xref: /freebsd/contrib/xz/src/liblzma/lz/lz_encoder.c (revision 5ffb19ac)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       lz_encoder.c
4 /// \brief      LZ in window
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #include "lz_encoder.h"
15 #include "lz_encoder_hash.h"
16 
17 // See lz_encoder_hash.h. This is a bit hackish but avoids making
18 // endianness a conditional in makefiles.
19 #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
20 #	include "lz_encoder_hash_table.h"
21 #endif
22 
23 #include "memcmplen.h"
24 
25 
26 typedef struct {
27 	/// LZ-based encoder e.g. LZMA
28 	lzma_lz_encoder lz;
29 
30 	/// History buffer and match finder
31 	lzma_mf mf;
32 
33 	/// Next coder in the chain
34 	lzma_next_coder next;
35 } lzma_coder;
36 
37 
38 /// \brief      Moves the data in the input window to free space for new data
39 ///
40 /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
41 /// bytes of input history available all the time. Now and then we need to
42 /// "slide" the buffer to make space for the new data to the end of the
43 /// buffer. At the same time, data older than keep_size_before is dropped.
44 ///
45 static void
move_window(lzma_mf * mf)46 move_window(lzma_mf *mf)
47 {
48 	// Align the move to a multiple of 16 bytes. Some LZ-based encoders
49 	// like LZMA use the lowest bits of mf->read_pos to know the
50 	// alignment of the uncompressed data. We also get better speed
51 	// for memmove() with aligned buffers.
52 	assert(mf->read_pos > mf->keep_size_before);
53 	const uint32_t move_offset
54 		= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
55 
56 	assert(mf->write_pos > move_offset);
57 	const size_t move_size = mf->write_pos - move_offset;
58 
59 	assert(move_offset + move_size <= mf->size);
60 
61 	memmove(mf->buffer, mf->buffer + move_offset, move_size);
62 
63 	mf->offset += move_offset;
64 	mf->read_pos -= move_offset;
65 	mf->read_limit -= move_offset;
66 	mf->write_pos -= move_offset;
67 
68 	return;
69 }
70 
71 
72 /// \brief      Tries to fill the input window (mf->buffer)
73 ///
74 /// If we are the last encoder in the chain, our input data is in in[].
75 /// Otherwise we call the next filter in the chain to process in[] and
76 /// write its output to mf->buffer.
77 ///
78 /// This function must not be called once it has returned LZMA_STREAM_END.
79 ///
80 static lzma_ret
fill_window(lzma_coder * coder,const lzma_allocator * allocator,const uint8_t * in,size_t * in_pos,size_t in_size,lzma_action action)81 fill_window(lzma_coder *coder, const lzma_allocator *allocator,
82 		const uint8_t *in, size_t *in_pos, size_t in_size,
83 		lzma_action action)
84 {
85 	assert(coder->mf.read_pos <= coder->mf.write_pos);
86 
87 	// Move the sliding window if needed.
88 	if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
89 		move_window(&coder->mf);
90 
91 	// Maybe this is ugly, but lzma_mf uses uint32_t for most things
92 	// (which I find cleanest), but we need size_t here when filling
93 	// the history window.
94 	size_t write_pos = coder->mf.write_pos;
95 	lzma_ret ret;
96 	if (coder->next.code == NULL) {
97 		// Not using a filter, simply memcpy() as much as possible.
98 		lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
99 				&write_pos, coder->mf.size);
100 
101 		ret = action != LZMA_RUN && *in_pos == in_size
102 				? LZMA_STREAM_END : LZMA_OK;
103 
104 	} else {
105 		ret = coder->next.code(coder->next.coder, allocator,
106 				in, in_pos, in_size,
107 				coder->mf.buffer, &write_pos,
108 				coder->mf.size, action);
109 	}
110 
111 	coder->mf.write_pos = write_pos;
112 
113 	// Silence Valgrind. lzma_memcmplen() can read extra bytes
114 	// and Valgrind will give warnings if those bytes are uninitialized
115 	// because Valgrind cannot see that the values of the uninitialized
116 	// bytes are eventually ignored.
