xref: /freebsd/contrib/ntp/ntpd/refclock_nmea.c (revision a466cc55)
1 /*
2  * refclock_nmea.c - clock driver for an NMEA GPS CLOCK
3  *		Michael Petry Jun 20, 1994
4  *		 based on refclock_heathn.c
5  *
6  * Updated to add support for Accord GPS Clock
7  *		Venu Gopal Dec 05, 2007
8  *		neo.venu@gmail.com, venugopal_d@pgad.gov.in
9  *
10  * Updated to process 'time1' fudge factor
11  *		Venu Gopal May 05, 2008
12  *
13  * Converted to common PPSAPI code, separate PPS fudge time1
14  * from serial timecode fudge time2.
15  *		Dave Hart July 1, 2009
16  *		hart@ntp.org, davehart@davehart.com
17  */
18 
19 #ifdef HAVE_CONFIG_H
20 #include <config.h>
21 #endif
22 
23 #include "ntp_types.h"
24 
25 #if defined(REFCLOCK) && defined(CLOCK_NMEA)
26 
27 #define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */
28 
29 #include <sys/stat.h>
30 #include <stdio.h>
31 #include <ctype.h>
32 #ifdef HAVE_SYS_SOCKET_H
33 #include <sys/socket.h>
34 #endif
35 
36 #include "ntpd.h"
37 #include "ntp_io.h"
38 #include "ntp_unixtime.h"
39 #include "ntp_refclock.h"
40 #include "ntp_stdlib.h"
41 #include "ntp_calgps.h"
42 #include "timespecops.h"
43 
44 #ifdef HAVE_PPSAPI
45 # include "ppsapi_timepps.h"
46 # include "refclock_atom.h"
47 #endif /* HAVE_PPSAPI */
48 
49 
50 /*
51  * This driver supports NMEA-compatible GPS receivers
52  *
53  * Prototype was refclock_trak.c, Thanks a lot.
54  *
55  * The receiver used spits out the NMEA sentences for boat navigation.
56  * And you thought it was an information superhighway.	Try a raging river
57  * filled with rapids and whirlpools that rip away your data and warp time.
58  *
59  * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in.
60  * On startup if initialization of the PPSAPI fails, it will fall back
61  * to the "normal" timestamps.
62  *
63  * The PPSAPI part of the driver understands fudge flag2 and flag3. If
64  * flag2 is set, it will use the clear edge of the pulse. If flag3 is
65  * set, kernel hardpps is enabled.
66  *
67  * GPS sentences other than RMC (the default) may be enabled by setting
68  * the relevent bits of 'mode' in the server configuration line
69  * server 127.127.20.x mode X
70  *
71  * bit 0 - enables RMC (1)
72  * bit 1 - enables GGA (2)
73  * bit 2 - enables GLL (4)
74  * bit 3 - enables ZDA (8) - Standard Time & Date
75  * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time
76  *			     very close to standard ZDA
77  *
78  * Multiple sentences may be selected except when ZDG/ZDA is selected.
79  *
80  * bit 4/5/6 - selects the baudrate for serial port :
81  *		0 for 4800 (default)
82  *		1 for 9600
83  *		2 for 19200
84  *		3 for 38400
85  *		4 for 57600
86  *		5 for 115200
87  */
88 #define NMEA_MESSAGE_MASK	0x0000FF0FU
89 #define NMEA_BAUDRATE_MASK	0x00000070U
90 #define NMEA_BAUDRATE_SHIFT	4
91 
92 #define NMEA_DELAYMEAS_MASK	0x00000080U
93 #define NMEA_EXTLOG_MASK	0x00010000U
94 #define NMEA_QUIETPPS_MASK	0x00020000U
95 #define NMEA_DATETRUST_MASK	0x00040000U
96 #define NMEA_IGNSTATUS_MASK	0x00080000U
97 
98 #define NMEA_PROTO_IDLEN	4	/* tag name must be at least 4 chars */
99 #define NMEA_PROTO_MINLEN	6	/* min chars in sentence, excluding CS */
100 #define NMEA_PROTO_MAXLEN	80	/* max chars in sentence, excluding CS */
101 #define NMEA_PROTO_FIELDS	32	/* not official; limit on fields per record */
102 
103 /*
104  * We check the timecode format and decode its contents.  We only care
105  * about a few of them, the most important being the $GPRMC format:
106  *
107  * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC
108  *
109  * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA
110  * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21
111  * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F
112  * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77
113  *
114  * Defining GPZDA to support Standard Time & Date
115  * sentence. The sentence has the following format
116  *
117  *  $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF>
118  *
119  *  Apart from the familiar fields,
120  *  'TH'    Time zone Hours
121  *  'TM'    Time zone Minutes
122  *
123  * Defining GPZDG to support Accord GPS Clock's custom NMEA
124  * sentence. The sentence has the following format
125  *
126  *  $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF>
127  *
128  *  It contains the GPS timestamp valid for next PPS pulse.
129  *  Apart from the familiar fields,
130  *  'AA.BB' denotes the signal strength( should be < 05.00 )
131  *  'V'	    denotes the GPS sync status :
132  *	   '0' indicates INVALID time,
133  *	   '1' indicates accuracy of +/-20 ms
134  *	   '2' indicates accuracy of +/-100 ns
135  *
136  * Defining PGRMF for Garmin GPS Fix Data
137  * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP
138  * WN  -- GPS week number (weeks since 1980-01-06, mod 1024)
139  * WS  -- GPS seconds in week
140  * LS  -- GPS leap seconds, accumulated ( UTC + LS == GPS )
141  * FIX -- Fix type: 0=nofix, 1=2D, 2=3D
142  * DATE/TIME are standard date/time strings in UTC time scale
143  *
144  * The GPS time can be used to get the full century for the truncated
145  * date spec.
146  */
147 
148 /*
149  * Definitions
150  */
151 #define	DEVICE		"/dev/gps%d"	/* GPS serial device */
152 #define	PPSDEV		"/dev/gpspps%d"	/* PPSAPI device override */
153 #define	SPEED232	B4800	/* uart speed (4800 bps) */
154 #define	PRECISION	(-9)	/* precision assumed (about 2 ms) */
155 #define	PPS_PRECISION	(-20)	/* precision assumed (about 1 us) */
156 #define	DATE_HOLD	16	/* seconds to hold on provided GPS date */
157 #define	DATE_HLIM	4	/* when do we take ANY date format */
158 #define	REFID		"GPS\0"	/* reference id */
159 #define	DESCRIPTION	"NMEA GPS Clock" /* who we are */
160 #ifndef O_NOCTTY
161 #define M_NOCTTY	0
162 #else
163 #define M_NOCTTY	O_NOCTTY
164 #endif
165 #ifndef O_NONBLOCK
166 #define M_NONBLOCK	0
167 #else
168 #define M_NONBLOCK	O_NONBLOCK
169 #endif
170 #define PPSOPENMODE	(O_RDWR | M_NOCTTY | M_NONBLOCK)
171 
172 /* NMEA sentence array indexes for those we use */
173 #define NMEA_GPRMC	0	/* recommended min. nav. */
174 #define NMEA_GPGGA	1	/* fix and quality */
175 #define NMEA_GPGLL	2	/* geo. lat/long */
176 #define NMEA_GPZDA	3	/* date/time */
177 /*
178  * $GPZDG is a proprietary sentence that violates the spec, by not
179  * using $P and an assigned company identifier to prefix the sentence
180  * identifier.	When used with this driver, the system needs to be
181  * isolated from other NTP networks, as it operates in GPS time, not
182  * UTC as is much more common.	GPS time is >15 seconds different from
183  * UTC due to not respecting leap seconds since 1970 or so.  Other
184  * than the different timebase, $GPZDG is similar to $GPZDA.
185  */
186 #define NMEA_GPZDG	4
187 #define NMEA_PGRMF	5
188 #define NMEA_PUBX04	6
189 #define NMEA_ARRAY_SIZE (NMEA_PUBX04 + 1)
190 
191 /*
192  * Sentence selection mode bits
193  */
194 #define USE_GPRMC		0x00000001u
195 #define USE_GPGGA		0x00000002u
196 #define USE_GPGLL		0x00000004u
197 #define USE_GPZDA		0x00000008u
198 #define USE_PGRMF		0x00000100u
199 #define USE_PUBX04		0x00000200u
200 
201 /* mapping from sentence index to controlling mode bit */
202 static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] =
203 {
204 	USE_GPRMC,
205 	USE_GPGGA,
206 	USE_GPGLL,
207 	USE_GPZDA,
208 	USE_GPZDA,
209 	USE_PGRMF,
210 	USE_PUBX04
211 };
212 
213 /* date formats we support */
214 enum date_fmt {
215 	DATE_1_DDMMYY,	/* use 1 field	with 2-digit year */
216 	DATE_3_DDMMYYYY	/* use 3 fields with 4-digit year */
217 };
218 
219 /* date type */
220 enum date_type {
221 	DTYP_NONE,
222 	DTYP_Y2D,	/* 2-digit year */
223 	DTYP_W10B,	/* 10-bit week in GPS epoch */
224 	DTYP_Y4D,	/* 4-digit (full) year */
225 	DTYP_WEXT	/* extended week in GPS epoch */
226 };
227 
228 /* results for 'field_init()'
229  *
230  * Note: If a checksum is present, the checksum test must pass OK or the
231  * sentence is tagged invalid.
