
1199     unsigned Opc = N->getOpcode();
1200     if (Opc != ISD::ZERO_EXTEND)
1201       continue;
1202     SDValue OpI1 = N->getOperand(0);
1203     EVT OpVT = OpI1.getValueType();
1204     if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1205       continue;
1206     for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1207       SDNode *U = *I;
1208       if (U->getNumValues() != 1)
1209         continue;
1210       EVT UVT = U->getValueType(0);
1211       if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1212         continue;
1213       // Do not generate select for all i1 vector type.
1214       if (UVT.isVector() && UVT.getVectorElementType() == MVT::i1)
1215         continue;
1216       if (isMemOPCandidate(N, U))
1217         continue;
1218 
1219       // Potentially simplifiable operation.
1220       unsigned I1N = I.getOperandNo();
1221       SmallVector<SDValue,2> Ops(U->getNumOperands());
1222       for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1223         Ops[i] = U->getOperand(i);
1224       EVT BVT = Ops[I1N].getValueType();
1225 
1226       const SDLoc &dl(U);
1227       SDValue C0 = DAG.getConstant(0, dl, BVT);
1228       SDValue C1 = DAG.getConstant(1, dl, BVT);
1229       SDValue If0, If1;
1230 
1231       if (isa<MachineSDNode>(U)) {
1232         unsigned UseOpc = U->getMachineOpcode();
1233         Ops[I1N] = C0;
1234         If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1235         Ops[I1N] = C1;
1236         If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1237       } else {
1238         unsigned UseOpc = U->getOpcode();
1239         Ops[I1N] = C0;
1240         If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1241         Ops[I1N] = C1;
1242         If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1243       }
1244       // We're generating a SELECT way after legalization, so keep the types
1245       // simple.
1246       unsigned UW = UVT.getSizeInBits();
1247       EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(UW) : UVT;
1248       SDValue Sel = DAG.getNode(ISD::SELECT, dl, SVT, OpI1,
1249                                 DAG.getBitcast(SVT, If1),
1250                                 DAG.getBitcast(SVT, If0));
1251       SDValue Ret = DAG.getBitcast(UVT, Sel);
1252       DAG.ReplaceAllUsesWith(U, Ret.getNode());
1253     }
1254   }
1255 }
1256 
PreprocessISelDAG()1257 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1258   // Repack all nodes before calling each preprocessing function,
1259   // because each of them can modify the set of nodes.
1260   auto getNodes = [this]() -> std::vector<SDNode *> {
1261     std::vector<SDNode *> T;
1262     T.reserve(CurDAG->allnodes_size());
1263     for (SDNode &N : CurDAG->allnodes())
1264       T.push_back(&N);
1265     return T;
1266   };
1267 
1268   if (HST->useHVXOps())
1269     PreprocessHvxISelDAG();
1270 
1271   // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1272   //            (or (select c 0 y) z)  ->  (select c z (or y z))
1273   ppSimplifyOrSelect0(getNodes());
1274 
1275   // Transform: (store ch val (add x (add (shl y c) e)))
1276   //        to: (store ch val (add x (shl (add y d) c))),
1277   // where e = (shl d c) for some integer d.
1278   // The purpose of this is to enable generation of loads/stores with
1279   // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1280   // value c must be 0, 1 or 2.
1281   ppAddrReorderAddShl(getNodes());
1282 
1283   // Transform: (load ch (add x (and (srl y c) Mask)))
1284   //        to: (load ch (add x (shl (srl y d) d-c)))
1285   // where
1286   // Mask = 00..0 111..1 0.0
1287   //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1288   //          |     +-------- 1s
1289   //          +-------------- at most c 0s
1290   // Motivating example:
1291   // DAG combiner optimizes (add x (shl (srl y 5) 2))
1292   //                     to (add x (and (srl y 3) 1FFFFFFC))
1293   // which results in a constant-extended and(##...,lsr). This transformation
1294   // undoes this simplification for cases where the shl can be folded into
1295   // an addressing mode.
1296   ppAddrRewriteAndSrl(getNodes());
1297 
1298   // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1299   //                                                  (op ... 1 ...))
1300   ppHoistZextI1(getNodes());
1301 
1302   DEBUG_WITH_TYPE("isel", {
1303     dbgs() << "Preprocessed (Hexagon) selection DAG:";
1304     CurDAG->dump();
1305   });
1306 
1307   if (EnableAddressRebalancing) {
1308     rebalanceAddressTrees();
1309 
1310     DEBUG_WITH_TYPE("isel", {
1311       dbgs() << "Address tree balanced selection DAG:";
1312       CurDAG->dump();
1313     });
1314   }
1315 }
1316 
emitFunctionEntryCode()1317 void HexagonDAGToDAGISel::emitFunctionEntryCode() {
1318   auto &HST = MF->getSubtarget<HexagonSubtarget>();
1319   auto &HFI = *HST.getFrameLowering();
1320   if (!HFI.needsAligna(*MF))
1321     return;
1322 
1323   MachineFrameInfo &MFI = MF->getFrameInfo();
1324   MachineBasicBlock *EntryBB = &MF->front();
1325   Align EntryMaxA = MFI.getMaxAlign();
1326 
1327   // Reserve the first non-volatile register.