117 	memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
118 
119 	// If end of stream has been reached or flushing completed, we allow
120 	// the encoder to process all the input (that is, read_pos is allowed
121 	// to reach write_pos). Otherwise we keep keep_size_after bytes
122 	// available as prebuffer.
123 	if (ret == LZMA_STREAM_END) {
124 		assert(*in_pos == in_size);
125 		ret = LZMA_OK;
126 		coder->mf.action = action;
127 		coder->mf.read_limit = coder->mf.write_pos;
128 
129 	} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
130 		// This needs to be done conditionally, because if we got
131 		// only little new input, there may be too little input
132 		// to do any encoding yet.
133 		coder->mf.read_limit = coder->mf.write_pos
134 				- coder->mf.keep_size_after;
135 	}
136 
137 	// Restart the match finder after finished LZMA_SYNC_FLUSH.
138 	if (coder->mf.pending > 0
139 			&& coder->mf.read_pos < coder->mf.read_limit) {
140 		// Match finder may update coder->pending and expects it to
141 		// start from zero, so use a temporary variable.
142 		const uint32_t pending = coder->mf.pending;
143 		coder->mf.pending = 0;
144 
145 		// Rewind read_pos so that the match finder can hash
146 		// the pending bytes.
147 		assert(coder->mf.read_pos >= pending);
148 		coder->mf.read_pos -= pending;
149 
150 		// Call the skip function directly instead of using
151 		// mf_skip(), since we don't want to touch mf->read_ahead.
152 		coder->mf.skip(&coder->mf, pending);
153 	}
154 
155 	return ret;
156 }
157 
158 
159 static lzma_ret
lz_encode(void * coder_ptr,const lzma_allocator * allocator,const uint8_t * restrict in,size_t * restrict in_pos,size_t in_size,uint8_t * restrict out,size_t * restrict out_pos,size_t out_size,lzma_action action)160 lz_encode(void *coder_ptr, const lzma_allocator *allocator,
161 		const uint8_t *restrict in, size_t *restrict in_pos,
162 		size_t in_size,
163 		uint8_t *restrict out, size_t *restrict out_pos,
164 		size_t out_size, lzma_action action)
165 {
166 	lzma_coder *coder = coder_ptr;
167 
168 	while (*out_pos < out_size
169 			&& (*in_pos < in_size || action != LZMA_RUN)) {
170 		// Read more data to coder->mf.buffer if needed.
171 		if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
172 				>= coder->mf.read_limit)
173 			return_if_error(fill_window(coder, allocator,
174 					in, in_pos, in_size, action));
175 
176 		// Encode
177 		const lzma_ret ret = coder->lz.code(coder->lz.coder,
178 				&coder->mf, out, out_pos, out_size);
179 		if (ret != LZMA_OK) {
180 			// Setting this to LZMA_RUN for cases when we are
181 			// flushing. It doesn't matter when finishing or if
182 			// an error occurred.
183 			coder->mf.action = LZMA_RUN;
184 			return ret;
185 		}
186 	}
187 
188 	return LZMA_OK;
189 }
190 
191 
192 static bool
lz_encoder_prepare(lzma_mf * mf,const lzma_allocator * allocator,const lzma_lz_options * lz_options)193 lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
194 		const lzma_lz_options *lz_options)
195 {
196 	// For now, the dictionary size is limited to 1.5 GiB. This may grow
197 	// in the future if needed, but it needs a little more work than just
198 	// changing this check.
199 	if (!IS_ENC_DICT_SIZE_VALID(lz_options->dict_size)
200 			|| lz_options->nice_len > lz_options->match_len_max)
201 		return true;
202 
203 	mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
204 
205 	mf->keep_size_after = lz_options->after_size
206 			+ lz_options->match_len_max;
207 
208 	// To avoid constant memmove()s, allocate some extra space. Since
209 	// memmove()s become more expensive when the size of the buffer
210 	// increases, we reserve more space when a large dictionary is
211 	// used to make the memmove() calls rarer.
