1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Correlated Value Propagation pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
14 #include "llvm/ADT/DepthFirstIterator.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include <cassert>
43 #include <optional>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "correlated-value-propagation"
49 
50 static cl::opt<bool> CanonicalizeICmpPredicatesToUnsigned(
51     "canonicalize-icmp-predicates-to-unsigned", cl::init(true), cl::Hidden,
52     cl::desc("Enables canonicalization of signed relational predicates to "
53              "unsigned (e.g. sgt => ugt)"));
54 
55 STATISTIC(NumPhis,      "Number of phis propagated");
56 STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
57 STATISTIC(NumSelects,   "Number of selects propagated");
58 STATISTIC(NumCmps,      "Number of comparisons propagated");
59 STATISTIC(NumReturns,   "Number of return values propagated");
60 STATISTIC(NumDeadCases, "Number of switch cases removed");
61 STATISTIC(NumSDivSRemsNarrowed,
62           "Number of sdivs/srems whose width was decreased");
63 STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
64 STATISTIC(NumUDivURemsNarrowed,
65           "Number of udivs/urems whose width was decreased");
66 STATISTIC(NumAShrsConverted, "Number of ashr converted to lshr");
67 STATISTIC(NumAShrsRemoved, "Number of ashr removed");
68 STATISTIC(NumSRems,     "Number of srem converted to urem");
69 STATISTIC(NumSExt,      "Number of sext converted to zext");
70 STATISTIC(NumSICmps,    "Number of signed icmp preds simplified to unsigned");
71 STATISTIC(NumAnd,       "Number of ands removed");
72 STATISTIC(NumNW,        "Number of no-wrap deductions");
73 STATISTIC(NumNSW,       "Number of no-signed-wrap deductions");
74 STATISTIC(NumNUW,       "Number of no-unsigned-wrap deductions");
75 STATISTIC(NumAddNW,     "Number of no-wrap deductions for add");
76 STATISTIC(NumAddNSW,    "Number of no-signed-wrap deductions for add");
77 STATISTIC(NumAddNUW,    "Number of no-unsigned-wrap deductions for add");
78 STATISTIC(NumSubNW,     "Number of no-wrap deductions for sub");
79 STATISTIC(NumSubNSW,    "Number of no-signed-wrap deductions for sub");
80 STATISTIC(NumSubNUW,    "Number of no-unsigned-wrap deductions for sub");
81 STATISTIC(NumMulNW,     "Number of no-wrap deductions for mul");
82 STATISTIC(NumMulNSW,    "Number of no-signed-wrap deductions for mul");
83 STATISTIC(NumMulNUW,    "Number of no-unsigned-wrap deductions for mul");
84 STATISTIC(NumShlNW,     "Number of no-wrap deductions for shl");
85 STATISTIC(NumShlNSW,    "Number of no-signed-wrap deductions for shl");
86 STATISTIC(NumShlNUW,    "Number of no-unsigned-wrap deductions for shl");
87 STATISTIC(NumAbs,       "Number of llvm.abs intrinsics removed");
88 STATISTIC(NumOverflows, "Number of overflow checks removed");
89 STATISTIC(NumSaturating,
90     "Number of saturating arithmetics converted to normal arithmetics");
91 STATISTIC(NumNonNull, "Number of function pointer arguments marked non-null");
92 STATISTIC(NumMinMax, "Number of llvm.[us]{min,max} intrinsics removed");
93 STATISTIC(NumUDivURemsNarrowedExpanded,
94           "Number of bound udiv's/urem's expanded");
95 STATISTIC(NumZExt, "Number of non-negative deductions");
96 
getConstantAt(Value * V,Instruction * At,LazyValueInfo * LVI)97 static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
98   if (Constant *C = LVI->getConstant(V, At))
99     return C;
100 
101   // TODO: The following really should be sunk inside LVI's core algorithm, or
102   // at least the outer shims around such.
103   auto *C = dyn_cast<CmpInst>(V);
104   if (!C)
105     return nullptr;
106 
107   Value *Op0 = C->getOperand(0);
108   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
109   if (!Op1)
110     return nullptr;
111 
112   LazyValueInfo::Tristate Result = LVI->getPredicateAt(
113       C->getPredicate(), Op0, Op1, At, /*UseBlockValue=*/false);
114   if (Result == LazyValueInfo::Unknown)
115     return nullptr;
116 
117   return (Result == LazyValueInfo::True)
118              ? ConstantInt::getTrue(C->getContext())
119              : ConstantInt::getFalse(C->getContext());
120 }
121 
processSelect(SelectInst * S,LazyValueInfo * LVI)122 static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
123   if (S->getType()->isVectorTy() || isa<Constant>(S->getCondition()))
124     return false;
125 
126   bool Changed = false;
127   for (Use &U : make_early_inc_range(S->uses())) {
128     auto *I = cast<Instruction>(U.getUser());
129     Constant *C;
130     if (auto *PN = dyn_cast<PHINode>(I))
131       C = LVI->getConstantOnEdge(S->getCondition(), PN->getIncomingBlock(U),
132                                  I->getParent(), I);
133     else
134       C = getConstantAt(S->getCondition(), I, LVI);
135 
136     auto *CI = dyn_cast_or_null<ConstantInt>(C);
137     if (!CI)
138       continue;
139 
140     U.set(CI->isOne() ? S->getTrueValue() : S->getFalseValue());
141     Changed = true;
142     ++NumSelects;
143   }
144 
145   if (Changed && S->use_empty())
146     S->eraseFromParent();
147 
148   return Changed;
149 }
150 
151 /// Try to simplify a phi with constant incoming values that match the edge
152 /// values of a non-constant value on all other edges:
153 /// bb0:
154 ///   %isnull = icmp eq i8* %x, null
155 ///   br i1 %isnull, label %bb2, label %bb1
156 /// bb1:
157 ///   br label %bb2
158 /// bb2:
159 ///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
160 /// -->
161 ///   %r = %x
simplifyCommonValuePhi(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT)162 static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
163                                    DominatorTree *DT) {
164   // Collect incoming constants and initialize possible common value.
