1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonISelDAGToDAG.h"
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsHexagon.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "hexagon-isel"
28 
29 static
30 cl::opt<bool>
31 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
32   cl::desc("Rebalance address calculation trees to improve "
33           "instruction selection"));
34 
35 // Rebalance only if this allows e.g. combining a GA with an offset or
36 // factoring out a shift.
37 static
38 cl::opt<bool>
39 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
40   cl::desc("Rebalance address tree only if this allows optimizations"));
41 
42 static
43 cl::opt<bool>
44 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
45   cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
46 
47 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
48   cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
49 
50 //===----------------------------------------------------------------------===//
51 // Instruction Selector Implementation
52 //===----------------------------------------------------------------------===//
53 
54 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
55 #include "HexagonGenDAGISel.inc"
56 
57 /// createHexagonISelDag - This pass converts a legalized DAG into a
58 /// Hexagon-specific DAG, ready for instruction scheduling.
59 ///
60 namespace llvm {
61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62                                    CodeGenOpt::Level OptLevel) {
63   return new HexagonDAGToDAGISel(TM, OptLevel);
64 }
65 }
66 
67 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
68   SDValue Chain = LD->getChain();
69   SDValue Base = LD->getBasePtr();
70   SDValue Offset = LD->getOffset();
71   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
72   EVT LoadedVT = LD->getMemoryVT();
73   unsigned Opcode = 0;
74 
75   // Check for zero extended loads. Treat any-extend loads as zero extended
76   // loads.
77   ISD::LoadExtType ExtType = LD->getExtensionType();
78   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
79   bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
80 
81   assert(LoadedVT.isSimple());
82   switch (LoadedVT.getSimpleVT().SimpleTy) {
83   case MVT::i8:
84     if (IsZeroExt)
85       Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
86     else
87       Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
88     break;
89   case MVT::i16:
90     if (IsZeroExt)
91       Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
92     else
93       Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
94     break;
95   case MVT::i32:
96   case MVT::f32:
97   case MVT::v2i16:
98   case MVT::v4i8:
99     Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
100     break;
101   case MVT::i64:
102   case MVT::f64:
103   case MVT::v2i32:
104   case MVT::v4i16:
105   case MVT::v8i8:
106     Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
107     break;
108   case MVT::v64i8:
109   case MVT::v32i16:
110   case MVT::v16i32:
111   case MVT::v8i64:
112   case MVT::v128i8:
113   case MVT::v64i16:
114   case MVT::v32i32:
115   case MVT::v16i64:
116     if (isAlignedMemNode(LD)) {
117       if (LD->isNonTemporal())
118         Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
119       else
120         Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
121     } else {
122       Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
123     }
124     break;
125   default:
126     llvm_unreachable("Unexpected memory type in indexed load");
127   }
128 
129   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
130   MachineMemOperand *MemOp = LD->getMemOperand();
131 
132   auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
133         -> MachineSDNode* {
134     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
135       SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
136       return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
137                                     Zero, SDValue(N, 0));
138     }
139     if (ExtType == ISD::SEXTLOAD)
140       return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
141                                     SDValue(N, 0));
142     return N;
143   };
144 
145   //                  Loaded value   Next address   Chain
146   SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
147   SDValue To[3];
148 
149   EVT ValueVT = LD->getValueType(0);
150   if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
151     // A load extending to i64 will actually produce i32, which will then
152     // need to be extended to i64.
153     assert(LoadedVT.getSizeInBits() <= 32);
154     ValueVT = MVT::i32;
155   }
156 
157   if (IsValidInc) {
158     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
159                                               MVT::i32, MVT::Other, Base,
160                                               IncV, Chain);
161     CurDAG->setNodeMemRefs(L, {MemOp});
162     To[1] = SDValue(L, 1); // Next address.
163     To[2] = SDValue(L, 2); // Chain.
164     // Handle special case for extension to i64.
165     if (LD->getValueType(0) == MVT::i64)
166       L = getExt64(L, dl);
167     To[0] = SDValue(L, 0); // Loaded (extended) value.
168   } else {
169     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
170     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
171                                               Base, Zero, Chain);
172     CurDAG->setNodeMemRefs(L, {MemOp});
173     To[2] = SDValue(L, 1); // Chain.
174     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
175                                               Base, IncV);
176     To[1] = SDValue(A, 0); // Next address.
177     // Handle special case for extension to i64.
178     if (LD->getValueType(0) == MVT::i64)
179       L = getExt64(L, dl);
180     To[0] = SDValue(L, 0); // Loaded (extended) value.
181   }
182   ReplaceUses(From, To, 3);
183   CurDAG->RemoveDeadNode(LD);
184 }
185 
186 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
187   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
188     return nullptr;
189 
190   SDLoc dl(IntN);
191   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
192 
193   static std::map<unsigned,unsigned> LoadPciMap = {
194     { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  },
195     { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
196     { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  },
197     { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
198     { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  },
199     { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  },
200   };
201   auto FLC = LoadPciMap.find(IntNo);
202   if (FLC != LoadPciMap.end()) {
203     EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
204     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
205     // Operands: { Base, Increment, Modifier, Chain }
206     auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
207     SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
208     MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
209           { IntN->getOperand(2), I, IntN->getOperand(4),
210             IntN->getOperand(0) });
211     return Res;
212   }
213 
214   return nullptr;
215 }
216 
217 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
218       SDNode *IntN) {
219   // The "LoadN" is just a machine load instruction. The intrinsic also
220   // involves storing it. Generate an appropriate store to the location
221   // given in the intrinsic's operand(3).
222   uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
223   unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
224                       HexagonII::MemAccesSizeMask;
225   unsigned Size = 1U << (SizeBits-1);
226 
227   SDLoc dl(IntN);
228   MachinePointerInfo PI;
229   SDValue TS;
230   SDValue Loc = IntN->getOperand(3);
231 
232   if (Size >= 4)
233     TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
234                           Size);
235   else
236     TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
237                                PI, MVT::getIntegerVT(Size * 8), Size);
238 
239   SDNode *StoreN;
240   {
241     HandleSDNode Handle(TS);
242     SelectStore(TS.getNode());
243     StoreN = Handle.getValue().getNode();
244   }
245 
246   // Load's results are { Loaded value, Updated pointer, Chain }
247   ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
248   ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
249   return StoreN;
250 }
251 
252 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
253   // The intrinsics for load circ/brev perform two operations:
254   // 1. Load a value V from the specified location, using the addressing
255   //    mode corresponding to the intrinsic.
256   // 2. Store V into a specified location. This location is typically a
257   //    local, temporary object.
258   // In many cases, the program using these intrinsics will immediately
259   // load V again from the local object. In those cases, when certain
260   // conditions are met, the last load can be removed.
261   // This function identifies and optimizes this pattern. If the pattern
262   // cannot be optimized, it returns nullptr, which will cause the load
263   // to be selected separately from the intrinsic (which will be handled
264   // in SelectIntrinsicWChain).
265 
266   SDValue Ch = N->getOperand(0);
267   SDValue Loc = N->getOperand(1);
268 
269   // Assume that the load and the intrinsic are connected directly with a
270   // chain:
271   //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C
272   //   t2: i32,ch = load t1:1, Loc, ...
273   SDNode *C = Ch.getNode();
274 
275   if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
276     return false;
277 
278   // The second load can only be eliminated if its extension type matches
279   // that of the load instruction corresponding to the intrinsic. The user
280   // can provide an address of an unsigned variable to store the result of
281   // a sign-extending intrinsic into (or the other way around).
282   ISD::LoadExtType IntExt;
283   switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
284     case Intrinsic::hexagon_circ_ldub:
285     case Intrinsic::hexagon_circ_lduh:
286       IntExt = ISD::ZEXTLOAD;
287       break;
288     case Intrinsic::hexagon_circ_ldw:
289     case Intrinsic::hexagon_circ_ldd:
290       IntExt = ISD::NON_EXTLOAD;
291       break;
292     default:
293       IntExt = ISD::SEXTLOAD;
294       break;
295   }
296   if (N->getExtensionType() != IntExt)
297     return false;
298 
299   // Make sure the target location for the loaded value in the load intrinsic
300   // is the location from which LD (or N) is loading.
301   if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
302     return false;
303 
304   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
305     SDNode *S = StoreInstrForLoadIntrinsic(L, C);
306     SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
307     SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
308     ReplaceUses(F, T, array_lengthof(T));
309     // This transformation will leave the intrinsic dead. If it remains in
310     // the DAG, the selection code will see it again, but without the load,
311     // and it will generate a store that is normally required for it.
312     CurDAG->RemoveDeadNode(C);
313     return true;
314   }
315   return false;
316 }
317 
318 // Convert the bit-reverse load intrinsic to appropriate target instruction.