212 	//
213 	// This works with dictionaries up to about 3 GiB. If bigger
214 	// dictionary is wanted, some extra work is needed:
215 	//   - Several variables in lzma_mf have to be changed from uint32_t
216 	//     to size_t.
217 	//   - Memory usage calculation needs something too, e.g. use uint64_t
218 	//     for mf->size.
219 	uint32_t reserve = lz_options->dict_size / 2;
220 	if (reserve > (UINT32_C(1) << 30))
221 		reserve /= 2;
222 
223 	reserve += (lz_options->before_size + lz_options->match_len_max
224 			+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
225 
226 	const uint32_t old_size = mf->size;
227 	mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
228 
229 	// Deallocate the old history buffer if it exists but has different
230 	// size than what is needed now.
231 	if (mf->buffer != NULL && old_size != mf->size) {
232 		lzma_free(mf->buffer, allocator);
233 		mf->buffer = NULL;
234 	}
235 
236 	// Match finder options
237 	mf->match_len_max = lz_options->match_len_max;
238 	mf->nice_len = lz_options->nice_len;
239 
240 	// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
241 	// mean limiting dictionary size to less than 2 GiB. With a match
242 	// finder that uses multibyte resolution (hashes start at e.g. every
243 	// fourth byte), cyclic_size would stay below 2 Gi even when
244 	// dictionary size is greater than 2 GiB.
245 	//
246 	// It would be possible to allow cyclic_size >= 2 Gi, but then we
247 	// would need to be careful to use 64-bit types in various places
248 	// (size_t could do since we would need bigger than 32-bit address
249 	// space anyway). It would also require either zeroing a multigigabyte
250 	// buffer at initialization (waste of time and RAM) or allow
251 	// normalization in lz_encoder_mf.c to access uninitialized
252 	// memory to keep the code simpler. The current way is simple and
253 	// still allows pretty big dictionaries, so I don't expect these
254 	// limits to change.
255 	mf->cyclic_size = lz_options->dict_size + 1;
256 
257 	// Validate the match finder ID and setup the function pointers.
258 	switch (lz_options->match_finder) {
259 #ifdef HAVE_MF_HC3
260 	case LZMA_MF_HC3:
261 		mf->find = &lzma_mf_hc3_find;
262 		mf->skip = &lzma_mf_hc3_skip;
263 		break;
264 #endif
265 #ifdef HAVE_MF_HC4
266 	case LZMA_MF_HC4:
267 		mf->find = &lzma_mf_hc4_find;
268 		mf->skip = &lzma_mf_hc4_skip;
269 		break;
270 #endif
271 #ifdef HAVE_MF_BT2
272 	case LZMA_MF_BT2:
273 		mf->find = &lzma_mf_bt2_find;
274 		mf->skip = &lzma_mf_bt2_skip;
275 		break;
276 #endif
277 #ifdef HAVE_MF_BT3
278 	case LZMA_MF_BT3:
279 		mf->find = &lzma_mf_bt3_find;
280 		mf->skip = &lzma_mf_bt3_skip;
281 		break;
282 #endif
283 #ifdef HAVE_MF_BT4
284 	case LZMA_MF_BT4:
285 		mf->find = &lzma_mf_bt4_find;
286 		mf->skip = &lzma_mf_bt4_skip;
287 		break;
288 #endif
289 
290 	default:
291 		return true;
292 	}
293 
294 	// Calculate the sizes of mf->hash and mf->son.
295 	//
296 	// NOTE: Since 5.3.5beta the LZMA encoder ensures that nice_len
297 	// is big enough for the selected match finder. This makes it
298 	// easier for applications as nice_len = 2 will always be accepted
299 	// even though the effective value can be slightly bigger.
