xref: /freebsd/sys/amd64/amd64/sys_machdep.c (revision 06c3fb27)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 #include "opt_capsicum.h"
35 #include "opt_ktrace.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/capsicum.h>
40 #include <sys/kernel.h>
41 #include <sys/ktrace.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/pcpu.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/smp.h>
49 #include <sys/sysproto.h>
50 #include <sys/uio.h>
51 
52 #include <vm/vm.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_kern.h>		/* for kernel_map */
55 #include <vm/vm_map.h>
56 #include <vm/vm_extern.h>
57 
58 #include <machine/frame.h>
59 #include <machine/md_var.h>
60 #include <machine/pcb.h>
61 #include <machine/specialreg.h>
62 #include <machine/sysarch.h>
63 #include <machine/tss.h>
64 #include <machine/vmparam.h>
65 
66 #include <security/audit/audit.h>
67 
68 static void user_ldt_deref(struct proc_ldt *pldt);
69 static void user_ldt_derefl(struct proc_ldt *pldt);
70 
71 #define	MAX_LD		8192
72 
73 int max_ldt_segment = 512;
74 SYSCTL_INT(_machdep, OID_AUTO, max_ldt_segment, CTLFLAG_RDTUN,
75     &max_ldt_segment, 0,
76     "Maximum number of allowed LDT segments in the single address space");
77 
78 static void
79 max_ldt_segment_init(void *arg __unused)
80 {
81 
82 	if (max_ldt_segment <= 0)
83 		max_ldt_segment = 1;
84 	if (max_ldt_segment > MAX_LD)
85 		max_ldt_segment = MAX_LD;
86 }
87 SYSINIT(maxldt, SI_SUB_VM_CONF, SI_ORDER_ANY, max_ldt_segment_init, NULL);
88 
89 #ifndef _SYS_SYSPROTO_H_
90 struct sysarch_args {
91 	int op;
92 	char *parms;
93 };
94 #endif
95 
96 int
97 sysarch_ldt(struct thread *td, struct sysarch_args *uap, int uap_space)
98 {
99 	struct i386_ldt_args *largs, la;
100 	struct user_segment_descriptor *lp;
101 	int error = 0;
102 
103 	/*
104 	 * XXXKIB check that the BSM generation code knows to encode
105 	 * the op argument.
106 	 */
107 	AUDIT_ARG_CMD(uap->op);
108 	if (uap_space == UIO_USERSPACE) {
109 		error = copyin(uap->parms, &la, sizeof(struct i386_ldt_args));
110 		if (error != 0)
111 			return (error);
112 		largs = &la;
113 	} else
114 		largs = (struct i386_ldt_args *)uap->parms;
115 
116 	switch (uap->op) {
117 	case I386_GET_LDT:
118 		error = amd64_get_ldt(td, largs);
119 		break;
120 	case I386_SET_LDT:
121 		if (largs->descs != NULL && largs->num > max_ldt_segment)
122 			return (EINVAL);
123 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
124 		if (largs->descs != NULL) {
125 			lp = malloc(largs->num * sizeof(struct
126 			    user_segment_descriptor), M_TEMP, M_WAITOK);
127 			error = copyin(largs->descs, lp, largs->num *
128 			    sizeof(struct user_segment_descriptor));
129 			if (error == 0)
130 				error = amd64_set_ldt(td, largs, lp);
131 			free(lp, M_TEMP);
132 		} else {
133 			error = amd64_set_ldt(td, largs, NULL);
134 		}
135 		break;
136 	}
137 	return (error);
138 }
139 
140 void
141 update_gdt_gsbase(struct thread *td, uint32_t base)
142 {
143 	struct user_segment_descriptor *sd;
144 
145 	if (td != curthread)
146 		return;
147 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
148 	critical_enter();
149 	sd = PCPU_GET(gs32p);
150 	sd->sd_lobase = base & 0xffffff;
151 	sd->sd_hibase = (base >> 24) & 0xff;
152 	critical_exit();
153 }
154 
155 void
156 update_gdt_fsbase(struct thread *td, uint32_t base)
157 {
158 	struct user_segment_descriptor *sd;
159 
160 	if (td != curthread)
161 		return;
162 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
163 	critical_enter();
164 	sd = PCPU_GET(fs32p);
165 	sd->sd_lobase = base & 0xffffff;
166 	sd->sd_hibase = (base >> 24) & 0xff;
167 	critical_exit();
168 }
169 
170 int
171 sysarch(struct thread *td, struct sysarch_args *uap)
172 {
173 	struct pcb *pcb;
174 	struct vm_map *map;
175 	uint32_t i386base;
176 	uint64_t a64base;
177 	struct i386_ioperm_args iargs;
178 	struct i386_get_xfpustate i386xfpu;
179 	struct i386_set_pkru i386pkru;
180 	struct amd64_get_xfpustate a64xfpu;
181 	struct amd64_set_pkru a64pkru;
182 	int error;
183 
184 #ifdef CAPABILITY_MODE
185 	/*
186 	 * When adding new operations, add a new case statement here to
187 	 * explicitly indicate whether or not the operation is safe to
188 	 * perform in capability mode.
