xref: /freebsd/sys/amd64/amd64/trap.c (revision 130bad21)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 /*
42  * AMD64 Trap and System call handling
43  */
44 
45 #include "opt_clock.h"
46 #include "opt_cpu.h"
47 #include "opt_hwpmc_hooks.h"
48 #include "opt_isa.h"
49 #include "opt_kdb.h"
50 
51 #include <sys/param.h>
52 #include <sys/asan.h>
53 #include <sys/bus.h>
54 #include <sys/systm.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/kdb.h>
58 #include <sys/kernel.h>
59 #include <sys/ktr.h>
60 #include <sys/lock.h>
61 #include <sys/msan.h>
62 #include <sys/mutex.h>
63 #include <sys/resourcevar.h>
64 #include <sys/signalvar.h>
65 #include <sys/syscall.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysent.h>
68 #include <sys/uio.h>
69 #include <sys/vmmeter.h>
70 #ifdef HWPMC_HOOKS
71 #include <sys/pmckern.h>
72 PMC_SOFT_DEFINE( , , page_fault, all);
73 PMC_SOFT_DEFINE( , , page_fault, read);
74 PMC_SOFT_DEFINE( , , page_fault, write);
75 #endif
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_extern.h>
84 
85 #include <machine/cpu.h>
86 #include <machine/intr_machdep.h>
87 #include <x86/mca.h>
88 #include <machine/md_var.h>
89 #include <machine/pcb.h>
90 #ifdef SMP
91 #include <machine/smp.h>
92 #endif
93 #include <machine/stack.h>
94 #include <machine/trap.h>
95 #include <machine/tss.h>
96 
97 #ifdef KDTRACE_HOOKS
98 #include <sys/dtrace_bsd.h>
99 #endif
100 
101 extern inthand_t IDTVEC(bpt), IDTVEC(bpt_pti), IDTVEC(dbg),
102     IDTVEC(fast_syscall), IDTVEC(fast_syscall_pti), IDTVEC(fast_syscall32),
103     IDTVEC(int0x80_syscall_pti), IDTVEC(int0x80_syscall);
104 
105 void __noinline trap(struct trapframe *frame);
106 void trap_check(struct trapframe *frame);
107 void dblfault_handler(struct trapframe *frame);
108 
109 static int trap_pfault(struct trapframe *, bool, int *, int *);
110 static void trap_fatal(struct trapframe *, vm_offset_t);
111 #ifdef KDTRACE_HOOKS
112 static bool trap_user_dtrace(struct trapframe *,
113     int (**hook)(struct trapframe *));
114 #endif
115 
116 static const char UNKNOWN[] = "unknown";
117 static const char *const trap_msg[] = {
118 	[0] =			UNKNOWN,			/* unused */
119 	[T_PRIVINFLT] =		"privileged instruction fault",
120 	[2] =			UNKNOWN,			/* unused */
121 	[T_BPTFLT] =		"breakpoint instruction fault",
122 	[4] =			UNKNOWN,			/* unused */
123 	[5] =			UNKNOWN,			/* unused */
124 	[T_ARITHTRAP] =		"arithmetic trap",
125 	[7] =			UNKNOWN,			/* unused */
126 	[8] =			UNKNOWN,			/* unused */
127 	[T_PROTFLT] =		"general protection fault",
128 	[T_TRCTRAP] =		"debug exception",
129 	[11] =			UNKNOWN,			/* unused */
130 	[T_PAGEFLT] =		"page fault",
131 	[13] =			UNKNOWN,			/* unused */
132 	[T_ALIGNFLT] =		"alignment fault",
133 	[15] =			UNKNOWN,			/* unused */
134 	[16] =			UNKNOWN,			/* unused */
135 	[17] =			UNKNOWN,			/* unused */
136 	[T_DIVIDE] =		"integer divide fault",
137 	[T_NMI] =		"non-maskable interrupt trap",
138 	[T_OFLOW] =		"overflow trap",
139 	[T_BOUND] =		"FPU bounds check fault",
140 	[T_DNA] =		"FPU device not available",
141 	[T_DOUBLEFLT] =		"double fault",
142 	[T_FPOPFLT] =		"FPU operand fetch fault",
143 	[T_TSSFLT] =		"invalid TSS fault",
144 	[T_SEGNPFLT] =		"segment not present fault",
145 	[T_STKFLT] =		"stack fault",
146 	[T_MCHK] =		"machine check trap",
147 	[T_XMMFLT] =		"SIMD floating-point exception",
148 	[T_RESERVED] =		"reserved (unknown) fault",
149 	[31] =			UNKNOWN,			/* reserved */
150 	[T_DTRACE_RET] =	"DTrace pid return trap",
151 };
152 
153 static int uprintf_signal;
154 SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RWTUN,
155     &uprintf_signal, 0,
156     "Print debugging information on trap signal to ctty");
157 
158 /*
159  * Control L1D flush on return from NMI.