319 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
320   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
321     return false;
322 
323   const SDLoc &dl(IntN);
324   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
325 
326   static const std::map<unsigned, unsigned> LoadBrevMap = {
327     { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
328     { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
329     { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
330     { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
331     { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
332     { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
333   };
334   auto FLI = LoadBrevMap.find(IntNo);
335   if (FLI != LoadBrevMap.end()) {
336     EVT ValTy =
337         (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
338     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
339     // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
340     // modifier}.
341     // Operands of target instruction: { Base, Modifier, Chain }.
342     MachineSDNode *Res = CurDAG->getMachineNode(
343         FLI->second, dl, RTys,
344         {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
345 
346     MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
347     CurDAG->setNodeMemRefs(Res, {MemOp});
348 
349     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
350     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
351     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
352     CurDAG->RemoveDeadNode(IntN);
353     return true;
354   }
355   return false;
356 }
357 
358 /// Generate a machine instruction node for the new circlar buffer intrinsics.
359 /// The new versions use a CSx register instead of the K field.
360 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
361   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
362     return false;
363 
364   SDLoc DL(IntN);
365   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
366   SmallVector<SDValue, 7> Ops;
367 
368   static std::map<unsigned,unsigned> LoadNPcMap = {
369     { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
370     { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
371     { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
372     { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
373     { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
374     { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
375     { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
376     { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
377     { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
378     { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
379     { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
380     { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
381   };
382   auto FLI = LoadNPcMap.find (IntNo);
383   if (FLI != LoadNPcMap.end()) {
384     EVT ValTy = MVT::i32;
385     if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
386         IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
387       ValTy = MVT::i64;
388     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
389     // Handle load.*_pci case which has 6 operands.
390     if (IntN->getNumOperands() == 6) {
391       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
392       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
393       // Operands: { Base, Increment, Modifier, Start, Chain }.
394       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
395               IntN->getOperand(0) };
396     } else
397       // Handle load.*_pcr case which has 5 operands.
398       // Operands: { Base, Modifier, Start, Chain }.
399       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
400               IntN->getOperand(0) };
401     MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
402     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
403     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
404     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
405     CurDAG->RemoveDeadNode(IntN);
406     return true;
407   }
408 
409   static std::map<unsigned,unsigned> StoreNPcMap = {
410     { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
411     { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
412     { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
413     { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
414     { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
415     { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
416     { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
417     { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
418     { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
419     { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
420   };
421   auto FSI = StoreNPcMap.find (IntNo);
422   if (FSI != StoreNPcMap.end()) {
423     EVT RTys[] = { MVT::i32, MVT::Other };
424     // Handle store.*_pci case which has 7 operands.
425     if (IntN->getNumOperands() == 7) {
426       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
427       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
428       // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
429       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
430               IntN->getOperand(6), IntN->getOperand(0) };
431     } else
432       // Handle store.*_pcr case which has 6 operands.
433       // Operands: { Base, Modifier, Value, Start, Chain }.
434       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
435               IntN->getOperand(5), IntN->getOperand(0) };
436     MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
437     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
438     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
439     CurDAG->RemoveDeadNode(IntN);
440     return true;
441   }
442 
443   return false;
444 }
445 
446 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
447   SDLoc dl(N);
448   LoadSDNode *LD = cast<LoadSDNode>(N);
449 
450   // Handle indexed loads.
451   ISD::MemIndexedMode AM = LD->getAddressingMode();
452   if (AM != ISD::UNINDEXED) {
453     SelectIndexedLoad(LD, dl);
454     return;
455   }
456 
457   // Handle patterns using circ/brev load intrinsics.
458   if (tryLoadOfLoadIntrinsic(LD))
459     return;
460 
461   SelectCode(LD);
462 }
463 
464 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
465   SDValue Chain = ST->getChain();
466   SDValue Base = ST->getBasePtr();
467   SDValue Offset = ST->getOffset();
468   SDValue Value = ST->getValue();
469   // Get the constant value.
470   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
471   EVT StoredVT = ST->getMemoryVT();
472   EVT ValueVT = Value.getValueType();
473 
474   bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
475   unsigned Opcode = 0;
476 
477   assert(StoredVT.isSimple());
478   switch (StoredVT.getSimpleVT().SimpleTy) {
479   case MVT::i8:
480     Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
481     break;
482   case MVT::i16:
483     Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
484     break;
485   case MVT::i32:
486   case MVT::f32:
487   case MVT::v2i16:
488   case MVT::v4i8:
489     Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
490     break;
491   case MVT::i64:
492   case MVT::f64:
493   case MVT::v2i32:
494   case MVT::v4i16:
495   case MVT::v8i8:
496     Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
497     break;
498   case MVT::v64i8:
499   case MVT::v32i16:
500   case MVT::v16i32:
501   case MVT::v8i64:
502   case MVT::v128i8:
503   case MVT::v64i16:
504   case MVT::v32i32:
505   case MVT::v16i64:
506     if (isAlignedMemNode(ST)) {
507       if (ST->isNonTemporal())
508         Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
509       else
510         Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
511     } else {
512       Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
513     }
514     break;
515   default:
516     llvm_unreachable("Unexpected memory type in indexed store");
517   }
518 
519   if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
520     assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
521     Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
522                                            dl, MVT::i32, Value);
523   }
524 
525   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
526   MachineMemOperand *MemOp = ST->getMemOperand();
527 
528   //                  Next address   Chain
529   SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
530   SDValue To[2];
531 
532   if (IsValidInc) {
533     // Build post increment store.
534     SDValue Ops[] = { Base, IncV, Value, Chain };
535     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
536                                               Ops);
537     CurDAG->setNodeMemRefs(S, {MemOp});
538     To[0] = SDValue(S, 0);
539     To[1] = SDValue(S, 1);
540   } else {
541     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
542     SDValue Ops[] = { Base, Zero, Value, Chain };
543     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
544     CurDAG->setNodeMemRefs(S, {MemOp});
545     To[1] = SDValue(S, 0);
546     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
547                                               Base, IncV);
548     To[0] = SDValue(A, 0);
549   }
550 
551   ReplaceUses(From, To, 2);
552   CurDAG->RemoveDeadNode(ST);
553 }
554 
555 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
556   SDLoc dl(N);
557   StoreSDNode *ST = cast<StoreSDNode>(N);
558 
559   // Handle indexed stores.
560   ISD::MemIndexedMode AM = ST->getAddressingMode();
561   if (AM != ISD::UNINDEXED) {
562     SelectIndexedStore(ST, dl);
563     return;
564   }
565 
566   SelectCode(ST);
567 }
568 
569 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
570   SDLoc dl(N);
571   SDValue Shl_0 = N->getOperand(0);
572   SDValue Shl_1 = N->getOperand(1);
573 
574   auto Default = [this,N] () -> void { SelectCode(N); };
575 
576   if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
577     return Default();
578 
579   // RHS is const.
580   int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
581 
582   if (Shl_0.getOpcode() == ISD::MUL) {
583     SDValue Mul_0 = Shl_0.getOperand(0); // Val
584     SDValue Mul_1 = Shl_0.getOperand(1); // Const
585     // RHS of mul is const.
586     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
587       int32_t ValConst = C->getSExtValue() << ShlConst;
588       if (isInt<9>(ValConst)) {
589         SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
590         SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
591                                                 MVT::i32, Mul_0, Val);
592         ReplaceNode(N, Result);
593         return;
594       }
595     }
596     return Default();
597   }
598 
599   if (Shl_0.getOpcode() == ISD::SUB) {
600     SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
601     SDValue Sub_1 = Shl_0.getOperand(1); // Val
602     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
603       if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
604         return Default();
605       SDValue Shl2_0 = Sub_1.getOperand(0); // Val
606       SDValue Shl2_1 = Sub_1.getOperand(1); // Const
607       if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
608         int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
609         if (isInt<9>(-ValConst)) {
610           SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
611           SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
612                                                   MVT::i32, Shl2_0, Val);
613           ReplaceNode(N, Result);
614           return;
615         }
616       }
617     }
618   }
619 
620   return Default();
621 }
622 
623 //
624 // Handling intrinsics for circular load and bitreverse load.
625 //
626 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
627   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
628     StoreInstrForLoadIntrinsic(L, N);
629     CurDAG->RemoveDeadNode(N);
630     return;
631   }
632 
633   // Handle bit-reverse load intrinsics.