165   SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
166   Value *CommonValue = nullptr;
167   for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
168     Value *Incoming = P->getIncomingValue(i);
169     if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
170       IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
171     } else if (!CommonValue) {
172       // The potential common value is initialized to the first non-constant.
173       CommonValue = Incoming;
174     } else if (Incoming != CommonValue) {
175       // There can be only one non-constant common value.
176       return false;
177     }
178   }
179 
180   if (!CommonValue || IncomingConstants.empty())
181     return false;
182 
183   // The common value must be valid in all incoming blocks.
184   BasicBlock *ToBB = P->getParent();
185   if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
186     if (!DT->dominates(CommonInst, ToBB))
187       return false;
188 
189   // We have a phi with exactly 1 variable incoming value and 1 or more constant
190   // incoming values. See if all constant incoming values can be mapped back to
191   // the same incoming variable value.
192   for (auto &IncomingConstant : IncomingConstants) {
193     Constant *C = IncomingConstant.first;
194     BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
195     if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
196       return false;
197   }
198 
199   // LVI only guarantees that the value matches a certain constant if the value
200   // is not poison. Make sure we don't replace a well-defined value with poison.
201   // This is usually satisfied due to a prior branch on the value.
202   if (!isGuaranteedNotToBePoison(CommonValue, nullptr, P, DT))
203     return false;
204 
205   // All constant incoming values map to the same variable along the incoming
206   // edges of the phi. The phi is unnecessary.
207   P->replaceAllUsesWith(CommonValue);
208   P->eraseFromParent();
209   ++NumPhiCommon;
210   return true;
211 }
212 
getValueOnEdge(LazyValueInfo * LVI,Value * Incoming,BasicBlock * From,BasicBlock * To,Instruction * CxtI)213 static Value *getValueOnEdge(LazyValueInfo *LVI, Value *Incoming,
214                              BasicBlock *From, BasicBlock *To,
215                              Instruction *CxtI) {
216   if (Constant *C = LVI->getConstantOnEdge(Incoming, From, To, CxtI))
217     return C;
218 
219   // Look if the incoming value is a select with a scalar condition for which
220   // LVI can tells us the value. In that case replace the incoming value with
221   // the appropriate value of the select. This often allows us to remove the
222   // select later.
223   auto *SI = dyn_cast<SelectInst>(Incoming);
224   if (!SI)
225     return nullptr;
226 
227   // Once LVI learns to handle vector types, we could also add support
228   // for vector type constants that are not all zeroes or all ones.
229   Value *Condition = SI->getCondition();
230   if (!Condition->getType()->isVectorTy()) {
231     if (Constant *C = LVI->getConstantOnEdge(Condition, From, To, CxtI)) {
232       if (C->isOneValue())
233         return SI->getTrueValue();
234       if (C->isZeroValue())
235         return SI->getFalseValue();
236     }
237   }
238 
239   // Look if the select has a constant but LVI tells us that the incoming
240   // value can never be that constant. In that case replace the incoming
241   // value with the other value of the select. This often allows us to
242   // remove the select later.
243 
244   // The "false" case
245   if (auto *C = dyn_cast<Constant>(SI->getFalseValue()))
246     if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI) ==
247         LazyValueInfo::False)
248       return SI->getTrueValue();
249 
250   // The "true" case,
251   // similar to the select "false" case, but try the select "true" value
252   if (auto *C = dyn_cast<Constant>(SI->getTrueValue()))
253     if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI) ==
254         LazyValueInfo::False)
255       return SI->getFalseValue();
256 
257   return nullptr;
258 }
259 
processPHI(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)260 static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
261                        const SimplifyQuery &SQ) {
262   bool Changed = false;
263 
264   BasicBlock *BB = P->getParent();
265   for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
266     Value *Incoming = P->getIncomingValue(i);
267     if (isa<Constant>(Incoming)) continue;
268 
269     Value *V = getValueOnEdge(LVI, Incoming, P->getIncomingBlock(i), BB, P);
270     if (V) {
271       P->setIncomingValue(i, V);
272       Changed = true;
273     }
274   }
275 
276   if (Value *V = simplifyInstruction(P, SQ)) {
277     P->replaceAllUsesWith(V);
278     P->eraseFromParent();
279     Changed = true;
280   }
281 
282   if (!Changed)
283     Changed = simplifyCommonValuePhi(P, LVI, DT);
284 
285   if (Changed)
286     ++NumPhis;
287 
288   return Changed;
289 }
290 
processICmp(ICmpInst * Cmp,LazyValueInfo * LVI)291 static bool processICmp(ICmpInst *Cmp, LazyValueInfo *LVI) {
292   if (!CanonicalizeICmpPredicatesToUnsigned)
293     return false;
294 
295   // Only for signed relational comparisons of scalar integers.
296   if (Cmp->getType()->isVectorTy() ||
297       !Cmp->getOperand(0)->getType()->isIntegerTy())
298     return false;
299 
300   if (!Cmp->isSigned())
301     return false;
302 
303   ICmpInst::Predicate UnsignedPred =
304       ConstantRange::getEquivalentPredWithFlippedSignedness(
305           Cmp->getPredicate(),
306           LVI->getConstantRangeAtUse(Cmp->getOperandUse(0),
307                                      /*UndefAllowed*/ true),
308           LVI->getConstantRangeAtUse(Cmp->getOperandUse(1),
309                                      /*UndefAllowed*/ true));
310 
311   if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
312     return false;
313 
314   ++NumSICmps;
315   Cmp->setPredicate(UnsignedPred);
316 
317   return true;
318 }
319 
320 /// See if LazyValueInfo's ability to exploit edge conditions or range
321 /// information is sufficient to prove this comparison. Even for local
322 /// conditions, this can sometimes prove conditions instcombine can't by
323 /// exploiting range information.