1328   Register AP = 0;
1329   auto &HRI = *HST.getRegisterInfo();
1330   BitVector Reserved = HRI.getReservedRegs(*MF);
1331   for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF); *R; ++R) {
1332     if (Reserved[*R])
1333       continue;
1334     AP = *R;
1335     break;
1336   }
1337   assert(AP.isValid() && "Couldn't reserve stack align register");
1338   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AP)
1339       .addImm(EntryMaxA.value());
1340   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseReg(AP);
1341 }
1342 
updateAligna()1343 void HexagonDAGToDAGISel::updateAligna() {
1344   auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering();
1345   if (!HFI.needsAligna(*MF))
1346     return;
1347   auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF));
1348   assert(AlignaI != nullptr);
1349   unsigned MaxA = MF->getFrameInfo().getMaxAlign().value();
1350   if (AlignaI->getOperand(1).getImm() < MaxA)
1351     AlignaI->getOperand(1).setImm(MaxA);
1352 }
1353 
1354 // Match a frame index that can be used in an addressing mode.
SelectAddrFI(SDValue & N,SDValue & R)1355 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1356   if (N.getOpcode() != ISD::FrameIndex)
1357     return false;
1358   auto &HFI = *HST->getFrameLowering();
1359   MachineFrameInfo &MFI = MF->getFrameInfo();
1360   int FX = cast<FrameIndexSDNode>(N)->getIndex();
1361   if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1362     return false;
1363   R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1364   return true;
1365 }
1366 
SelectAddrGA(SDValue & N,SDValue & R)1367 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1368   return SelectGlobalAddress(N, R, false, Align(1));
1369 }
1370 
SelectAddrGP(SDValue & N,SDValue & R)1371 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1372   return SelectGlobalAddress(N, R, true, Align(1));
1373 }
1374 
SelectAnyImm(SDValue & N,SDValue & R)1375 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1376   return SelectAnyImmediate(N, R, Align(1));
1377 }
1378 
SelectAnyImm0(SDValue & N,SDValue & R)1379 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1380   return SelectAnyImmediate(N, R, Align(1));
1381 }
SelectAnyImm1(SDValue & N,SDValue & R)1382 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1383   return SelectAnyImmediate(N, R, Align(2));
1384 }
SelectAnyImm2(SDValue & N,SDValue & R)1385 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1386   return SelectAnyImmediate(N, R, Align(4));
1387 }
SelectAnyImm3(SDValue & N,SDValue & R)1388 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1389   return SelectAnyImmediate(N, R, Align(8));
1390 }
1391 
SelectAnyInt(SDValue & N,SDValue & R)1392 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1393   EVT T = N.getValueType();
1394   if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1395     return false;
1396   int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1397   R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1398   return true;
1399 }
1400 
SelectAnyImmediate(SDValue & N,SDValue & R,Align Alignment)1401 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1402                                              Align Alignment) {
1403   switch (N.getOpcode()) {
1404   case ISD::Constant: {
1405     if (N.getValueType() != MVT::i32)
1406       return false;
1407     int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1408     if (!isAligned(Alignment, V))
1409       return false;
1410     R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1411     return true;
1412   }
1413   case HexagonISD::JT:
1414   case HexagonISD::CP:
1415     // These are assumed to always be aligned at least 8-byte boundary.
1416     if (Alignment > Align(8))
1417       return false;
1418     R = N.getOperand(0);
1419     return true;
1420   case ISD::ExternalSymbol:
1421     // Symbols may be aligned at any boundary.
1422     if (Alignment > Align(1))
1423       return false;
1424     R = N;
1425     return true;
1426   case ISD::BlockAddress:
1427     // Block address is always aligned at least 4-byte boundary.
1428     if (Alignment > Align(4) ||
1429         !isAligned(Alignment, cast<BlockAddressSDNode>(N)->getOffset()))
1430       return false;
1431     R = N;
1432     return true;
1433   }
1434 
1435   if (SelectGlobalAddress(N, R, false, Alignment) ||
1436       SelectGlobalAddress(N, R, true, Alignment))
1437     return true;
1438 
1439   return false;
1440 }
1441 
SelectGlobalAddress(SDValue & N,SDValue & R,bool UseGP,Align Alignment)1442 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1443                                               bool UseGP, Align Alignment) {
1444   switch (N.getOpcode()) {
1445   case ISD::ADD: {
1446     SDValue N0 = N.getOperand(0);
1447     SDValue N1 = N.getOperand(1);
1448     unsigned GAOpc = N0.getOpcode();
1449     if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1450       return false;
1451     if (!UseGP && GAOpc != HexagonISD::CONST32)
1452       return false;
1453     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1454       if (!isAligned(Alignment, Const->getZExtValue()))
1455         return false;
1456       SDValue Addr = N0.getOperand(0);
1457       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1458         if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1459           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1460           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1461                                              N.getValueType(), NewOff);
1462           return true;
1463         }
1464       }
1465     }
1466     break;
1467   }
1468   case HexagonISD::CP:
1469   case HexagonISD::JT:
1470   case HexagonISD::CONST32:
1471     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1472     // want in the instruction.