634   if (SelectBrevLdIntrinsic(N))
635     return;
636 
637   if (SelectNewCircIntrinsic(N))
638     return;
639 
640   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
641   if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
642       IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
643       IntNo == Intrinsic::hexagon_V6_vgathermh ||
644       IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
645       IntNo == Intrinsic::hexagon_V6_vgathermhw ||
646       IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
647     SelectV65Gather(N);
648     return;
649   }
650   if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
651       IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
652       IntNo == Intrinsic::hexagon_V6_vgathermhq ||
653       IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
654       IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
655       IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
656     SelectV65GatherPred(N);
657     return;
658   }
659 
660   SelectCode(N);
661 }
662 
663 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
664   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
665   unsigned Bits;
666   switch (IID) {
667   case Intrinsic::hexagon_S2_vsplatrb:
668     Bits = 8;
669     break;
670   case Intrinsic::hexagon_S2_vsplatrh:
671     Bits = 16;
672     break;
673   case Intrinsic::hexagon_V6_vaddcarry:
674   case Intrinsic::hexagon_V6_vaddcarry_128B:
675   case Intrinsic::hexagon_V6_vsubcarry:
676   case Intrinsic::hexagon_V6_vsubcarry_128B:
677     SelectHVXDualOutput(N);
678     return;
679   default:
680     SelectCode(N);
681     return;
682   }
683 
684   SDValue V = N->getOperand(1);
685   SDValue U;
686   if (keepsLowBits(V, Bits, U)) {
687     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
688                                 N->getOperand(0), U);
689     ReplaceNode(N, R.getNode());
690     SelectCode(R.getNode());
691     return;
692   }
693   SelectCode(N);
694 }
695 
696 //
697 // Map floating point constant values.
698 //
699 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
700   SDLoc dl(N);
701   auto *CN = cast<ConstantFPSDNode>(N);
702   APInt A = CN->getValueAPF().bitcastToAPInt();
703   if (N->getValueType(0) == MVT::f32) {
704     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
705     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
706     return;
707   }
708   if (N->getValueType(0) == MVT::f64) {
709     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
710     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
711     return;
712   }
713 
714   SelectCode(N);
715 }
716 
717 //
718 // Map boolean values.
719 //
720 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
721   if (N->getValueType(0) == MVT::i1) {
722     assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
723     unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
724                       ? Hexagon::PS_true
725                       : Hexagon::PS_false;
726     ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
727     return;
728   }
729 
730   SelectCode(N);
731 }
732 
733 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
734   MachineFrameInfo &MFI = MF->getFrameInfo();
735   const HexagonFrameLowering *HFI = HST->getFrameLowering();
736   int FX = cast<FrameIndexSDNode>(N)->getIndex();
737   unsigned StkA = HFI->getStackAlignment();
738   unsigned MaxA = MFI.getMaxAlignment();
739   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
740   SDLoc DL(N);
741   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
742   SDNode *R = nullptr;
743 
744   // Use PS_fi when:
745   // - the object is fixed, or
746   // - there are no objects with higher-than-default alignment, or
747   // - there are no dynamically allocated objects.
748   // Otherwise, use PS_fia.
749   if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
750     R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
751   } else {
752     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
753     unsigned AR = HMFI.getStackAlignBaseVReg();
754     SDValue CH = CurDAG->getEntryNode();
755     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
756     R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
757   }
758 
759   ReplaceNode(N, R);
760 }
761 
762 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
763   unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
764                                                          : Hexagon::A4_subp_c;
765   SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
766                                      { N->getOperand(0), N->getOperand(1),
767                                        N->getOperand(2) });
768   ReplaceNode(N, C);
769 }
770 
771 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
772   MVT ResTy = N->getValueType(0).getSimpleVT();
773   if (HST->isHVXVectorType(ResTy, true))
774     return SelectHvxVAlign(N);
775 
776   const SDLoc &dl(N);
777   unsigned VecLen = ResTy.getSizeInBits();
778   if (VecLen == 32) {
779     SDValue Ops[] = {
780       CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
781       N->getOperand(0),
782       CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
783       N->getOperand(1),
784       CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
785     };
786     SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
787                                        MVT::i64, Ops);
788 
789     // Shift right by "(Addr & 0x3) * 8" bytes.
790     SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
791     SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
792     SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
793                                        M0, N->getOperand(2), M1);
794     SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
795                                        SDValue(R, 0), SDValue(C, 0));
796     SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
797                                                SDValue(S, 0));
798     ReplaceNode(N, E.getNode());
799   } else {
800     assert(VecLen == 64);
801     SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
802                                         N->getOperand(2));
803     SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
804                                         N->getOperand(0), N->getOperand(1),
805                                         SDValue(Pu,0));
806     ReplaceNode(N, VA);
807   }
808 }
809 
810 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
811   const SDLoc &dl(N);
812   SDValue A = N->getOperand(1);
813   int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
814   assert(isPowerOf2_32(-Mask));
815 
816   SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
817   SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
818                                       N->getOperand(0), M);
819   ReplaceNode(N, AA);
820 }
821 
822 // Handle these nodes here to avoid having to write patterns for all
823 // combinations of input/output types. In all cases, the resulting
824 // instruction is the same.
825 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
826   SDValue Op = N->getOperand(0);
827   MVT OpTy = Op.getValueType().getSimpleVT();
828   SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
829                                   CurDAG->getVTList(OpTy), {Op});
830   ReplaceNode(T, Op.getNode());
831 }
832 
833 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
834   MVT ResTy = N->getValueType(0).getSimpleVT();
835   SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
836                                      N->getOperand(0));
837   ReplaceNode(N, T);
838 }
839 
840 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
841   const SDLoc &dl(N);
842   MVT ResTy = N->getValueType(0).getSimpleVT();
843   SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
844   SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
845                                      N->getOperand(0), Zero);
846   ReplaceNode(N, T);
847 }
848 
849 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
850   const SDLoc &dl(N);
851   MVT ResTy = N->getValueType(0).getSimpleVT();
852   // The argument to V2Q should be a single vector.
853   MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
854   assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
855 
856   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
857   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
858   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
859                                      N->getOperand(0), SDValue(R,0));
860   ReplaceNode(N, T);
861 }
862 
863 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
864   const SDLoc &dl(N);
865   MVT ResTy = N->getValueType(0).getSimpleVT();
866   // The result of V2Q should be a single vector.
867   assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
868 
869   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
870   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
871   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
872                                      N->getOperand(0), SDValue(R,0));
873   ReplaceNode(N, T);
874 }
875 
876 void HexagonDAGToDAGISel::Select(SDNode *N) {
877   if (N->isMachineOpcode())
878     return N->setNodeId(-1);  // Already selected.
879 
880   switch (N->getOpcode()) {
881   case ISD::Constant:             return SelectConstant(N);
882   case ISD::ConstantFP:           return SelectConstantFP(N);
883   case ISD::FrameIndex:           return SelectFrameIndex(N);
884   case ISD::SHL:                  return SelectSHL(N);
885   case ISD::LOAD:                 return SelectLoad(N);
886   case ISD::STORE:                return SelectStore(N);
887   case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N);
888   case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N);
889 
890   case HexagonISD::ADDC:
891   case HexagonISD::SUBC:          return SelectAddSubCarry(N);
892   case HexagonISD::VALIGN:        return SelectVAlign(N);
893   case HexagonISD::VALIGNADDR:    return SelectVAlignAddr(N);
894   case HexagonISD::TYPECAST:      return SelectTypecast(N);
895   case HexagonISD::P2D:           return SelectP2D(N);
896   case HexagonISD::D2P:           return SelectD2P(N);
897   case HexagonISD::Q2V:           return SelectQ2V(N);
898   case HexagonISD::V2Q:           return SelectV2Q(N);
899   }
900 
901   if (HST->useHVXOps()) {
902     switch (N->getOpcode()) {
903     case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N);
904     case HexagonISD::VROR:        return SelectHvxRor(N);
905     }
906   }
907 
908   SelectCode(N);
909 }
910 
911 bool HexagonDAGToDAGISel::
912 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
913                              std::vector<SDValue> &OutOps) {
914   SDValue Inp = Op, Res;
915 
916   switch (ConstraintID) {
917   default:
918     return true;
919   case InlineAsm::Constraint_o: // Offsetable.
920   case InlineAsm::Constraint_v: // Not offsetable.
921   case InlineAsm::Constraint_m: // Memory.
922     if (SelectAddrFI(Inp, Res))
923       OutOps.push_back(Res);
924     else
925       OutOps.push_back(Inp);
926     break;
927   }
928 
929   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
930   return false;
931 }
932 
933 
934 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
935   // I is an operand of U. Check if U is an arithmetic (binary) operation
936   // usable in a memop, where the other operand is a loaded value, and the
937   // result of U is stored in the same location.