189 	 */
190 	if (IN_CAPABILITY_MODE(td)) {
191 		switch (uap->op) {
192 		case I386_GET_LDT:
193 		case I386_SET_LDT:
194 		case I386_GET_IOPERM:
195 		case I386_GET_FSBASE:
196 		case I386_SET_FSBASE:
197 		case I386_GET_GSBASE:
198 		case I386_SET_GSBASE:
199 		case I386_GET_XFPUSTATE:
200 		case I386_SET_PKRU:
201 		case I386_CLEAR_PKRU:
202 		case AMD64_GET_FSBASE:
203 		case AMD64_SET_FSBASE:
204 		case AMD64_GET_GSBASE:
205 		case AMD64_SET_GSBASE:
206 		case AMD64_GET_XFPUSTATE:
207 		case AMD64_SET_PKRU:
208 		case AMD64_CLEAR_PKRU:
209 			break;
210 
211 		case I386_SET_IOPERM:
212 		default:
213 #ifdef KTRACE
214 			if (KTRPOINT(td, KTR_CAPFAIL))
215 				ktrcapfail(CAPFAIL_SYSCALL, NULL, NULL);
216 #endif
217 			return (ECAPMODE);
218 		}
219 	}
220 #endif
221 
222 	if (uap->op == I386_GET_LDT || uap->op == I386_SET_LDT)
223 		return (sysarch_ldt(td, uap, UIO_USERSPACE));
224 
225 	error = 0;
226 	pcb = td->td_pcb;
227 
228 	/*
229 	 * XXXKIB check that the BSM generation code knows to encode
230 	 * the op argument.
231 	 */
232 	AUDIT_ARG_CMD(uap->op);
233 	switch (uap->op) {
234 	case I386_GET_IOPERM:
235 	case I386_SET_IOPERM:
236 		if ((error = copyin(uap->parms, &iargs,
237 		    sizeof(struct i386_ioperm_args))) != 0)
238 			return (error);
239 		break;
240 	case I386_GET_XFPUSTATE:
241 		if ((error = copyin(uap->parms, &i386xfpu,
242 		    sizeof(struct i386_get_xfpustate))) != 0)
243 			return (error);
244 		a64xfpu.addr = (void *)(uintptr_t)i386xfpu.addr;
245 		a64xfpu.len = i386xfpu.len;
246 		break;
247 	case I386_SET_PKRU:
248 	case I386_CLEAR_PKRU:
249 		if ((error = copyin(uap->parms, &i386pkru,
250 		    sizeof(struct i386_set_pkru))) != 0)
251 			return (error);
252 		a64pkru.addr = (void *)(uintptr_t)i386pkru.addr;
253 		a64pkru.len = i386pkru.len;
254 		a64pkru.keyidx = i386pkru.keyidx;
255 		a64pkru.flags = i386pkru.flags;
256 		break;
257 	case AMD64_GET_XFPUSTATE:
258 		if ((error = copyin(uap->parms, &a64xfpu,
259 		    sizeof(struct amd64_get_xfpustate))) != 0)
260 			return (error);
261 		break;
262 	case AMD64_SET_PKRU:
263 	case AMD64_CLEAR_PKRU:
264 		if ((error = copyin(uap->parms, &a64pkru,
265 		    sizeof(struct amd64_set_pkru))) != 0)
266 			return (error);
267 		break;
268 	default:
269 		break;
270 	}
271 
272 	switch (uap->op) {
273 	case I386_GET_IOPERM:
274 		error = amd64_get_ioperm(td, &iargs);
275 		if (error == 0)
276 			error = copyout(&iargs, uap->parms,
277 			    sizeof(struct i386_ioperm_args));
