xref: /freebsd/sys/amd64/amd64/sys_machdep.c (revision 05296a0f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 #include "opt_capsicum.h"
35 #include "opt_ktrace.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/capsicum.h>
40 #include <sys/kernel.h>
41 #include <sys/ktrace.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/pcpu.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/smp.h>
49 #include <sys/sysproto.h>
50 #include <sys/uio.h>
51 
52 #include <vm/vm.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_kern.h>		/* for kernel_map */
55 #include <vm/vm_map.h>
56 #include <vm/vm_extern.h>
57 
58 #include <machine/frame.h>
59 #include <machine/md_var.h>
60 #include <machine/pcb.h>
61 #include <machine/specialreg.h>
62 #include <machine/sysarch.h>
63 #include <machine/tss.h>
64 #include <machine/vmparam.h>
65 
66 #include <security/audit/audit.h>
67 
68 static void user_ldt_deref(struct proc_ldt *pldt);
69 static void user_ldt_derefl(struct proc_ldt *pldt);
70 
71 #define	MAX_LD		8192
72 
73 int max_ldt_segment = 512;
74 SYSCTL_INT(_machdep, OID_AUTO, max_ldt_segment, CTLFLAG_RDTUN,
75     &max_ldt_segment, 0,
76     "Maximum number of allowed LDT segments in the single address space");
77 
78 static void
max_ldt_segment_init(void * arg __unused)79 max_ldt_segment_init(void *arg __unused)
80 {
81 
82 	if (max_ldt_segment <= 0)
83 		max_ldt_segment = 1;
84 	if (max_ldt_segment > MAX_LD)
85 		max_ldt_segment = MAX_LD;
86 }
87 SYSINIT(maxldt, SI_SUB_VM_CONF, SI_ORDER_ANY, max_ldt_segment_init, NULL);
88 
89 #ifndef _SYS_SYSPROTO_H_
90 struct sysarch_args {
91 	int op;
92 	char *parms;
93 };
94 #endif
95 
96 int
sysarch_ldt(struct thread * td,struct sysarch_args * uap,int uap_space)97 sysarch_ldt(struct thread *td, struct sysarch_args *uap, int uap_space)
98 {
99 	struct i386_ldt_args *largs, la;
100 	struct user_segment_descriptor *lp;
101 	int error = 0;
102 
103 	/*
104 	 * XXXKIB check that the BSM generation code knows to encode
105 	 * the op argument.
106 	 */
107 	AUDIT_ARG_CMD(uap->op);
108 	if (uap_space == UIO_USERSPACE) {
109 		error = copyin(uap->parms, &la, sizeof(struct i386_ldt_args));
110 		if (error != 0)
111 			return (error);
112 		largs = &la;
113 	} else
114 		largs = (struct i386_ldt_args *)uap->parms;
115 
116 	switch (uap->op) {
117 	case I386_GET_LDT:
118 		error = amd64_get_ldt(td, largs);
119 		break;
120 	case I386_SET_LDT:
121 		if (largs->descs != NULL && largs->num > max_ldt_segment)
122 			return (EINVAL);
123 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
124 		if (largs->descs != NULL) {
125 			lp = malloc(largs->num * sizeof(struct
126 			    user_segment_descriptor), M_TEMP, M_WAITOK);
127 			error = copyin(largs->descs, lp, largs->num *
128 			    sizeof(struct user_segment_descriptor));
129 			if (error == 0)
130 				error = amd64_set_ldt(td, largs, lp);
131 			free(lp, M_TEMP);
132 		} else {
133 			error = amd64_set_ldt(td, largs, NULL);
134 		}
135 		break;
136 	}
137 	return (error);
138 }
139 
140 void
update_gdt_gsbase(struct thread * td,uint32_t base)141 update_gdt_gsbase(struct thread *td, uint32_t base)
142 {
143 	struct user_segment_descriptor *sd;
144 
145 	if (td != curthread)
146 		return;
147 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
148 	critical_enter();
149 	sd = PCPU_GET(gs32p);
150 	sd->sd_lobase = base & 0xffffff;
151 	sd->sd_hibase = (base >> 24) & 0xff;
152 	critical_exit();
153 }
154 
155 void
update_gdt_fsbase(struct thread * td,uint32_t base)156 update_gdt_fsbase(struct thread *td, uint32_t base)
157 {
158 	struct user_segment_descriptor *sd;
159 
160 	if (td != curthread)
161 		return;
162 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
163 	critical_enter();
164 	sd = PCPU_GET(fs32p);
165 	sd->sd_lobase = base & 0xffffff;
166 	sd->sd_hibase = (base >> 24) & 0xff;
167 	critical_exit();
168 }
169 
170 int
sysarch(struct thread * td,struct sysarch_args * uap)171 sysarch(struct thread *td, struct sysarch_args *uap)
172 {
173 	struct pcb *pcb;
174 	struct vm_map *map;
175 	uint32_t i386base;
176 	uint64_t a64base;
177 	struct i386_ioperm_args iargs;
178 	struct i386_get_xfpustate i386xfpu;
179 	struct i386_set_pkru i386pkru;
180 	struct amd64_get_xfpustate a64xfpu;
181 	struct amd64_set_pkru a64pkru;
182 	int error;
183 
184 #ifdef CAPABILITY_MODE
185 	/*
186 	 * When adding new operations, add a new case statement here to
187 	 * explicitly indicate whether or not the operation is safe to
188 	 * perform in capability mode.
