1 //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transform is designed to eliminate unreachable internal globals from the
10 // program.  It uses an aggressive algorithm, searching out globals that are
11 // known to be alive.  After it finds all of the globals which are needed, it
12 // deletes whatever is left over.  This allows it to delete recursive chunks of
13 // the program which are unreachable.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/IPO/GlobalDCE.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/TypeMetadataUtils.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/Utils/CtorUtils.h"
27 #include "llvm/Transforms/Utils/GlobalStatus.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "globaldce"
32 
33 static cl::opt<bool>
34     ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true),
35                 cl::desc("Enable virtual function elimination"));
36 
37 STATISTIC(NumAliases  , "Number of global aliases removed");
38 STATISTIC(NumFunctions, "Number of functions removed");
39 STATISTIC(NumIFuncs,    "Number of indirect functions removed");
40 STATISTIC(NumVariables, "Number of global variables removed");
41 STATISTIC(NumVFuncs,    "Number of virtual functions removed");
42 
43 /// Returns true if F is effectively empty.
isEmptyFunction(Function * F)44 static bool isEmptyFunction(Function *F) {
45   // Skip external functions.
46   if (F->isDeclaration())
47     return false;
48   BasicBlock &Entry = F->getEntryBlock();
49   for (auto &I : Entry) {
50     if (I.isDebugOrPseudoInst())
51       continue;
52     if (auto *RI = dyn_cast<ReturnInst>(&I))
53       return !RI->getReturnValue();
54     break;
55   }
56   return false;
57 }
58 
59 /// Compute the set of GlobalValue that depends from V.
60 /// The recursion stops as soon as a GlobalValue is met.
ComputeDependencies(Value * V,SmallPtrSetImpl<GlobalValue * > & Deps)61 void GlobalDCEPass::ComputeDependencies(Value *V,
62                                         SmallPtrSetImpl<GlobalValue *> &Deps) {
63   if (auto *I = dyn_cast<Instruction>(V)) {
64     Function *Parent = I->getParent()->getParent();
65     Deps.insert(Parent);
66   } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
67     Deps.insert(GV);
68   } else if (auto *CE = dyn_cast<Constant>(V)) {
69     // Avoid walking the whole tree of a big ConstantExprs multiple times.
70     auto Where = ConstantDependenciesCache.find(CE);
71     if (Where != ConstantDependenciesCache.end()) {
72       auto const &K = Where->second;
73       Deps.insert(K.begin(), K.end());
74     } else {
75       SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
76       for (User *CEUser : CE->users())
77         ComputeDependencies(CEUser, LocalDeps);
78       Deps.insert(LocalDeps.begin(), LocalDeps.end());
79     }
80   }
81 }
82 
UpdateGVDependencies(GlobalValue & GV)83 void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
84   SmallPtrSet<GlobalValue *, 8> Deps;
85   for (User *User : GV.users())
86     ComputeDependencies(User, Deps);
87   Deps.erase(&GV); // Remove self-reference.
88   for (GlobalValue *GVU : Deps) {
89     // If this is a dep from a vtable to a virtual function, and we have
90     // complete information about all virtual call sites which could call
91     // though this vtable, then skip it, because the call site information will
92     // be more precise.
93     if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
94       LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
95                         << GV.getName() << "\n");
96       continue;
97     }
98     GVDependencies[GVU].insert(&GV);
99   }
100 }
101 
102 /// Mark Global value as Live
MarkLive(GlobalValue & GV,SmallVectorImpl<GlobalValue * > * Updates)103 void GlobalDCEPass::MarkLive(GlobalValue &GV,
104                              SmallVectorImpl<GlobalValue *> *Updates) {
105   auto const Ret = AliveGlobals.insert(&GV);
106   if (!Ret.second)
107     return;
108 
109   if (Updates)
110     Updates->push_back(&GV);
111   if (Comdat *C = GV.getComdat()) {
112     for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
113       MarkLive(*CM.second, Updates); // Recursion depth is only two because only
114                                      // globals in the same comdat are visited.
115     }
116   }
117 }
118 
ScanVTables(Module & M)119 void GlobalDCEPass::ScanVTables(Module &M) {
120   SmallVector<MDNode *, 2> Types;
121   LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
122 
123   for (GlobalVariable &GV : M.globals()) {
124     Types.clear();
125     GV.getMetadata(LLVMContext::MD_type, Types);
126     if (GV.isDeclaration() || Types.empty())
127       continue;
128 
129     // Use the typeid metadata on the vtable to build a mapping from typeids to
130     // the list of (GV, offset) pairs which are the possible vtables for that
131     // typeid.
132     for (MDNode *Type : Types) {
133       Metadata *TypeID = Type->getOperand(1).get();
134 
135       uint64_t Offset =
136           cast<ConstantInt>(
137               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
138               ->getZExtValue();
139 
140       TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
141     }
142 
143     // If the type corresponding to the vtable is private to this translation
144     // unit, we know that we can see all virtual functions which might use it,
145     // so VFE is safe.