232  */
233 #define CHECK_EMPTY  -1	/* no data			*/
234 #define CHECK_INVALID 0	/* not a valid NMEA sentence	*/
235 #define CHECK_VALID   1	/* valid but without checksum	*/
236 #define CHECK_CSVALID 2	/* valid with checksum OK	*/
237 
238 /*
239  * Unit control structure
240  */
241 struct refclock_atom;
242 typedef struct refclock_atom TAtomUnit;
243 typedef struct {
244 #   ifdef HAVE_PPSAPI
245 	TAtomUnit	atom;		/* PPSAPI structure */
246 	int		ppsapi_fd;	/* fd used with PPSAPI */
247 	u_char		ppsapi_tried;	/* attempt PPSAPI once */
248 	u_char		ppsapi_lit;	/* time_pps_create() worked */
249 #   endif /* HAVE_PPSAPI */
250 	uint16_t	rcvtout;	/* one-shot for sample expiration */
251 	u_char		ppsapi_gate;	/* system is on PPS */
252 	u_char  	gps_time;	/* use GPS time, not UTC */
253 	l_fp		last_reftime;	/* last processed reference stamp */
254 	TNtpDatum	last_gpsdate;	/* last processed split date/time */
255 	u_short		hold_gpsdate;	/* validity ticker for above */
256 	u_short		type_gpsdate;	/* date info type for above */
257 	/* tally stats, reset each poll cycle */
258 	struct
259 	{
260 		u_int total;
261 		u_int accepted;
262 		u_int rejected;   /* GPS said not enough signal */
263 		u_int malformed;  /* Bad checksum, invalid date or time */
264 		u_int filtered;   /* mode bits, not GPZDG, same second */
265 		u_int pps_used;
266 	}
267 		tally;
268 	/* per sentence checksum seen flag */
269 	u_char		cksum_type[NMEA_ARRAY_SIZE];
270 
271 	/* line assembly buffer (NMEAD support) */
272 	u_short	lb_len;
273 	char	lb_buf[BMAX];	/* assembly buffer */
274 } nmea_unit;
275 
276 /*
277  * helper for faster field access
278  */
279 typedef struct {
280 	char  *base;	/* buffer base		*/
281 	char  *cptr;	/* current field ptr	*/
282 	int    blen;	/* buffer length	*/
283 	int    cidx;	/* current field index	*/
284 } nmea_data;
285 
286 /*
287  * Function prototypes
288  */
289 static	int	nmea_start	(int, struct peer *);
290 static	void	nmea_shutdown	(int, struct peer *);
291 static	void	nmea_receive	(struct recvbuf *);
292 static	void	nmea_poll	(int, struct peer *);
293 static	void	nmea_procrec	(struct peer * const, l_fp);
294 #ifdef HAVE_PPSAPI
295 static	double	tabsdiffd	(l_fp, l_fp);
296 static	void	nmea_control	(int, const struct refclockstat *,
297 				 struct refclockstat *, struct peer *);
298 #define		NMEA_CONTROL	nmea_control
299 #else
300 #define		NMEA_CONTROL	noentry
301 #endif /* HAVE_PPSAPI */
302 static	void	nmea_timer	(int, struct peer *);
303 
304 /* parsing helpers */
305 static int	field_init	(nmea_data * data, char * cp, int len);
306 static char *	field_parse	(nmea_data * data, int fn);
307 static void	field_wipe	(nmea_data * data, ...);
308 static u_char	parse_qual	(nmea_data * data, int idx,
309 				 char tag, int inv);
310 static int	parse_time	(TCivilDate * jd, l_fp * fofs,
311 				 nmea_data *, int idx);
312 static int	parse_date	(TCivilDate * jd, nmea_data *,
313 				 int idx, enum date_fmt fmt);
314 static int	parse_gpsw	(TGpsDatum *, nmea_data *,
315 				 int weekidx, int timeidx, int leapidx);
316 
317 static int	nmead_open	(const char * device);
318 
319 /*
320  * If we want the driver to output sentences, too: re-enable the send
321  * support functions by defining NMEA_WRITE_SUPPORT to non-zero...
322  */
323 #if NMEA_WRITE_SUPPORT
324 static	void gps_send(int, const char *, struct peer *);
325 #endif /* NMEA_WRITE_SUPPORT */
326 
327 /*
328  * -------------------------------------------------------------------
329  * Transfer vector
330  * -------------------------------------------------------------------
331  */
332 struct refclock refclock_nmea = {
333 	nmea_start,		/* start up driver */
334 	nmea_shutdown,		/* shut down driver */
335 	nmea_poll,		/* transmit poll message */
336 	NMEA_CONTROL,		/* fudge control */
337 	noentry,		/* initialize driver */
338 	noentry,		/* buginfo */
339 	nmea_timer		/* called once per second */
340 };
341 
342 
343 /*
344  * -------------------------------------------------------------------
345  * nmea_start - open the GPS devices and initialize data for processing
346  *
347  * return 0 on error, 1 on success. Even on error the peer structures
348  * must be in a state that permits 'nmea_shutdown()' to clean up all
349  * resources, because it will be called immediately to do so.
350  * -------------------------------------------------------------------
351  */
352 static int
nmea_start(int unit,struct peer * peer)353 nmea_start(
354 	int		unit,
355 	struct peer *	peer
356 	)
357 {
358 	struct refclockproc * const	pp = peer->procptr;
359 	nmea_unit * const		up = emalloc_zero(sizeof(*up));
360 	char				device[20];
361 	size_t				devlen;
362 	u_int32				rate;
363 	int				baudrate;
364 
365 	/* Get baudrate choice from mode byte bits 4/5/6 */
366 	rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT;
367 
368 	switch (rate) {
369 	default:
370 	case 0:
371 		baudrate = SPEED232;
372 		break;
373 	case 1:
374 		baudrate = B9600;
375 		break;
376 	case 2:
377 		baudrate = B19200;
378 		break;
379 	case 3:
380 		baudrate = B38400;
381 		break;
382 #   ifdef B57600
383 	case 4:
384 		baudrate = B57600;
385 		break;
386 #   endif
387 #   ifdef B115200
388 	case 5:
389 		baudrate = B115200;
390 		break;
391 #   endif
392 	}
393 
394 	/* Allocate and initialize unit structure */
395 	pp->unitptr = (caddr_t)up;
396 	pp->io.fd = -1;
397 	pp->io.clock_recv = nmea_receive;
398 	pp->io.srcclock = peer;
399 	pp->io.datalen = 0;
400 	/* force change detection on first valid message */
401 	memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime));
402 	memset(&up->last_gpsdate, 0x00, sizeof(up->last_gpsdate));
403 	/* force checksum on GPRMC, see below */
404 	up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID;
405 #   ifdef HAVE_PPSAPI
406 	up->ppsapi_fd = -1;
407 #   endif /* HAVE_PPSAPI */
408 	ZERO(up->tally);
409 
410 	/* Initialize miscellaneous variables */
411 	peer->precision = PRECISION;
412 	pp->clockdesc = DESCRIPTION;
413 	memcpy(&pp->refid, REFID, 4);
414 
415 	/* Open serial port. Use CLK line discipline, if available. */
416 	devlen = snprintf(device, sizeof(device), DEVICE, unit);
417 	if (devlen >= sizeof(device)) {
418 		msyslog(LOG_ERR, "%s clock device name too long",
419 			refnumtoa(&peer->srcadr));
420 		return FALSE; /* buffer overflow */
421 	}
422 	pp->io.fd = refclock_open(&peer->srcadr, device, baudrate, LDISC_CLK);
423 	if (0 >= pp->io.fd) {
424 		pp->io.fd = nmead_open(device);
425 		if (-1 == pp->io.fd)
426 			return FALSE;
427 	}
428 
429 	/* succeed if this clock can be added */
430 	return io_addclock(&pp->io) != 0;
431 }
432 
433 /*
434  * -------------------------------------------------------------------
435  * nmea_shutdown - shut down a GPS clock
436  *
437  * NOTE this routine is called after nmea_start() returns failure,
438  * as well as during a normal shutdown due to ntpq :config unpeer.