189 	 */
190 	switch (uap->op) {
191 	case I386_GET_LDT:
192 	case I386_SET_LDT:
193 	case I386_GET_IOPERM:
194 	case I386_GET_FSBASE:
195 	case I386_SET_FSBASE:
196 	case I386_GET_GSBASE:
197 	case I386_SET_GSBASE:
198 	case I386_GET_XFPUSTATE:
199 	case I386_SET_PKRU:
200 	case I386_CLEAR_PKRU:
201 	case AMD64_GET_FSBASE:
202 	case AMD64_SET_FSBASE:
203 	case AMD64_GET_GSBASE:
204 	case AMD64_SET_GSBASE:
205 	case AMD64_GET_XFPUSTATE:
206 	case AMD64_SET_PKRU:
207 	case AMD64_CLEAR_PKRU:
208 		break;
209 
210 	case I386_SET_IOPERM:
211 	default:
212 		if (CAP_TRACING(td))
213 			ktrcapfail(CAPFAIL_SYSCALL, &uap->op);
214 		if (IN_CAPABILITY_MODE(td))
215 			return (ECAPMODE);
216 		break;
217 	}
218 #endif
219 
220 	if (uap->op == I386_GET_LDT || uap->op == I386_SET_LDT)
221 		return (sysarch_ldt(td, uap, UIO_USERSPACE));
222 
223 	error = 0;
224 	pcb = td->td_pcb;
225 
226 	/*
227 	 * XXXKIB check that the BSM generation code knows to encode
228 	 * the op argument.
229 	 */
230 	AUDIT_ARG_CMD(uap->op);
231 	switch (uap->op) {
232 	case I386_GET_IOPERM:
233 	case I386_SET_IOPERM:
234 		if ((error = copyin(uap->parms, &iargs,
235 		    sizeof(struct i386_ioperm_args))) != 0)
236 			return (error);
237 		break;
238 	case I386_GET_XFPUSTATE:
239 		if ((error = copyin(uap->parms, &i386xfpu,
240 		    sizeof(struct i386_get_xfpustate))) != 0)
241 			return (error);
242 		a64xfpu.addr = (void *)(uintptr_t)i386xfpu.addr;
243 		a64xfpu.len = i386xfpu.len;
244 		break;
245 	case I386_SET_PKRU:
246 	case I386_CLEAR_PKRU:
247 		if ((error = copyin(uap->parms, &i386pkru,
248 		    sizeof(struct i386_set_pkru))) != 0)
249 			return (error);
250 		a64pkru.addr = (void *)(uintptr_t)i386pkru.addr;
251 		a64pkru.len = i386pkru.len;
252 		a64pkru.keyidx = i386pkru.keyidx;
253 		a64pkru.flags = i386pkru.flags;
254 		break;
255 	case AMD64_GET_XFPUSTATE:
256 		if ((error = copyin(uap->parms, &a64xfpu,
257 		    sizeof(struct amd64_get_xfpustate))) != 0)
258 			return (error);
259 		break;
260 	case AMD64_SET_PKRU:
261 	case AMD64_CLEAR_PKRU:
262 		if ((error = copyin(uap->parms, &a64pkru,
263 		    sizeof(struct amd64_set_pkru))) != 0)
264 			return (error);
265 		break;
266 	default:
267 		break;
268 	}
269 
270 	switch (uap->op) {
271 	case I386_GET_IOPERM:
272 		error = amd64_get_ioperm(td, &iargs);
273 		if (error == 0)
274 			error = copyout(&iargs, uap->parms,
275 			    sizeof(struct i386_ioperm_args));
276 		break;
