1 //===- llvm/lib/Target/X86/X86CallLowering.cpp - Call lowering ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86CallLowering.h"
16 #include "X86CallingConv.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
28 #include "llvm/CodeGen/GlobalISel/Utils.h"
29 #include "llvm/CodeGen/LowLevelTypeUtils.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/CodeGenTypes/LowLevelType.h"
41 #include "llvm/CodeGenTypes/MachineValueType.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include <cassert>
48 #include <cstdint>
49
50 using namespace llvm;
51
X86CallLowering(const X86TargetLowering & TLI)52 X86CallLowering::X86CallLowering(const X86TargetLowering &TLI)
53 : CallLowering(&TLI) {}
54
55 namespace {
56
57 struct X86OutgoingValueAssigner : public CallLowering::OutgoingValueAssigner {
58 private:
59 uint64_t StackSize = 0;
60 unsigned NumXMMRegs = 0;
61
62 public:
getStackSize__anon3a2ff66f0111::X86OutgoingValueAssigner63 uint64_t getStackSize() { return StackSize; }
getNumXmmRegs__anon3a2ff66f0111::X86OutgoingValueAssigner64 unsigned getNumXmmRegs() { return NumXMMRegs; }
65
X86OutgoingValueAssigner__anon3a2ff66f0111::X86OutgoingValueAssigner66 X86OutgoingValueAssigner(CCAssignFn *AssignFn_)
67 : CallLowering::OutgoingValueAssigner(AssignFn_) {}
68
assignArg__anon3a2ff66f0111::X86OutgoingValueAssigner69 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
70 CCValAssign::LocInfo LocInfo,
71 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
72 CCState &State) override {
73 bool Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
74 StackSize = State.getStackSize();
75
76 static const MCPhysReg XMMArgRegs[] = {X86::XMM0, X86::XMM1, X86::XMM2,
77 X86::XMM3, X86::XMM4, X86::XMM5,
78 X86::XMM6, X86::XMM7};
79 if (!Info.IsFixed)
80 NumXMMRegs = State.getFirstUnallocated(XMMArgRegs);
81
82 return Res;
83 }
84 };
85
86 struct X86OutgoingValueHandler : public CallLowering::OutgoingValueHandler {
X86OutgoingValueHandler__anon3a2ff66f0111::X86OutgoingValueHandler87 X86OutgoingValueHandler(MachineIRBuilder &MIRBuilder,
88 MachineRegisterInfo &MRI, MachineInstrBuilder &MIB)
89 : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB),
90 DL(MIRBuilder.getMF().getDataLayout()),
91 STI(MIRBuilder.getMF().getSubtarget<X86Subtarget>()) {}
92
getStackAddress__anon3a2ff66f0111::X86OutgoingValueHandler93 Register getStackAddress(uint64_t Size, int64_t Offset,
94 MachinePointerInfo &MPO,
95 ISD::ArgFlagsTy Flags) override {
96 LLT p0 = LLT::pointer(0, DL.getPointerSizeInBits(0));
97 LLT SType = LLT::scalar(DL.getPointerSizeInBits(0));
98 auto SPReg =
99 MIRBuilder.buildCopy(p0, STI.getRegisterInfo()->getStackRegister());
100
101 auto OffsetReg = MIRBuilder.buildConstant(SType, Offset);
102
103 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
104
105 MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset);
106 return AddrReg.getReg(0);
107 }
108
assignValueToReg__anon3a2ff66f0111::X86OutgoingValueHandler109 void assignValueToReg(Register ValVReg, Register PhysReg,
110 const CCValAssign &VA) override {
111 MIB.addUse(PhysReg, RegState::Implicit);
112 Register ExtReg = extendRegister(ValVReg, VA);
113 MIRBuilder.buildCopy(PhysReg, ExtReg);
114 }
115
assignValueToAddress__anon3a2ff66f0111::X86OutgoingValueHandler116 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
117 const MachinePointerInfo &MPO,
118 const CCValAssign &VA) override {
119 MachineFunction &MF = MIRBuilder.getMF();
120 Register ExtReg = extendRegister(ValVReg, VA);
121
122 auto *MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy,
123 inferAlignFromPtrInfo(MF, MPO));
124 MIRBuilder.buildStore(ExtReg, Addr, *MMO);
125 }
126
127 protected:
128 MachineInstrBuilder &MIB;
129 const DataLayout &DL;
130 const X86Subtarget &STI;
131 };
132
133 } // end anonymous namespace
134
canLowerReturn(MachineFunction & MF,CallingConv::ID CallConv,SmallVectorImpl<CallLowering::BaseArgInfo> & Outs,bool IsVarArg) const135 bool X86CallLowering::canLowerReturn(