constantFoldCmp(CmpInst * Cmp,LazyValueInfo * LVI)324 static bool constantFoldCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
325   Value *Op0 = Cmp->getOperand(0);
326   Value *Op1 = Cmp->getOperand(1);
327   LazyValueInfo::Tristate Result =
328       LVI->getPredicateAt(Cmp->getPredicate(), Op0, Op1, Cmp,
329                           /*UseBlockValue=*/true);
330   if (Result == LazyValueInfo::Unknown)
331     return false;
332 
333   ++NumCmps;
334   Constant *TorF =
335       ConstantInt::get(CmpInst::makeCmpResultType(Op0->getType()), Result);
336   Cmp->replaceAllUsesWith(TorF);
337   Cmp->eraseFromParent();
338   return true;
339 }
340 
processCmp(CmpInst * Cmp,LazyValueInfo * LVI)341 static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
342   if (constantFoldCmp(Cmp, LVI))
343     return true;
344 
345   if (auto *ICmp = dyn_cast<ICmpInst>(Cmp))
346     if (processICmp(ICmp, LVI))
347       return true;
348 
349   return false;
350 }
351 
352 /// Simplify a switch instruction by removing cases which can never fire. If the
353 /// uselessness of a case could be determined locally then constant propagation
354 /// would already have figured it out. Instead, walk the predecessors and
355 /// statically evaluate cases based on information available on that edge. Cases
356 /// that cannot fire no matter what the incoming edge can safely be removed. If
357 /// a case fires on every incoming edge then the entire switch can be removed
358 /// and replaced with a branch to the case destination.
processSwitch(SwitchInst * I,LazyValueInfo * LVI,DominatorTree * DT)359 static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
360                           DominatorTree *DT) {
361   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
362   Value *Cond = I->getCondition();
363   BasicBlock *BB = I->getParent();
364 
365   // Analyse each switch case in turn.
366   bool Changed = false;
367   DenseMap<BasicBlock*, int> SuccessorsCount;
368   for (auto *Succ : successors(BB))
369     SuccessorsCount[Succ]++;
370 
371   { // Scope for SwitchInstProfUpdateWrapper. It must not live during
372     // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
373     SwitchInstProfUpdateWrapper SI(*I);
374 
375     for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
376       ConstantInt *Case = CI->getCaseValue();
377       LazyValueInfo::Tristate State =
378           LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
379                               /* UseBlockValue */ true);
380 
381       if (State == LazyValueInfo::False) {
382         // This case never fires - remove it.
383         BasicBlock *Succ = CI->getCaseSuccessor();
384         Succ->removePredecessor(BB);
385         CI = SI.removeCase(CI);
386         CE = SI->case_end();
387 
388         // The condition can be modified by removePredecessor's PHI simplification
389         // logic.
390         Cond = SI->getCondition();
391 
392         ++NumDeadCases;
393         Changed = true;
394         if (--SuccessorsCount[Succ] == 0)
395           DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
396         continue;
397       }
398       if (State == LazyValueInfo::True) {
399         // This case always fires.  Arrange for the switch to be turned into an
400         // unconditional branch by replacing the switch condition with the case
401         // value.
402         SI->setCondition(Case);
403         NumDeadCases += SI->getNumCases();
404         Changed = true;
405         break;
406       }
407 
408       // Increment the case iterator since we didn't delete it.
409       ++CI;
410     }
411   }
412 
413   if (Changed)
414     // If the switch has been simplified to the point where it can be replaced
415     // by a branch then do so now.
416     ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
417                            /*TLI = */ nullptr, &DTU);
418   return Changed;
419 }
420 
421 // See if we can prove that the given binary op intrinsic will not overflow.
willNotOverflow(BinaryOpIntrinsic * BO,LazyValueInfo * LVI)422 static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
423   ConstantRange LRange =
424       LVI->getConstantRangeAtUse(BO->getOperandUse(0), /*UndefAllowed*/ false);
425   ConstantRange RRange =
426       LVI->getConstantRangeAtUse(BO->getOperandUse(1), /*UndefAllowed*/ false);
427   ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
428       BO->getBinaryOp(), RRange, BO->getNoWrapKind());
429   return NWRegion.contains(LRange);
430 }
431 
setDeducedOverflowingFlags(Value * V,Instruction::BinaryOps Opcode,bool NewNSW,bool NewNUW)432 static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
433                                        bool NewNSW, bool NewNUW) {
434   Statistic *OpcNW, *OpcNSW, *OpcNUW;
435   switch (Opcode) {
436   case Instruction::Add:
437     OpcNW = &NumAddNW;
438     OpcNSW = &NumAddNSW;
439     OpcNUW = &NumAddNUW;
440     break;
441   case Instruction::Sub:
442     OpcNW = &NumSubNW;
443     OpcNSW = &NumSubNSW;
444     OpcNUW = &NumSubNUW;
445     break;
446   case Instruction::Mul:
447     OpcNW = &NumMulNW;
448     OpcNSW = &NumMulNSW;
449     OpcNUW = &NumMulNUW;
450     break;
451   case Instruction::Shl:
452     OpcNW = &NumShlNW;
453     OpcNSW = &NumShlNSW;
454     OpcNUW = &NumShlNUW;
455     break;
456   default:
457     llvm_unreachable("Will not be called with other binops");
458   }
459 
460   auto *Inst = dyn_cast<Instruction>(V);
461   if (NewNSW) {
462     ++NumNW;
463     ++*OpcNW;
464     ++NumNSW;
465     ++*OpcNSW;
466     if (Inst)
467       Inst->setHasNoSignedWrap();
468   }
469   if (NewNUW) {
470     ++NumNW;
471     ++*OpcNW;
472     ++NumNUW;
473     ++*OpcNUW;
474     if (Inst)
475       Inst->setHasNoUnsignedWrap();
476   }
477 }
478 
479 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
480 
481 // See if @llvm.abs argument is alays positive/negative, and simplify.