938 
939   if (!U->hasOneUse())
940     return false;
941   unsigned Opc = U->getOpcode();
942   switch (Opc) {
943     case ISD::ADD:
944     case ISD::SUB:
945     case ISD::AND:
946     case ISD::OR:
947       break;
948     default:
949       return false;
950   }
951 
952   SDValue S0 = U->getOperand(0);
953   SDValue S1 = U->getOperand(1);
954   SDValue SY = (S0.getNode() == I) ? S1 : S0;
955 
956   SDNode *UUse = *U->use_begin();
957   if (UUse->getNumValues() != 1)
958     return false;
959 
960   // Check if one of the inputs to U is a load instruction and the output
961   // is used by a store instruction. If so and they also have the same
962   // base pointer, then don't preoprocess this node sequence as it
963   // can be matched to a memop.
964   SDNode *SYNode = SY.getNode();
965   if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
966     SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
967     SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
968     if (LDBasePtr == STBasePtr)
969       return true;
970   }
971   return false;
972 }
973 
974 
975 // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
976 //            (or (select c 0 y) z)  ->  (select c z (or y z))
977 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
978   SelectionDAG &DAG = *CurDAG;
979 
980   for (auto I : Nodes) {
981     if (I->getOpcode() != ISD::OR)
982       continue;
983 
984     auto IsZero = [] (const SDValue &V) -> bool {
985       if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
986         return SC->isNullValue();
987       return false;
988     };
989     auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
990       if (Op.getOpcode() != ISD::SELECT)
991         return false;
992       return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
993     };
994 
995     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
996     EVT VT = I->getValueType(0);
997     bool SelN0 = IsSelect0(N0);
998     SDValue SOp = SelN0 ? N0 : N1;
999     SDValue VOp = SelN0 ? N1 : N0;
1000 
1001     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1002       SDValue SC = SOp.getOperand(0);
1003       SDValue SX = SOp.getOperand(1);
1004       SDValue SY = SOp.getOperand(2);
1005       SDLoc DLS = SOp;
1006       if (IsZero(SY)) {
1007         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1008         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1009         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1010       } else if (IsZero(SX)) {
1011         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1012         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1013         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1014       }
1015     }
1016   }
1017 }
1018 
1019 // Transform: (store ch val (add x (add (shl y c) e)))
1020 //        to: (store ch val (add x (shl (add y d) c))),
1021 // where e = (shl d c) for some integer d.
1022 // The purpose of this is to enable generation of loads/stores with
1023 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1024 // value c must be 0, 1 or 2.
1025 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1026   SelectionDAG &DAG = *CurDAG;
1027 
1028   for (auto I : Nodes) {
1029     if (I->getOpcode() != ISD::STORE)
1030       continue;
1031 
1032     // I matched: (store ch val Off)
1033     SDValue Off = I->getOperand(2);
1034     // Off needs to match: (add x (add (shl y c) (shl d c))))
1035     if (Off.getOpcode() != ISD::ADD)
1036       continue;
1037     // Off matched: (add x T0)
1038     SDValue T0 = Off.getOperand(1);
1039     // T0 needs to match: (add T1 T2):
1040     if (T0.getOpcode() != ISD::ADD)
1041       continue;
1042     // T0 matched: (add T1 T2)
1043     SDValue T1 = T0.getOperand(0);
1044     SDValue T2 = T0.getOperand(1);
1045     // T1 needs to match: (shl y c)
1046     if (T1.getOpcode() != ISD::SHL)
1047       continue;
1048     SDValue C = T1.getOperand(1);
1049     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1050     if (CN == nullptr)
1051       continue;
1052     unsigned CV = CN->getZExtValue();
1053     if (CV > 2)
1054       continue;
1055     // T2 needs to match e, where e = (shl d c) for some d.
1056     ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1057     if (EN == nullptr)
1058       continue;
1059     unsigned EV = EN->getZExtValue();
1060     if (EV % (1 << CV) != 0)
1061       continue;
1062     unsigned DV = EV / (1 << CV);
1063 
1064     // Replace T0 with: (shl (add y d) c)
1065     SDLoc DL = SDLoc(I);
1066     EVT VT = T0.getValueType();
1067     SDValue D = DAG.getConstant(DV, DL, VT);
1068     // NewAdd = (add y d)
1069     SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1070     // NewShl = (shl NewAdd c)
1071     SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1072     ReplaceNode(T0.getNode(), NewShl.getNode());
1073   }
1074 }
1075 
1076 // Transform: (load ch (add x (and (srl y c) Mask)))
1077 //        to: (load ch (add x (shl (srl y d) d-c)))
1078 // where
1079 // Mask = 00..0 111..1 0.0
1080 //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1081 //          |     +-------- 1s
1082 //          +-------------- at most c 0s
1083 // Motivating example:
1084 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1085 //                     to (add x (and (srl y 3) 1FFFFFFC))
1086 // which results in a constant-extended and(##...,lsr). This transformation
1087 // undoes this simplification for cases where the shl can be folded into
1088 // an addressing mode.
1089 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1090   SelectionDAG &DAG = *CurDAG;
1091 
1092   for (SDNode *N : Nodes) {
1093     unsigned Opc = N->getOpcode();
1094     if (Opc != ISD::LOAD && Opc != ISD::STORE)
1095       continue;
1096     SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1097     // Addr must match: (add x T0)
1098     if (Addr.getOpcode() != ISD::ADD)
1099       continue;
1100     SDValue T0 = Addr.getOperand(1);
1101     // T0 must match: (and T1 Mask)
1102     if (T0.getOpcode() != ISD::AND)
1103       continue;
1104 
1105     // We have an AND.
1106     //
1107     // Check the first operand. It must be: (srl y c).
1108     SDValue S = T0.getOperand(0);
1109     if (S.getOpcode() != ISD::SRL)
1110       continue;
1111     ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1112     if (SN == nullptr)
1113       continue;
1114     if (SN->getAPIntValue().getBitWidth() != 32)
1115       continue;
1116     uint32_t CV = SN->getZExtValue();
1117 
1118     // Check the second operand: the supposed mask.
1119     ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1120     if (MN == nullptr)
1121       continue;
1122     if (MN->getAPIntValue().getBitWidth() != 32)
1123       continue;
1124     uint32_t Mask = MN->getZExtValue();
1125     // Examine the mask.
1126     uint32_t TZ = countTrailingZeros(Mask);
1127     uint32_t M1 = countTrailingOnes(Mask >> TZ);
1128     uint32_t LZ = countLeadingZeros(Mask);
1129     // Trailing zeros + middle ones + leading zeros must equal the width.
1130     if (TZ + M1 + LZ != 32)
1131       continue;
1132     // The number of trailing zeros will be encoded in the addressing mode.
1133     if (TZ > 2)
1134       continue;
1135     // The number of leading zeros must be at most c.
1136     if (LZ > CV)
1137       continue;
1138 
1139     // All looks good.
1140     SDValue Y = S.getOperand(0);
1141     EVT VT = Addr.getValueType();
1142     SDLoc dl(S);
1143     // TZ = D-C, so D = TZ+C.
1144     SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1145     SDValue DC = DAG.getConstant(TZ, dl, VT);
1146     SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1147     SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1148     ReplaceNode(T0.getNode(), NewShl.getNode());
1149   }
1150 }
1151 
1152 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1153 //                                                  (op ... 1 ...))
1154 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1155   SelectionDAG &DAG = *CurDAG;
1156 
1157   for (SDNode *N : Nodes) {
1158     unsigned Opc = N->getOpcode();
1159     if (Opc != ISD::ZERO_EXTEND)
1160       continue;
1161     SDValue OpI1 = N->getOperand(0);
1162     EVT OpVT = OpI1.getValueType();
1163     if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1164       continue;
1165     for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1166       SDNode *U = *I;
1167       if (U->getNumValues() != 1)
1168         continue;
1169       EVT UVT = U->getValueType(0);
1170       if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1171         continue;
1172       if (isMemOPCandidate(N, U))
1173         continue;
1174 
1175       // Potentially simplifiable operation.
1176       unsigned I1N = I.getOperandNo();
1177       SmallVector<SDValue,2> Ops(U->getNumOperands());
1178       for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1179         Ops[i] = U->getOperand(i);
1180       EVT BVT = Ops[I1N].getValueType();
1181 
1182       SDLoc dl(U);
1183       SDValue C0 = DAG.getConstant(0, dl, BVT);
1184       SDValue C1 = DAG.getConstant(1, dl, BVT);
1185       SDValue If0, If1;
1186 
1187       if (isa<MachineSDNode>(U)) {
1188         unsigned UseOpc = U->getMachineOpcode();
1189         Ops[I1N] = C0;
1190         If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1191         Ops[I1N] = C1;
1192         If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1193       } else {
1194         unsigned UseOpc = U->getOpcode();
1195         Ops[I1N] = C0;
1196         If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1197         Ops[I1N] = C1;
1198         If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1199       }
1200       SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0);
1201       DAG.ReplaceAllUsesWith(U, Sel.getNode());
1202     }
1203   }
1204 }
1205 
1206 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1207   // Repack all nodes before calling each preprocessing function,
1208   // because each of them can modify the set of nodes.