1473     if (!UseGP)
1474       R = N.getOperand(0);
1475     return !UseGP;
1476   case HexagonISD::CONST32_GP:
1477     if (UseGP)
1478       R = N.getOperand(0);
1479     return UseGP;
1480   default:
1481     return false;
1482   }
1483 
1484   return false;
1485 }
1486 
DetectUseSxtw(SDValue & N,SDValue & R)1487 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1488   // This (complex pattern) function is meant to detect a sign-extension
1489   // i32->i64 on a per-operand basis. This would allow writing single
1490   // patterns that would cover a number of combinations of different ways
1491   // a sign-extensions could be written. For example:
1492   //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1493   // could match either one of these:
1494   //   (mul (sext x) (sext_inreg y))
1495   //   (mul (sext-load *p) (sext_inreg y))
1496   //   (mul (sext_inreg x) (sext y))
1497   // etc.
1498   //
1499   // The returned value will have type i64 and its low word will
1500   // contain the value being extended. The high bits are not specified.
1501   // The returned type is i64 because the original type of N was i64,
1502   // but the users of this function should only use the low-word of the
1503   // result, e.g.
1504   //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1505 
1506   if (N.getValueType() != MVT::i64)
1507     return false;
1508   unsigned Opc = N.getOpcode();
1509   switch (Opc) {
1510     case ISD::SIGN_EXTEND:
1511     case ISD::SIGN_EXTEND_INREG: {
1512       // sext_inreg has the source type as a separate operand.
1513       EVT T = Opc == ISD::SIGN_EXTEND
1514                 ? N.getOperand(0).getValueType()
1515                 : cast<VTSDNode>(N.getOperand(1))->getVT();
1516       unsigned SW = T.getSizeInBits();
1517       if (SW == 32)
1518         R = N.getOperand(0);
1519       else if (SW < 32)
1520         R = N;
1521       else
1522         return false;
1523       break;
1524     }
1525     case ISD::LOAD: {
1526       LoadSDNode *L = cast<LoadSDNode>(N);
1527       if (L->getExtensionType() != ISD::SEXTLOAD)
1528         return false;
1529       // All extending loads extend to i32, so even if the value in
1530       // memory is shorter than 32 bits, it will be i32 after the load.
1531       if (L->getMemoryVT().getSizeInBits() > 32)
1532         return false;
1533       R = N;
1534       break;
1535     }
1536     case ISD::SRA: {
1537       auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1538       if (!S || S->getZExtValue() != 32)
1539         return false;
1540       R = N;
1541       break;
1542     }
1543     default:
1544       return false;
1545   }
1546   EVT RT = R.getValueType();
1547   if (RT == MVT::i64)
1548     return true;
1549   assert(RT == MVT::i32);
1550   // This is only to produce a value of type i64. Do not rely on the
1551   // high bits produced by this.
1552   const SDLoc &dl(N);
1553   SDValue Ops[] = {
1554     CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1555     R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1556     R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1557   };
1558   SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1559                                      MVT::i64, Ops);
1560   R = SDValue(T, 0);
1561   return true;
1562 }
1563 
keepsLowBits(const SDValue & Val,unsigned NumBits,SDValue & Src)1564 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1565       SDValue &Src) {
1566   unsigned Opc = Val.getOpcode();
1567   switch (Opc) {
1568   case ISD::SIGN_EXTEND:
1569   case ISD::ZERO_EXTEND:
1570   case ISD::ANY_EXTEND: {
1571     const SDValue &Op0 = Val.getOperand(0);
1572     EVT T = Op0.getValueType();
1573     if (T.isInteger() && T.getSizeInBits() == NumBits) {
1574       Src = Op0;
1575       return true;
1576     }
1577     break;
1578   }
1579   case ISD::SIGN_EXTEND_INREG:
1580   case ISD::AssertSext:
1581   case ISD::AssertZext:
1582     if (Val.getOperand(0).getValueType().isInteger()) {
1583       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1584       if (T->getVT().getSizeInBits() == NumBits) {
1585         Src = Val.getOperand(0);
1586         return true;
1587       }
1588     }
1589     break;
1590   case ISD::AND: {
1591     // Check if this is an AND with NumBits of lower bits set to 1.
1592     uint64_t Mask = (1ULL << NumBits) - 1;
1593     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1594       if (C->getZExtValue() == Mask) {
1595         Src = Val.getOperand(1);
1596         return true;
1597       }
1598     }
1599     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1600       if (C->getZExtValue() == Mask) {
1601         Src = Val.getOperand(0);
1602         return true;
1603       }
1604     }
1605     break;
1606   }
1607   case ISD::OR:
1608   case ISD::XOR: {
1609     // OR/XOR with the lower NumBits bits set to 0.