482 // Notably, INT_MIN can belong to either range, regardless of the NSW,
483 // because it is negation-invariant.
processAbsIntrinsic(IntrinsicInst * II,LazyValueInfo * LVI)484 static bool processAbsIntrinsic(IntrinsicInst *II, LazyValueInfo *LVI) {
485   Value *X = II->getArgOperand(0);
486   Type *Ty = X->getType();
487   if (!Ty->isIntegerTy())
488     return false;
489 
490   bool IsIntMinPoison = cast<ConstantInt>(II->getArgOperand(1))->isOne();
491   APInt IntMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
492   ConstantRange Range = LVI->getConstantRangeAtUse(
493       II->getOperandUse(0), /*UndefAllowed*/ IsIntMinPoison);
494 
495   // Is X in [0, IntMin]?  NOTE: INT_MIN is fine!
496   if (Range.icmp(CmpInst::ICMP_ULE, IntMin)) {
497     ++NumAbs;
498     II->replaceAllUsesWith(X);
499     II->eraseFromParent();
500     return true;
501   }
502 
503   // Is X in [IntMin, 0]?  NOTE: INT_MIN is fine!
504   if (Range.getSignedMax().isNonPositive()) {
505     IRBuilder<> B(II);
506     Value *NegX = B.CreateNeg(X, II->getName(), /*HasNUW=*/false,
507                               /*HasNSW=*/IsIntMinPoison);
508     ++NumAbs;
509     II->replaceAllUsesWith(NegX);
510     II->eraseFromParent();
511 
512     // See if we can infer some no-wrap flags.
513     if (auto *BO = dyn_cast<BinaryOperator>(NegX))
514       processBinOp(BO, LVI);
515 
516     return true;
517   }
518 
519   // Argument's range crosses zero.
520   // Can we at least tell that the argument is never INT_MIN?
521   if (!IsIntMinPoison && !Range.contains(IntMin)) {
522     ++NumNSW;
523     ++NumSubNSW;
524     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
525     return true;
526   }
527   return false;
528 }
529 
530 // See if this min/max intrinsic always picks it's one specific operand.
processMinMaxIntrinsic(MinMaxIntrinsic * MM,LazyValueInfo * LVI)531 static bool processMinMaxIntrinsic(MinMaxIntrinsic *MM, LazyValueInfo *LVI) {
532   CmpInst::Predicate Pred = CmpInst::getNonStrictPredicate(MM->getPredicate());
533   LazyValueInfo::Tristate Result = LVI->getPredicateAt(
534       Pred, MM->getLHS(), MM->getRHS(), MM, /*UseBlockValue=*/true);
535   if (Result == LazyValueInfo::Unknown)
536     return false;
537 
538   ++NumMinMax;
539   MM->replaceAllUsesWith(MM->getOperand(!Result));
540   MM->eraseFromParent();
541   return true;
542 }
543 
544 // Rewrite this with.overflow intrinsic as non-overflowing.
processOverflowIntrinsic(WithOverflowInst * WO,LazyValueInfo * LVI)545 static bool processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
546   IRBuilder<> B(WO);
547   Instruction::BinaryOps Opcode = WO->getBinaryOp();
548   bool NSW = WO->isSigned();
549   bool NUW = !WO->isSigned();
550 
551   Value *NewOp =
552       B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
553   setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
554 
555   StructType *ST = cast<StructType>(WO->getType());
556   Constant *Struct = ConstantStruct::get(ST,
557       { PoisonValue::get(ST->getElementType(0)),
558         ConstantInt::getFalse(ST->getElementType(1)) });
559   Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
560   WO->replaceAllUsesWith(NewI);
561   WO->eraseFromParent();
562   ++NumOverflows;
563 
564   // See if we can infer the other no-wrap too.
565   if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
566     processBinOp(BO, LVI);
567 
568   return true;
569 }
570 
processSaturatingInst(SaturatingInst * SI,LazyValueInfo * LVI)571 static bool processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
572   Instruction::BinaryOps Opcode = SI->getBinaryOp();
573   bool NSW = SI->isSigned();
574   bool NUW = !SI->isSigned();
575   BinaryOperator *BinOp = BinaryOperator::Create(
576       Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
577   BinOp->setDebugLoc(SI->getDebugLoc());
578   setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
579 
580   SI->replaceAllUsesWith(BinOp);
581   SI->eraseFromParent();
582   ++NumSaturating;
583 
584   // See if we can infer the other no-wrap too.
585   if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
586     processBinOp(BO, LVI);
587 
588   return true;
589 }
590 
591 /// Infer nonnull attributes for the arguments at the specified callsite.
processCallSite(CallBase & CB,LazyValueInfo * LVI)592 static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
593 
594   if (CB.getIntrinsicID() == Intrinsic::abs) {
595     return processAbsIntrinsic(&cast<IntrinsicInst>(CB), LVI);
596   }
597 
598   if (auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
599     return processMinMaxIntrinsic(MM, LVI);
600   }
601 
602   if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
603     if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
604       return processOverflowIntrinsic(WO, LVI);
605     }
606   }
607 
608   if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
609     if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
610       return processSaturatingInst(SI, LVI);
611     }
612   }
613 
614   bool Changed = false;
615 
616   // Deopt bundle operands are intended to capture state with minimal
617   // perturbance of the code otherwise.  If we can find a constant value for
618   // any such operand and remove a use of the original value, that's
619   // desireable since it may allow further optimization of that value (e.g. via
620   // single use rules in instcombine).  Since deopt uses tend to,
621   // idiomatically, appear along rare conditional paths, it's reasonable likely
622   // we may have a conditional fact with which LVI can fold.
623   if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
624     for (const Use &ConstU : DeoptBundle->Inputs) {
625       Use &U = const_cast<Use&>(ConstU);
626       Value *V = U.get();
627       if (V->getType()->isVectorTy()) continue;
628       if (isa<Constant>(V)) continue;
629 
630       Constant *C = LVI->getConstant(V, &CB);
631       if (!C) continue;
632       U.set(C);
633       Changed = true;
634     }
635   }
636 
637   SmallVector<unsigned, 4> ArgNos;
638   unsigned ArgNo = 0;
639 
640   for (Value *V : CB.args()) {
641     PointerType *Type = dyn_cast<PointerType>(V->getType());
642     // Try to mark pointer typed parameters as non-null.  We skip the
643     // relatively expensive analysis for constants which are obviously either
644     // null or non-null to start with.