136 MachineFunction &MF, CallingConv::ID CallConv,
137 SmallVectorImpl<CallLowering::BaseArgInfo> &Outs, bool IsVarArg) const {
138 LLVMContext &Context = MF.getFunction().getContext();
139 SmallVector<CCValAssign, 16> RVLocs;
140 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
141 return checkReturn(CCInfo, Outs, RetCC_X86);
142 }
143
lowerReturn(MachineIRBuilder & MIRBuilder,const Value * Val,ArrayRef<Register> VRegs,FunctionLoweringInfo & FLI) const144 bool X86CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
145 const Value *Val, ArrayRef<Register> VRegs,
146 FunctionLoweringInfo &FLI) const {
147 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
148 "Return value without a vreg");
149 MachineFunction &MF = MIRBuilder.getMF();
150 auto MIB = MIRBuilder.buildInstrNoInsert(X86::RET).addImm(0);
151 auto FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
152 const auto &STI = MF.getSubtarget<X86Subtarget>();
153 Register RetReg = STI.is64Bit() ? X86::RAX : X86::EAX;
154
155 if (!FLI.CanLowerReturn) {
156 insertSRetStores(MIRBuilder, Val->getType(), VRegs, FLI.DemoteRegister);
157 MIRBuilder.buildCopy(RetReg, FLI.DemoteRegister);
158 MIB.addReg(RetReg);
159 } else if (Register Reg = FuncInfo->getSRetReturnReg()) {
160 MIRBuilder.buildCopy(RetReg, Reg);
161 MIB.addReg(RetReg);
162 } else if (!VRegs.empty()) {
163 const Function &F = MF.getFunction();
164 MachineRegisterInfo &MRI = MF.getRegInfo();
165 const DataLayout &DL = MF.getDataLayout();
166
167 ArgInfo OrigRetInfo(VRegs, Val->getType(), 0);
168 setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
169
170 SmallVector<ArgInfo, 4> SplitRetInfos;
171 splitToValueTypes(OrigRetInfo, SplitRetInfos, DL, F.getCallingConv());
172
173 X86OutgoingValueAssigner Assigner(RetCC_X86);
174 X86OutgoingValueHandler Handler(MIRBuilder, MRI, MIB);
175 if (!determineAndHandleAssignments(Handler, Assigner, SplitRetInfos,
176 MIRBuilder, F.getCallingConv(),
177 F.isVarArg()))
178 return false;
179 }
180
181 MIRBuilder.insertInstr(MIB);
182 return true;
183 }
184
185 namespace {
186
187 struct X86IncomingValueHandler : public CallLowering::IncomingValueHandler {
X86IncomingValueHandler__anon3a2ff66f0211::X86IncomingValueHandler188 X86IncomingValueHandler(MachineIRBuilder &MIRBuilder,
189 MachineRegisterInfo &MRI)
190 : IncomingValueHandler(MIRBuilder, MRI),
191 DL(MIRBuilder.getMF().getDataLayout()) {}
192
getStackAddress__anon3a2ff66f0211::X86IncomingValueHandler193 Register getStackAddress(uint64_t Size, int64_t Offset,
194 MachinePointerInfo &MPO,
195 ISD::ArgFlagsTy Flags) override {
196 auto &MFI = MIRBuilder.getMF().getFrameInfo();
197
198 // Byval is assumed to be writable memory, but other stack passed arguments
199 // are not.
200 const bool IsImmutable = !Flags.isByVal();
201
202 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
203 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
204
205 return MIRBuilder
206 .buildFrameIndex(LLT::pointer(0, DL.getPointerSizeInBits(0)), FI)
207 .getReg(0);
208 }
209
assignValueToAddress__anon3a2ff66f0211::X86IncomingValueHandler210 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
211 const MachinePointerInfo &MPO,
212 const CCValAssign &VA) override {
213 MachineFunction &MF = MIRBuilder.getMF();
214 auto *MMO = MF.getMachineMemOperand(
215 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
216 inferAlignFromPtrInfo(MF, MPO));
217 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
218 }
219
assignValueToReg__anon3a2ff66f0211::X86IncomingValueHandler220 void assignValueToReg(Register ValVReg, Register PhysReg,
221 const CCValAssign &VA) override {
222 markPhysRegUsed(PhysReg);
223 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
224 }
225
226 /// How the physical register gets marked varies between formal
227 /// parameters (it's a basic-block live-in), and a call instruction
228 /// (it's an implicit-def of the BL).