1610     uint64_t Mask = (1ULL << NumBits) - 1;
1611     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1612       if ((C->getZExtValue() & Mask) == 0) {
1613         Src = Val.getOperand(1);
1614         return true;
1615       }
1616     }
1617     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1618       if ((C->getZExtValue() & Mask) == 0) {
1619         Src = Val.getOperand(0);
1620         return true;
1621       }
1622     }
1623     break;
1624   }
1625   default:
1626     break;
1627   }
1628   return false;
1629 }
1630 
isAlignedMemNode(const MemSDNode * N) const1631 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1632   return N->getAlign().value() >= N->getMemoryVT().getStoreSize();
1633 }
1634 
isSmallStackStore(const StoreSDNode * N) const1635 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1636   unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1637   switch (N->getMemoryVT().getStoreSize()) {
1638     case 1:
1639       return StackSize <= 56;   // 1*2^6 - 8
1640     case 2:
1641       return StackSize <= 120;  // 2*2^6 - 8
1642     case 4:
1643       return StackSize <= 248;  // 4*2^6 - 8
1644     default:
1645       return false;
1646   }
1647 }
1648 
1649 // Return true when the given node fits in a positive half word.
isPositiveHalfWord(const SDNode * N) const1650 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1651   if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1652     int64_t V = CN->getSExtValue();
1653     return V > 0 && isInt<16>(V);
1654   }
1655   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1656     const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1657     return VN->getVT().getSizeInBits() <= 16;
1658   }
1659   return false;
1660 }
1661 
hasOneUse(const SDNode * N) const1662 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1663   return !CheckSingleUse || N->hasOneUse();
1664 }
1665 
1666 ////////////////////////////////////////////////////////////////////////////////
1667 // Rebalancing of address calculation trees
1668 
isOpcodeHandled(const SDNode * N)1669 static bool isOpcodeHandled(const SDNode *N) {
1670   switch (N->getOpcode()) {
1671     case ISD::ADD:
1672     case ISD::MUL:
1673       return true;
1674     case ISD::SHL:
1675       // We only handle constant shifts because these can be easily flattened
1676       // into multiplications by 2^Op1.
1677       return isa<ConstantSDNode>(N->getOperand(1).getNode());
1678     default:
1679       return false;
1680   }
1681 }
1682 
1683 /// Return the weight of an SDNode
getWeight(SDNode * N)1684 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1685   if (!isOpcodeHandled(N))
1686     return 1;
1687   assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1688   assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1689   assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1690   return RootWeights[N];
1691 }
1692 
getHeight(SDNode * N)1693 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1694   if (!isOpcodeHandled(N))
1695     return 0;
1696   assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1697       "Cannot query height of unvisited/RAUW'd node!");
1698   return RootHeights[N];
1699 }
1700 
1701 namespace {
1702 struct WeightedLeaf {
1703   SDValue Value;
1704   int Weight;
1705   int InsertionOrder;
1706 
WeightedLeaf__anon86fca9590611::WeightedLeaf1707   WeightedLeaf() {}
1708 
WeightedLeaf__anon86fca9590611::WeightedLeaf1709   WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1710     Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1711     assert(Weight >= 0 && "Weight must be >= 0");
1712   }
1713 
Compare__anon86fca9590611::WeightedLeaf1714   static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1715     assert(A.Value.getNode() && B.Value.getNode());
1716     return A.Weight == B.Weight ?
1717             (A.InsertionOrder > B.InsertionOrder) :
1718             (A.Weight > B.Weight);
1719   }
1720 };
1721 
1722 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1723 /// constants and allows removal of non-top elements while maintaining the
1724 /// priority order.
1725 class LeafPrioQueue {
1726   SmallVector<WeightedLeaf, 8> Q;
1727   bool HaveConst;
1728   WeightedLeaf ConstElt;
1729   unsigned Opcode;
1730 
1731 public:
empty()1732   bool empty() {
1733     return (!HaveConst && Q.empty());
1734   }
1735 
size()1736   size_t size() {
1737     return Q.size() + HaveConst;
1738   }
1739 
hasConst()1740   bool hasConst() {
1741     return HaveConst;
1742   }
1743 
top()1744   const WeightedLeaf &top() {
1745     if (HaveConst)
1746       return ConstElt;
1747     return Q.front();
1748   }
1749 
pop()1750   WeightedLeaf pop() {
1751     if (HaveConst) {
1752       HaveConst = false;
1753       return ConstElt;
1754     }
1755     std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1756     return Q.pop_back_val();
1757   }
1758 
push(WeightedLeaf L,bool SeparateConst=true)1759   void push(WeightedLeaf L, bool SeparateConst=true) {
1760     if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1761       if (Opcode == ISD::MUL &&
1762           cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1763         return;
1764       if (Opcode == ISD::ADD &&
1765           cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1766         return;
1767 
1768       HaveConst = true;
1769       ConstElt = L;
1770     } else {
1771       Q.push_back(L);
1772       std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1773     }
1774   }
1775 
1776   /// Push L to the bottom of the queue regardless of its weight. If L is
1777   /// constant, it will not be folded with other constants in the queue.
pushToBottom(WeightedLeaf L)1778   void pushToBottom(WeightedLeaf L) {
1779     L.Weight = 1000;
1780     push(L, false);
1781   }
1782 
1783   /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1784   /// lowest weight and remove it from the queue.