439  * -------------------------------------------------------------------
440  */
441 static void
nmea_shutdown(int unit,struct peer * peer)442 nmea_shutdown(
443 	int           unit,
444 	struct peer * peer
445 	)
446 {
447 	struct refclockproc * const pp = peer->procptr;
448 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
449 
450 	UNUSED_ARG(unit);
451 
452 	if (up != NULL) {
453 #	    ifdef HAVE_PPSAPI
454 		if (up->ppsapi_lit)
455 			time_pps_destroy(up->atom.handle);
456 		ppsdev_close(pp->io.fd, up->ppsapi_fd);
457 #	    endif
458 		free(up);
459 	}
460 	pp->unitptr = (caddr_t)NULL;
461 	if (-1 != pp->io.fd)
462 		io_closeclock(&pp->io);
463 	pp->io.fd = -1;
464 }
465 
466 /*
467  * -------------------------------------------------------------------
468  * nmea_control - configure fudge params
469  * -------------------------------------------------------------------
470  */
471 #ifdef HAVE_PPSAPI
472 static void
nmea_control(int unit,const struct refclockstat * in_st,struct refclockstat * out_st,struct peer * peer)473 nmea_control(
474 	int                         unit,
475 	const struct refclockstat * in_st,
476 	struct refclockstat       * out_st,
477 	struct peer               * peer
478 	)
479 {
480 	struct refclockproc * const pp = peer->procptr;
481 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
482 
483 	char   device[32];
484 	size_t devlen;
485 
486 	UNUSED_ARG(in_st);
487 	UNUSED_ARG(out_st);
488 
489 	/*
490 	 * PPS control
491 	 *
492 	 * If /dev/gpspps$UNIT can be opened that will be used for
493 	 * PPSAPI.  On Linux, a PPS device mathing the TTY will be
494 	 * searched for and possibly created on the fly.  Otherwise, the
495 	 * GPS serial device /dev/gps$UNIT already opened is used for
496 	 * PPSAPI as well. (This might not work, in which case the PPS
497 	 * API remains unavailable...)
498 	 */
499 
500 	/* Light up the PPSAPI interface if not yet attempted. */
501 	if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) {
502 		const char *ppsname = device;
503 		up->ppsapi_tried = TRUE;
504 		/* get FD for the pps device; might be the tty itself! */
505 		devlen = snprintf(device, sizeof(device), PPSDEV, unit);
506 		if (devlen >= sizeof(device)) {
507 			msyslog(LOG_ERR, "%s PPS device name too long",
508 				refnumtoa(&peer->srcadr));
509 			ppsname = NULL;
510 		}
511 		up->ppsapi_fd = ppsdev_reopen(
512 			&peer->srcadr,
513 			pp->io.fd, up->ppsapi_fd,
514 			ppsname, PPSOPENMODE, (S_IRUSR|S_IWUSR));
515 		/* note 1: the pps fd might be the same as the tty fd
516 		 * note 2: the current PPS fd remains valid until
517 		 *  - the clock is shut down
518 		 *  - flag1 is set again after being cleared
519 		 */
520 		if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) {
521 			/* use the PPS API for our own purposes now. */
522 			up->ppsapi_lit = refclock_params(
523 				pp->sloppyclockflag, &up->atom);
524 			if (!up->ppsapi_lit) {
525 				/* failed to configure, drop PPS unit */
526 				time_pps_destroy(up->atom.handle);
527 				msyslog(LOG_WARNING,
528 					"%s set PPSAPI params fails",
529 					refnumtoa(&peer->srcadr));
530 			}
531 		} else {
532 			msyslog(LOG_WARNING,
533 				"%s flag1 1 but PPSAPI fails",
534 				refnumtoa(&peer->srcadr));
535 		}
536 	}
537 
538 	/* shut down PPS API if activated */
539 	if ( !(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) {
540 		/* shutdown PPS API */
541 		if (up->ppsapi_lit)
542 			time_pps_destroy(up->atom.handle);
543 		up->atom.handle = 0;
544 		/* do !!NOT!! close/drop PPS fd here! */
545 
546 		/* clear markers and peer items */
547 		up->ppsapi_gate  = FALSE;
548 		up->ppsapi_lit   = FALSE;
549 		up->ppsapi_tried = FALSE;
550 
551 		peer->flags &= ~FLAG_PPS;
552 		peer->precision = PRECISION;
553 	}
554 }
555 #endif /* HAVE_PPSAPI */
556 
557 /*
558  * -------------------------------------------------------------------
559  * nmea_timer - called once per second
560  *
561  * Usually 'nmea_receive()' can get a timestamp every second, but at
562  * least one Motorola unit needs prompting each time. Doing so in
563  * 'nmea_poll()' gives only one sample per poll cycle, which actually
564  * defeats the purpose of the median filter. Polling once per second
565  * seems a much better idea.
566  *
567  * Also takes care of sample expiration if the receiver fails to
568  * provide new input data.
569  * -------------------------------------------------------------------
570  */
571 static void
nmea_timer(int unit,struct peer * peer)572 nmea_timer(
573 	int	      unit,
574 	struct peer * peer
575 	)
576 {
577 	struct refclockproc * const pp = peer->procptr;
578 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
579 
580 	UNUSED_ARG(unit);
581 
582 #   if NMEA_WRITE_SUPPORT
583 
584 	if (-1 != pp->io.fd) /* any mode bits to evaluate here? */
585 		gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer);
586 
587 #   endif /* NMEA_WRITE_SUPPORT */
588 
589 	/* receive timeout occurred? */
590 	if (up->rcvtout) {
591 		--up->rcvtout;
592 	} else if (pp->codeproc != pp->coderecv) {
593 		/* expire one (the oldest) sample, if any */
594 		refclock_samples_expire(pp, 1);
595 		/* reset message assembly buffer */
596 		up->lb_buf[0] = '\0';
597 		up->lb_len    = 0;
598 	}
599 
600 	if (up->hold_gpsdate && (--up->hold_gpsdate < DATE_HLIM))
601 		up->type_gpsdate = DTYP_NONE;
602 }
603 
604 /*
605  * -------------------------------------------------------------------
606  * nmea_procrec - receive data from the serial interface
607  *
608  * This is the workhorse for NMEA data evaluation:
609  *
610  * + it checks all NMEA data, and rejects sentences that are not valid
611  *   NMEA sentences
612  * + it checks whether a sentence is known and to be used
613  * + it parses the time and date data from the NMEA data string and
614  *   augments the missing bits. (century in date, whole date, ...)
615  * + it rejects data that is not from the first accepted sentence in a
616  *   burst
617  * + it eventually replaces the receive time with the PPS edge time.
618  * + it feeds the data to the internal processing stages.
619  *
620  * This function assumes a non-empty line in the unit line buffer.
621  * -------------------------------------------------------------------
622  */
623 static void
nmea_procrec(struct peer * const peer,l_fp rd_timestamp)624 nmea_procrec(
625 	struct peer * const	peer,
626 	l_fp 	  		rd_timestamp
627 	)
628 {
629 	/* declare & init control structure pointers */
630 	struct refclockproc * const pp = peer->procptr;
631 	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
632 
633 	/* Use these variables to hold data until we decide its worth keeping */
634 	nmea_data rdata;
635 	l_fp 	  rd_reftime;
636 
637 	/* working stuff */
638 	TCivilDate	date;	/* to keep & convert the time stamp */
639 	TGpsDatum	wgps;	/* week time storage */
640 	TNtpDatum	dntp;
641 	l_fp		tofs;	/* offset to full-second reftime */
642 	/* results of sentence/date/time parsing */
643 	u_char		sentence;	/* sentence tag */
644 	int		checkres;
645 	int		warp;		/* warp to GPS base date */
646 	char *		cp;
647 	int		rc_date, rc_time;
648 	u_short		rc_dtyp;
649 #   ifdef HAVE_PPSAPI
650 	int		withpps = 0;
651 #   endif /* HAVE_PPSAPI */
652 
653 	/* make sure data has defined pristine state */
654 	ZERO(tofs);
655 	ZERO(date);
656 	ZERO(wgps);
657 	ZERO(dntp);
658 
659 	/*
660 	 * Read the timecode and timestamp, then initialize field
661 	 * processing. The <CR><LF> at the NMEA line end is translated
662 	 * to <LF><LF> by the terminal input routines on most systems,
663 	 * and this gives us one spurious empty read per record which we
664 	 * better ignore silently.
665 	 */
666 	checkres = field_init(&rdata, up->lb_buf, up->lb_len);
667 	switch (checkres) {
668 
669 	case CHECK_INVALID:
670 		DPRINTF(1, ("%s invalid data: '%s'\n",
671 			refnumtoa(&peer->srcadr), up->lb_buf));
672 		refclock_report(peer, CEVNT_BADREPLY);
673 		return;
674 
675 	case CHECK_EMPTY:
676 		return;
677 
678 	default:
679 		DPRINTF(1, ("%s gpsread: %d '%s'\n",
680 			refnumtoa(&peer->srcadr), up->lb_len,
681 			up->lb_buf));
682 		break;
683 	}
684 	up->tally.total++;
685 
686 	/*
687 	 * --> below this point we have a valid NMEA sentence <--
688 	 *
689 	 * Check sentence name. Skip first 2 chars (talker ID) in most
690 	 * cases, to allow for $GLGGA and $GPGGA etc. Since the name
691 	 * field has at least 5 chars we can simply shift the field
692 	 * start.