229 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
230
231 protected:
232 const DataLayout &DL;
233 };
234
235 struct FormalArgHandler : public X86IncomingValueHandler {
FormalArgHandler__anon3a2ff66f0211::FormalArgHandler236 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
237 : X86IncomingValueHandler(MIRBuilder, MRI) {}
238
markPhysRegUsed__anon3a2ff66f0211::FormalArgHandler239 void markPhysRegUsed(unsigned PhysReg) override {
240 MIRBuilder.getMRI()->addLiveIn(PhysReg);
241 MIRBuilder.getMBB().addLiveIn(PhysReg);
242 }
243 };
244
245 struct CallReturnHandler : public X86IncomingValueHandler {
CallReturnHandler__anon3a2ff66f0211::CallReturnHandler246 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
247 MachineInstrBuilder &MIB)
248 : X86IncomingValueHandler(MIRBuilder, MRI), MIB(MIB) {}
249
markPhysRegUsed__anon3a2ff66f0211::CallReturnHandler250 void markPhysRegUsed(unsigned PhysReg) override {
251 MIB.addDef(PhysReg, RegState::Implicit);
252 }
253
254 protected:
255 MachineInstrBuilder &MIB;
256 };
257
258 } // end anonymous namespace
259
lowerFormalArguments(MachineIRBuilder & MIRBuilder,const Function & F,ArrayRef<ArrayRef<Register>> VRegs,FunctionLoweringInfo & FLI) const260 bool X86CallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
261 const Function &F,
262 ArrayRef<ArrayRef<Register>> VRegs,
263 FunctionLoweringInfo &FLI) const {
264 MachineFunction &MF = MIRBuilder.getMF();
265 MachineRegisterInfo &MRI = MF.getRegInfo();
266 auto DL = MF.getDataLayout();
267 auto FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
268
269 SmallVector<ArgInfo, 8> SplitArgs;
270
271 if (!FLI.CanLowerReturn)
272 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
273
274 // TODO: handle variadic function
275 if (F.isVarArg())
276 return false;
277
278 unsigned Idx = 0;
279 for (const auto &Arg : F.args()) {
280 // TODO: handle not simple cases.
281 if (Arg.hasAttribute(Attribute::ByVal) ||
282 Arg.hasAttribute(Attribute::InReg) ||
283 Arg.hasAttribute(Attribute::SwiftSelf) ||
284 Arg.hasAttribute(Attribute::SwiftError) ||
285 Arg.hasAttribute(Attribute::Nest) || VRegs[Idx].size() > 1)
286 return false;
287
288 if (Arg.hasAttribute(Attribute::StructRet)) {
289 assert(VRegs[Idx].size() == 1 &&
290 "Unexpected amount of registers for sret argument.");
291 FuncInfo->setSRetReturnReg(VRegs[Idx][0]);
292 }
293
294 ArgInfo OrigArg(VRegs[Idx], Arg.getType(), Idx);
295 setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
296 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv());
297 Idx++;
298 }
299
300 if (SplitArgs.empty())
301 return true;
302
303 MachineBasicBlock &MBB = MIRBuilder.getMBB();
304 if (!MBB.empty())
305 MIRBuilder.setInstr(*MBB.begin());
306
307 X86OutgoingValueAssigner Assigner(CC_X86);
308 FormalArgHandler Handler(MIRBuilder, MRI);
309 if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
310 F.getCallingConv(), F.isVarArg()))
311 return false;
312
313 // Move back to the end of the basic block.
314 MIRBuilder.setMBB(MBB);
315
316 return true;
317 }
318
lowerCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info) const319 bool X86CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
320 CallLoweringInfo &Info) const {
321 MachineFunction &MF = MIRBuilder.getMF();
322 const Function &F = MF.getFunction();
323 MachineRegisterInfo &MRI = MF.getRegInfo();
324 const DataLayout &DL = F.getDataLayout();
325 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
326 const TargetInstrInfo &TII = *STI.getInstrInfo();
327 const X86RegisterInfo *TRI = STI.getRegisterInfo();
328
329 // Handle only Linux C, X86_64_SysV calling conventions for now.