277 	case I386_SET_IOPERM:
278 		error = amd64_set_ioperm(td, &iargs);
279 		break;
280 	case I386_GET_FSBASE:
281 		update_pcb_bases(pcb);
282 		i386base = pcb->pcb_fsbase;
283 		error = copyout(&i386base, uap->parms, sizeof(i386base));
284 		break;
285 	case I386_SET_FSBASE:
286 		error = copyin(uap->parms, &i386base, sizeof(i386base));
287 		if (!error) {
288 			set_pcb_flags(pcb, PCB_FULL_IRET);
289 			pcb->pcb_fsbase = i386base;
290 			td->td_frame->tf_fs = _ufssel;
291 			update_gdt_fsbase(td, i386base);
292 		}
293 		break;
294 	case I386_GET_GSBASE:
295 		update_pcb_bases(pcb);
296 		i386base = pcb->pcb_gsbase;
297 		error = copyout(&i386base, uap->parms, sizeof(i386base));
298 		break;
299 	case I386_SET_GSBASE:
300 		error = copyin(uap->parms, &i386base, sizeof(i386base));
301 		if (!error) {
302 			set_pcb_flags(pcb, PCB_FULL_IRET);
303 			pcb->pcb_gsbase = i386base;
304 			td->td_frame->tf_gs = _ugssel;
305 			update_gdt_gsbase(td, i386base);
306 		}
307 		break;
308 	case AMD64_GET_FSBASE:
309 		update_pcb_bases(pcb);
310 		error = copyout(&pcb->pcb_fsbase, uap->parms,
311 		    sizeof(pcb->pcb_fsbase));
312 		break;
313 
314 	case AMD64_SET_FSBASE:
315 		error = copyin(uap->parms, &a64base, sizeof(a64base));
316 		if (!error) {
317 			if (a64base < VM_MAXUSER_ADDRESS) {
318 				set_pcb_flags(pcb, PCB_FULL_IRET);
319 				pcb->pcb_fsbase = a64base;
320 				td->td_frame->tf_fs = _ufssel;
321 			} else
322 				error = EINVAL;
323 		}
324 		break;
325 
326 	case AMD64_GET_GSBASE:
327 		update_pcb_bases(pcb);
328 		error = copyout(&pcb->pcb_gsbase, uap->parms,
329 		    sizeof(pcb->pcb_gsbase));
330 		break;
331 
332 	case AMD64_SET_GSBASE:
333 		error = copyin(uap->parms, &a64base, sizeof(a64base));
334 		if (!error) {
335 			if (a64base < VM_MAXUSER_ADDRESS) {
336 				set_pcb_flags(pcb, PCB_FULL_IRET);
337 				pcb->pcb_gsbase = a64base;
338 				td->td_frame->tf_gs = _ugssel;
339 			} else
340 				error = EINVAL;
341 		}
342 		break;
343 
344 	case I386_GET_XFPUSTATE:
345 	case AMD64_GET_XFPUSTATE:
346 		if (a64xfpu.len > cpu_max_ext_state_size -
347 		    sizeof(struct savefpu))
348 			return (EINVAL);
349 		fpugetregs(td);
350 		error = copyout((char *)(get_pcb_user_save_td(td) + 1),
351 		    a64xfpu.addr, a64xfpu.len);
352 		break;
353 
354 	case I386_SET_PKRU:
355 	case AMD64_SET_PKRU:
356 		/*
357 		 * Read-lock the map to synchronize with parallel
358 		 * pmap_vmspace_copy() on fork.