300 	const uint32_t hash_bytes
301 			= mf_get_hash_bytes(lz_options->match_finder);
302 	assert(hash_bytes <= mf->nice_len);
303 
304 	const bool is_bt = (lz_options->match_finder & 0x10) != 0;
305 	uint32_t hs;
306 
307 	if (hash_bytes == 2) {
308 		hs = 0xFFFF;
309 	} else {
310 		// Round dictionary size up to the next 2^n - 1 so it can
311 		// be used as a hash mask.
312 		hs = lz_options->dict_size - 1;
313 		hs |= hs >> 1;
314 		hs |= hs >> 2;
315 		hs |= hs >> 4;
316 		hs |= hs >> 8;
317 		hs >>= 1;
318 		hs |= 0xFFFF;
319 
320 		if (hs > (UINT32_C(1) << 24)) {
321 			if (hash_bytes == 3)
322 				hs = (UINT32_C(1) << 24) - 1;
323 			else
324 				hs >>= 1;
325 		}
326 	}
327 
328 	mf->hash_mask = hs;
329 
330 	++hs;
331 	if (hash_bytes > 2)
332 		hs += HASH_2_SIZE;
333 	if (hash_bytes > 3)
334 		hs += HASH_3_SIZE;
335 /*
336 	No match finder uses this at the moment.
337 	if (mf->hash_bytes > 4)
338 		hs += HASH_4_SIZE;
339 */
340 
341 	const uint32_t old_hash_count = mf->hash_count;
342 	const uint32_t old_sons_count = mf->sons_count;
343 	mf->hash_count = hs;
344 	mf->sons_count = mf->cyclic_size;
345 	if (is_bt)
346 		mf->sons_count *= 2;
347 
348 	// Deallocate the old hash array if it exists and has different size
349 	// than what is needed now.
350 	if (old_hash_count != mf->hash_count
351 			|| old_sons_count != mf->sons_count) {
352 		lzma_free(mf->hash, allocator);
353 		mf->hash = NULL;
354 
355 		lzma_free(mf->son, allocator);
356 		mf->son = NULL;
357 	}
358 
359 	// Maximum number of match finder cycles
360 	mf->depth = lz_options->depth;
361 	if (mf->depth == 0) {
362 		if (is_bt)
363 			mf->depth = 16 + mf->nice_len / 2;
364 		else
365 			mf->depth = 4 + mf->nice_len / 4;
366 	}
367 
368 	return false;
369 }
370 
371 
372 static bool
lz_encoder_init(lzma_mf * mf,const lzma_allocator * allocator,const lzma_lz_options * lz_options)373 lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
374 		const lzma_lz_options *lz_options)
375 {
376 	// Allocate the history buffer.
377 	if (mf->buffer == NULL) {
378 		// lzma_memcmplen() is used for the dictionary buffer
379 		// so we need to allocate a few extra bytes to prevent
380 		// it from reading past the end of the buffer.
381 		mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
382 				allocator);
383 		if (mf->buffer == NULL)
384 			return true;
385 
386 		// Keep Valgrind happy with lzma_memcmplen() and initialize
387 		// the extra bytes whose value may get read but which will
388 		// effectively get ignored.
389 		memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
390 	}
391 
392 	// Use cyclic_size as initial mf->offset. This allows
393 	// avoiding a few branches in the match finders. The downside is
394 	// that match finder needs to be normalized more often, which may
395 	// hurt performance with huge dictionaries.
396 	mf->offset = mf->cyclic_size;
397 	mf->read_pos = 0;
398 	mf->read_ahead = 0;
399 	mf->read_limit = 0;
400 	mf->write_pos = 0;
401 	mf->pending = 0;
402 
403 #if UINT32_MAX >= SIZE_MAX / 4
404 	// Check for integer overflow. (Huge dictionaries are not
405 	// possible on 32-bit CPU.)
406 	if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
407 			|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
408 		return true;
409 #endif
410 
411 	// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
412 	// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
413 	//
414 	// We don't need to initialize mf->son, but not doing that may
415 	// make Valgrind complain in normalization (see normalize() in
416 	// lz_encoder_mf.c). Skipping the initialization is *very* good
417 	// when big dictionary is used but only small amount of data gets
418 	// actually compressed: most of the mf->son won't get actually
419 	// allocated by the kernel, so we avoid wasting RAM and improve
420 	// initialization speed a lot.