693 	 */
694 	cp = field_parse(&rdata, 0);
695 	if      (strncmp(cp + 2, "RMC,", 4) == 0)
696 		sentence = NMEA_GPRMC;
697 	else if (strncmp(cp + 2, "GGA,", 4) == 0)
698 		sentence = NMEA_GPGGA;
699 	else if (strncmp(cp + 2, "GLL,", 4) == 0)
700 		sentence = NMEA_GPGLL;
701 	else if (strncmp(cp + 2, "ZDA,", 4) == 0)
702 		sentence = NMEA_GPZDA;
703 	else if (strncmp(cp + 2, "ZDG,", 4) == 0)
704 		sentence = NMEA_GPZDG;
705 	else if (strncmp(cp,   "PGRMF,", 6) == 0)
706 		sentence = NMEA_PGRMF;
707 	else if (strncmp(cp,   "PUBX,04,", 8) == 0)
708 		sentence = NMEA_PUBX04;
709 	else
710 		return;	/* not something we know about */
711 
712 	/* Eventually output delay measurement now. */
713 	if (peer->ttl & NMEA_DELAYMEAS_MASK) {
714 		mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s",
715 			 ldexp(rd_timestamp.l_uf, -32),
716 			 (int)(strchr(up->lb_buf, ',') - up->lb_buf),
717 			 up->lb_buf);
718 	}
719 
720 	/* See if I want to process this message type */
721 	if ((peer->ttl & NMEA_MESSAGE_MASK) &&
722 	    !(peer->ttl & sentence_mode[sentence])) {
723 		up->tally.filtered++;
724 		return;
725 	}
726 
727 	/*
728 	 * make sure it came in clean
729 	 *
730 	 * Apparently, older NMEA specifications (which are expensive)
731 	 * did not require the checksum for all sentences.  $GPMRC is
732 	 * the only one so far identified which has always been required
733 	 * to include a checksum.
734 	 *
735 	 * Today, most NMEA GPS receivers checksum every sentence.  To
736 	 * preserve its error-detection capabilities with modern GPSes
737 	 * while allowing operation without checksums on all but $GPMRC,
738 	 * we keep track of whether we've ever seen a valid checksum on
739 	 * a given sentence, and if so, reject future instances without
740 	 * checksum.  ('up->cksum_type[NMEA_GPRMC]' is set in
741 	 * 'nmea_start()' to enforce checksums for $GPRMC right from the
742 	 * start.)
743 	 */
744 	if (up->cksum_type[sentence] <= (u_char)checkres) {
745 		up->cksum_type[sentence] = (u_char)checkres;
746 	} else {
747 		DPRINTF(1, ("%s checksum missing: '%s'\n",
748 			refnumtoa(&peer->srcadr), up->lb_buf));
749 		refclock_report(peer, CEVNT_BADREPLY);
750 		up->tally.malformed++;
751 		return;
752 	}
753 
754 	/*
755 	 * $GPZDG provides GPS time not UTC, and the two mix poorly.
756 	 * Once have processed a $GPZDG, do not process any further UTC
757 	 * sentences (all but $GPZDG currently).
758 	 */
759 	if (sentence == NMEA_GPZDG) {
760 		if (!up->gps_time) {
761 			msyslog(LOG_INFO,
762 				"%s using GPS time as if it were UTC",
763 				refnumtoa(&peer->srcadr));
764 			up->gps_time = 1;
765 		}
766 	} else {
767 		if (up->gps_time) {
768 			up->tally.filtered++;
769 			return;
770 		}
771 	}
772 
773 	DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n",
774 		refnumtoa(&peer->srcadr), up->lb_len, up->lb_buf));
775 
776 	/*
777 	 * Grab fields depending on clock string type and possibly wipe
778 	 * sensitive data from the last timecode.
779 	 */
780 	rc_date = -1;	/* assume we have to do day-time mapping */
781 	rc_dtyp = DTYP_NONE;
782        	switch (sentence) {
783 
784 	case NMEA_GPRMC:
785 		/* Check quality byte, fetch data & time */
786 		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
787 		pp->leap = parse_qual(&rdata, 2, 'A', 0);
788 		if (up->type_gpsdate <= DTYP_Y2D) {
789 			rc_date	= parse_date(&date, &rdata, 9, DATE_1_DDMMYY);
790 			rc_dtyp = DTYP_Y2D;
791 		}
792  		if (CLK_FLAG4 & pp->sloppyclockflag)
793 			field_wipe(&rdata, 3, 4, 5, 6, -1);
794 		break;
795 
796 	case NMEA_GPGGA:
797 		/* Check quality byte, fetch time only */
798 		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
799 		pp->leap = parse_qual(&rdata, 6, '0', 1);
800 		if (CLK_FLAG4 & pp->sloppyclockflag)
801 			field_wipe(&rdata, 2, 4, -1);
802 		break;
803 
804 	case NMEA_GPGLL:
805 		/* Check quality byte, fetch time only */
806 		rc_time	 = parse_time(&date, &tofs, &rdata, 5);
807 		pp->leap = parse_qual(&rdata, 6, 'A', 0);
808 		if (CLK_FLAG4 & pp->sloppyclockflag)
809 			field_wipe(&rdata, 1, 3, -1);
810 		break;
811 
812 	case NMEA_GPZDA:
813 		/* No quality.	Assume best, fetch time & full date */
814 		rc_time	= parse_time(&date, &tofs, &rdata, 1);
815 		if (up->type_gpsdate <= DTYP_Y4D) {
816 			rc_date	= parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
817 			rc_dtyp = DTYP_Y4D;
818 		}
819 		break;
820 
821 	case NMEA_GPZDG:
822 		/* Check quality byte, fetch time & full date */
823 		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
824 		pp->leap = parse_qual(&rdata, 4, '0', 1);
825 		--tofs.l_ui; /* GPZDG gives *following* second */
826 		if (up->type_gpsdate <= DTYP_Y4D) {
827 			rc_date	= parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
828 			rc_dtyp = DTYP_Y4D;
829 		}
830 		break;
831 
832 	case NMEA_PGRMF:
833 		/* get time, qualifier and GPS weektime. */
834 		rc_time = parse_time(&date, &tofs, &rdata, 4);
835 		if (up->type_gpsdate <= DTYP_W10B) {
836 			rc_date = parse_gpsw(&wgps, &rdata, 1, 2, 5);
837 			rc_dtyp = DTYP_W10B;
838 		}
839 		pp->leap = parse_qual(&rdata, 11, '0', 1);
840 		if (CLK_FLAG4 & pp->sloppyclockflag)
841 			field_wipe(&rdata, 6, 8, -1);
842 		break;
843 
844 	case NMEA_PUBX04:
845 		/* PUBX,04 is peculiar. The UTC time-of-week is the *internal*
846 		 * time base, which is not exactly on par with the fix time.
847 		 */
848 		rc_time = parse_time(&date, &tofs, &rdata, 2);
849 		if (up->type_gpsdate <= DTYP_WEXT) {
850 			rc_date = parse_gpsw(&wgps, &rdata, 5, 4, -1);
851 			rc_dtyp = DTYP_WEXT;
852 		}
853 		break;
854 
855 	default:
856 		INVARIANT(0);	/* Coverity 97123 */
857 		return;
858 	}
859 
860 	/* ignore receiver status? [bug 3694] */
861 	if (peer->ttl & NMEA_IGNSTATUS_MASK) { /* assume always good? */
862 		pp->leap = LEAP_NOWARNING;
863 	}
864 
865 	/* check clock sanity; [bug 2143] */
866 	if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */
867 		checkres = CEVNT_PROP;
868 		up->tally.rejected++;
869 	}
870 	/* Check sanity of time-of-day. */
871 	else if (rc_time == 0) {	/* no time or conversion error? */
872 		checkres = CEVNT_BADTIME;
873 		up->tally.malformed++;
874 	}
875 	/* Check sanity of date. */
876 	else if (rc_date == 0) {	/* no date or conversion error? */
877 		checkres = CEVNT_BADDATE;
878 		up->tally.malformed++;
879 	}
880 	else {
881 		checkres = -1;
882 	}
883 
884 	if (checkres != -1) {
885 		refclock_save_lcode(pp, up->lb_buf, up->lb_len);
886 		refclock_report(peer, checkres);
887 		return;
888 	}
889 
890 	/* See if we can augment the receive time stamp. If not, apply
891 	 * fudge time 2 to the receive time stamp directly.