359 		 */
360 		map = &td->td_proc->p_vmspace->vm_map;
361 		vm_map_lock_read(map);
362 		error = pmap_pkru_set(PCPU_GET(curpmap),
363 		    (vm_offset_t)a64pkru.addr, (vm_offset_t)a64pkru.addr +
364 		    a64pkru.len, a64pkru.keyidx, a64pkru.flags);
365 		vm_map_unlock_read(map);
366 		break;
367 
368 	case I386_CLEAR_PKRU:
369 	case AMD64_CLEAR_PKRU:
370 		if (a64pkru.flags != 0 || a64pkru.keyidx != 0) {
371 			error = EINVAL;
372 			break;
373 		}
374 		map = &td->td_proc->p_vmspace->vm_map;
375 		vm_map_lock_read(map);
376 		error = pmap_pkru_clear(PCPU_GET(curpmap),
377 		    (vm_offset_t)a64pkru.addr,
378 		    (vm_offset_t)a64pkru.addr + a64pkru.len);
379 		vm_map_unlock_read(map);
380 		break;
381 
382 	default:
383 		error = EINVAL;
384 		break;
385 	}
386 	return (error);
387 }
388 
389 int
amd64_set_ioperm(struct thread * td,struct i386_ioperm_args * uap)390 amd64_set_ioperm(struct thread *td, struct i386_ioperm_args *uap)
391 {
392 	char *iomap;
393 	struct amd64tss *tssp;
394 	struct system_segment_descriptor *tss_sd;
395 	struct pcb *pcb;
396 	u_int i;
397 	int error;
398 
399 	if ((error = priv_check(td, PRIV_IO)) != 0)
400 		return (error);
401 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
402 		return (error);
403 	if (uap->start > uap->start + uap->length ||
404 	    uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
405 		return (EINVAL);
406 
407 	/*
408 	 * XXX
409 	 * While this is restricted to root, we should probably figure out
410 	 * whether any other driver is using this i/o address, as so not to
411 	 * cause confusion.  This probably requires a global 'usage registry'.
412 	 */
413 	pcb = td->td_pcb;
414 	if (pcb->pcb_tssp == NULL) {
415 		tssp = kmem_malloc(ctob(IOPAGES + 1), M_WAITOK);
416 		pmap_pti_add_kva((vm_offset_t)tssp, (vm_offset_t)tssp +
417 		    ctob(IOPAGES + 1), false);
418 		iomap = (char *)&tssp[1];
419 		memset(iomap, 0xff, IOPERM_BITMAP_SIZE);
420 		critical_enter();
421 		/* Takes care of tss_rsp0. */
422 		memcpy(tssp, PCPU_PTR(common_tss), sizeof(struct amd64tss));
423 		tssp->tss_iobase = sizeof(*tssp);
424 		pcb->pcb_tssp = tssp;
425 		tss_sd = PCPU_GET(tss);
426 		tss_sd->sd_lobase = (u_long)tssp & 0xffffff;
427 		tss_sd->sd_hibase = ((u_long)tssp >> 24) & 0xfffffffffful;
428 		tss_sd->sd_type = SDT_SYSTSS;
429 		ltr(GSEL(GPROC0_SEL, SEL_KPL));
430 		PCPU_SET(tssp, tssp);
431 		critical_exit();
432 	} else
433 		iomap = (char *)&pcb->pcb_tssp[1];
434 	for (i = uap->start; i < uap->start + uap->length; i++) {
435 		if (uap->enable)
436 			iomap[i >> 3] &= ~(1 << (i & 7));
437 		else
438 			iomap[i >> 3] |= (1 << (i & 7));
439 	}
440 	return (error);
441 }
442 
443 int
amd64_get_ioperm(struct thread * td,struct i386_ioperm_args * uap)444 amd64_get_ioperm(struct thread *td, struct i386_ioperm_args *uap)
445 {
446 	int i, state;
447 	char *iomap;
448 
449 	if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
450 		return (EINVAL);
451 	if (td->td_pcb->pcb_tssp == NULL) {
452 		uap->length = 0;
453 		goto done;
454 	}
455 
456 	iomap = (char *)&td->td_pcb->pcb_tssp[1];
457 
458 	i = uap->start;
459 	state = (iomap[i >> 3] >> (i & 7)) & 1;
460 	uap->enable = !state;
461 	uap->length = 1;
462 
463 	for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
464 		if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
465 			break;
466 		uap->length++;
467 	}
468 
469 done:
470 	return (0);
471 }
472 
473 /*
474  * Update the GDT entry pointing to the LDT to point to the LDT of the
475  * current process.