421 	if (mf->hash == NULL) {
422 		mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
423 				allocator);
424 		mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
425 				allocator);
426 
427 		if (mf->hash == NULL || mf->son == NULL) {
428 			lzma_free(mf->hash, allocator);
429 			mf->hash = NULL;
430 
431 			lzma_free(mf->son, allocator);
432 			mf->son = NULL;
433 
434 			return true;
435 		}
436 	} else {
437 /*
438 		for (uint32_t i = 0; i < mf->hash_count; ++i)
439 			mf->hash[i] = EMPTY_HASH_VALUE;
440 */
441 		memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
442 	}
443 
444 	mf->cyclic_pos = 0;
445 
446 	// Handle preset dictionary.
447 	if (lz_options->preset_dict != NULL
448 			&& lz_options->preset_dict_size > 0) {
449 		// If the preset dictionary is bigger than the actual
450 		// dictionary, use only the tail.
451 		mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
452 		memcpy(mf->buffer, lz_options->preset_dict
453 				+ lz_options->preset_dict_size - mf->write_pos,
454 				mf->write_pos);
455 		mf->action = LZMA_SYNC_FLUSH;
456 		mf->skip(mf, mf->write_pos);
457 	}
458 
459 	mf->action = LZMA_RUN;
460 
461 	return false;
462 }
463 
464 
465 extern uint64_t
lzma_lz_encoder_memusage(const lzma_lz_options * lz_options)466 lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
467 {
468 	// Old buffers must not exist when calling lz_encoder_prepare().
469 	lzma_mf mf = {
470 		.buffer = NULL,
471 		.hash = NULL,
472 		.son = NULL,
473 		.hash_count = 0,
474 		.sons_count = 0,
475 	};
476 
477 	// Setup the size information into mf.
478 	if (lz_encoder_prepare(&mf, NULL, lz_options))
479 		return UINT64_MAX;
480 
481 	// Calculate the memory usage.
482 	return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
483 			+ mf.size + sizeof(lzma_coder);
484 }
485 
486 
487 static void
lz_encoder_end(void * coder_ptr,const lzma_allocator * allocator)488 lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
489 {
490 	lzma_coder *coder = coder_ptr;
491 
492 	lzma_next_end(&coder->next, allocator);
493 
494 	lzma_free(coder->mf.son, allocator);
495 	lzma_free(coder->mf.hash, allocator);
496 	lzma_free(coder->mf.buffer, allocator);
497 
498 	if (coder->lz.end != NULL)
499 		coder->lz.end(coder->lz.coder, allocator);
500 	else
501 		lzma_free(coder->lz.coder, allocator);
502 
503 	lzma_free(coder, allocator);
504 	return;
505 }
506 
507 
508 static lzma_ret
lz_encoder_update(void * coder_ptr,const lzma_allocator * allocator,const lzma_filter * filters_null lzma_attribute ((__unused__)),const lzma_filter * reversed_filters)509 lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
510 		const lzma_filter *filters_null lzma_attribute((__unused__)),
511 		const lzma_filter *reversed_filters)
512 {
513 	lzma_coder *coder = coder_ptr;
514 
515 	if (coder->lz.options_update == NULL)
516 		return LZMA_PROG_ERROR;
517 
518 	return_if_error(coder->lz.options_update(
519 			coder->lz.coder, reversed_filters));
520 
521 	return lzma_next_filter_update(
522 			&coder->next, allocator, reversed_filters + 1);
523 }
524 
525 
526 static lzma_ret
lz_encoder_set_out_limit(void * coder_ptr,uint64_t * uncomp_size,uint64_t out_limit)527 lz_encoder_set_out_limit(void *coder_ptr, uint64_t *uncomp_size,
528 		uint64_t out_limit)
529 {
530 	lzma_coder *coder = coder_ptr;
531 
532 	// This is supported only if there are no other filters chained.