1785   WeightedLeaf findSHL(uint64_t MaxAmount);
1786 
1787   WeightedLeaf findMULbyConst();
1788 
LeafPrioQueue(unsigned Opcode)1789   LeafPrioQueue(unsigned Opcode) :
1790     HaveConst(false), Opcode(Opcode) { }
1791 };
1792 } // end anonymous namespace
1793 
findSHL(uint64_t MaxAmount)1794 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1795   int ResultPos;
1796   WeightedLeaf Result;
1797 
1798   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1799     const WeightedLeaf &L = Q[Pos];
1800     const SDValue &Val = L.Value;
1801     if (Val.getOpcode() != ISD::SHL ||
1802         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1803         Val.getConstantOperandVal(1) > MaxAmount)
1804       continue;
1805     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1806         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1807     {
1808       Result = L;
1809       ResultPos = Pos;
1810     }
1811   }
1812 
1813   if (Result.Value.getNode()) {
1814     Q.erase(&Q[ResultPos]);
1815     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1816   }
1817 
1818   return Result;
1819 }
1820 
findMULbyConst()1821 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1822   int ResultPos;
1823   WeightedLeaf Result;
1824 
1825   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1826     const WeightedLeaf &L = Q[Pos];
1827     const SDValue &Val = L.Value;
1828     if (Val.getOpcode() != ISD::MUL ||
1829         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1830         Val.getConstantOperandVal(1) > 127)
1831       continue;
1832     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1833         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1834     {
1835       Result = L;
1836       ResultPos = Pos;
1837     }
1838   }
1839 
1840   if (Result.Value.getNode()) {
1841     Q.erase(&Q[ResultPos]);
1842     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1843   }
1844 
1845   return Result;
1846 }
1847 
getMultiplierForSHL(SDNode * N)1848 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1849   uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1850   return CurDAG->getConstant(MulFactor, SDLoc(N),
1851                              N->getOperand(1).getValueType());
1852 }
1853 
1854 /// @returns the value x for which 2^x is a factor of Val
getPowerOf2Factor(SDValue Val)1855 static unsigned getPowerOf2Factor(SDValue Val) {
1856   if (Val.getOpcode() == ISD::MUL) {
1857     unsigned MaxFactor = 0;
1858     for (int i = 0; i < 2; ++i) {
1859       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1860       if (!C)
1861         continue;
1862       const APInt &CInt = C->getAPIntValue();
1863       if (CInt.getBoolValue())
1864         MaxFactor = CInt.countr_zero();
1865     }
1866     return MaxFactor;
1867   }
1868   if (Val.getOpcode() == ISD::SHL) {
1869     if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1870       return 0;
1871     return (unsigned) Val.getConstantOperandVal(1);
1872   }
1873 
1874   return 0;
1875 }
1876 
1877 /// @returns true if V>>Amount will eliminate V's operation on its child
willShiftRightEliminate(SDValue V,unsigned Amount)1878 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1879   if (V.getOpcode() == ISD::MUL) {
1880     SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1881     for (int i = 0; i < 2; ++i)
1882       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1883           V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1884         uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1885         return (NewConst == 1);
1886       }
1887   } else if (V.getOpcode() == ISD::SHL) {
1888     return (Amount == V.getConstantOperandVal(1));
1889   }
1890 
1891   return false;
1892 }
1893 
factorOutPowerOf2(SDValue V,unsigned Power)1894 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1895   SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1896   if (V.getOpcode() == ISD::MUL) {
1897     for (int i=0; i < 2; ++i) {
1898       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1899           V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1900         uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1901         if (NewConst == 1)
1902           return Ops[!i];
1903         Ops[i] = CurDAG->getConstant(NewConst,
1904                                      SDLoc(V), V.getValueType());
1905         break;
1906       }
1907     }
1908   } else if (V.getOpcode() == ISD::SHL) {
1909     uint64_t ShiftAmount = V.getConstantOperandVal(1);
1910     if (ShiftAmount == Power)
1911       return Ops[0];
1912     Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1913                                  SDLoc(V), V.getValueType());
1914   }
1915 
1916   return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1917 }
1918 
isTargetConstant(const SDValue & V)1919 static bool isTargetConstant(const SDValue &V) {
1920   return V.getOpcode() == HexagonISD::CONST32 ||
1921          V.getOpcode() == HexagonISD::CONST32_GP;
1922 }
1923 
getUsesInFunction(const Value * V)1924 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1925   if (GAUsesInFunction.count(V))
1926     return GAUsesInFunction[V];
1927 
1928   unsigned Result = 0;
1929   const Function &CurF = CurDAG->getMachineFunction().getFunction();
1930   for (const User *U : V->users()) {
1931     if (isa<Instruction>(U) &&
1932         cast<Instruction>(U)->getParent()->getParent() == &CurF)
1933       ++Result;
1934   }
1935 
1936   GAUsesInFunction[V] = Result;
1937 
1938   return Result;
1939 }
1940 
1941 /// Note - After calling this, N may be dead. It may have been replaced by a
1942 /// new node, so always use the returned value in place of N.