1209   auto getNodes = [this] () -> std::vector<SDNode*> {
1210     std::vector<SDNode*> T;
1211     T.reserve(CurDAG->allnodes_size());
1212     for (SDNode &N : CurDAG->allnodes())
1213       T.push_back(&N);
1214     return T;
1215   };
1216 
1217   // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1218   //            (or (select c 0 y) z)  ->  (select c z (or y z))
1219   ppSimplifyOrSelect0(getNodes());
1220 
1221   // Transform: (store ch val (add x (add (shl y c) e)))
1222   //        to: (store ch val (add x (shl (add y d) c))),
1223   // where e = (shl d c) for some integer d.
1224   // The purpose of this is to enable generation of loads/stores with
1225   // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1226   // value c must be 0, 1 or 2.
1227   ppAddrReorderAddShl(getNodes());
1228 
1229   // Transform: (load ch (add x (and (srl y c) Mask)))
1230   //        to: (load ch (add x (shl (srl y d) d-c)))
1231   // where
1232   // Mask = 00..0 111..1 0.0
1233   //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1234   //          |     +-------- 1s
1235   //          +-------------- at most c 0s
1236   // Motivating example:
1237   // DAG combiner optimizes (add x (shl (srl y 5) 2))
1238   //                     to (add x (and (srl y 3) 1FFFFFFC))
1239   // which results in a constant-extended and(##...,lsr). This transformation
1240   // undoes this simplification for cases where the shl can be folded into
1241   // an addressing mode.
1242   ppAddrRewriteAndSrl(getNodes());
1243 
1244   // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1245   //                                                  (op ... 1 ...))
1246   ppHoistZextI1(getNodes());
1247 
1248   DEBUG_WITH_TYPE("isel", {
1249     dbgs() << "Preprocessed (Hexagon) selection DAG:";
1250     CurDAG->dump();
1251   });
1252 
1253   if (EnableAddressRebalancing) {
1254     rebalanceAddressTrees();
1255 
1256     DEBUG_WITH_TYPE("isel", {
1257       dbgs() << "Address tree balanced selection DAG:";
1258       CurDAG->dump();
1259     });
1260   }
1261 }
1262 
1263 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
1264   auto &HST = MF->getSubtarget<HexagonSubtarget>();
1265   auto &HFI = *HST.getFrameLowering();
1266   if (!HFI.needsAligna(*MF))
1267     return;
1268 
1269   MachineFrameInfo &MFI = MF->getFrameInfo();
1270   MachineBasicBlock *EntryBB = &MF->front();
1271   unsigned AR = FuncInfo->CreateReg(MVT::i32);
1272   unsigned EntryMaxA = MFI.getMaxAlignment();
1273   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR)
1274       .addImm(EntryMaxA);
1275   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
1276 }
1277 
1278 void HexagonDAGToDAGISel::updateAligna() {
1279   auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering();
1280   if (!HFI.needsAligna(*MF))
1281     return;
1282   auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF));
1283   assert(AlignaI != nullptr);
1284   unsigned MaxA = MF->getFrameInfo().getMaxAlignment();
1285   if (AlignaI->getOperand(1).getImm() < MaxA)
1286     AlignaI->getOperand(1).setImm(MaxA);
1287 }
1288 
1289 // Match a frame index that can be used in an addressing mode.
1290 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1291   if (N.getOpcode() != ISD::FrameIndex)
1292     return false;
1293   auto &HFI = *HST->getFrameLowering();
1294   MachineFrameInfo &MFI = MF->getFrameInfo();
1295   int FX = cast<FrameIndexSDNode>(N)->getIndex();
1296   if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1297     return false;
1298   R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1299   return true;
1300 }
1301 
1302 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1303   return SelectGlobalAddress(N, R, false, 0);
1304 }
1305 
1306 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1307   return SelectGlobalAddress(N, R, true, 0);
1308 }
1309 
1310 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1311   return SelectAnyImmediate(N, R, 0);
1312 }
1313 
1314 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1315   return SelectAnyImmediate(N, R, 0);
1316 }
1317 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1318   return SelectAnyImmediate(N, R, 1);
1319 }
1320 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1321   return SelectAnyImmediate(N, R, 2);
1322 }
1323 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1324   return SelectAnyImmediate(N, R, 3);
1325 }
1326 
1327 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1328   EVT T = N.getValueType();
1329   if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1330     return false;
1331   R = N;
1332   return true;
1333 }
1334 
1335 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1336                                              uint32_t LogAlign) {
1337   auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1338     return alignTo(V, (uint64_t)1 << LogAlign) == V;
1339   };
1340 
1341   switch (N.getOpcode()) {
1342   case ISD::Constant: {
1343     if (N.getValueType() != MVT::i32)
1344       return false;
1345     int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1346     if (!IsAligned(V))
1347       return false;
1348     R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1349     return true;
1350   }
1351   case HexagonISD::JT:
1352   case HexagonISD::CP:
1353     // These are assumed to always be aligned at least 8-byte boundary.
1354     if (LogAlign > 3)
1355       return false;
1356     R = N.getOperand(0);
1357     return true;
1358   case ISD::ExternalSymbol:
1359     // Symbols may be aligned at any boundary.
1360     if (LogAlign > 0)
1361       return false;
1362     R = N;
1363     return true;
1364   case ISD::BlockAddress:
1365     // Block address is always aligned at least 4-byte boundary.
1366     if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset()))
1367       return false;
1368     R = N;
1369     return true;
1370   }
1371 
1372   if (SelectGlobalAddress(N, R, false, LogAlign) ||
1373       SelectGlobalAddress(N, R, true, LogAlign))
1374     return true;
1375 
1376   return false;
1377 }
1378 
1379 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1380                                               bool UseGP, uint32_t LogAlign) {
1381   auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1382     return alignTo(V, (uint64_t)1 << LogAlign) == V;
1383   };
1384 
1385   switch (N.getOpcode()) {
1386   case ISD::ADD: {
1387     SDValue N0 = N.getOperand(0);
1388     SDValue N1 = N.getOperand(1);
1389     unsigned GAOpc = N0.getOpcode();
1390     if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1391       return false;
1392     if (!UseGP && GAOpc != HexagonISD::CONST32)
1393       return false;
1394     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1395       SDValue Addr = N0.getOperand(0);
1396       // For the purpose of alignment, sextvalue and zextvalue are the same.
1397       if (!IsAligned(Const->getZExtValue()))
1398         return false;
1399       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1400         if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1401           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1402           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1403                                              N.getValueType(), NewOff);
1404           return true;
1405         }
1406       }
1407     }
1408     break;
1409   }
1410   case HexagonISD::CP:
1411   case HexagonISD::JT:
1412   case HexagonISD::CONST32:
1413     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1414     // want in the instruction.
1415     if (!UseGP)
1416       R = N.getOperand(0);
1417     return !UseGP;
1418   case HexagonISD::CONST32_GP:
1419     if (UseGP)
1420       R = N.getOperand(0);
1421     return UseGP;
1422   default:
1423     return false;
1424   }
1425 
1426   return false;
1427 }
1428 
1429 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1430   // This (complex pattern) function is meant to detect a sign-extension
1431   // i32->i64 on a per-operand basis. This would allow writing single
1432   // patterns that would cover a number of combinations of different ways
1433   // a sign-extensions could be written. For example:
1434   //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1435   // could match either one of these:
1436   //   (mul (sext x) (sext_inreg y))
1437   //   (mul (sext-load *p) (sext_inreg y))
1438   //   (mul (sext_inreg x) (sext y))
1439   // etc.
1440   //
1441   // The returned value will have type i64 and its low word will
1442   // contain the value being extended. The high bits are not specified.
1443   // The returned type is i64 because the original type of N was i64,
1444   // but the users of this function should only use the low-word of the
1445   // result, e.g.
1446   //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1447 
1448   if (N.getValueType() != MVT::i64)
1449     return false;
1450   unsigned Opc = N.getOpcode();
1451   switch (Opc) {
1452     case ISD::SIGN_EXTEND:
1453     case ISD::SIGN_EXTEND_INREG: {
1454       // sext_inreg has the source type as a separate operand.