645     if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
646         !isa<Constant>(V) &&
647         LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
648                             ConstantPointerNull::get(Type), &CB,
649                             /*UseBlockValue=*/false) == LazyValueInfo::False)
650       ArgNos.push_back(ArgNo);
651     ArgNo++;
652   }
653 
654   assert(ArgNo == CB.arg_size() && "Call arguments not processed correctly.");
655 
656   if (ArgNos.empty())
657     return Changed;
658 
659   NumNonNull += ArgNos.size();
660   AttributeList AS = CB.getAttributes();
661   LLVMContext &Ctx = CB.getContext();
662   AS = AS.addParamAttribute(Ctx, ArgNos,
663                             Attribute::get(Ctx, Attribute::NonNull));
664   CB.setAttributes(AS);
665 
666   return true;
667 }
668 
669 enum class Domain { NonNegative, NonPositive, Unknown };
670 
getDomain(const ConstantRange & CR)671 static Domain getDomain(const ConstantRange &CR) {
672   if (CR.isAllNonNegative())
673     return Domain::NonNegative;
674   if (CR.icmp(ICmpInst::ICMP_SLE, APInt::getZero(CR.getBitWidth())))
675     return Domain::NonPositive;
676   return Domain::Unknown;
677 }
678 
679 /// Try to shrink a sdiv/srem's width down to the smallest power of two that's
680 /// sufficient to contain its operands.
narrowSDivOrSRem(BinaryOperator * Instr,const ConstantRange & LCR,const ConstantRange & RCR)681 static bool narrowSDivOrSRem(BinaryOperator *Instr, const ConstantRange &LCR,
682                              const ConstantRange &RCR) {
683   assert(Instr->getOpcode() == Instruction::SDiv ||
684          Instr->getOpcode() == Instruction::SRem);
685   assert(!Instr->getType()->isVectorTy());
686 
687   // Find the smallest power of two bitwidth that's sufficient to hold Instr's
688   // operands.
689   unsigned OrigWidth = Instr->getType()->getIntegerBitWidth();
690 
691   // What is the smallest bit width that can accommodate the entire value ranges
692   // of both of the operands?
693   unsigned MinSignedBits =
694       std::max(LCR.getMinSignedBits(), RCR.getMinSignedBits());
695 
696   // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
697   // prove that such a combination is impossible, we need to bump the bitwidth.
698   if (RCR.contains(APInt::getAllOnes(OrigWidth)) &&
699       LCR.contains(APInt::getSignedMinValue(MinSignedBits).sext(OrigWidth)))
700     ++MinSignedBits;
701 
702   // Don't shrink below 8 bits wide.
703   unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);
704 
705   // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
706   // two.
707   if (NewWidth >= OrigWidth)
708     return false;
709 
710   ++NumSDivSRemsNarrowed;
711   IRBuilder<> B{Instr};
712   auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
713   auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
714                                      Instr->getName() + ".lhs.trunc");
715   auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
716                                      Instr->getName() + ".rhs.trunc");
717   auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
718   auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
719   if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
720     if (BinOp->getOpcode() == Instruction::SDiv)
721       BinOp->setIsExact(Instr->isExact());
722 
723   Instr->replaceAllUsesWith(Sext);
724   Instr->eraseFromParent();
725   return true;
726 }
727 
expandUDivOrURem(BinaryOperator * Instr,const ConstantRange & XCR,const ConstantRange & YCR)728 static bool expandUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
729                              const ConstantRange &YCR) {
730   Type *Ty = Instr->getType();
731   assert(Instr->getOpcode() == Instruction::UDiv ||
732          Instr->getOpcode() == Instruction::URem);
733   assert(!Ty->isVectorTy());
734   bool IsRem = Instr->getOpcode() == Instruction::URem;
735 
736   Value *X = Instr->getOperand(0);
737   Value *Y = Instr->getOperand(1);
738 
739   // X u/ Y -> 0  iff X u< Y
740   // X u% Y -> X  iff X u< Y
741   if (XCR.icmp(ICmpInst::ICMP_ULT, YCR)) {
742     Instr->replaceAllUsesWith(IsRem ? X : Constant::getNullValue(Ty));
743     Instr->eraseFromParent();
744     ++NumUDivURemsNarrowedExpanded;
745     return true;
746   }
747 
748   // Given
749   //   R  = X u% Y
750   // We can represent the modulo operation as a loop/self-recursion:
751   //   urem_rec(X, Y):
752   //     Z = X - Y
753   //     if X u< Y
754   //       ret X
755   //     else
756   //       ret urem_rec(Z, Y)
757   // which isn't better, but if we only need a single iteration
758   // to compute the answer, this becomes quite good:
759   //   R  = X < Y ? X : X - Y    iff X u< 2*Y (w/ unsigned saturation)
760   // Now, we do not care about all full multiples of Y in X, they do not change
761   // the answer, thus we could rewrite the expression as:
762   //   X* = X - (Y * |_ X / Y _|)
763   //   R  = X* % Y
764   // so we don't need the *first* iteration to return, we just need to
765   // know *which* iteration will always return, so we could also rewrite it as:
766   //   X* = X - (Y * |_ X / Y _|)
767   //   R  = X* % Y                 iff X* u< 2*Y (w/ unsigned saturation)
768   // but that does not seem profitable here.
769 
770   // Even if we don't know X's range, the divisor may be so large, X can't ever
771   // be 2x larger than that. I.e. if divisor is always negative.
772   if (!XCR.icmp(ICmpInst::ICMP_ULT,
773                 YCR.umul_sat(APInt(YCR.getBitWidth(), 2))) &&
774       !YCR.isAllNegative())
775     return false;
776 
777   IRBuilder<> B(Instr);
778   Value *ExpandedOp;
779   if (XCR.icmp(ICmpInst::ICMP_UGE, YCR)) {
780     // If X is between Y and 2*Y the result is known.