476  */
477 static void
set_user_ldt(struct mdproc * mdp)478 set_user_ldt(struct mdproc *mdp)
479 {
480 
481 	*PCPU_GET(ldt) = mdp->md_ldt_sd;
482 	lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
483 }
484 
485 static void
set_user_ldt_rv(void * arg)486 set_user_ldt_rv(void *arg)
487 {
488 	struct proc *orig, *target;
489 	struct proc_ldt *ldt;
490 
491 	orig = arg;
492 	target = curthread->td_proc;
493 
494 	ldt = (void *)atomic_load_acq_ptr((uintptr_t *)&orig->p_md.md_ldt);
495 	if (target->p_md.md_ldt != ldt)
496 		return;
497 
498 	set_user_ldt(&target->p_md);
499 }
500 
501 struct proc_ldt *
user_ldt_alloc(struct proc * p,int force)502 user_ldt_alloc(struct proc *p, int force)
503 {
504 	struct proc_ldt *pldt, *new_ldt;
505 	struct mdproc *mdp;
506 	struct soft_segment_descriptor sldt;
507 	vm_offset_t sva;
508 	vm_size_t sz;
509 
510 	mtx_assert(&dt_lock, MA_OWNED);
511 	mdp = &p->p_md;
512 	if (!force && mdp->md_ldt != NULL)
513 		return (mdp->md_ldt);
514 	mtx_unlock(&dt_lock);
515 	new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK);
516 	sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
517 	new_ldt->ldt_base = kmem_malloc(sz, M_WAITOK | M_ZERO);
518 	sva = (uintptr_t)new_ldt->ldt_base;
519 	pmap_pti_add_kva(sva, sva + sz, false);
520 	new_ldt->ldt_refcnt = 1;
521 	sldt.ssd_base = sva;
522 	sldt.ssd_limit = sz - 1;
523 	sldt.ssd_type = SDT_SYSLDT;
524 	sldt.ssd_dpl = SEL_KPL;
525 	sldt.ssd_p = 1;
526 	sldt.ssd_long = 0;
527 	sldt.ssd_def32 = 0;
528 	sldt.ssd_gran = 0;
529 	mtx_lock(&dt_lock);
530 	pldt = mdp->md_ldt;
531 	if (pldt != NULL && !force) {
532 		pmap_pti_remove_kva(sva, sva + sz);
533 		kmem_free(new_ldt->ldt_base, sz);
534 		free(new_ldt, M_SUBPROC);
535 		return (pldt);
536 	}
537 
538 	if (pldt != NULL) {
539 		bcopy(pldt->ldt_base, new_ldt->ldt_base, max_ldt_segment *
540 		    sizeof(struct user_segment_descriptor));
541 		user_ldt_derefl(pldt);
542 	}
543 	critical_enter();
544 	ssdtosyssd(&sldt, &p->p_md.md_ldt_sd);
545 	atomic_thread_fence_rel();
546 	mdp->md_ldt = new_ldt;
547 	critical_exit();
548 	smp_rendezvous(NULL, set_user_ldt_rv, NULL, p);
549 
550 	return (mdp->md_ldt);
551 }
552 
553 void
user_ldt_free(struct thread * td)554 user_ldt_free(struct thread *td)
555 {
556 	struct proc *p = td->td_proc;
557 	struct mdproc *mdp = &p->p_md;
558 	struct proc_ldt *pldt;
559 
560 	mtx_lock(&dt_lock);
561 	if ((pldt = mdp->md_ldt) == NULL) {
562 		mtx_unlock(&dt_lock);
563 		return;
564 	}
565 
566 	critical_enter();
567 	mdp->md_ldt = NULL;
568 	atomic_thread_fence_rel();
569 	bzero(&mdp->md_ldt_sd, sizeof(mdp->md_ldt_sd));
570 	if (td == curthread)
571 		lldt(GSEL(GNULL_SEL, SEL_KPL));
572 	critical_exit();
573 	user_ldt_deref(pldt);
574 }
575 
576 static void
user_ldt_derefl(struct proc_ldt * pldt)577 user_ldt_derefl(struct proc_ldt *pldt)
578 {
579 	vm_offset_t sva;
580 	vm_size_t sz;
581 
582 	if (--pldt->ldt_refcnt == 0) {
583 		sva = (vm_offset_t)pldt->ldt_base;
584 		sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
585 		pmap_pti_remove_kva(sva, sva + sz);
586 		kmem_free(pldt->ldt_base, sz);
587 		free(pldt, M_SUBPROC);
588 	}
589 }
590 
591 static void
user_ldt_deref(struct proc_ldt * pldt)592 user_ldt_deref(struct proc_ldt *pldt)
593 {
594 
595 	mtx_assert(&dt_lock, MA_OWNED);
596 	user_ldt_derefl(pldt);
597 	mtx_unlock(&dt_lock);
598 }
599 
600 /*
601  * Note for the authors of compat layers (linux, etc): copyout() in
602  * the function below is not a problem since it presents data in
603  * arch-specific format (i.e. i386-specific in this case), not in
604  * the OS-specific one.