1455       EVT T = Opc == ISD::SIGN_EXTEND
1456                 ? N.getOperand(0).getValueType()
1457                 : cast<VTSDNode>(N.getOperand(1))->getVT();
1458       unsigned SW = T.getSizeInBits();
1459       if (SW == 32)
1460         R = N.getOperand(0);
1461       else if (SW < 32)
1462         R = N;
1463       else
1464         return false;
1465       break;
1466     }
1467     case ISD::LOAD: {
1468       LoadSDNode *L = cast<LoadSDNode>(N);
1469       if (L->getExtensionType() != ISD::SEXTLOAD)
1470         return false;
1471       // All extending loads extend to i32, so even if the value in
1472       // memory is shorter than 32 bits, it will be i32 after the load.
1473       if (L->getMemoryVT().getSizeInBits() > 32)
1474         return false;
1475       R = N;
1476       break;
1477     }
1478     case ISD::SRA: {
1479       auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1480       if (!S || S->getZExtValue() != 32)
1481         return false;
1482       R = N;
1483       break;
1484     }
1485     default:
1486       return false;
1487   }
1488   EVT RT = R.getValueType();
1489   if (RT == MVT::i64)
1490     return true;
1491   assert(RT == MVT::i32);
1492   // This is only to produce a value of type i64. Do not rely on the
1493   // high bits produced by this.
1494   const SDLoc &dl(N);
1495   SDValue Ops[] = {
1496     CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1497     R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1498     R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1499   };
1500   SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1501                                      MVT::i64, Ops);
1502   R = SDValue(T, 0);
1503   return true;
1504 }
1505 
1506 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1507       SDValue &Src) {
1508   unsigned Opc = Val.getOpcode();
1509   switch (Opc) {
1510   case ISD::SIGN_EXTEND:
1511   case ISD::ZERO_EXTEND:
1512   case ISD::ANY_EXTEND: {
1513     const SDValue &Op0 = Val.getOperand(0);
1514     EVT T = Op0.getValueType();
1515     if (T.isInteger() && T.getSizeInBits() == NumBits) {
1516       Src = Op0;
1517       return true;
1518     }
1519     break;
1520   }
1521   case ISD::SIGN_EXTEND_INREG:
1522   case ISD::AssertSext:
1523   case ISD::AssertZext:
1524     if (Val.getOperand(0).getValueType().isInteger()) {
1525       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1526       if (T->getVT().getSizeInBits() == NumBits) {
1527         Src = Val.getOperand(0);
1528         return true;
1529       }
1530     }
1531     break;
1532   case ISD::AND: {
1533     // Check if this is an AND with NumBits of lower bits set to 1.
1534     uint64_t Mask = (1 << NumBits) - 1;
1535     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1536       if (C->getZExtValue() == Mask) {
1537         Src = Val.getOperand(1);
1538         return true;
1539       }
1540     }
1541     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1542       if (C->getZExtValue() == Mask) {
1543         Src = Val.getOperand(0);
1544         return true;
1545       }
1546     }
1547     break;
1548   }
1549   case ISD::OR:
1550   case ISD::XOR: {
1551     // OR/XOR with the lower NumBits bits set to 0.
1552     uint64_t Mask = (1 << NumBits) - 1;
1553     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1554       if ((C->getZExtValue() & Mask) == 0) {
1555         Src = Val.getOperand(1);
1556         return true;
1557       }
1558     }
1559     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1560       if ((C->getZExtValue() & Mask) == 0) {
1561         Src = Val.getOperand(0);
1562         return true;
1563       }
1564     }
1565     break;
1566   }
1567   default:
1568     break;
1569   }
1570   return false;
1571 }
1572 
1573 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1574   return N->getAlignment() >= N->getMemoryVT().getStoreSize();
1575 }
1576 
1577 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1578   unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1579   switch (N->getMemoryVT().getStoreSize()) {
1580     case 1:
1581       return StackSize <= 56;   // 1*2^6 - 8
1582     case 2:
1583       return StackSize <= 120;  // 2*2^6 - 8
1584     case 4:
1585       return StackSize <= 248;  // 4*2^6 - 8
1586     default:
1587       return false;
1588   }
1589 }
1590 
1591 // Return true when the given node fits in a positive half word.
1592 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1593   if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1594     int64_t V = CN->getSExtValue();
1595     return V > 0 && isInt<16>(V);
1596   }
1597   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1598     const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1599     return VN->getVT().getSizeInBits() <= 16;
1600   }
1601   return false;
1602 }
1603 
1604 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1605   return !CheckSingleUse || N->hasOneUse();
1606 }
1607 
1608 ////////////////////////////////////////////////////////////////////////////////
1609 // Rebalancing of address calculation trees
1610 
1611 static bool isOpcodeHandled(const SDNode *N) {
1612   switch (N->getOpcode()) {
1613     case ISD::ADD:
1614     case ISD::MUL:
1615       return true;
1616     case ISD::SHL:
1617       // We only handle constant shifts because these can be easily flattened
1618       // into multiplications by 2^Op1.
1619       return isa<ConstantSDNode>(N->getOperand(1).getNode());
1620     default:
1621       return false;
1622   }
1623 }
1624 
1625 /// Return the weight of an SDNode
1626 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1627   if (!isOpcodeHandled(N))
1628     return 1;
1629   assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1630   assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1631   assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1632   return RootWeights[N];
1633 }
1634 
1635 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1636   if (!isOpcodeHandled(N))
1637     return 0;
1638   assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1639       "Cannot query height of unvisited/RAUW'd node!");
1640   return RootHeights[N];
1641 }
1642 
1643 namespace {
1644 struct WeightedLeaf {
1645   SDValue Value;
1646   int Weight;
1647   int InsertionOrder;
1648 
1649   WeightedLeaf() : Value(SDValue()) { }
1650 
1651   WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1652     Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1653     assert(Weight >= 0 && "Weight must be >= 0");
1654   }
1655 
1656   static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1657     assert(A.Value.getNode() && B.Value.getNode());
1658     return A.Weight == B.Weight ?
1659             (A.InsertionOrder > B.InsertionOrder) :
1660             (A.Weight > B.Weight);
1661   }
1662 };
1663 
1664 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1665 /// constants and allows removal of non-top elements while maintaining the
1666 /// priority order.
1667 class LeafPrioQueue {
1668   SmallVector<WeightedLeaf, 8> Q;
1669   bool HaveConst;
1670   WeightedLeaf ConstElt;
1671   unsigned Opcode;
1672 
1673 public:
1674   bool empty() {
1675     return (!HaveConst && Q.empty());
1676   }
1677 
1678   size_t size() {
1679     return Q.size() + HaveConst;
1680   }
1681 
1682   bool hasConst() {
1683     return HaveConst;
1684   }
1685 
1686   const WeightedLeaf &top() {
1687     if (HaveConst)
1688       return ConstElt;
1689     return Q.front();
1690   }
1691 
1692   WeightedLeaf pop() {
1693     if (HaveConst) {
1694       HaveConst = false;
1695       return ConstElt;
1696     }
1697     std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1698     return Q.pop_back_val();
1699   }
1700 
1701   void push(WeightedLeaf L, bool SeparateConst=true) {
1702     if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1703       if (Opcode == ISD::MUL &&
1704           cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1705         return;
1706       if (Opcode == ISD::ADD &&
1707           cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1708         return;
1709 
1710       HaveConst = true;
1711       ConstElt = L;
1712     } else {
1713       Q.push_back(L);
1714       std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1715     }
1716   }
1717 
1718   /// Push L to the bottom of the queue regardless of its weight. If L is
1719   /// constant, it will not be folded with other constants in the queue.
1720   void pushToBottom(WeightedLeaf L) {
1721     L.Weight = 1000;
1722     push(L, false);
1723   }
1724 
1725   /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1726   /// lowest weight and remove it from the queue.