278 		break;
279 	case I386_SET_IOPERM:
280 		error = amd64_set_ioperm(td, &iargs);
281 		break;
282 	case I386_GET_FSBASE:
283 		update_pcb_bases(pcb);
284 		i386base = pcb->pcb_fsbase;
285 		error = copyout(&i386base, uap->parms, sizeof(i386base));
286 		break;
287 	case I386_SET_FSBASE:
288 		error = copyin(uap->parms, &i386base, sizeof(i386base));
289 		if (!error) {
290 			set_pcb_flags(pcb, PCB_FULL_IRET);
291 			pcb->pcb_fsbase = i386base;
292 			td->td_frame->tf_fs = _ufssel;
293 			update_gdt_fsbase(td, i386base);
294 		}
295 		break;
296 	case I386_GET_GSBASE:
297 		update_pcb_bases(pcb);
298 		i386base = pcb->pcb_gsbase;
299 		error = copyout(&i386base, uap->parms, sizeof(i386base));
300 		break;
301 	case I386_SET_GSBASE:
302 		error = copyin(uap->parms, &i386base, sizeof(i386base));
303 		if (!error) {
304 			set_pcb_flags(pcb, PCB_FULL_IRET);
305 			pcb->pcb_gsbase = i386base;
306 			td->td_frame->tf_gs = _ugssel;
307 			update_gdt_gsbase(td, i386base);
308 		}
309 		break;
310 	case AMD64_GET_FSBASE:
311 		update_pcb_bases(pcb);
312 		error = copyout(&pcb->pcb_fsbase, uap->parms,
313 		    sizeof(pcb->pcb_fsbase));
314 		break;
315 
316 	case AMD64_SET_FSBASE:
317 		error = copyin(uap->parms, &a64base, sizeof(a64base));
318 		if (!error) {
319 			if (a64base < VM_MAXUSER_ADDRESS) {
320 				set_pcb_flags(pcb, PCB_FULL_IRET);
321 				pcb->pcb_fsbase = a64base;
322 				td->td_frame->tf_fs = _ufssel;
323 			} else
324 				error = EINVAL;
325 		}
326 		break;
327 
328 	case AMD64_GET_GSBASE:
329 		update_pcb_bases(pcb);
330 		error = copyout(&pcb->pcb_gsbase, uap->parms,
331 		    sizeof(pcb->pcb_gsbase));
332 		break;
333 
334 	case AMD64_SET_GSBASE:
335 		error = copyin(uap->parms, &a64base, sizeof(a64base));
336 		if (!error) {
337 			if (a64base < VM_MAXUSER_ADDRESS) {
338 				set_pcb_flags(pcb, PCB_FULL_IRET);
339 				pcb->pcb_gsbase = a64base;
340 				td->td_frame->tf_gs = _ugssel;
341 			} else
342 				error = EINVAL;
343 		}
344 		break;
345 
346 	case I386_GET_XFPUSTATE:
347 	case AMD64_GET_XFPUSTATE:
348 		if (a64xfpu.len > cpu_max_ext_state_size -
349 		    sizeof(struct savefpu))
350 			return (EINVAL);
351 		fpugetregs(td);
352 		error = copyout((char *)(get_pcb_user_save_td(td) + 1),
353 		    a64xfpu.addr, a64xfpu.len);
354 		break;
355 
356 	case I386_SET_PKRU:
357 	case AMD64_SET_PKRU:
358 		/*
359 		 * Read-lock the map to synchronize with parallel
360 		 * pmap_vmspace_copy() on fork.