892 	 */
893 #   ifdef HAVE_PPSAPI
894 	if (up->ppsapi_lit && pp->leap != LEAP_NOTINSYNC)
895 		withpps = refclock_ppsaugment(
896 			&up->atom, &rd_timestamp,
897 			pp->fudgetime2, pp->fudgetime1);
898 	else
899 #   endif /* HAVE_PPSAPI */
900 		rd_timestamp = ntpfp_with_fudge(
901 			rd_timestamp, pp->fudgetime2);
902 
903 	/* set the GPS base date, if possible */
904 	warp = !(peer->ttl & NMEA_DATETRUST_MASK);
905 	if (rc_dtyp != DTYP_NONE) {
906 		DPRINTF(1, ("%s saving date, type=%hu\n",
907 			    refnumtoa(&peer->srcadr), rc_dtyp));
908 		switch (rc_dtyp) {
909 		case DTYP_W10B:
910 			up->last_gpsdate = gpsntp_from_gpscal_ex(
911 				&wgps, (warp = TRUE));
912 			break;
913 		case DTYP_WEXT:
914 			up->last_gpsdate = gpsntp_from_gpscal_ex(
915 				&wgps, warp);
916 			break;
917 		default:
918 			up->last_gpsdate = gpsntp_from_calendar_ex(
919 				&date, tofs, warp);
920 			break;
921 		}
922 		up->type_gpsdate = rc_dtyp;
923 		up->hold_gpsdate = DATE_HOLD;
924 	}
925 	/* now convert and possibly extend/expand the time stamp. */
926 	if (up->hold_gpsdate) {	/* time of day, based */
927 		dntp = gpsntp_from_daytime2_ex(
928 			&date, tofs, &up->last_gpsdate, warp);
929 	} else {		/* time of day, floating */
930 		dntp = gpsntp_from_daytime1_ex(
931 			&date, tofs, rd_timestamp, warp);
932 	}
933 
934 	if (debug) {
935 		/* debug print time stamp */
936 		gpsntp_to_calendar(&date, &dntp);
937 #	    ifdef HAVE_PPSAPI
938 		DPRINTF(1, ("%s effective timecode: %s (%s PPS)\n",
939 			    refnumtoa(&peer->srcadr),
940 			    ntpcal_iso8601std(NULL, 0, &date),
941 			    (withpps ? "with" : "without")));
942 #	    else /* ?HAVE_PPSAPI */
943 		DPRINTF(1, ("%s effective timecode: %s\n",
944 			    refnumtoa(&peer->srcadr),
945 			    ntpcal_iso8601std(NULL, 0, &date)));
946 #	    endif /* !HAVE_PPSAPI */
947 	}
948 
949 	/* Get the reference time stamp from the calendar buffer.
950 	 * Process the new sample in the median filter and determine the
951 	 * timecode timestamp, but only if the PPS is not in control.
952 	 * Discard sentence if reference time did not change.
953 	 */
954 	rd_reftime = ntpfp_from_ntpdatum(&dntp);
955 	if (L_ISEQU(&up->last_reftime, &rd_reftime)) {
956 		/* Do not touch pp->a_lastcode on purpose! */
957 		up->tally.filtered++;
958 		return;
959 	}
960 	up->last_reftime = rd_reftime;
961 
962 	DPRINTF(1, ("%s using '%s'\n",
963 		    refnumtoa(&peer->srcadr), up->lb_buf));
964 
965 	/* Data will be accepted. Update stats & log data. */
966 	up->tally.accepted++;
967 	refclock_save_lcode(pp, up->lb_buf, up->lb_len);
968 	pp->lastrec = rd_timestamp;
969 
970 	/* If we have PPS augmented receive time, we *must* have a
971 	 * working PPS source and we must set the flags accordingly.
972 	 */
973 #   ifdef HAVE_PPSAPI
974 	if (withpps) {
975 		up->ppsapi_gate = TRUE;
976 		peer->precision = PPS_PRECISION;
977 		if (tabsdiffd(rd_reftime, rd_timestamp) < 0.5) {
978 			if ( ! (peer->ttl & NMEA_QUIETPPS_MASK))
979 				peer->flags |= FLAG_PPS;
980 			DPRINTF(2, ("%s PPS_RELATE_PHASE\n",
981 				    refnumtoa(&peer->srcadr)));
982 			up->tally.pps_used++;
983 		} else {
984 			DPRINTF(2, ("%s PPS_RELATE_EDGE\n",
985 				    refnumtoa(&peer->srcadr)));
986 		}
987 		/* !Note! 'FLAG_PPS' is reset in 'nmea_poll()' */
988 	}
989 #   endif /* HAVE_PPSAPI */
990 	/* Whether the receive time stamp is PPS-augmented or not,
991 	 * the proper fudge offset is already applied. There's no
992 	 * residual fudge to process.
993 	 */
994 	refclock_process_offset(pp, rd_reftime, rd_timestamp, 0.0);
995 	up->rcvtout = 2;
996 }
997 
998 /*
999  * -------------------------------------------------------------------
1000  * nmea_receive - receive data from the serial interface
1001  *
1002  * With serial IO only, a single call to 'refclock_gtlin()' to get the
1003  * string would suffice to get the NMEA data. When using NMEAD, this
1004  * does unfortunately no longer hold, since TCP is stream oriented and
1005  * not line oriented, and there's no one to do the line-splitting work
1006  * of the TTY driver in line/cooked mode.
1007  *
1008  * So we have to do this manually here, and we have to live with the
1009  * fact that there could be more than one sentence in a receive buffer.
1010  * Likewise, there can be partial messages on either end. (Strictly
1011  * speaking, a receive buffer could also contain just a single fragment,
1012  * though that's unlikely.)
1013  *
1014  * We deal with that by scanning the input buffer, copying bytes from
1015  * the receive buffer to the assembly buffer as we go and calling the
1016  * record processor every time we hit a CR/LF, provided the resulting
1017  * line is not empty. Any leftovers are kept for the next round.
1018  *
1019  * Note: When used with a serial data stream, there's no change to the
1020  * previous line-oriented input: One line is copied to the buffer and
1021  * processed per call. Only with NMEAD the behavior changes, and the
1022  * timing is badly affected unless a PPS channel is also associated with
1023  * the clock instance. TCP leaves us nothing to improve on here.
1024  * -------------------------------------------------------------------
1025  */
1026 static void
nmea_receive(struct recvbuf * rbufp)1027 nmea_receive(
1028 	struct recvbuf * rbufp
1029 	)
1030 {
1031 	/* declare & init control structure pointers */
1032 	struct peer	    * const peer = rbufp->recv_peer;
1033 	struct refclockproc * const pp = peer->procptr;
1034 	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
1035 
1036 	const char *sp, *se;
1037 	char	   *dp, *de;
1038 
1039 	/* paranoia check: */
1040 	if (up->lb_len >= sizeof(up->lb_buf))
1041 		up->lb_len = 0;
1042 
1043 	/* pick up last assembly position; leave room for NUL */
1044 	dp = up->lb_buf + up->lb_len;
1045 	de = up->lb_buf + sizeof(up->lb_buf) - 1;
1046 	/* set up input range */
1047 	sp = (const char *)rbufp->recv_buffer;
1048 	se = sp + rbufp->recv_length;
1049 
1050 	/* walk over the input data, dropping parity bits and control
1051 	 * chars as we go, and calling the record processor for each
1052 	 * complete non-empty line.
1053 	 */
1054 	while (sp != se) {
1055 		char ch = (*sp++ & 0x7f);
1056 		if (dp == up->lb_buf) {
1057 			if (ch == '$')
1058 				*dp++ = ch;
1059 		} else if (dp > de) {
1060 			dp = up->lb_buf;
1061 		} else if (ch == '\n' || ch == '\r') {
1062 			*dp = '\0';
1063 			up->lb_len = (int)(dp - up->lb_buf);
1064 			dp = up->lb_buf;
1065 			nmea_procrec(peer, rbufp->recv_time);
1066 		} else if (ch >= 0x20 && ch < 0x7f) {
1067 			*dp++ = ch;
1068 		}
1069 	}
1070 	/* update state to keep for next round */
1071 	*dp = '\0';
1072 	up->lb_len = (int)(dp - up->lb_buf);
1073 }
1074 
1075 /*
1076  * -------------------------------------------------------------------
1077  * nmea_poll - called by the transmit procedure
1078  *
1079  * Does the necessary bookkeeping stuff to keep the reported state of
1080  * the clock in sync with reality.
1081  *
1082  * We go to great pains to avoid changing state here, since there may
1083  * be more than one eavesdropper receiving the same timecode.
1084  * -------------------------------------------------------------------
1085  */
1086 static void
nmea_poll(int unit,struct peer * peer)1087 nmea_poll(
1088 	int           unit,
1089 	struct peer * peer
1090 	)
1091 {
1092 	struct refclockproc * const pp = peer->procptr;
1093 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
1094 
1095 	/*
1096 	 * Process median filter samples. If none received, declare a
1097 	 * timeout and keep going.
1098 	 */
1099 #   ifdef HAVE_PPSAPI
1100 	/*
1101 	 * If we don't have PPS pulses and time stamps, turn PPS down
1102 	 * for now.
1103 	 */
1104 	if (!up->ppsapi_gate) {
1105 		peer->flags &= ~FLAG_PPS;
1106 		peer->precision = PRECISION;
1107 	} else {
1108 		up->ppsapi_gate = FALSE;
1109 	}
1110 #   endif /* HAVE_PPSAPI */
1111 
1112 	/*
1113 	 * If the median filter is empty, claim a timeout. Else process
1114 	 * the input data and keep the stats going.
1115 	 */
1116 	if (pp->coderecv == pp->codeproc) {
1117 		peer->flags &= ~FLAG_PPS;
1118 		if (pp->currentstatus < CEVNT_TIMEOUT)
1119 		    refclock_report(peer, CEVNT_TIMEOUT);
1120 		memset(&up->last_gpsdate, 0, sizeof(up->last_gpsdate));
1121 	} else {
1122 		pp->polls++;
1123 		pp->lastref = pp->lastrec;
1124 		refclock_receive(peer);
1125 		if (pp->currentstatus > CEVNT_NOMINAL)
1126 		    refclock_report(peer, CEVNT_NOMINAL);
1127 	}
1128 
1129 	/*
1130 	 * If extended logging is required, write the tally stats to the
1131 	 * clockstats file; otherwise just do a normal clock stats
1132 	 * record. Clear the tally stats anyway.