1727   WeightedLeaf findSHL(uint64_t MaxAmount);
1728 
1729   WeightedLeaf findMULbyConst();
1730 
1731   LeafPrioQueue(unsigned Opcode) :
1732     HaveConst(false), Opcode(Opcode) { }
1733 };
1734 } // end anonymous namespace
1735 
1736 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1737   int ResultPos;
1738   WeightedLeaf Result;
1739 
1740   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1741     const WeightedLeaf &L = Q[Pos];
1742     const SDValue &Val = L.Value;
1743     if (Val.getOpcode() != ISD::SHL ||
1744         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1745         Val.getConstantOperandVal(1) > MaxAmount)
1746       continue;
1747     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1748         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1749     {
1750       Result = L;
1751       ResultPos = Pos;
1752     }
1753   }
1754 
1755   if (Result.Value.getNode()) {
1756     Q.erase(&Q[ResultPos]);
1757     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1758   }
1759 
1760   return Result;
1761 }
1762 
1763 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1764   int ResultPos;
1765   WeightedLeaf Result;
1766 
1767   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1768     const WeightedLeaf &L = Q[Pos];
1769     const SDValue &Val = L.Value;
1770     if (Val.getOpcode() != ISD::MUL ||
1771         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1772         Val.getConstantOperandVal(1) > 127)
1773       continue;
1774     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1775         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1776     {
1777       Result = L;
1778       ResultPos = Pos;
1779     }
1780   }
1781 
1782   if (Result.Value.getNode()) {
1783     Q.erase(&Q[ResultPos]);
1784     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1785   }
1786 
1787   return Result;
1788 }
1789 
1790 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1791   uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1792   return CurDAG->getConstant(MulFactor, SDLoc(N),
1793                              N->getOperand(1).getValueType());
1794 }
1795 
1796 /// @returns the value x for which 2^x is a factor of Val
1797 static unsigned getPowerOf2Factor(SDValue Val) {
1798   if (Val.getOpcode() == ISD::MUL) {
1799     unsigned MaxFactor = 0;
1800     for (int i = 0; i < 2; ++i) {
1801       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1802       if (!C)
1803         continue;
1804       const APInt &CInt = C->getAPIntValue();
1805       if (CInt.getBoolValue())
1806         MaxFactor = CInt.countTrailingZeros();
1807     }
1808     return MaxFactor;
1809   }
1810   if (Val.getOpcode() == ISD::SHL) {
1811     if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1812       return 0;
1813     return (unsigned) Val.getConstantOperandVal(1);
1814   }
1815 
1816   return 0;
1817 }
1818 
1819 /// @returns true if V>>Amount will eliminate V's operation on its child
1820 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1821   if (V.getOpcode() == ISD::MUL) {
1822     SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1823     for (int i = 0; i < 2; ++i)
1824       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1825           V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1826         uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1827         return (NewConst == 1);
1828       }
1829   } else if (V.getOpcode() == ISD::SHL) {
1830     return (Amount == V.getConstantOperandVal(1));
1831   }
1832 
1833   return false;
1834 }
1835 
1836 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1837   SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1838   if (V.getOpcode() == ISD::MUL) {
1839     for (int i=0; i < 2; ++i) {
1840       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1841           V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1842         uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1843         if (NewConst == 1)
1844           return Ops[!i];
1845         Ops[i] = CurDAG->getConstant(NewConst,
1846                                      SDLoc(V), V.getValueType());
1847         break;
1848       }
1849     }
1850   } else if (V.getOpcode() == ISD::SHL) {
1851     uint64_t ShiftAmount = V.getConstantOperandVal(1);
1852     if (ShiftAmount == Power)
1853       return Ops[0];
1854     Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1855                                  SDLoc(V), V.getValueType());
1856   }
1857 
1858   return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1859 }
1860 
1861 static bool isTargetConstant(const SDValue &V) {
1862   return V.getOpcode() == HexagonISD::CONST32 ||
1863          V.getOpcode() == HexagonISD::CONST32_GP;
1864 }
1865 
1866 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1867   if (GAUsesInFunction.count(V))
1868     return GAUsesInFunction[V];
1869 
1870   unsigned Result = 0;
1871   const Function &CurF = CurDAG->getMachineFunction().getFunction();
1872   for (const User *U : V->users()) {
1873     if (isa<Instruction>(U) &&
1874         cast<Instruction>(U)->getParent()->getParent() == &CurF)
1875       ++Result;
1876   }
1877 
1878   GAUsesInFunction[V] = Result;
1879 
1880   return Result;
1881 }
1882 
1883 /// Note - After calling this, N may be dead. It may have been replaced by a
1884 /// new node, so always use the returned value in place of N.
1885 ///
1886 /// @returns The SDValue taking the place of N (which could be N if it is
1887 /// unchanged)
1888 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1889   assert(RootWeights.count(N) && "Cannot balance non-root node.");
1890   assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1891   assert(!TopLevel || N->getOpcode() == ISD::ADD);
1892 
1893   // Return early if this node was already visited
1894   if (RootWeights[N] != -1)
1895     return SDValue(N, 0);
1896 
1897   assert(isOpcodeHandled(N));
1898 
1899   SDValue Op0 = N->getOperand(0);
1900   SDValue Op1 = N->getOperand(1);
1901 
1902   // Return early if the operands will remain unchanged or are all roots
1903   if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1904       (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1905     SDNode *Op0N = Op0.getNode();
1906     int Weight;
1907     if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1908       Weight = getWeight(balanceSubTree(Op0N).getNode());
1909       // Weight = calculateWeight(Op0N);
1910     } else
1911       Weight = getWeight(Op0N);
1912 
1913     SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1914     if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1915       Weight += getWeight(balanceSubTree(Op1N).getNode());
1916       // Weight += calculateWeight(Op1N);
1917     } else
1918       Weight += getWeight(Op1N);
1919 
1920     RootWeights[N] = Weight;
1921     RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1922                               getHeight(N->getOperand(1).getNode())) + 1;
1923 
1924     LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1925                       << " Height=" << RootHeights[N] << "): ");
1926     LLVM_DEBUG(N->dump(CurDAG));
1927 
1928     return SDValue(N, 0);
1929   }
1930 
1931   LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1932   LLVM_DEBUG(N->dump(CurDAG));
1933 
1934   unsigned NOpcode = N->getOpcode();
1935 
1936   LeafPrioQueue Leaves(NOpcode);
1937   SmallVector<SDValue, 4> Worklist;
1938   Worklist.push_back(SDValue(N, 0));
1939 
1940   // SHL nodes will be converted to MUL nodes
1941   if (NOpcode == ISD::SHL)
1942     NOpcode = ISD::MUL;
1943 
1944   bool CanFactorize = false;
1945   WeightedLeaf Mul1, Mul2;
1946   unsigned MaxPowerOf2 = 0;
1947   WeightedLeaf GA;
1948 
1949   // Do not try to factor out a shift if there is already a shift at the tip of
1950   // the tree.
1951   bool HaveTopLevelShift = false;
1952   if (TopLevel &&
1953       ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
1954                         Op0.getConstantOperandVal(1) < 4) ||
1955        (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
1956                         Op1.getConstantOperandVal(1) < 4)))
1957     HaveTopLevelShift = true;
1958 
1959   // Flatten the subtree into an ordered list of leaves; at the same time
1960   // determine whether the tree is already balanced.
1961   int InsertionOrder = 0;
1962   SmallDenseMap<SDValue, int> NodeHeights;
1963   bool Imbalanced = false;
1964   int CurrentWeight = 0;
1965   while (!Worklist.empty()) {
1966     SDValue Child = Worklist.pop_back_val();
1967 
1968     if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
1969       // CASE 1: Child is a root note
1970 
1971       int Weight = RootWeights[Child.getNode()];
1972       if (Weight == -1) {
1973         Child = balanceSubTree(Child.getNode());
1974         // calculateWeight(Child.getNode());
1975         Weight = getWeight(Child.getNode());
1976       } else if (Weight == -2) {
1977         // Whoops, this node was RAUWd by one of the balanceSubTree calls we
1978         // made. Our worklist isn't up to date anymore.
1979         // Restart the whole process.
1980         LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
1981         return balanceSubTree(N, TopLevel);
1982       }
1983 
1984       NodeHeights[Child] = 1;
1985       CurrentWeight += Weight;
1986 
1987       unsigned PowerOf2;
1988       if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
1989           (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
1990           Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
1991         // Try to identify two factorizable MUL/SHL children greedily. Leave
1992         // them out of the priority queue for now so we can deal with them
1993         // after.
1994         if (!Mul1.Value.getNode()) {
1995           Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
1996           MaxPowerOf2 = PowerOf2;
1997         } else {
1998           Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
1999           MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2000 
2001           // Our addressing modes can only shift by a maximum of 3
2002           if (MaxPowerOf2 > 3)
2003             MaxPowerOf2 = 3;
2004 
2005           CanFactorize = true;
2006         }
2007       } else
2008         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2009     } else if (!isOpcodeHandled(Child.getNode())) {
2010       // CASE 2: Child is an unhandled kind of node (e.g. constant)
2011       int Weight = getWeight(Child.getNode());
2012 
2013       NodeHeights[Child] = getHeight(Child.getNode());
2014       CurrentWeight += Weight;
2015 
2016       if (isTargetConstant(Child) && !GA.Value.getNode())
2017         GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2018       else
2019         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2020     } else {
2021       // CASE 3: Child is a subtree of same opcode
2022       // Visit children first, then flatten.