361 		 */
362 		map = &td->td_proc->p_vmspace->vm_map;
363 		vm_map_lock_read(map);
364 		error = pmap_pkru_set(PCPU_GET(curpmap),
365 		    (vm_offset_t)a64pkru.addr, (vm_offset_t)a64pkru.addr +
366 		    a64pkru.len, a64pkru.keyidx, a64pkru.flags);
367 		vm_map_unlock_read(map);
368 		break;
369 
370 	case I386_CLEAR_PKRU:
371 	case AMD64_CLEAR_PKRU:
372 		if (a64pkru.flags != 0 || a64pkru.keyidx != 0) {
373 			error = EINVAL;
374 			break;
375 		}
376 		map = &td->td_proc->p_vmspace->vm_map;
377 		vm_map_lock_read(map);
378 		error = pmap_pkru_clear(PCPU_GET(curpmap),
379 		    (vm_offset_t)a64pkru.addr,
380 		    (vm_offset_t)a64pkru.addr + a64pkru.len);
381 		vm_map_unlock_read(map);
382 		break;
383 
384 	default:
385 		error = EINVAL;
386 		break;
387 	}
388 	return (error);
389 }
390 
391 int
392 amd64_set_ioperm(struct thread *td, struct i386_ioperm_args *uap)
393 {
394 	char *iomap;
395 	struct amd64tss *tssp;
396 	struct system_segment_descriptor *tss_sd;
397 	struct pcb *pcb;
398 	u_int i;
399 	int error;
400 
401 	if ((error = priv_check(td, PRIV_IO)) != 0)
402 		return (error);
403 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
404 		return (error);
405 	if (uap->start > uap->start + uap->length ||
406 	    uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
407 		return (EINVAL);
408 
409 	/*
410 	 * XXX
411 	 * While this is restricted to root, we should probably figure out
412 	 * whether any other driver is using this i/o address, as so not to
413 	 * cause confusion.  This probably requires a global 'usage registry'.
414 	 */
415 	pcb = td->td_pcb;
416 	if (pcb->pcb_tssp == NULL) {
417 		tssp = kmem_malloc(ctob(IOPAGES + 1), M_WAITOK);
418 		pmap_pti_add_kva((vm_offset_t)tssp, (vm_offset_t)tssp +
419 		    ctob(IOPAGES + 1), false);
420 		iomap = (char *)&tssp[1];
421 		memset(iomap, 0xff, IOPERM_BITMAP_SIZE);
422 		critical_enter();
423 		/* Takes care of tss_rsp0. */
424 		memcpy(tssp, PCPU_PTR(common_tss), sizeof(struct amd64tss));
425 		tssp->tss_iobase = sizeof(*tssp);
426 		pcb->pcb_tssp = tssp;
427 		tss_sd = PCPU_GET(tss);
428 		tss_sd->sd_lobase = (u_long)tssp & 0xffffff;
429 		tss_sd->sd_hibase = ((u_long)tssp >> 24) & 0xfffffffffful;
430 		tss_sd->sd_type = SDT_SYSTSS;
431 		ltr(GSEL(GPROC0_SEL, SEL_KPL));
432 		PCPU_SET(tssp, tssp);
433 		critical_exit();
434 	} else
435 		iomap = (char *)&pcb->pcb_tssp[1];
436 	for (i = uap->start; i < uap->start + uap->length; i++) {
437 		if (uap->enable)
438 			iomap[i >> 3] &= ~(1 << (i & 7));
439 		else
440 			iomap[i >> 3] |= (1 << (i & 7));
441 	}
442 	return (error);
443 }
444 
445 int
446 amd64_get_ioperm(struct thread *td, struct i386_ioperm_args *uap)
447 {
448 	int i, state;
449 	char *iomap;
450 
451 	if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
452 		return (EINVAL);
453 	if (td->td_pcb->pcb_tssp == NULL) {
454 		uap->length = 0;
455 		goto done;
456 	}
457 
458 	iomap = (char *)&td->td_pcb->pcb_tssp[1];
459 
460 	i = uap->start;
461 	state = (iomap[i >> 3] >> (i & 7)) & 1;
462 	uap->enable = !state;
463 	uap->length = 1;
464 
465 	for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
466 		if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
467 			break;
468 		uap->length++;
469 	}
470 
471 done:
472 	return (0);
473 }
474 
475 /*
476  * Update the GDT entry pointing to the LDT to point to the LDT of the
477  * current process.