1133 	*/
1134 	if (peer->ttl & NMEA_EXTLOG_MASK) {
1135 		/* Log & reset counters with extended logging */
1136 		const char *nmea = pp->a_lastcode;
1137 		if (*nmea == '\0') nmea = "(none)";
1138 		mprintf_clock_stats(
1139 		  &peer->srcadr, "%s  %u %u %u %u %u %u",
1140 		  nmea,
1141 		  up->tally.total, up->tally.accepted,
1142 		  up->tally.rejected, up->tally.malformed,
1143 		  up->tally.filtered, up->tally.pps_used);
1144 	} else {
1145 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1146 	}
1147 	ZERO(up->tally);
1148 }
1149 
1150 #if NMEA_WRITE_SUPPORT
1151 /*
1152  * -------------------------------------------------------------------
1153  *  gps_send(fd, cmd, peer)	Sends a command to the GPS receiver.
1154  *   as in gps_send(fd, "rqts,u", peer);
1155  *
1156  * If 'cmd' starts with a '$' it is assumed that this command is in raw
1157  * format, that is, starts with '$', ends with '<cr><lf>' and that any
1158  * checksum is correctly provided; the command will be send 'as is' in
1159  * that case. Otherwise the function will create the necessary frame
1160  * (start char, chksum, final CRLF) on the fly.
1161  *
1162  * We don't currently send any data, but would like to send RTCM SC104
1163  * messages for differential positioning. It should also give us better
1164  * time. Without a PPS output, we're Just fooling ourselves because of
1165  * the serial code paths
1166  * -------------------------------------------------------------------
1167  */
1168 static void
gps_send(int fd,const char * cmd,struct peer * peer)1169 gps_send(
1170 	int           fd,
1171 	const char  * cmd,
1172 	struct peer * peer
1173 	)
1174 {
1175 	/* $...*xy<CR><LF><NUL> add 7 */
1176 	char	      buf[NMEA_PROTO_MAXLEN + 7];
1177 	int	      len;
1178 	u_char	      dcs;
1179 	const u_char *beg, *end;
1180 
1181 	if (*cmd != '$') {
1182 		/* get checksum and length */
1183 		beg = end = (const u_char*)cmd;
1184 		dcs = 0;
1185 		while (*end >= ' ' && *end != '*')
1186 			dcs ^= *end++;
1187 		len = end - beg;
1188 		/* format into output buffer with overflow check */
1189 		len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n",
1190 			       len, beg, dcs);
1191 		if ((size_t)len >= sizeof(buf)) {
1192 			DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n",
1193 				    refnumtoa(&peer->srcadr), cmd));
1194 			return;	/* game over player 1 */
1195 		}
1196 		cmd = buf;
1197 	} else {
1198 		len = strlen(cmd);
1199 	}
1200 
1201 	DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr),
1202 		len - 2, cmd));
1203 
1204 	/* send out the whole stuff */
1205 	if (refclock_fdwrite(peer, fd, cmd, len) != len)
1206 		refclock_report(peer, CEVNT_FAULT);
1207 }
1208 #endif /* NMEA_WRITE_SUPPORT */
1209 
1210 /*
1211  * -------------------------------------------------------------------
1212  * helpers for faster field splitting
1213  * -------------------------------------------------------------------
1214  *
1215  * set up a field record, check syntax and verify checksum
1216  *
1217  * format is $XXXXX,1,2,3,4*ML
1218  *
1219  * 8-bit XOR of characters between $ and * noninclusive is transmitted
1220  * in last two chars M and L holding most and least significant nibbles
1221  * in hex representation such as:
1222  *
1223  *   $GPGLL,5057.970,N,00146.110,E,142451,A*27
1224  *   $GPVTG,089.0,T,,,15.2,N,,*7F
1225  *
1226  * Some other constraints:
1227  * + The field name must be at least 5 upcase characters or digits and
1228  *   must start with a character.
1229  * + The checksum (if present) must be uppercase hex digits.
1230  * + The length of a sentence is limited to 80 characters (not including
1231  *   the final CR/LF nor the checksum, but including the leading '$')
1232  *
1233  * Return values:
1234  *  + CHECK_INVALID
1235  *	The data does not form a valid NMEA sentence or a checksum error
1236  *	occurred.
1237  *  + CHECK_VALID
1238  *	The data is a valid NMEA sentence but contains no checksum.
1239  *  + CHECK_CSVALID
1240  *	The data is a valid NMEA sentence and passed the checksum test.
1241  * -------------------------------------------------------------------
1242  */
1243 static int
field_init(nmea_data * data,char * cptr,int dlen)1244 field_init(
1245 	nmea_data * data,	/* context structure		       */
1246 	char 	  * cptr,	/* start of raw data		       */
1247 	int	    dlen	/* data len, not counting trailing NUL */
1248 	)
1249 {
1250 	u_char cs_l;	/* checksum local computed	*/
1251 	u_char cs_r;	/* checksum remote given	*/
1252 	char * eptr;	/* buffer end end pointer	*/
1253 	char   tmp;	/* char buffer 			*/
1254 
1255 	cs_l = 0;
1256 	cs_r = 0;
1257 	/* some basic input constraints */
1258 	if (dlen < 0)
1259 		dlen = 0;
1260 	eptr = cptr + dlen;
1261 	*eptr = '\0';
1262 
1263 	/* load data context */
1264 	data->base = cptr;
1265 	data->cptr = cptr;
1266 	data->cidx = 0;
1267 	data->blen = dlen;
1268 
1269 	/* syntax check follows here. check allowed character
1270 	 * sequences, updating the local computed checksum as we go.
1271 	 *
1272 	 * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$'
1273 	 */
1274 
1275 	/* -*- start character: '^\$' */
1276 	if (*cptr == '\0')
1277 		return CHECK_EMPTY;
1278 	if (*cptr++ != '$')
1279 		return CHECK_INVALID;
1280 
1281 	/* -*- advance context beyond start character */
1282 	data->base++;
1283 	data->cptr++;
1284 	data->blen--;
1285 
1286 	/* -*- field name: '[A-Z][A-Z0-9]{4,},' */
1287 	if (*cptr < 'A' || *cptr > 'Z')
1288 		return CHECK_INVALID;
1289 	cs_l ^= *cptr++;
1290 	while ((*cptr >= 'A' && *cptr <= 'Z') ||
1291 	       (*cptr >= '0' && *cptr <= '9')  )
1292 		cs_l ^= *cptr++;
1293 	if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN)
1294 		return CHECK_INVALID;
1295 	cs_l ^= *cptr++;
1296 
1297 	/* -*- data: '[^*]*' */
1298 	while (*cptr && *cptr != '*')
1299 		cs_l ^= *cptr++;
1300 
1301 	/* -*- checksum field: (\*[0-9A-F]{2})?$ */
1302 	if (*cptr == '\0')
1303 		return CHECK_VALID;
1304 	if (*cptr != '*' || cptr != eptr - 3 ||
1305 	    (cptr - data->base) >= NMEA_PROTO_MAXLEN)
1306 		return CHECK_INVALID;
1307 
1308 	for (cptr++; (tmp = *cptr) != '\0'; cptr++) {
1309 		if (tmp >= '0' && tmp <= '9')
1310 			cs_r = (cs_r << 4) + (tmp - '0');
1311 		else if (tmp >= 'A' && tmp <= 'F')
1312 			cs_r = (cs_r << 4) + (tmp - 'A' + 10);
1313 		else
1314 			break;
1315 	}
1316 
1317 	/* -*- make sure we are at end of string and csum matches */
1318 	if (cptr != eptr || cs_l != cs_r)
1319 		return CHECK_INVALID;
1320 
1321 	return CHECK_CSVALID;
1322 }
1323 
1324 /*
1325  * -------------------------------------------------------------------
1326  * fetch a data field by index, zero being the name field. If this
1327  * function is called repeatedly with increasing indices, the total load
1328  * is O(n), n being the length of the string; if it is called with
1329  * decreasing indices, the total load is O(n^2). Try not to go backwards
1330  * too often.
1331  * -------------------------------------------------------------------
1332  */
1333 static char *
field_parse(nmea_data * data,int fn)1334 field_parse(
1335 	nmea_data * data,
1336 	int 	    fn
1337 	)
1338 {
1339 	char tmp;
1340 
1341 	if (fn < data->cidx) {
1342 		data->cidx = 0;
1343 		data->cptr = data->base;
1344 	}
1345 	while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') {
1346 		data->cidx += (tmp == ',');
1347 		data->cptr++;
1348 	}
1349 	return data->cptr;
1350 }
1351 
1352 /*
1353  * -------------------------------------------------------------------
1354  * Wipe (that is, overwrite with '_') data fields and the checksum in
1355  * the last timecode.  The list of field indices is given as integers
1356  * in a varargs list, preferably in ascending order, in any case
1357  * terminated by a negative field index.
1358  *
1359  * A maximum number of 8 fields can be overwritten at once to guard
1360  * against runaway (that is, unterminated) argument lists.