605  */
606 int
amd64_get_ldt(struct thread * td,struct i386_ldt_args * uap)607 amd64_get_ldt(struct thread *td, struct i386_ldt_args *uap)
608 {
609 	struct proc_ldt *pldt;
610 	struct user_segment_descriptor *lp;
611 	uint64_t *data;
612 	u_int i, num;
613 	int error;
614 
615 #ifdef	DEBUG
616 	printf("amd64_get_ldt: start=%u num=%u descs=%p\n",
617 	    uap->start, uap->num, (void *)uap->descs);
618 #endif
619 
620 	pldt = td->td_proc->p_md.md_ldt;
621 	if (pldt == NULL || uap->start >= max_ldt_segment || uap->num == 0) {
622 		td->td_retval[0] = 0;
623 		return (0);
624 	}
625 	num = min(uap->num, max_ldt_segment - uap->start);
626 	lp = &((struct user_segment_descriptor *)(pldt->ldt_base))[uap->start];
627 	data = malloc(num * sizeof(struct user_segment_descriptor), M_TEMP,
628 	    M_WAITOK);
629 	mtx_lock(&dt_lock);
630 	for (i = 0; i < num; i++)
631 		data[i] = ((volatile uint64_t *)lp)[i];
632 	mtx_unlock(&dt_lock);
633 	error = copyout(data, uap->descs, num *
634 	    sizeof(struct user_segment_descriptor));
635 	free(data, M_TEMP);
636 	if (error == 0)
637 		td->td_retval[0] = num;
638 	return (error);
639 }
640 
641 int
amd64_set_ldt(struct thread * td,struct i386_ldt_args * uap,struct user_segment_descriptor * descs)642 amd64_set_ldt(struct thread *td, struct i386_ldt_args *uap,
643     struct user_segment_descriptor *descs)
644 {
645 	struct mdproc *mdp;
646 	struct proc_ldt *pldt;
647 	struct user_segment_descriptor *dp;
648 	struct proc *p;
649 	u_int largest_ld, i;
650 	int error;
651 
652 #ifdef	DEBUG
653 	printf("amd64_set_ldt: start=%u num=%u descs=%p\n",
654 	    uap->start, uap->num, (void *)uap->descs);
655 #endif
656 	mdp = &td->td_proc->p_md;
657 	error = 0;
658 
659 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
660 	p = td->td_proc;
661 	if (descs == NULL) {
662 		/* Free descriptors */
663 		if (uap->start == 0 && uap->num == 0)
664 			uap->num = max_ldt_segment;
665 		if (uap->num == 0)
666 			return (EINVAL);
667 		if ((pldt = mdp->md_ldt) == NULL ||
668 		    uap->start >= max_ldt_segment)
669 			return (0);
670 		largest_ld = uap->start + uap->num;
671 		if (largest_ld > max_ldt_segment)
672 			largest_ld = max_ldt_segment;
673 		if (largest_ld < uap->start)
674 			return (EINVAL);
675 		mtx_lock(&dt_lock);
676 		for (i = uap->start; i < largest_ld; i++)
677 			((volatile uint64_t *)(pldt->ldt_base))[i] = 0;
678 		mtx_unlock(&dt_lock);
679 		return (0);
680 	}
681 
682 	if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) {
683 		/* verify range of descriptors to modify */
684 		largest_ld = uap->start + uap->num;
685 		if (uap->start >= max_ldt_segment ||
686 		    largest_ld > max_ldt_segment ||
687 		    largest_ld < uap->start)
688 			return (EINVAL);
689 	}
690 
691 	/* Check descriptors for access violations */
692 	for (i = 0; i < uap->num; i++) {
693 		dp = &descs[i];
694 
695 		switch (dp->sd_type) {
696 		case SDT_SYSNULL:	/* system null */
697 			dp->sd_p = 0;
698 			break;
699 		case SDT_SYS286TSS:
700 		case SDT_SYSLDT:
701 		case SDT_SYS286BSY:
702 		case SDT_SYS286CGT:
703 		case SDT_SYSTASKGT:
704 		case SDT_SYS286IGT:
705 		case SDT_SYS286TGT:
706 		case SDT_SYSNULL2:
707 		case SDT_SYSTSS:
708 		case SDT_SYSNULL3:
709 		case SDT_SYSBSY:
710 		case SDT_SYSCGT:
711 		case SDT_SYSNULL4:
712 		case SDT_SYSIGT:
713 		case SDT_SYSTGT:
714 			return (EACCES);
715 
716 		/* memory segment types */
717 		case SDT_MEMEC:   /* memory execute only conforming */
718 		case SDT_MEMEAC:  /* memory execute only accessed conforming */
719 		case SDT_MEMERC:  /* memory execute read conforming */
720 		case SDT_MEMERAC: /* memory execute read accessed conforming */
721 			 /* Must be "present" if executable and conforming. */
722 			if (dp->sd_p == 0)
723 				return (EACCES);
724 			break;
725 		case SDT_MEMRO:   /* memory read only */
726 		case SDT_MEMROA:  /* memory read only accessed */
727 		case SDT_MEMRW:   /* memory read write */
728 		case SDT_MEMRWA:  /* memory read write accessed */
729 		case SDT_MEMROD:  /* memory read only expand dwn limit */
730 		case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
731 		case SDT_MEMRWD:  /* memory read write expand dwn limit */
732 		case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
733 		case SDT_MEME:    /* memory execute only */
734 		case SDT_MEMEA:   /* memory execute only accessed */
735 		case SDT_MEMER:   /* memory execute read */
736 		case SDT_MEMERA:  /* memory execute read accessed */
737 			break;
738 		default:
739 			return(EINVAL);
740 		}
741 
742 		/* Only user (ring-3) descriptors may be present. */
743 		if ((dp->sd_p != 0) && (dp->sd_dpl != SEL_UPL))
744 			return (EACCES);
745 	}
746 
747 	if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
748 		/* Allocate a free slot */
749 		mtx_lock(&dt_lock);
750 		pldt = user_ldt_alloc(p, 0);
751 		if (pldt == NULL) {
752 			mtx_unlock(&dt_lock);
753 			return (ENOMEM);
754 		}
755 
756 		/*
757 		 * start scanning a bit up to leave room for NVidia and
758 		 * Wine, which still user the "Blat" method of allocation.
759 		 */
760 		i = 16;
761 		dp = &((struct user_segment_descriptor *)(pldt->ldt_base))[i];
762 		for (; i < max_ldt_segment; ++i, ++dp) {
763 			if (dp->sd_type == SDT_SYSNULL)
764 				break;
765 		}
766 		if (i >= max_ldt_segment) {
767 			mtx_unlock(&dt_lock);
768 			return (ENOSPC);
769 		}
770 		uap->start = i;
771 		error = amd64_set_ldt_data(td, i, 1, descs);
772 		mtx_unlock(&dt_lock);
773 	} else {
774 		largest_ld = uap->start + uap->num;
775 		if (largest_ld > max_ldt_segment)
776 			return (EINVAL);
777 		mtx_lock(&dt_lock);
778 		if (user_ldt_alloc(p, 0) != NULL) {
779 			error = amd64_set_ldt_data(td, uap->start, uap->num,
780 			    descs);
781 		}
782 		mtx_unlock(&dt_lock);
783 	}
784 	if (error == 0)
785 		td->td_retval[0] = uap->start;
786 	return (error);
787 }
788 
789 int
amd64_set_ldt_data(struct thread * td,int start,int num,struct user_segment_descriptor * descs)790 amd64_set_ldt_data(struct thread *td, int start, int num,
791     struct user_segment_descriptor *descs)
792 {
793 	struct mdproc *mdp;
794 	struct proc_ldt *pldt;
795 	volatile uint64_t *dst, *src;
796 	int i;
797 
798 	mtx_assert(&dt_lock, MA_OWNED);
799 
800 	mdp = &td->td_proc->p_md;
801 	pldt = mdp->md_ldt;
802 	dst = (volatile uint64_t *)(pldt->ldt_base);
803 	src = (volatile uint64_t *)descs;
804 	for (i = 0; i < num; i++)
805 		dst[start + i] = src[i];
806 	return (0);
807 }
808