533 	if (coder->next.code == NULL && coder->lz.set_out_limit != NULL)
534 		return coder->lz.set_out_limit(
535 				coder->lz.coder, uncomp_size, out_limit);
536 
537 	return LZMA_OPTIONS_ERROR;
538 }
539 
540 
541 extern lzma_ret
lzma_lz_encoder_init(lzma_next_coder * next,const lzma_allocator * allocator,const lzma_filter_info * filters,lzma_ret (* lz_init)(lzma_lz_encoder * lz,const lzma_allocator * allocator,lzma_vli id,const void * options,lzma_lz_options * lz_options))542 lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
543 		const lzma_filter_info *filters,
544 		lzma_ret (*lz_init)(lzma_lz_encoder *lz,
545 			const lzma_allocator *allocator,
546 			lzma_vli id, const void *options,
547 			lzma_lz_options *lz_options))
548 {
549 #if defined(HAVE_SMALL) && !defined(HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR)
550 	// We need that the CRC32 table has been initialized.
551 	lzma_crc32_init();
552 #endif
553 
554 	// Allocate and initialize the base data structure.
555 	lzma_coder *coder = next->coder;
556 	if (coder == NULL) {
557 		coder = lzma_alloc(sizeof(lzma_coder), allocator);
558 		if (coder == NULL)
559 			return LZMA_MEM_ERROR;
560 
561 		next->coder = coder;
562 		next->code = &lz_encode;
563 		next->end = &lz_encoder_end;
564 		next->update = &lz_encoder_update;
565 		next->set_out_limit = &lz_encoder_set_out_limit;
566 
567 		coder->lz.coder = NULL;
568 		coder->lz.code = NULL;
569 		coder->lz.end = NULL;
570 
571 		// mf.size is initialized to silence Valgrind
572 		// when used on optimized binaries (GCC may reorder
573 		// code in a way that Valgrind gets unhappy).
574 		coder->mf.buffer = NULL;
575 		coder->mf.size = 0;
576 		coder->mf.hash = NULL;
577 		coder->mf.son = NULL;
578 		coder->mf.hash_count = 0;
579 		coder->mf.sons_count = 0;
580 
581 		coder->next = LZMA_NEXT_CODER_INIT;
582 	}
583 
584 	// Initialize the LZ-based encoder.
585 	lzma_lz_options lz_options;
586 	return_if_error(lz_init(&coder->lz, allocator,
587 			filters[0].id, filters[0].options, &lz_options));
588 
589 	// Setup the size information into coder->mf and deallocate
590 	// old buffers if they have wrong size.
591 	if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
592 		return LZMA_OPTIONS_ERROR;
593 
594 	// Allocate new buffers if needed, and do the rest of
595 	// the initialization.
596 	if (lz_encoder_init(&coder->mf, allocator, &lz_options))
597 		return LZMA_MEM_ERROR;
598 
599 	// Initialize the next filter in the chain, if any.
600 	return lzma_next_filter_init(&coder->next, allocator, filters + 1);
601 }
602 
603 
604 extern LZMA_API(lzma_bool)
lzma_mf_is_supported(lzma_match_finder mf)605 lzma_mf_is_supported(lzma_match_finder mf)
606 {
607 	switch (mf) {
608 #ifdef HAVE_MF_HC3
609 	case LZMA_MF_HC3:
610 		return true;
611 #endif
612 #ifdef HAVE_MF_HC4
613 	case LZMA_MF_HC4:
614 		return true;
615 #endif
616 #ifdef HAVE_MF_BT2
617 	case LZMA_MF_BT2:
618 		return true;
619 #endif
620 #ifdef HAVE_MF_BT3
621 	case LZMA_MF_BT3:
622 		return true;
623 #endif
624 #ifdef HAVE_MF_BT4
625 	case LZMA_MF_BT4:
626 		return true;
627 #endif
628 	default:
629 		return false;
630 	}
631 }
632