1361  *
1362  * This function affects what a remote user can see with
1363  *
1364  * ntpq -c clockvar <server>
1365  *
1366  * Note that this also removes the wiped fields from any clockstats
1367  * log.	 Some NTP operators monitor their NMEA GPS using the change in
1368  * location in clockstats over time as as a proxy for the quality of
1369  * GPS reception and thereby time reported.
1370  * -------------------------------------------------------------------
1371  */
1372 static void
field_wipe(nmea_data * data,...)1373 field_wipe(
1374 	nmea_data * data,
1375 	...
1376 	)
1377 {
1378 	va_list	va;		/* vararg index list */
1379 	int	fcnt;		/* safeguard against runaway arglist */
1380 	int	fidx;		/* field to nuke, or -1 for checksum */
1381 	char  * cp;		/* overwrite destination */
1382 
1383 	fcnt = 8;
1384 	cp = NULL;
1385 	va_start(va, data);
1386 	do {
1387 		fidx = va_arg(va, int);
1388 		if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) {
1389 			cp = field_parse(data, fidx);
1390 		} else {
1391 			cp = data->base + data->blen;
1392 			if (data->blen >= 3 && cp[-3] == '*')
1393 				cp -= 2;
1394 		}
1395 		for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++)
1396 			if ('.' != *cp)
1397 				*cp = '_';
1398 	} while (fcnt-- && fidx >= 0);
1399 	va_end(va);
1400 }
1401 
1402 /*
1403  * -------------------------------------------------------------------
1404  * PARSING HELPERS
1405  * -------------------------------------------------------------------
1406  */
1407 typedef unsigned char const UCC;
1408 
1409 static char const * const s_eof_chars = ",*\r\n";
1410 
field_length(UCC * cp,unsigned int nfields)1411 static int field_length(UCC *cp, unsigned int nfields)
1412 {
1413 	char const * ep = (char const*)cp;
1414 	ep = strpbrk(ep, s_eof_chars);
1415 	if (ep && nfields)
1416 		while (--nfields && ep && *ep == ',')
1417 			ep = strpbrk(ep + 1, s_eof_chars);
1418 	return (ep)
1419 	    ? (int)((UCC*)ep - cp)
1420 	    : (int)strlen((char const*)cp);
1421 }
1422 
1423 /* /[,*\r\n]/ --> skip */
_parse_eof(UCC * cp,UCC ** ep)1424 static int _parse_eof(UCC *cp, UCC ** ep)
1425 {
1426 	int rc = (strchr(s_eof_chars, *(char const*)cp) != NULL);
1427 	*ep = cp + rc;
1428 	return rc;
1429 }
1430 
1431 /* /,/ --> skip */
_parse_sep(UCC * cp,UCC ** ep)1432 static int _parse_sep(UCC *cp, UCC ** ep)
1433 {
1434 	int rc = (*cp == ',');
1435 	*ep = cp + rc;
1436 	return rc;
1437 }
1438 
1439 /* /[[:digit:]]{2}/ --> uint16_t */
_parse_num2d(UCC * cp,UCC ** ep,uint16_t * into)1440 static int _parse_num2d(UCC *cp, UCC ** ep, uint16_t *into)
1441 {
1442 	int	rc = FALSE;
1443 
1444 	if (isdigit(cp[0]) && isdigit(cp[1])) {
1445 		*into = (cp[0] - '0') * 10 + (cp[1] - '0');
1446 		cp += 2;
1447 		rc = TRUE;
1448 	}
1449 	*ep = cp;
1450 	return rc;
1451 }
1452 
1453 /* /[[:digit:]]+/ --> uint16_t */
_parse_u16(UCC * cp,UCC ** ep,uint16_t * into,unsigned int ndig)1454 static int _parse_u16(UCC *cp, UCC **ep, uint16_t *into, unsigned int ndig)
1455 {
1456 	uint16_t	num = 0;
1457 	int		rc  = FALSE;
1458 	if (isdigit(*cp) && ndig) {
1459 		rc = TRUE;
1460 		do
1461 			num = (num * 10) + (*cp - '0');
1462 		while (isdigit(*++cp) && --ndig);
1463 		*into = num;
1464 	}
1465 	*ep = cp;
1466 	return rc;
1467 }
1468 
1469 /* /[[:digit:]]+/ --> uint32_t */
_parse_u32(UCC * cp,UCC ** ep,uint32_t * into,unsigned int ndig)1470 static int _parse_u32(UCC *cp, UCC **ep, uint32_t *into, unsigned int ndig)
1471 {
1472 	uint32_t	num = 0;
1473 	int		rc  = FALSE;
1474 	if (isdigit(*cp) && ndig) {
1475 		rc = TRUE;
1476 		do
1477 			num = (num * 10) + (*cp - '0');
1478 		while (isdigit(*++cp) && --ndig);
1479 		*into = num;
1480 	}
1481 	*ep = cp;
1482 	return rc;
1483 }
1484 
1485 /* /(\.[[:digit:]]*)?/ --> l_fp{0, f}
1486  * read fractional seconds, convert to l_fp
1487  *
1488  * Only the first 9 decimal digits are evaluated; any excess is parsed
1489  * away but silently ignored. (--> truncation to 1 nanosecond)
1490  */
_parse_frac(UCC * cp,UCC ** ep,l_fp * into)1491 static int _parse_frac(UCC *cp, UCC **ep, l_fp *into)
1492 {
1493 	static const uint32_t powtab[10] = {
1494 		        0,
1495 		100000000, 10000000, 1000000,
1496 		   100000,    10000,    1000,
1497 		      100,       10,       1
1498 	};
1499 
1500 	struct timespec	ts;
1501 	ZERO(ts);
1502 	if (*cp == '.') {
1503 		uint32_t fval = 0;
1504 		UCC *    sp   = cp + 1;
1505 		if (_parse_u32(sp, &cp, &fval, 9))
1506 			ts.tv_nsec = fval * powtab[(size_t)(cp - sp)];
1507 		while (isdigit(*cp))
1508 			++cp;
1509 	}
1510 
1511 	*ep   = cp;
1512 	*into = tspec_intv_to_lfp(ts);
1513 	return TRUE;
1514 }
1515 
1516 /* /[[:digit:]]{6}/ --> time-of-day
1517  * parses a number string representing 'HHMMSS'
1518  */
_parse_time(UCC * cp,UCC ** ep,TCivilDate * into)1519 static int _parse_time(UCC *cp, UCC ** ep, TCivilDate *into)
1520 {
1521 	uint16_t	s, m, h;
1522 	int		rc;
1523 	UCC *		xp = cp;
1524 
1525 	rc =   _parse_num2d(cp, &cp, &h) && (h < 24)
1526 	    && _parse_num2d(cp, &cp, &m) && (m < 60)
1527 	    && _parse_num2d(cp, &cp, &s) && (s < 61); /* leap seconds! */
1528 
1529 	if (rc) {
1530 		into->hour   = (uint8_t)h;
1531 		into->minute = (uint8_t)m;
1532 		into->second = (uint8_t)s;
1533 		*ep = cp;
1534 	} else {
1535 		*ep = xp;
1536 		DPRINTF(1, ("nmea: invalid time code: '%.*s'\n",
1537 			    field_length(xp, 1), xp));
1538 	}
1539 	return rc;
1540 }
1541 
1542 /* /[[:digit:]]{6}/ --> civil date
1543  * parses a number string representing 'ddmmyy'
1544  */
_parse_date1(UCC * cp,UCC ** ep,TCivilDate * into)1545 static int _parse_date1(UCC *cp, UCC **ep, TCivilDate *into)
1546 {
1547 	unsigned short	d, m, y;
1548 	int		rc;
1549 	UCC *		xp = cp;
1550 
1551 	rc =   _parse_num2d(cp, &cp, &d) && (d - 1 < 31)
1552 	    && _parse_num2d(cp, &cp, &m) && (m - 1 < 12)
1553 	    && _parse_num2d(cp, &cp, &y)
1554 	    && _parse_eof(cp, ep);
1555 	if (rc) {
1556 		into->monthday = (uint8_t )d;
1557 		into->month    = (uint8_t )m;
1558 		into->year     = (uint16_t)y;
1559 		*ep = cp;
1560 	} else {
1561 		*ep = xp;
1562 		DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
1563 			    field_length(xp, 1), xp));
1564 	}
1565 	return rc;
1566 }
1567 
1568 /* /[[:digit:]]+,[[:digit:]]+,[[:digit:]]+/ --> civil date
1569  * parses three successive numeric fields as date: day,month,year
1570  */
_parse_date3(UCC * cp,UCC ** ep,TCivilDate * into)1571 static int _parse_date3(UCC *cp, UCC **ep, TCivilDate *into)
1572 {
1573 	uint16_t	d, m, y;
1574 	int		rc;
1575 	UCC *		xp = cp;
1576 
1577 	rc =   _parse_u16(cp, &cp, &d, 2) && (d - 1 < 31)
1578 	    && _parse_sep(cp, &cp)
1579 	    && _parse_u16(cp, &cp, &m, 2) && (m - 1 < 12)
1580 	    && _parse_sep(cp, &cp)
1581 	    && _parse_u16(cp, &cp, &y, 4) && (y > 1980)
1582 	    && _parse_eof(cp, ep);
1583 	if (rc) {
1584 		into->monthday = (uint8_t )d;
1585 		into->month    = (uint8_t )m;
1586 		into->year     = (uint16_t)y;
1587 		*ep = cp;
1588 	} else {
1589 		*ep = xp;
1590 		DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
1591 			    field_length(xp, 3), xp));
1592 	}
1593 	return rc;
1594 }
1595 
1596 /*
1597  * -------------------------------------------------------------------
1598  * Check sync status
1599  *
1600  * If the character at the data field start matches the tag value,
1601  * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted'
1602  * flag is given, just the opposite value is returned. If there is no
1603  * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC.