781     if (IsRem)
782       ExpandedOp = B.CreateNUWSub(X, Y);
783     else
784       ExpandedOp = ConstantInt::get(Instr->getType(), 1);
785   } else if (IsRem) {
786     // NOTE: this transformation introduces two uses of X,
787     //       but it may be undef so we must freeze it first.
788     Value *FrozenX = X;
789     if (!isGuaranteedNotToBeUndef(X))
790       FrozenX = B.CreateFreeze(X, X->getName() + ".frozen");
791     auto *AdjX = B.CreateNUWSub(FrozenX, Y, Instr->getName() + ".urem");
792     auto *Cmp =
793         B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX, Y, Instr->getName() + ".cmp");
794     ExpandedOp = B.CreateSelect(Cmp, FrozenX, AdjX);
795   } else {
796     auto *Cmp =
797         B.CreateICmp(ICmpInst::ICMP_UGE, X, Y, Instr->getName() + ".cmp");
798     ExpandedOp = B.CreateZExt(Cmp, Ty, Instr->getName() + ".udiv");
799   }
800   ExpandedOp->takeName(Instr);
801   Instr->replaceAllUsesWith(ExpandedOp);
802   Instr->eraseFromParent();
803   ++NumUDivURemsNarrowedExpanded;
804   return true;
805 }
806 
807 /// Try to shrink a udiv/urem's width down to the smallest power of two that's
808 /// sufficient to contain its operands.
narrowUDivOrURem(BinaryOperator * Instr,const ConstantRange & XCR,const ConstantRange & YCR)809 static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
810                              const ConstantRange &YCR) {
811   assert(Instr->getOpcode() == Instruction::UDiv ||
812          Instr->getOpcode() == Instruction::URem);
813   assert(!Instr->getType()->isVectorTy());
814 
815   // Find the smallest power of two bitwidth that's sufficient to hold Instr's
816   // operands.
817 
818   // What is the smallest bit width that can accommodate the entire value ranges
819   // of both of the operands?
820   unsigned MaxActiveBits = std::max(XCR.getActiveBits(), YCR.getActiveBits());
821   // Don't shrink below 8 bits wide.
822   unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);
823 
824   // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
825   // two.
826   if (NewWidth >= Instr->getType()->getIntegerBitWidth())
827     return false;
828 
829   ++NumUDivURemsNarrowed;
830   IRBuilder<> B{Instr};
831   auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
832   auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
833                                      Instr->getName() + ".lhs.trunc");
834   auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
835                                      Instr->getName() + ".rhs.trunc");
836   auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
837   auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
838   if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
839     if (BinOp->getOpcode() == Instruction::UDiv)
840       BinOp->setIsExact(Instr->isExact());
841 
842   Instr->replaceAllUsesWith(Zext);
843   Instr->eraseFromParent();
844   return true;
845 }
846 
processUDivOrURem(BinaryOperator * Instr,LazyValueInfo * LVI)847 static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
848   assert(Instr->getOpcode() == Instruction::UDiv ||
849          Instr->getOpcode() == Instruction::URem);
850   if (Instr->getType()->isVectorTy())
851     return false;
852 
853   ConstantRange XCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(0),
854                                                  /*UndefAllowed*/ false);
855   // Allow undef for RHS, as we can assume it is division by zero UB.
856   ConstantRange YCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(1),
857                                                  /*UndefAllowed*/ true);
858   if (expandUDivOrURem(Instr, XCR, YCR))
859     return true;
860 
861   return narrowUDivOrURem(Instr, XCR, YCR);
862 }
863 
processSRem(BinaryOperator * SDI,const ConstantRange & LCR,const ConstantRange & RCR,LazyValueInfo * LVI)864 static bool processSRem(BinaryOperator *SDI, const ConstantRange &LCR,
865                         const ConstantRange &RCR, LazyValueInfo *LVI) {
866   assert(SDI->getOpcode() == Instruction::SRem);
867   assert(!SDI->getType()->isVectorTy());
868 
869   if (LCR.abs().icmp(CmpInst::ICMP_ULT, RCR.abs())) {
870     SDI->replaceAllUsesWith(SDI->getOperand(0));
871     SDI->eraseFromParent();
872     return true;
873   }
874 
875   struct Operand {
876     Value *V;
877     Domain D;
878   };
879   std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
880                                  {SDI->getOperand(1), getDomain(RCR)}}};
881   if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
882     return false;
883 
884   // We know domains of both of the operands!
885   ++NumSRems;
886 
887   // We need operands to be non-negative, so negate each one that isn't.
888   for (Operand &Op : Ops) {
889     if (Op.D == Domain::NonNegative)
890       continue;
891     auto *BO =
892         BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
893     BO->setDebugLoc(SDI->getDebugLoc());
894     Op.V = BO;
895   }
896 
897   auto *URem =
898       BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
899   URem->setDebugLoc(SDI->getDebugLoc());
900 
901   auto *Res = URem;
902 
903   // If the divident was non-positive, we need to negate the result.
904   if (Ops[0].D == Domain::NonPositive) {
905     Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
906     Res->setDebugLoc(SDI->getDebugLoc());
907   }
908 
909   SDI->replaceAllUsesWith(Res);
910   SDI->eraseFromParent();
911 
912   // Try to simplify our new urem.
913   processUDivOrURem(URem, LVI);
914 
915   return true;
916 }
917 
918 /// See if LazyValueInfo's ability to exploit edge conditions or range
919 /// information is sufficient to prove the signs of both operands of this SDiv.
920 /// If this is the case, replace the SDiv with a UDiv. Even for local
921 /// conditions, this can sometimes prove conditions instcombine can't by
922 /// exploiting range information.
processSDiv(BinaryOperator * SDI,const ConstantRange & LCR,const ConstantRange & RCR,LazyValueInfo * LVI)923 static bool processSDiv(BinaryOperator *SDI, const ConstantRange &LCR,
924                         const ConstantRange &RCR, LazyValueInfo *LVI) {
925   assert(SDI->getOpcode() == Instruction::SDiv);
926   assert(!SDI->getType()->isVectorTy());
927 
928   // Check whether the division folds to a constant.