160  *
161  * Tunable  can be set to the following values:
162  * 0 - only enable flush on return from NMI if required by vmm.ko (default)
163  * >1 - always flush on return from NMI.
164  *
165  * Post-boot, the sysctl indicates if flushing is currently enabled.
166  */
167 int nmi_flush_l1d_sw;
168 SYSCTL_INT(_machdep, OID_AUTO, nmi_flush_l1d_sw, CTLFLAG_RWTUN,
169     &nmi_flush_l1d_sw, 0,
170     "Flush L1 Data Cache on NMI exit, software bhyve L1TF mitigation assist");
171 
172 /*
173  * Table of handlers for various segment load faults.
174  */
175 static const struct {
176 	uintptr_t	faddr;
177 	uintptr_t	fhandler;
178 } sfhandlers[] = {
179 	{
180 		.faddr = (uintptr_t)ld_ds,
181 		.fhandler = (uintptr_t)ds_load_fault,
182 	},
183 	{
184 		.faddr = (uintptr_t)ld_es,
185 		.fhandler = (uintptr_t)es_load_fault,
186 	},
187 	{
188 		.faddr = (uintptr_t)ld_fs,
189 		.fhandler = (uintptr_t)fs_load_fault,
190 	},
191 	{
192 		.faddr = (uintptr_t)ld_gs,
193 		.fhandler = (uintptr_t)gs_load_fault,
194 	},
195 	{
196 		.faddr = (uintptr_t)ld_gsbase,
197 		.fhandler = (uintptr_t)gsbase_load_fault
198 	},
199 	{
200 		.faddr = (uintptr_t)ld_fsbase,
201 		.fhandler = (uintptr_t)fsbase_load_fault,
202 	},
203 };
204 
205 /*
206  * Exception, fault, and trap interface to the FreeBSD kernel.
207  * This common code is called from assembly language IDT gate entry
208  * routines that prepare a suitable stack frame, and restore this
209  * frame after the exception has been processed.
210  */
211 
212 void
trap(struct trapframe * frame)213 trap(struct trapframe *frame)
214 {
215 	ksiginfo_t ksi;
216 	struct thread *td;
217 	struct proc *p;
218 	register_t addr, dr6;
219 	size_t i;
220 	int pf, signo, ucode;
221 	u_int type;
222 
223 	td = curthread;
224 	p = td->td_proc;
225 	dr6 = 0;
226 
227 	kasan_mark(frame, sizeof(*frame), sizeof(*frame), 0);
228 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
229 
230 	VM_CNT_INC(v_trap);
231 	type = frame->tf_trapno;
232 
233 #ifdef SMP
234 	/* Handler for NMI IPIs used for stopping CPUs. */
235 	if (type == T_NMI && ipi_nmi_handler() == 0)
236 		return;
237 #endif
238 
239 #ifdef KDB
240 	if (kdb_active) {
241 		kdb_reenter();
242 		return;
243 	}
244 #endif
245 
246 	if (type == T_RESERVED) {
247 		trap_fatal(frame, 0);
248 		return;
249 	}
250 
251 	if (type == T_NMI) {
252 #ifdef HWPMC_HOOKS
253 		/*
254 		 * CPU PMCs interrupt using an NMI.  If the PMC module is
255 		 * active, pass the 'rip' value to the PMC module's interrupt
256 		 * handler.  A non-zero return value from the handler means that
257 		 * the NMI was consumed by it and we can return immediately.
258 		 */
259 		if (pmc_intr != NULL &&
260 		    (*pmc_intr)(frame) != 0)
261 			return;
262 #endif
263 	}
264 
265 	if ((frame->tf_rflags & PSL_I) == 0) {
266 		/*
267 		 * Buggy application or kernel code has disabled
268 		 * interrupts and then trapped.  Enabling interrupts
269 		 * now is wrong, but it is better than running with
270 		 * interrupts disabled until they are accidentally
271 		 * enabled later.
272 		 */
273 		if (TRAPF_USERMODE(frame)) {
274 			uprintf(
275 			    "pid %ld (%s): trap %d (%s) "
276 			    "with interrupts disabled\n",
277 			    (long)curproc->p_pid, curthread->td_name, type,
278 			    trap_msg[type]);
279 		} else {
280 			switch (type) {
281 			case T_NMI:
282 			case T_BPTFLT:
283 			case T_TRCTRAP:
284 			case T_PROTFLT:
285 			case T_SEGNPFLT:
286 			case T_STKFLT:
287 				break;
288 			default:
289 				printf(
290 				    "kernel trap %d with interrupts disabled\n",
291 				    type);
292 
293 				/*
294 				 * We shouldn't enable interrupts while holding a
295 				 * spin lock.