1943 ///
1944 /// @returns The SDValue taking the place of N (which could be N if it is
1945 /// unchanged)
balanceSubTree(SDNode * N,bool TopLevel)1946 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1947   assert(RootWeights.count(N) && "Cannot balance non-root node.");
1948   assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1949   assert(!TopLevel || N->getOpcode() == ISD::ADD);
1950 
1951   // Return early if this node was already visited
1952   if (RootWeights[N] != -1)
1953     return SDValue(N, 0);
1954 
1955   assert(isOpcodeHandled(N));
1956 
1957   SDValue Op0 = N->getOperand(0);
1958   SDValue Op1 = N->getOperand(1);
1959 
1960   // Return early if the operands will remain unchanged or are all roots
1961   if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1962       (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1963     SDNode *Op0N = Op0.getNode();
1964     int Weight;
1965     if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1966       Weight = getWeight(balanceSubTree(Op0N).getNode());
1967       // Weight = calculateWeight(Op0N);
1968     } else
1969       Weight = getWeight(Op0N);
1970 
1971     SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1972     if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1973       Weight += getWeight(balanceSubTree(Op1N).getNode());
1974       // Weight += calculateWeight(Op1N);
1975     } else
1976       Weight += getWeight(Op1N);
1977 
1978     RootWeights[N] = Weight;
1979     RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1980                               getHeight(N->getOperand(1).getNode())) + 1;
1981 
1982     LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1983                       << " Height=" << RootHeights[N] << "): ");
1984     LLVM_DEBUG(N->dump(CurDAG));
1985 
1986     return SDValue(N, 0);
1987   }
1988 
1989   LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1990   LLVM_DEBUG(N->dump(CurDAG));
1991 
1992   unsigned NOpcode = N->getOpcode();
1993 
1994   LeafPrioQueue Leaves(NOpcode);
1995   SmallVector<SDValue, 4> Worklist;
1996   Worklist.push_back(SDValue(N, 0));
1997 
1998   // SHL nodes will be converted to MUL nodes
1999   if (NOpcode == ISD::SHL)
2000     NOpcode = ISD::MUL;
2001 
2002   bool CanFactorize = false;
2003   WeightedLeaf Mul1, Mul2;
2004   unsigned MaxPowerOf2 = 0;
2005   WeightedLeaf GA;
2006 
2007   // Do not try to factor out a shift if there is already a shift at the tip of
2008   // the tree.
2009   bool HaveTopLevelShift = false;
2010   if (TopLevel &&
2011       ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
2012                         Op0.getConstantOperandVal(1) < 4) ||
2013        (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
2014                         Op1.getConstantOperandVal(1) < 4)))
2015     HaveTopLevelShift = true;
2016 
2017   // Flatten the subtree into an ordered list of leaves; at the same time
2018   // determine whether the tree is already balanced.
2019   int InsertionOrder = 0;
2020   SmallDenseMap<SDValue, int> NodeHeights;
2021   bool Imbalanced = false;
2022   int CurrentWeight = 0;
2023   while (!Worklist.empty()) {
2024     SDValue Child = Worklist.pop_back_val();
2025 
2026     if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
2027       // CASE 1: Child is a root note
2028 
2029       int Weight = RootWeights[Child.getNode()];
2030       if (Weight == -1) {
2031         Child = balanceSubTree(Child.getNode());
2032         // calculateWeight(Child.getNode());
2033         Weight = getWeight(Child.getNode());
2034       } else if (Weight == -2) {
2035         // Whoops, this node was RAUWd by one of the balanceSubTree calls we
2036         // made. Our worklist isn't up to date anymore.
2037         // Restart the whole process.
2038         LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2039         return balanceSubTree(N, TopLevel);
2040       }
2041 
2042       NodeHeights[Child] = 1;
2043       CurrentWeight += Weight;
2044 
2045       unsigned PowerOf2;
2046       if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
2047           (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
2048           Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
2049         // Try to identify two factorizable MUL/SHL children greedily. Leave
2050         // them out of the priority queue for now so we can deal with them
2051         // after.