929   ConstantRange DivCR = LCR.sdiv(RCR);
930   if (const APInt *Elem = DivCR.getSingleElement()) {
931     SDI->replaceAllUsesWith(ConstantInt::get(SDI->getType(), *Elem));
932     SDI->eraseFromParent();
933     return true;
934   }
935 
936   struct Operand {
937     Value *V;
938     Domain D;
939   };
940   std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
941                                  {SDI->getOperand(1), getDomain(RCR)}}};
942   if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
943     return false;
944 
945   // We know domains of both of the operands!
946   ++NumSDivs;
947 
948   // We need operands to be non-negative, so negate each one that isn't.
949   for (Operand &Op : Ops) {
950     if (Op.D == Domain::NonNegative)
951       continue;
952     auto *BO =
953         BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
954     BO->setDebugLoc(SDI->getDebugLoc());
955     Op.V = BO;
956   }
957 
958   auto *UDiv =
959       BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
960   UDiv->setDebugLoc(SDI->getDebugLoc());
961   UDiv->setIsExact(SDI->isExact());
962 
963   auto *Res = UDiv;
964 
965   // If the operands had two different domains, we need to negate the result.
966   if (Ops[0].D != Ops[1].D) {
967     Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
968     Res->setDebugLoc(SDI->getDebugLoc());
969   }
970 
971   SDI->replaceAllUsesWith(Res);
972   SDI->eraseFromParent();
973 
974   // Try to simplify our new udiv.
975   processUDivOrURem(UDiv, LVI);
976 
977   return true;
978 }
979 
processSDivOrSRem(BinaryOperator * Instr,LazyValueInfo * LVI)980 static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
981   assert(Instr->getOpcode() == Instruction::SDiv ||
982          Instr->getOpcode() == Instruction::SRem);
983   if (Instr->getType()->isVectorTy())
984     return false;
985 
986   ConstantRange LCR =
987       LVI->getConstantRangeAtUse(Instr->getOperandUse(0), /*AllowUndef*/ false);
988   // Allow undef for RHS, as we can assume it is division by zero UB.
989   ConstantRange RCR =
990       LVI->getConstantRangeAtUse(Instr->getOperandUse(1), /*AlloweUndef*/ true);
991   if (Instr->getOpcode() == Instruction::SDiv)
992     if (processSDiv(Instr, LCR, RCR, LVI))
993       return true;
994 
995   if (Instr->getOpcode() == Instruction::SRem) {
996     if (processSRem(Instr, LCR, RCR, LVI))
997       return true;
998   }
999 
1000   return narrowSDivOrSRem(Instr, LCR, RCR);
1001 }
1002 
processAShr(BinaryOperator * SDI,LazyValueInfo * LVI)1003 static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
1004   if (SDI->getType()->isVectorTy())
1005     return false;
1006 
1007   ConstantRange LRange =
1008       LVI->getConstantRangeAtUse(SDI->getOperandUse(0), /*UndefAllowed*/ false);
1009   unsigned OrigWidth = SDI->getType()->getIntegerBitWidth();
1010   ConstantRange NegOneOrZero =
1011       ConstantRange(APInt(OrigWidth, (uint64_t)-1, true), APInt(OrigWidth, 1));
1012   if (NegOneOrZero.contains(LRange)) {
1013     // ashr of -1 or 0 never changes the value, so drop the whole instruction
1014     ++NumAShrsRemoved;
1015     SDI->replaceAllUsesWith(SDI->getOperand(0));
1016     SDI->eraseFromParent();
1017     return true;
1018   }
1019 
1020   if (!LRange.isAllNonNegative())
1021     return false;
1022 
1023   ++NumAShrsConverted;
1024   auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
1025                                         "", SDI);
1026   BO->takeName(SDI);
1027   BO->setDebugLoc(SDI->getDebugLoc());
1028   BO->setIsExact(SDI->isExact());
1029   SDI->replaceAllUsesWith(BO);
1030   SDI->eraseFromParent();
1031 
1032   return true;
1033 }
1034 
processSExt(SExtInst * SDI,LazyValueInfo * LVI)1035 static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
1036   if (SDI->getType()->isVectorTy())
1037     return false;
1038 
1039   const Use &Base = SDI->getOperandUse(0);
1040   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1041            .isAllNonNegative())
1042     return false;
1043 
1044   ++NumSExt;
1045   auto *ZExt = CastInst::CreateZExtOrBitCast(Base, SDI->getType(), "", SDI);
1046   ZExt->takeName(SDI);
1047   ZExt->setDebugLoc(SDI->getDebugLoc());
1048   ZExt->setNonNeg();
1049   SDI->replaceAllUsesWith(ZExt);
1050   SDI->eraseFromParent();
1051 
1052   return true;
1053 }
1054 
processZExt(ZExtInst * ZExt,LazyValueInfo * LVI)1055 static bool processZExt(ZExtInst *ZExt, LazyValueInfo *LVI) {
1056   if (ZExt->getType()->isVectorTy())
1057     return false;
1058 
1059   if (ZExt->hasNonNeg())
1060     return false;
1061 
1062   const Use &Base = ZExt->getOperandUse(0);
1063   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1064            .isAllNonNegative())
1065     return false;
1066 
1067   ++NumZExt;
1068   ZExt->setNonNeg();
1069 
1070   return true;
1071 }
1072 
processBinOp(BinaryOperator * BinOp,LazyValueInfo * LVI)1073 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1074   using OBO = OverflowingBinaryOperator;
1075 
1076   if (BinOp->getType()->isVectorTy())
1077     return false;
1078 
1079   bool NSW = BinOp->hasNoSignedWrap();
1080   bool NUW = BinOp->hasNoUnsignedWrap();
1081   if (NSW && NUW)
1082     return false;
1083 
1084   Instruction::BinaryOps Opcode = BinOp->getOpcode();
1085   Value *LHS = BinOp->getOperand(0);
1086   Value *RHS = BinOp->getOperand(1);
1087 
1088   ConstantRange LRange =
1089       LVI->getConstantRange(LHS, BinOp, /*UndefAllowed*/ false);
1090   ConstantRange RRange =
1091       LVI->getConstantRange(RHS, BinOp, /*UndefAllowed*/ false);
1092 
1093   bool Changed = false;
1094   bool NewNUW = false, NewNSW = false;
1095   if (!NUW) {
1096     ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1097         Opcode, RRange, OBO::NoUnsignedWrap);
1098     NewNUW = NUWRange.contains(LRange);
1099     Changed |= NewNUW;
1100   }
1101   if (!NSW) {
1102     ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1103         Opcode, RRange, OBO::NoSignedWrap);
1104     NewNSW = NSWRange.contains(LRange);
1105     Changed |= NewNSW;
1106   }
1107 
1108   setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
1109 
1110   return Changed;
1111 }
1112 
processAnd(BinaryOperator * BinOp,LazyValueInfo * LVI)1113 static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1114   if (BinOp->getType()->isVectorTy())
1115     return false;
1116 
1117   // Pattern match (and lhs, C) where C includes a superset of bits which might
1118   // be set in lhs.  This is a common truncation idiom created by instcombine.