1604  * -------------------------------------------------------------------
1605  */
1606 static u_char
parse_qual(nmea_data * rd,int idx,char tag,int inv)1607 parse_qual(
1608 	nmea_data * rd,
1609 	int         idx,
1610 	char        tag,
1611 	int         inv
1612 	)
1613 {
1614 	static const u_char table[2] = {
1615 		LEAP_NOTINSYNC, LEAP_NOWARNING };
1616 
1617 	char * dp = field_parse(rd, idx);
1618 
1619 	return table[ *dp && ((*dp == tag) == !inv) ];
1620 }
1621 
1622 /*
1623  * -------------------------------------------------------------------
1624  * Parse a time stamp in HHMMSS[.sss] format with error checking.
1625  *
1626  * returns 1 on success, 0 on failure
1627  * -------------------------------------------------------------------
1628  */
1629 static int
parse_time(struct calendar * jd,l_fp * fofs,nmea_data * rd,int idx)1630 parse_time(
1631 	struct calendar * jd,	/* result calendar pointer */
1632 	l_fp		* fofs,	/* storage for nsec fraction */
1633 	nmea_data       * rd,
1634 	int		  idx
1635 	)
1636 {
1637 	UCC * 	dp = (UCC*)field_parse(rd, idx);
1638 
1639 	return _parse_time(dp, &dp, jd)
1640 	    && _parse_frac(dp, &dp, fofs)
1641 	    && _parse_eof (dp, &dp);
1642 }
1643 
1644 /*
1645  * -------------------------------------------------------------------
1646  * Parse a date string from an NMEA sentence. This could either be a
1647  * partial date in DDMMYY format in one field, or DD,MM,YYYY full date
1648  * spec spanning three fields. This function does some extensive error
1649  * checking to make sure the date string was consistent.
1650  *
1651  * returns 1 on success, 0 on failure
1652  * -------------------------------------------------------------------
1653  */
1654 static int
parse_date(struct calendar * jd,nmea_data * rd,int idx,enum date_fmt fmt)1655 parse_date(
1656 	struct calendar * jd,	/* result pointer */
1657 	nmea_data       * rd,
1658 	int		  idx,
1659 	enum date_fmt	  fmt
1660 	)
1661 {
1662 	UCC  * dp = (UCC*)field_parse(rd, idx);
1663 
1664 	switch (fmt) {
1665 	case DATE_1_DDMMYY:
1666 		return _parse_date1(dp, &dp, jd);
1667 	case DATE_3_DDMMYYYY:
1668 		return _parse_date3(dp, &dp, jd);
1669 	default:
1670 		DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt));
1671 		break;
1672 	}
1673 	return FALSE;
1674 }
1675 
1676 /*
1677  * -------------------------------------------------------------------
1678  * Parse GPS week time info from an NMEA sentence. This info contains
1679  * the GPS week number, the GPS time-of-week and the leap seconds GPS
1680  * to UTC.
1681  *
1682  * returns 1 on success, 0 on failure
1683  * -------------------------------------------------------------------
1684  */
1685 static int
parse_gpsw(TGpsDatum * wd,nmea_data * rd,int weekidx,int timeidx,int leapidx)1686 parse_gpsw(
1687 	TGpsDatum *  wd,
1688 	nmea_data *  rd,
1689 	int          weekidx,
1690 	int          timeidx,
1691 	int          leapidx
1692 	)
1693 {
1694 	uint32_t	secs;
1695 	uint16_t	week, leap = 0;
1696 	l_fp		fofs;
1697 	int		rc;
1698 
1699 	UCC *	dpw = (UCC*)field_parse(rd, weekidx);
1700 	UCC *	dps = (UCC*)field_parse(rd, timeidx);
1701 
1702 	rc =   _parse_u16 (dpw, &dpw, &week, 5)
1703 	    && _parse_eof (dpw, &dpw)
1704 	    && _parse_u32 (dps, &dps, &secs, 9)
1705 	    && _parse_frac(dps, &dps, &fofs)
1706 	    && _parse_eof (dps, &dps)
1707 	    && (secs < 7*SECSPERDAY);
1708 	if (rc && leapidx > 0) {
1709 		UCC *	dpl = (UCC*)field_parse(rd, leapidx);
1710 		rc =   _parse_u16 (dpl, &dpl, &leap, 5)
1711 		    && _parse_eof (dpl, &dpl);
1712 	}
1713 	if (rc) {
1714 		fofs.l_ui -= leap;
1715 		*wd = gpscal_from_gpsweek(week, secs, fofs);
1716 	} else {
1717 		DPRINTF(1, ("nmea: parse_gpsw: invalid weektime spec\n"));
1718 	}
1719 	return rc;
1720 }
1721 
1722 
1723 #ifdef HAVE_PPSAPI
1724 static double
tabsdiffd(l_fp t1,l_fp t2)1725 tabsdiffd(
1726 	l_fp	t1,
1727 	l_fp	t2
1728 	)
1729 {
1730 	double	dd;
1731 	L_SUB(&t1, &t2);
1732 	LFPTOD(&t1, dd);
1733 	return fabs(dd);
1734 }
1735 #endif /* HAVE_PPSAPI */
1736 
1737 /*
1738  * ===================================================================
1739  *
1740  * NMEAD support
1741  *
1742  * original nmead support added by Jon Miner (cp_n18@yahoo.com)
1743  *
1744  * See http://home.hiwaay.net/~taylorc/gps/nmea-server/
1745  * for information about nmead
1746  *
1747  * To use this, you need to create a link from /dev/gpsX to
1748  * the server:port where nmead is running.  Something like this:
1749  *
1750  * ln -s server:port /dev/gps1
1751  *
1752  * Split into separate function by Juergen Perlinger
1753  * (perlinger-at-ntp-dot-org)
1754  *
1755  * ===================================================================
1756  */
1757 static int
nmead_open(const char * device)1758 nmead_open(
1759 	const char * device
1760 	)
1761 {
1762 	int	fd = -1;		/* result file descriptor */
1763 
1764 #   ifdef HAVE_READLINK
1765 	char	host[80];		/* link target buffer	*/
1766 	char  * port;			/* port name or number	*/
1767 	int	rc;			/* result code (several)*/
1768 	int     sh;			/* socket handle	*/
1769 	struct addrinfo	 ai_hint;	/* resolution hint	*/
1770 	struct addrinfo	*ai_list;	/* resolution result	*/
1771 	struct addrinfo *ai;		/* result scan ptr	*/
1772 
1773 	fd = -1;
1774 
1775 	/* try to read as link, make sure no overflow occurs */
1776 	rc = readlink(device, host, sizeof(host));
1777 	if ((size_t)rc >= sizeof(host))
1778 		return fd;	/* error / overflow / truncation */
1779 	host[rc] = '\0';	/* readlink does not place NUL	*/
1780 
1781 	/* get port */
1782 	port = strchr(host, ':');
1783 	if (!port)
1784 		return fd; /* not 'host:port' syntax ? */
1785 	*port++ = '\0';	/* put in separator */
1786 
1787 	/* get address infos and try to open socket
1788 	 *
1789 	 * This getaddrinfo() is naughty in ntpd's nonblocking main
1790 	 * thread, but you have to go out of your wary to use this code
1791 	 * and typically the blocking is at startup where its impact is
1792 	 * reduced. The same holds for the 'connect()', as it is
1793 	 * blocking, too...
1794 	 */
1795 	ZERO(ai_hint);
1796 	ai_hint.ai_protocol = IPPROTO_TCP;
1797 	ai_hint.ai_socktype = SOCK_STREAM;
1798 	if (getaddrinfo(host, port, &ai_hint, &ai_list))
1799 		return fd;
1800 
1801 	for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) {
1802 		sh = socket(ai->ai_family, ai->ai_socktype,
1803 			    ai->ai_protocol);
1804 		if (INVALID_SOCKET == sh)
1805 			continue;
1806 		rc = connect(sh, ai->ai_addr, ai->ai_addrlen);
1807 		if (-1 != rc)
1808 			fd = sh;
1809 		else
1810 			close(sh);
1811 	}
1812 	freeaddrinfo(ai_list);
1813 	if (fd != -1)
1814 		make_socket_nonblocking(fd);
1815 #   else
1816 	fd = -1;
1817 #   endif
1818 
1819 	return fd;
1820 }
1821 #else
1822 NONEMPTY_TRANSLATION_UNIT
1823 #endif /* REFCLOCK && CLOCK_NMEA */
1824