146     if (auto GO = dyn_cast<GlobalObject>(&GV)) {
147       GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
148       if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
149           (InLTOPostLink &&
150            TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
151         LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
152         VFESafeVTables.insert(&GV);
153       }
154     }
155   }
156 }
157 
ScanVTableLoad(Function * Caller,Metadata * TypeId,uint64_t CallOffset)158 void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
159                                    uint64_t CallOffset) {
160   for (const auto &VTableInfo : TypeIdMap[TypeId]) {
161     GlobalVariable *VTable = VTableInfo.first;
162     uint64_t VTableOffset = VTableInfo.second;
163 
164     Constant *Ptr =
165         getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
166                            *Caller->getParent(), VTable);
167     if (!Ptr) {
168       LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
169       VFESafeVTables.erase(VTable);
170       continue;
171     }
172 
173     auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
174     if (!Callee) {
175       LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
176       VFESafeVTables.erase(VTable);
177       continue;
178     }
179 
180     LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
181                       << Callee->getName() << "\n");
182     GVDependencies[Caller].insert(Callee);
183   }
184 }
185 
ScanTypeCheckedLoadIntrinsics(Module & M)186 void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
187   LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
188   Function *TypeCheckedLoadFunc =
189       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
190   Function *TypeCheckedLoadRelativeFunc =
191       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
192 
193   auto scan = [&](Function *CheckedLoadFunc) {
194     if (!CheckedLoadFunc)
195       return;
196 
197     for (auto *U : CheckedLoadFunc->users()) {
198       auto CI = dyn_cast<CallInst>(U);
199       if (!CI)
200         continue;
201 
202       auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
203       Value *TypeIdValue = CI->getArgOperand(2);
204       auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
205 
206       if (Offset) {
207         ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
208       } else {
209         // type.checked.load with a non-constant offset, so assume every entry
210         // in every matching vtable is used.
211         for (const auto &VTableInfo : TypeIdMap[TypeId]) {
212           VFESafeVTables.erase(VTableInfo.first);
213         }
214       }
215     }
216   };
217 
218   scan(TypeCheckedLoadFunc);
219   scan(TypeCheckedLoadRelativeFunc);
220 }
221 
AddVirtualFunctionDependencies(Module & M)222 void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
223   if (!ClEnableVFE)
224     return;
225 
226   // If the Virtual Function Elim module flag is present and set to zero, then
227   // the vcall_visibility metadata was inserted for another optimization (WPD)
228   // and we may not have type checked loads on all accesses to the vtable.
229   // Don't attempt VFE in that case.
230   auto *Val = mdconst::dyn_extract_or_null<ConstantInt>(
231       M.getModuleFlag("Virtual Function Elim"));
232   if (!Val || Val->isZero())
233     return;
234 
235   ScanVTables(M);
236 
237   if (VFESafeVTables.empty())
238     return;
239 
240   ScanTypeCheckedLoadIntrinsics(M);
241 
242   LLVM_DEBUG(
243     dbgs() << "VFE safe vtables:\n";
244     for (auto *VTable : VFESafeVTables)
245       dbgs() << "  " << VTable->getName() << "\n";
246   );
247 }
248 
run(Module & M,ModuleAnalysisManager & MAM)249 PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
250   bool Changed = false;
251 
252   // The algorithm first computes the set L of global variables that are
253   // trivially live.  Then it walks the initialization of these variables to
254   // compute the globals used to initialize them, which effectively builds a
255   // directed graph where nodes are global variables, and an edge from A to B
256   // means B is used to initialize A.  Finally, it propagates the liveness
257   // information through the graph starting from the nodes in L. Nodes note
258   // marked as alive are discarded.
259 
260   // Remove empty functions from the global ctors list.
261   Changed |= optimizeGlobalCtorsList(
262       M, [](uint32_t, Function *F) { return isEmptyFunction(F); });
263 
264   // Collect the set of members for each comdat.
265   for (Function &F : M)
266     if (Comdat *C = F.getComdat())
267       ComdatMembers.insert(std::make_pair(C, &F));
268   for (GlobalVariable &GV : M.globals())
269     if (Comdat *C = GV.getComdat())
270       ComdatMembers.insert(std::make_pair(C, &GV));
271   for (GlobalAlias &GA : M.aliases())
272     if (Comdat *C = GA.getComdat())
273       ComdatMembers.insert(std::make_pair(C, &GA));
274 
275   // Add dependencies between virtual call sites and the virtual functions they
276   // might call, if we have that information.
277   AddVirtualFunctionDependencies(M);
278 
279   // Loop over the module, adding globals which are obviously necessary.
280   for (GlobalObject &GO : M.global_objects()) {
281     GO.removeDeadConstantUsers();
282     // Functions with external linkage are needed if they have a body.
283     // Externally visible & appending globals are needed, if they have an
284     // initializer.
285     if (!GO.isDeclaration())
286       if (!GO.isDiscardableIfUnused())
287         MarkLive(GO);
288 
289     UpdateGVDependencies(GO);
290   }
291 
292   // Compute direct dependencies of aliases.