1119   const Use &LHS = BinOp->getOperandUse(0);
1120   ConstantInt *RHS = dyn_cast<ConstantInt>(BinOp->getOperand(1));
1121   if (!RHS || !RHS->getValue().isMask())
1122     return false;
1123 
1124   // We can only replace the AND with LHS based on range info if the range does
1125   // not include undef.
1126   ConstantRange LRange =
1127       LVI->getConstantRangeAtUse(LHS, /*UndefAllowed=*/false);
1128   if (!LRange.getUnsignedMax().ule(RHS->getValue()))
1129     return false;
1130 
1131   BinOp->replaceAllUsesWith(LHS);
1132   BinOp->eraseFromParent();
1133   NumAnd++;
1134   return true;
1135 }
1136 
runImpl(Function & F,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)1137 static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
1138                     const SimplifyQuery &SQ) {
1139   bool FnChanged = false;
1140   // Visiting in a pre-order depth-first traversal causes us to simplify early
1141   // blocks before querying later blocks (which require us to analyze early
1142   // blocks).  Eagerly simplifying shallow blocks means there is strictly less
1143   // work to do for deep blocks.  This also means we don't visit unreachable
1144   // blocks.
1145   for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1146     bool BBChanged = false;
1147     for (Instruction &II : llvm::make_early_inc_range(*BB)) {
1148       switch (II.getOpcode()) {
1149       case Instruction::Select:
1150         BBChanged |= processSelect(cast<SelectInst>(&II), LVI);
1151         break;
1152       case Instruction::PHI:
1153         BBChanged |= processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1154         break;
1155       case Instruction::ICmp:
1156       case Instruction::FCmp:
1157         BBChanged |= processCmp(cast<CmpInst>(&II), LVI);
1158         break;
1159       case Instruction::Call:
1160       case Instruction::Invoke:
1161         BBChanged |= processCallSite(cast<CallBase>(II), LVI);
1162         break;
1163       case Instruction::SRem:
1164       case Instruction::SDiv:
1165         BBChanged |= processSDivOrSRem(cast<BinaryOperator>(&II), LVI);
1166         break;
1167       case Instruction::UDiv:
1168       case Instruction::URem:
1169         BBChanged |= processUDivOrURem(cast<BinaryOperator>(&II), LVI);
1170         break;
1171       case Instruction::AShr:
1172         BBChanged |= processAShr(cast<BinaryOperator>(&II), LVI);
1173         break;
1174       case Instruction::SExt:
1175         BBChanged |= processSExt(cast<SExtInst>(&II), LVI);
1176         break;
1177       case Instruction::ZExt:
1178         BBChanged |= processZExt(cast<ZExtInst>(&II), LVI);
1179         break;
1180       case Instruction::Add:
1181       case Instruction::Sub:
1182       case Instruction::Mul:
1183       case Instruction::Shl:
1184         BBChanged |= processBinOp(cast<BinaryOperator>(&II), LVI);
1185         break;
1186       case Instruction::And:
1187         BBChanged |= processAnd(cast<BinaryOperator>(&II), LVI);
1188         break;
1189       }
1190     }
1191 
1192     Instruction *Term = BB->getTerminator();
1193     switch (Term->getOpcode()) {
1194     case Instruction::Switch:
1195       BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
1196       break;
1197     case Instruction::Ret: {
1198       auto *RI = cast<ReturnInst>(Term);
1199       // Try to determine the return value if we can.  This is mainly here to
1200       // simplify the writing of unit tests, but also helps to enable IPO by
1201       // constant folding the return values of callees.
1202       auto *RetVal = RI->getReturnValue();
1203       if (!RetVal) break; // handle "ret void"
1204       if (isa<Constant>(RetVal)) break; // nothing to do
1205       if (auto *C = getConstantAt(RetVal, RI, LVI)) {
1206         ++NumReturns;
1207         RI->replaceUsesOfWith(RetVal, C);
1208         BBChanged = true;
1209       }
1210     }
1211     }
1212 
1213     FnChanged |= BBChanged;
1214   }
1215 
1216   return FnChanged;
1217 }
1218 
1219 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1220 CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
1221   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
1222   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1223 
1224   bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
1225 
1226   PreservedAnalyses PA;
1227   if (!Changed) {
1228     PA = PreservedAnalyses::all();
1229   } else {
1230     PA.preserve<DominatorTreeAnalysis>();
1231     PA.preserve<LazyValueAnalysis>();
1232   }
1233 
1234   // Keeping LVI alive is expensive, both because it uses a lot of memory, and
1235   // because invalidating values in LVI is expensive. While CVP does preserve
1236   // LVI, we know that passes after JumpThreading+CVP will not need the result
1237   // of this analysis, so we forcefully discard it early.
1238   PA.abandon<LazyValueAnalysis>();
1239   return PA;
1240 }
1241