330 if (!STI.isTargetLinux() || !(Info.CallConv == CallingConv::C ||
331 Info.CallConv == CallingConv::X86_64_SysV))
332 return false;
333
334 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
335 auto CallSeqStart = MIRBuilder.buildInstr(AdjStackDown);
336
337 // Create a temporarily-floating call instruction so we can add the implicit
338 // uses of arg registers.
339 bool Is64Bit = STI.is64Bit();
340 unsigned CallOpc = Info.Callee.isReg()
341 ? (Is64Bit ? X86::CALL64r : X86::CALL32r)
342 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
343
344 auto MIB = MIRBuilder.buildInstrNoInsert(CallOpc)
345 .add(Info.Callee)
346 .addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv));
347
348 SmallVector<ArgInfo, 8> SplitArgs;
349 for (const auto &OrigArg : Info.OrigArgs) {
350
351 // TODO: handle not simple cases.
352 if (OrigArg.Flags[0].isByVal())
353 return false;
354
355 if (OrigArg.Regs.size() > 1)
356 return false;
357
358 splitToValueTypes(OrigArg, SplitArgs, DL, Info.CallConv);
359 }
360 // Do the actual argument marshalling.
361 X86OutgoingValueAssigner Assigner(CC_X86);
362 X86OutgoingValueHandler Handler(MIRBuilder, MRI, MIB);
363 if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
364 Info.CallConv, Info.IsVarArg))
365 return false;
366
367 bool IsFixed = Info.OrigArgs.empty() ? true : Info.OrigArgs.back().IsFixed;
368 if (STI.is64Bit() && !IsFixed && !STI.isCallingConvWin64(Info.CallConv)) {
369 // From AMD64 ABI document:
370 // For calls that may call functions that use varargs or stdargs
371 // (prototype-less calls or calls to functions containing ellipsis (...) in
372 // the declaration) %al is used as hidden argument to specify the number
373 // of SSE registers used. The contents of %al do not need to match exactly
374 // the number of registers, but must be an ubound on the number of SSE
375 // registers used and is in the range 0 - 8 inclusive.
376
377 MIRBuilder.buildInstr(X86::MOV8ri)
378 .addDef(X86::AL)
379 .addImm(Assigner.getNumXmmRegs());
380 MIB.addUse(X86::AL, RegState::Implicit);
381 }
382
383 // Now we can add the actual call instruction to the correct basic block.
384 MIRBuilder.insertInstr(MIB);
385
386 // If Callee is a reg, since it is used by a target specific
387 // instruction, it must have a register class matching the
388 // constraint of that instruction.
389 if (Info.Callee.isReg())
390 MIB->getOperand(0).setReg(constrainOperandRegClass(
391 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
392 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
393 0));
394
395 // Finally we can copy the returned value back into its virtual-register. In
396 // symmetry with the arguments, the physical register must be an
397 // implicit-define of the call instruction.
398
399 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
400 if (Info.OrigRet.Regs.size() > 1)
401 return false;
402
403 SplitArgs.clear();
404 SmallVector<Register, 8> NewRegs;
405
406 splitToValueTypes(Info.OrigRet, SplitArgs, DL, Info.CallConv);
407
408 X86OutgoingValueAssigner Assigner(RetCC_X86);
409 CallReturnHandler Handler(MIRBuilder, MRI, MIB);
410 if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
411 Info.CallConv, Info.IsVarArg))
412 return false;
413
414 if (!NewRegs.empty())
415 MIRBuilder.buildMergeLikeInstr(Info.OrigRet.Regs[0], NewRegs);
416 }
417
418 CallSeqStart.addImm(Assigner.getStackSize())
419 .addImm(0 /* see getFrameTotalSize */)
420 .addImm(0 /* see getFrameAdjustment */);
421
422 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
423 MIRBuilder.buildInstr(AdjStackUp)
424 .addImm(Assigner.getStackSize())
425 .addImm(0 /* NumBytesForCalleeToPop */);
426
427 if (!Info.CanLowerReturn)
428 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
429 Info.DemoteRegister, Info.DemoteStackIndex);
430
431 return true;
432 }
433