293   for (GlobalAlias &GA : M.aliases()) {
294     GA.removeDeadConstantUsers();
295     // Externally visible aliases are needed.
296     if (!GA.isDiscardableIfUnused())
297       MarkLive(GA);
298 
299     UpdateGVDependencies(GA);
300   }
301 
302   // Compute direct dependencies of ifuncs.
303   for (GlobalIFunc &GIF : M.ifuncs()) {
304     GIF.removeDeadConstantUsers();
305     // Externally visible ifuncs are needed.
306     if (!GIF.isDiscardableIfUnused())
307       MarkLive(GIF);
308 
309     UpdateGVDependencies(GIF);
310   }
311 
312   // Propagate liveness from collected Global Values through the computed
313   // dependencies.
314   SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
315                                            AliveGlobals.end()};
316   while (!NewLiveGVs.empty()) {
317     GlobalValue *LGV = NewLiveGVs.pop_back_val();
318     for (auto *GVD : GVDependencies[LGV])
319       MarkLive(*GVD, &NewLiveGVs);
320   }
321 
322   // Now that all globals which are needed are in the AliveGlobals set, we loop
323   // through the program, deleting those which are not alive.
324   //
325 
326   // The first pass is to drop initializers of global variables which are dead.
327   std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
328   for (GlobalVariable &GV : M.globals())
329     if (!AliveGlobals.count(&GV)) {
330       DeadGlobalVars.push_back(&GV);         // Keep track of dead globals
331       if (GV.hasInitializer()) {
332         Constant *Init = GV.getInitializer();
333         GV.setInitializer(nullptr);
334         if (isSafeToDestroyConstant(Init))
335           Init->destroyConstant();
336       }
337     }
338 
339   // The second pass drops the bodies of functions which are dead...
340   std::vector<Function *> DeadFunctions;
341   for (Function &F : M)
342     if (!AliveGlobals.count(&F)) {
343       DeadFunctions.push_back(&F);         // Keep track of dead globals
344       if (!F.isDeclaration())
345         F.deleteBody();
346     }
347 
348   // The third pass drops targets of aliases which are dead...
349   std::vector<GlobalAlias*> DeadAliases;
350   for (GlobalAlias &GA : M.aliases())
351     if (!AliveGlobals.count(&GA)) {
352       DeadAliases.push_back(&GA);
353       GA.setAliasee(nullptr);
354     }
355 
356   // The fourth pass drops targets of ifuncs which are dead...
357   std::vector<GlobalIFunc*> DeadIFuncs;
358   for (GlobalIFunc &GIF : M.ifuncs())
359     if (!AliveGlobals.count(&GIF)) {
360       DeadIFuncs.push_back(&GIF);
361       GIF.setResolver(nullptr);
362     }
363 
364   // Now that all interferences have been dropped, delete the actual objects
365   // themselves.
366   auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
367     GV->removeDeadConstantUsers();
368     GV->eraseFromParent();
369     Changed = true;
370   };
371 
372   NumFunctions += DeadFunctions.size();
373   for (Function *F : DeadFunctions) {
374     if (!F->use_empty()) {
375       // Virtual functions might still be referenced by one or more vtables,
376       // but if we've proven them to be unused then it's safe to replace the
377       // virtual function pointers with null, allowing us to remove the
378       // function itself.
379       ++NumVFuncs;
380 
381       // Detect vfuncs that are referenced as "relative pointers" which are used
382       // in Swift vtables, i.e. entries in the form of:
383       //
384       //   i32 trunc (i64 sub (i64 ptrtoint @f, i64 ptrtoint ...)) to i32)
385       //
386       // In this case, replace the whole "sub" expression with constant 0 to
387       // avoid leaving a weird sub(0, symbol) expression behind.
388       replaceRelativePointerUsersWithZero(F);
389 
390       F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
391     }
392     EraseUnusedGlobalValue(F);
393   }
394 
395   NumVariables += DeadGlobalVars.size();
396   for (GlobalVariable *GV : DeadGlobalVars)
397     EraseUnusedGlobalValue(GV);
398 
399   NumAliases += DeadAliases.size();
400   for (GlobalAlias *GA : DeadAliases)
401     EraseUnusedGlobalValue(GA);
402 
403   NumIFuncs += DeadIFuncs.size();
404   for (GlobalIFunc *GIF : DeadIFuncs)
405     EraseUnusedGlobalValue(GIF);
406 
407   // Make sure that all memory is released
408   AliveGlobals.clear();
409   ConstantDependenciesCache.clear();
410   GVDependencies.clear();
411   ComdatMembers.clear();
412   TypeIdMap.clear();
413   VFESafeVTables.clear();
414 
415   if (Changed)
416     return PreservedAnalyses::none();
417   return PreservedAnalyses::all();
418 }
419 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)420 void GlobalDCEPass::printPipeline(
421     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
422   static_cast<PassInfoMixin<GlobalDCEPass> *>(this)->printPipeline(
423       OS, MapClassName2PassName);
424   if (InLTOPostLink)
425     OS << "<vfe-linkage-unit-visibility>";
426 }
427