478  */
479 static void
480 set_user_ldt(struct mdproc *mdp)
481 {
482 
483 	*PCPU_GET(ldt) = mdp->md_ldt_sd;
484 	lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
485 }
486 
487 static void
488 set_user_ldt_rv(void *arg)
489 {
490 	struct proc *orig, *target;
491 	struct proc_ldt *ldt;
492 
493 	orig = arg;
494 	target = curthread->td_proc;
495 
496 	ldt = (void *)atomic_load_acq_ptr((uintptr_t *)&orig->p_md.md_ldt);
497 	if (target->p_md.md_ldt != ldt)
498 		return;
499 
500 	set_user_ldt(&target->p_md);
501 }
502 
503 struct proc_ldt *
504 user_ldt_alloc(struct proc *p, int force)
505 {
506 	struct proc_ldt *pldt, *new_ldt;
507 	struct mdproc *mdp;
508 	struct soft_segment_descriptor sldt;
509 	vm_offset_t sva;
510 	vm_size_t sz;
511 
512 	mtx_assert(&dt_lock, MA_OWNED);
513 	mdp = &p->p_md;
514 	if (!force && mdp->md_ldt != NULL)
515 		return (mdp->md_ldt);
516 	mtx_unlock(&dt_lock);
517 	new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK);
518 	sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
519 	new_ldt->ldt_base = kmem_malloc(sz, M_WAITOK | M_ZERO);
520 	sva = (uintptr_t)new_ldt->ldt_base;
521 	pmap_pti_add_kva(sva, sva + sz, false);
522 	new_ldt->ldt_refcnt = 1;
523 	sldt.ssd_base = sva;
524 	sldt.ssd_limit = sz - 1;
525 	sldt.ssd_type = SDT_SYSLDT;
526 	sldt.ssd_dpl = SEL_KPL;
527 	sldt.ssd_p = 1;
528 	sldt.ssd_long = 0;
529 	sldt.ssd_def32 = 0;
530 	sldt.ssd_gran = 0;
531 	mtx_lock(&dt_lock);
532 	pldt = mdp->md_ldt;
533 	if (pldt != NULL && !force) {
534 		pmap_pti_remove_kva(sva, sva + sz);
535 		kmem_free(new_ldt->ldt_base, sz);
536 		free(new_ldt, M_SUBPROC);
537 		return (pldt);
538 	}
539 
540 	if (pldt != NULL) {
541 		bcopy(pldt->ldt_base, new_ldt->ldt_base, max_ldt_segment *
542 		    sizeof(struct user_segment_descriptor));
543 		user_ldt_derefl(pldt);
544 	}
545 	critical_enter();
546 	ssdtosyssd(&sldt, &p->p_md.md_ldt_sd);
547 	atomic_thread_fence_rel();
548 	mdp->md_ldt = new_ldt;
549 	critical_exit();
550 	smp_rendezvous(NULL, set_user_ldt_rv, NULL, p);
551 
552 	return (mdp->md_ldt);
553 }
554 
555 void
556 user_ldt_free(struct thread *td)
557 {
558 	struct proc *p = td->td_proc;
559 	struct mdproc *mdp = &p->p_md;
560 	struct proc_ldt *pldt;
561 
562 	mtx_lock(&dt_lock);
563 	if ((pldt = mdp->md_ldt) == NULL) {
564 		mtx_unlock(&dt_lock);
565 		return;
566 	}
567 
568 	critical_enter();
569 	mdp->md_ldt = NULL;
570 	atomic_thread_fence_rel();
571 	bzero(&mdp->md_ldt_sd, sizeof(mdp->md_ldt_sd));
572 	if (td == curthread)
573 		lldt(GSEL(GNULL_SEL, SEL_KPL));
574 	critical_exit();
575 	user_ldt_deref(pldt);
576 }
577 
578 static void
579 user_ldt_derefl(struct proc_ldt *pldt)
580 {
581 	vm_offset_t sva;
582 	vm_size_t sz;
583 
584 	if (--pldt->ldt_refcnt == 0) {
585 		sva = (vm_offset_t)pldt->ldt_base;
586 		sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
587 		pmap_pti_remove_kva(sva, sva + sz);
588 		kmem_free(pldt->ldt_base, sz);
589 		free(pldt, M_SUBPROC);
590 	}
591 }
592 
593 static void
594 user_ldt_deref(struct proc_ldt *pldt)
595 {
596 
597 	mtx_assert(&dt_lock, MA_OWNED);
598 	user_ldt_derefl(pldt);
599 	mtx_unlock(&dt_lock);
600 }
601 
602 /*
603  * Note for the authors of compat layers (linux, etc): copyout() in
604  * the function below is not a problem since it presents data in
605  * arch-specific format (i.e. i386-specific in this case), not in
606  * the OS-specific one.