2023       unsigned ChildOpcode = Child.getOpcode();
2024       assert(ChildOpcode == NOpcode ||
2025              (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2026 
2027       // Convert SHL to MUL
2028       SDValue Op1;
2029       if (ChildOpcode == ISD::SHL)
2030         Op1 = getMultiplierForSHL(Child.getNode());
2031       else
2032         Op1 = Child->getOperand(1);
2033 
2034       if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2035         assert(!NodeHeights.count(Child) && "Parent visited before children?");
2036         // Visit children first, then re-visit this node
2037         Worklist.push_back(Child);
2038         Worklist.push_back(Op1);
2039         Worklist.push_back(Child->getOperand(0));
2040       } else {
2041         // Back at this node after visiting the children
2042         if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2043           Imbalanced = true;
2044 
2045         NodeHeights[Child] = std::max(NodeHeights[Op1],
2046                                       NodeHeights[Child->getOperand(0)]) + 1;
2047       }
2048     }
2049   }
2050 
2051   LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2052                     << " weight=" << CurrentWeight
2053                     << " imbalanced=" << Imbalanced << "\n");
2054 
2055   // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2056   //  This factors out a shift in order to match memw(a<<Y+b).
2057   if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2058                        willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2059     LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2060     int Weight = Mul1.Weight + Mul2.Weight;
2061     int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2062     SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2063     SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2064     SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2065                                   Mul1Factored, Mul2Factored);
2066     SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2067                                         Mul1.Value.getValueType());
2068     SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2069                                   Sum, Const);
2070     NodeHeights[New] = Height;
2071     Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2072   } else if (Mul1.Value.getNode()) {
2073     // We failed to factorize two MULs, so now the Muls are left outside the
2074     // queue... add them back.
2075     Leaves.push(Mul1);
2076     if (Mul2.Value.getNode())
2077       Leaves.push(Mul2);
2078     CanFactorize = false;
2079   }
2080 
2081   // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2082   // and the root node itself is not used more than twice. This reduces the
2083   // amount of additional constant extenders introduced by this optimization.
2084   bool CombinedGA = false;
2085   if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2086       GA.Value.hasOneUse() && N->use_size() < 3) {
2087     GlobalAddressSDNode *GANode =
2088       cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2089     ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2090 
2091     if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2092         getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2093       LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2094                         << Offset->getSExtValue() << "): ");
2095       LLVM_DEBUG(GANode->dump(CurDAG));
2096 
2097       SDValue NewTGA =
2098         CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2099             GANode->getValueType(0),
2100             GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2101       GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2102           GA.Value.getValueType(), NewTGA);
2103       GA.Weight += Leaves.top().Weight;
2104 
2105       NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2106       CombinedGA = true;
2107 
2108       Leaves.pop(); // Remove the offset constant from the queue
2109     }
2110   }
2111 
2112   if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2113       (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2114     RootWeights[N] = CurrentWeight;
2115     RootHeights[N] = NodeHeights[SDValue(N, 0)];
2116 
2117     return SDValue(N, 0);
2118   }
2119 
2120   // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2121   if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2122     WeightedLeaf SHL = Leaves.findSHL(31);
2123     if (SHL.Value.getNode()) {
2124       int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2125       GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2126                                  GA.Value.getValueType(),
2127                                  GA.Value, SHL.Value);
2128       GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2129       NodeHeights[GA.Value] = Height;
2130     }
2131   }
2132 
2133   if (GA.Value.getNode())
2134     Leaves.push(GA);
2135 
2136   // If this is the top level and we haven't factored out a shift, we should try
2137   // to move a constant to the bottom to match addressing modes like memw(rX+C)
2138   if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2139     LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2140     Leaves.pushToBottom(Leaves.pop());
2141   }
2142 
2143   const DataLayout &DL = CurDAG->getDataLayout();
2144   const TargetLowering &TLI = *getTargetLowering();
2145 
2146   // Rebuild the tree using Huffman's algorithm
2147   while (Leaves.size() > 1) {
2148     WeightedLeaf L0 = Leaves.pop();
2149 
2150     // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2151     // otherwise just get the next leaf
2152     WeightedLeaf L1 = Leaves.findMULbyConst();
2153     if (!L1.Value.getNode())
2154       L1 = Leaves.pop();
2155 
2156     assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2157 
2158     SDValue V0 = L0.Value;
2159     int V0Weight = L0.Weight;
2160     SDValue V1 = L1.Value;
2161     int V1Weight = L1.Weight;
2162 
2163     // Make sure that none of these nodes have been RAUW'd
2164     if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2165         (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2166       LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2167       return balanceSubTree(N, TopLevel);
2168     }
2169 
2170     ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2171     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2172     EVT VT = N->getValueType(0);
2173     SDValue NewNode;
2174 
2175     if (V0C && !V1C) {
2176       std::swap(V0, V1);
2177       std::swap(V0C, V1C);
2178     }
2179 
2180     // Calculate height of this node
2181     assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2182            "Children must have been visited before re-combining them!");
2183     int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2184 
2185     // Rebuild this node (and restore SHL from MUL if needed)
2186     if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2187       NewNode = CurDAG->getNode(
2188           ISD::SHL, SDLoc(V0), VT, V0,
2189           CurDAG->getConstant(
2190               V1C->getAPIntValue().logBase2(), SDLoc(N),
2191               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2192     else
2193       NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2194 
2195     NodeHeights[NewNode] = Height;
2196 
2197     int Weight = V0Weight + V1Weight;
2198     Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2199 
2200     LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2201                       << ",Height=" << Height << "):\n");
2202     LLVM_DEBUG(NewNode.dump());
2203   }
2204 
2205   assert(Leaves.size() == 1);
2206   SDValue NewRoot = Leaves.top().Value;
2207 
2208   assert(NodeHeights.count(NewRoot));
2209   int Height = NodeHeights[NewRoot];
2210 
2211   // Restore SHL if we earlier converted it to a MUL
2212   if (NewRoot.getOpcode() == ISD::MUL) {
2213     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2214     if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2215       EVT VT = NewRoot.getValueType();
2216       SDValue V0 = NewRoot.getOperand(0);
2217       NewRoot = CurDAG->getNode(
2218           ISD::SHL, SDLoc(NewRoot), VT, V0,
2219           CurDAG->getConstant(
2220               V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2221               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2222     }
2223   }
2224 
2225   if (N != NewRoot.getNode()) {
2226     LLVM_DEBUG(dbgs() << "--> Root is now: ");
2227     LLVM_DEBUG(NewRoot.dump());
2228 
2229     // Replace all uses of old root by new root
2230     CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2231     // Mark that we have RAUW'd N
2232     RootWeights[N] = -2;
2233   } else {
2234     LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2235   }
2236 
2237   RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2238   RootHeights[NewRoot.getNode()] = Height;
2239 
2240   return NewRoot;
2241 }
2242 
2243 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2244   for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) {
2245     SDNode *N = &*I++;
2246     if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2247       continue;
2248 
2249     SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2250     if (BasePtr.getOpcode() != ISD::ADD)
2251       continue;
2252 
2253     // We've already processed this node
2254     if (RootWeights.count(BasePtr.getNode()))
2255       continue;
2256 
2257     LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2258     LLVM_DEBUG(N->dump(CurDAG));
2259 
2260     // FindRoots
2261     SmallVector<SDNode *, 4> Worklist;
2262 
2263     Worklist.push_back(BasePtr.getOperand(0).getNode());
2264     Worklist.push_back(BasePtr.getOperand(1).getNode());
2265 
2266     while (!Worklist.empty()) {
2267       SDNode *N = Worklist.pop_back_val();
2268       unsigned Opcode = N->getOpcode();
2269 
2270       if (!isOpcodeHandled(N))
2271         continue;
2272 
2273       Worklist.push_back(N->getOperand(0).getNode());
2274       Worklist.push_back(N->getOperand(1).getNode());
2275 
2276       // Not a root if it has only one use and same opcode as its parent
2277       if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2278         continue;
2279 
2280       // This root node has already been processed
2281       if (RootWeights.count(N))
2282         continue;
2283 
2284       RootWeights[N] = -1;
2285     }
2286 
2287     // Balance node itself
2288     RootWeights[BasePtr.getNode()] = -1;
2289     SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2290 
2291     if (N->getOpcode() == ISD::LOAD)
2292       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2293             NewBasePtr, N->getOperand(2));
2294     else
2295       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2296             NewBasePtr, N->getOperand(3));
2297 
2298     LLVM_DEBUG(dbgs() << "--> Final node: ");
2299     LLVM_DEBUG(N->dump(CurDAG));
2300   }
2301 
2302   CurDAG->RemoveDeadNodes();
2303   GAUsesInFunction.clear();
2304   RootHeights.clear();
2305   RootWeights.clear();
2306 }
2307