2052         if (!Mul1.Value.getNode()) {
2053           Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
2054           MaxPowerOf2 = PowerOf2;
2055         } else {
2056           Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
2057           MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2058 
2059           // Our addressing modes can only shift by a maximum of 3
2060           if (MaxPowerOf2 > 3)
2061             MaxPowerOf2 = 3;
2062 
2063           CanFactorize = true;
2064         }
2065       } else
2066         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2067     } else if (!isOpcodeHandled(Child.getNode())) {
2068       // CASE 2: Child is an unhandled kind of node (e.g. constant)
2069       int Weight = getWeight(Child.getNode());
2070 
2071       NodeHeights[Child] = getHeight(Child.getNode());
2072       CurrentWeight += Weight;
2073 
2074       if (isTargetConstant(Child) && !GA.Value.getNode())
2075         GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2076       else
2077         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2078     } else {
2079       // CASE 3: Child is a subtree of same opcode
2080       // Visit children first, then flatten.
2081       unsigned ChildOpcode = Child.getOpcode();
2082       assert(ChildOpcode == NOpcode ||
2083              (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2084 
2085       // Convert SHL to MUL
2086       SDValue Op1;
2087       if (ChildOpcode == ISD::SHL)
2088         Op1 = getMultiplierForSHL(Child.getNode());
2089       else
2090         Op1 = Child->getOperand(1);
2091 
2092       if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2093         assert(!NodeHeights.count(Child) && "Parent visited before children?");
2094         // Visit children first, then re-visit this node
2095         Worklist.push_back(Child);
2096         Worklist.push_back(Op1);
2097         Worklist.push_back(Child->getOperand(0));
2098       } else {
2099         // Back at this node after visiting the children
2100         if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2101           Imbalanced = true;
2102 
2103         NodeHeights[Child] = std::max(NodeHeights[Op1],
2104                                       NodeHeights[Child->getOperand(0)]) + 1;
2105       }
2106     }
2107   }
2108 
2109   LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2110                     << " weight=" << CurrentWeight
2111                     << " imbalanced=" << Imbalanced << "\n");
2112 
2113   // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2114   //  This factors out a shift in order to match memw(a<<Y+b).
2115   if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2116                        willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2117     LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2118     int Weight = Mul1.Weight + Mul2.Weight;
2119     int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2120     SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2121     SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2122     SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2123                                   Mul1Factored, Mul2Factored);
2124     SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2125                                         Mul1.Value.getValueType());
2126     SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2127                                   Sum, Const);
2128     NodeHeights[New] = Height;
2129     Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2130   } else if (Mul1.Value.getNode()) {
2131     // We failed to factorize two MULs, so now the Muls are left outside the
2132     // queue... add them back.
2133     Leaves.push(Mul1);
2134     if (Mul2.Value.getNode())
2135       Leaves.push(Mul2);
2136     CanFactorize = false;
2137   }
2138 
2139   // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2140   // and the root node itself is not used more than twice. This reduces the
2141   // amount of additional constant extenders introduced by this optimization.
2142   bool CombinedGA = false;
2143   if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2144       GA.Value.hasOneUse() && N->use_size() < 3) {
2145     GlobalAddressSDNode *GANode =
2146       cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2147     ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2148 
2149     if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2150         getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2151       LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2152                         << Offset->getSExtValue() << "): ");
2153       LLVM_DEBUG(GANode->dump(CurDAG));
2154 
2155       SDValue NewTGA =
2156         CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2157             GANode->getValueType(0),
2158             GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2159       GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2160           GA.Value.getValueType(), NewTGA);
2161       GA.Weight += Leaves.top().Weight;
2162 
2163       NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2164       CombinedGA = true;
2165 
2166       Leaves.pop(); // Remove the offset constant from the queue
2167     }
2168   }
2169 
2170   if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2171       (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2172     RootWeights[N] = CurrentWeight;
2173     RootHeights[N] = NodeHeights[SDValue(N, 0)];
2174 
2175     return SDValue(N, 0);
2176   }
2177 
2178   // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2179   if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2180     WeightedLeaf SHL = Leaves.findSHL(31);
2181     if (SHL.Value.getNode()) {
2182       int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2183       GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2184                                  GA.Value.getValueType(),
2185                                  GA.Value, SHL.Value);
2186       GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2187       NodeHeights[GA.Value] = Height;
2188     }
2189   }
2190 
2191   if (GA.Value.getNode())
2192     Leaves.push(GA);
2193 