607  */
608 int
609 amd64_get_ldt(struct thread *td, struct i386_ldt_args *uap)
610 {
611 	struct proc_ldt *pldt;
612 	struct user_segment_descriptor *lp;
613 	uint64_t *data;
614 	u_int i, num;
615 	int error;
616 
617 #ifdef	DEBUG
618 	printf("amd64_get_ldt: start=%u num=%u descs=%p\n",
619 	    uap->start, uap->num, (void *)uap->descs);
620 #endif
621 
622 	pldt = td->td_proc->p_md.md_ldt;
623 	if (pldt == NULL || uap->start >= max_ldt_segment || uap->num == 0) {
624 		td->td_retval[0] = 0;
625 		return (0);
626 	}
627 	num = min(uap->num, max_ldt_segment - uap->start);
628 	lp = &((struct user_segment_descriptor *)(pldt->ldt_base))[uap->start];
629 	data = malloc(num * sizeof(struct user_segment_descriptor), M_TEMP,
630 	    M_WAITOK);
631 	mtx_lock(&dt_lock);
632 	for (i = 0; i < num; i++)
633 		data[i] = ((volatile uint64_t *)lp)[i];
634 	mtx_unlock(&dt_lock);
635 	error = copyout(data, uap->descs, num *
636 	    sizeof(struct user_segment_descriptor));
637 	free(data, M_TEMP);
638 	if (error == 0)
639 		td->td_retval[0] = num;
640 	return (error);
641 }
642 
643 int
644 amd64_set_ldt(struct thread *td, struct i386_ldt_args *uap,
645     struct user_segment_descriptor *descs)
646 {
647 	struct mdproc *mdp;
648 	struct proc_ldt *pldt;
649 	struct user_segment_descriptor *dp;
650 	struct proc *p;
651 	u_int largest_ld, i;
652 	int error;
653 
654 #ifdef	DEBUG
655 	printf("amd64_set_ldt: start=%u num=%u descs=%p\n",
656 	    uap->start, uap->num, (void *)uap->descs);
657 #endif
658 	mdp = &td->td_proc->p_md;
659 	error = 0;
660 
661 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
662 	p = td->td_proc;
663 	if (descs == NULL) {
664 		/* Free descriptors */
665 		if (uap->start == 0 && uap->num == 0)
666 			uap->num = max_ldt_segment;
667 		if (uap->num == 0)
668 			return (EINVAL);
669 		if ((pldt = mdp->md_ldt) == NULL ||
670 		    uap->start >= max_ldt_segment)
671 			return (0);
672 		largest_ld = uap->start + uap->num;
673 		if (largest_ld > max_ldt_segment)
674 			largest_ld = max_ldt_segment;
675 		if (largest_ld < uap->start)
676 			return (EINVAL);
677 		mtx_lock(&dt_lock);
678 		for (i = uap->start; i < largest_ld; i++)
679 			((volatile uint64_t *)(pldt->ldt_base))[i] = 0;
680 		mtx_unlock(&dt_lock);
681 		return (0);
682 	}
683 
684 	if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) {
685 		/* verify range of descriptors to modify */
686 		largest_ld = uap->start + uap->num;
687 		if (uap->start >= max_ldt_segment ||
688 		    largest_ld > max_ldt_segment ||
689 		    largest_ld < uap->start)
690 			return (EINVAL);
691 	}
692 
693 	/* Check descriptors for access violations */
694 	for (i = 0; i < uap->num; i++) {
695 		dp = &descs[i];
696 
697 		switch (dp->sd_type) {
698 		case SDT_SYSNULL:	/* system null */
699 			dp->sd_p = 0;
700 			break;
701 		case SDT_SYS286TSS:
702 		case SDT_SYSLDT:
703 		case SDT_SYS286BSY:
704 		case SDT_SYS286CGT:
705 		case SDT_SYSTASKGT:
706 		case SDT_SYS286IGT:
707 		case SDT_SYS286TGT:
708 		case SDT_SYSNULL2:
709 		case SDT_SYSTSS:
710 		case SDT_SYSNULL3:
711 		case SDT_SYSBSY:
712 		case SDT_SYSCGT:
713 		case SDT_SYSNULL4:
714 		case SDT_SYSIGT:
715 		case SDT_SYSTGT:
716 			return (EACCES);
717 
718 		/* memory segment types */
719 		case SDT_MEMEC:   /* memory execute only conforming */
720 		case SDT_MEMEAC:  /* memory execute only accessed conforming */
721 		case SDT_MEMERC:  /* memory execute read conforming */
722 		case SDT_MEMERAC: /* memory execute read accessed conforming */
723 			 /* Must be "present" if executable and conforming. */
724 			if (dp->sd_p == 0)
725 				return (EACCES);
726 			break;
727 		case SDT_MEMRO:   /* memory read only */
728 		case SDT_MEMROA:  /* memory read only accessed */
729 		case SDT_MEMRW:   /* memory read write */
730 		case SDT_MEMRWA:  /* memory read write accessed */
731 		case SDT_MEMROD:  /* memory read only expand dwn limit */
732 		case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
733 		case SDT_MEMRWD:  /* memory read write expand dwn limit */
734 		case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
735 		case SDT_MEME:    /* memory execute only */
736 		case SDT_MEMEA:   /* memory execute only accessed */
737 		case SDT_MEMER:   /* memory execute read */
738 		case SDT_MEMERA:  /* memory execute read accessed */
739 			break;
740 		default:
741 			return(EINVAL);
742 		}
743 
744 		/* Only user (ring-3) descriptors may be present. */
745 		if ((dp->sd_p != 0) && (dp->sd_dpl != SEL_UPL))
746 			return (EACCES);
747 	}
748 
749 	if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
750 		/* Allocate a free slot */
751 		mtx_lock(&dt_lock);
752 		pldt = user_ldt_alloc(p, 0);
753 		if (pldt == NULL) {
754 			mtx_unlock(&dt_lock);
755 			return (ENOMEM);
756 		}
757 
758 		/*
759 		 * start scanning a bit up to leave room for NVidia and
760 		 * Wine, which still user the "Blat" method of allocation.
761 		 */
762 		i = 16;
763 		dp = &((struct user_segment_descriptor *)(pldt->ldt_base))[i];
764 		for (; i < max_ldt_segment; ++i, ++dp) {
765 			if (dp->sd_type == SDT_SYSNULL)
766 				break;
767 		}
768 		if (i >= max_ldt_segment) {
769 			mtx_unlock(&dt_lock);
770 			return (ENOSPC);
771 		}
772 		uap->start = i;
773 		error = amd64_set_ldt_data(td, i, 1, descs);
774 		mtx_unlock(&dt_lock);
775 	} else {
776 		largest_ld = uap->start + uap->num;
777 		if (largest_ld > max_ldt_segment)
778 			return (EINVAL);
779 		mtx_lock(&dt_lock);
780 		if (user_ldt_alloc(p, 0) != NULL) {
781 			error = amd64_set_ldt_data(td, uap->start, uap->num,
782 			    descs);
783 		}
784 		mtx_unlock(&dt_lock);
785 	}
786 	if (error == 0)
787 		td->td_retval[0] = uap->start;
788 	return (error);
789 }
790 
791 int
792 amd64_set_ldt_data(struct thread *td, int start, int num,
793     struct user_segment_descriptor *descs)
794 {
795 	struct mdproc *mdp;
796 	struct proc_ldt *pldt;
797 	volatile uint64_t *dst, *src;
798 	int i;
799 
800 	mtx_assert(&dt_lock, MA_OWNED);
801 
802 	mdp = &td->td_proc->p_md;
803 	pldt = mdp->md_ldt;
804 	dst = (volatile uint64_t *)(pldt->ldt_base);
805 	src = (volatile uint64_t *)descs;
806 	for (i = 0; i < num; i++)
807 		dst[start + i] = src[i];
808 	return (0);
809 }
810