2194   // If this is the top level and we haven't factored out a shift, we should try
2195   // to move a constant to the bottom to match addressing modes like memw(rX+C)
2196   if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2197     LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2198     Leaves.pushToBottom(Leaves.pop());
2199   }
2200 
2201   const DataLayout &DL = CurDAG->getDataLayout();
2202   const TargetLowering &TLI = *getTargetLowering();
2203 
2204   // Rebuild the tree using Huffman's algorithm
2205   while (Leaves.size() > 1) {
2206     WeightedLeaf L0 = Leaves.pop();
2207 
2208     // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2209     // otherwise just get the next leaf
2210     WeightedLeaf L1 = Leaves.findMULbyConst();
2211     if (!L1.Value.getNode())
2212       L1 = Leaves.pop();
2213 
2214     assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2215 
2216     SDValue V0 = L0.Value;
2217     int V0Weight = L0.Weight;
2218     SDValue V1 = L1.Value;
2219     int V1Weight = L1.Weight;
2220 
2221     // Make sure that none of these nodes have been RAUW'd
2222     if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2223         (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2224       LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2225       return balanceSubTree(N, TopLevel);
2226     }
2227 
2228     ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2229     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2230     EVT VT = N->getValueType(0);
2231     SDValue NewNode;
2232 
2233     if (V0C && !V1C) {
2234       std::swap(V0, V1);
2235       std::swap(V0C, V1C);
2236     }
2237 
2238     // Calculate height of this node
2239     assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2240            "Children must have been visited before re-combining them!");
2241     int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2242 
2243     // Rebuild this node (and restore SHL from MUL if needed)
2244     if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2245       NewNode = CurDAG->getNode(
2246           ISD::SHL, SDLoc(V0), VT, V0,
2247           CurDAG->getConstant(
2248               V1C->getAPIntValue().logBase2(), SDLoc(N),
2249               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2250     else
2251       NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2252 
2253     NodeHeights[NewNode] = Height;
2254 
2255     int Weight = V0Weight + V1Weight;
2256     Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2257 
2258     LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2259                       << ",Height=" << Height << "):\n");
2260     LLVM_DEBUG(NewNode.dump());
2261   }
2262 
2263   assert(Leaves.size() == 1);
2264   SDValue NewRoot = Leaves.top().Value;
2265 
2266   assert(NodeHeights.count(NewRoot));
2267   int Height = NodeHeights[NewRoot];
2268 
2269   // Restore SHL if we earlier converted it to a MUL
2270   if (NewRoot.getOpcode() == ISD::MUL) {
2271     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2272     if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2273       EVT VT = NewRoot.getValueType();
2274       SDValue V0 = NewRoot.getOperand(0);
2275       NewRoot = CurDAG->getNode(
2276           ISD::SHL, SDLoc(NewRoot), VT, V0,
2277           CurDAG->getConstant(
2278               V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2279               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2280     }
2281   }
2282 
2283   if (N != NewRoot.getNode()) {
2284     LLVM_DEBUG(dbgs() << "--> Root is now: ");
2285     LLVM_DEBUG(NewRoot.dump());
2286 
2287     // Replace all uses of old root by new root
2288     CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2289     // Mark that we have RAUW'd N
2290     RootWeights[N] = -2;
2291   } else {
2292     LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2293   }
2294 
2295   RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2296   RootHeights[NewRoot.getNode()] = Height;
2297 
2298   return NewRoot;
2299 }
2300 
rebalanceAddressTrees()2301 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2302   for (SDNode &Node : llvm::make_early_inc_range(CurDAG->allnodes())) {
2303     SDNode *N = &Node;
2304     if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2305       continue;
2306 
2307     SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2308     if (BasePtr.getOpcode() != ISD::ADD)
2309       continue;
2310 
2311     // We've already processed this node
2312     if (RootWeights.count(BasePtr.getNode()))
2313       continue;
2314 
2315     LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2316     LLVM_DEBUG(N->dump(CurDAG));
2317 
2318     // FindRoots
2319     SmallVector<SDNode *, 4> Worklist;
2320 
2321     Worklist.push_back(BasePtr.getOperand(0).getNode());
2322     Worklist.push_back(BasePtr.getOperand(1).getNode());
2323 
2324     while (!Worklist.empty()) {
2325       SDNode *N = Worklist.pop_back_val();
2326       unsigned Opcode = N->getOpcode();
2327 
2328       if (!isOpcodeHandled(N))
2329         continue;
2330 
2331       Worklist.push_back(N->getOperand(0).getNode());
2332       Worklist.push_back(N->getOperand(1).getNode());
2333 
2334       // Not a root if it has only one use and same opcode as its parent
2335       if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2336         continue;
2337 
2338       // This root node has already been processed
2339       if (RootWeights.count(N))
2340         continue;
2341 
2342       RootWeights[N] = -1;
2343     }
2344 
2345     // Balance node itself
2346     RootWeights[BasePtr.getNode()] = -1;
2347     SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2348 
2349     if (N->getOpcode() == ISD::LOAD)
2350       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2351             NewBasePtr, N->getOperand(2));
2352     else
2353       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2354             NewBasePtr, N->getOperand(3));
2355 
2356     LLVM_DEBUG(dbgs() << "--> Final node: ");
2357     LLVM_DEBUG(N->dump(CurDAG));
2358   }
2359 
2360   CurDAG->RemoveDeadNodes();
2361   GAUsesInFunction.clear();
2362   RootHeights.clear();
2363   RootWeights.clear();
2364 }
2365