296 				 */
297 				if (td->td_md.md_spinlock_count == 0)
298 					enable_intr();
299 			}
300 		}
301 	}
302 
303 	if (TRAPF_USERMODE(frame)) {
304 		/* user trap */
305 
306 		td->td_pticks = 0;
307 		td->td_frame = frame;
308 		addr = frame->tf_rip;
309 		if (td->td_cowgen != atomic_load_int(&p->p_cowgen))
310 			thread_cow_update(td);
311 
312 		switch (type) {
313 		case T_PRIVINFLT:	/* privileged instruction fault */
314 			signo = SIGILL;
315 			ucode = ILL_PRVOPC;
316 			break;
317 
318 		case T_BPTFLT:		/* bpt instruction fault */
319 #ifdef KDTRACE_HOOKS
320 			if (trap_user_dtrace(frame, &dtrace_pid_probe_ptr))
321 				return;
322 #else
323 			enable_intr();
324 #endif
325 			signo = SIGTRAP;
326 			ucode = TRAP_BRKPT;
327 			break;
328 
329 		case T_TRCTRAP:		/* debug exception */
330 			enable_intr();
331 			signo = SIGTRAP;
332 			ucode = TRAP_TRACE;
333 			dr6 = rdr6();
334 			if ((dr6 & DBREG_DR6_BS) != 0) {
335 				PROC_LOCK(td->td_proc);
336 				if ((td->td_dbgflags & TDB_STEP) != 0) {
337 					td->td_frame->tf_rflags &= ~PSL_T;
338 					td->td_dbgflags &= ~TDB_STEP;
339 				}
340 				PROC_UNLOCK(td->td_proc);
341 			}
342 			break;
343 
344 		case T_ARITHTRAP:	/* arithmetic trap */
345 			ucode = fputrap_x87();
346 			if (ucode == -1)
347 				return;
348 			signo = SIGFPE;
349 			break;
350 
351 		case T_PROTFLT:		/* general protection fault */
352 			signo = SIGBUS;
353 			ucode = BUS_OBJERR;
354 			break;
355 		case T_STKFLT:		/* stack fault */
356 		case T_SEGNPFLT:	/* segment not present fault */
357 			signo = SIGBUS;
358 			ucode = BUS_ADRERR;
359 			break;
360 		case T_TSSFLT:		/* invalid TSS fault */
361 			signo = SIGBUS;
362 			ucode = BUS_OBJERR;
363 			break;
364 		case T_ALIGNFLT:
365 			signo = SIGBUS;
366 			ucode = BUS_ADRALN;
367 			break;
368 		case T_DOUBLEFLT:	/* double fault */
369 		default:
370 			signo = SIGBUS;
371 			ucode = BUS_OBJERR;
372 			break;
373 
374 		case T_PAGEFLT:		/* page fault */
375 			/*
376 			 * Can emulator handle this trap?
377 			 */
378 			if (*p->p_sysent->sv_trap != NULL &&
379 			    (*p->p_sysent->sv_trap)(td) == 0)
380 				return;
381 
382 			pf = trap_pfault(frame, true, &signo, &ucode);
383 			if (pf == -1)
384 				return;
385 			if (pf == 0)
386 				goto userret;
387 			addr = frame->tf_addr;
388 			break;
389 
390 		case T_DIVIDE:		/* integer divide fault */
391 			ucode = FPE_INTDIV;
392 			signo = SIGFPE;
393 			break;
394 
395 		case T_NMI:
396 			nmi_handle_intr(type, frame);
397 			return;
398 
399 		case T_OFLOW:		/* integer overflow fault */
400 			ucode = FPE_INTOVF;
401 			signo = SIGFPE;
402 			break;
403 
404 		case T_BOUND:		/* bounds check fault */
405 			ucode = FPE_FLTSUB;
406 			signo = SIGFPE;
407 			break;
408 
409 		case T_DNA:
410 			/* transparent fault (due to context switch "late") */
411 			KASSERT(PCB_USER_FPU(td->td_pcb),
412 			    ("kernel FPU ctx has leaked"));
413 			fpudna();
414 			return;
415 
416 		case T_FPOPFLT:		/* FPU operand fetch fault */
417 			ucode = ILL_COPROC;
418 			signo = SIGILL;
419 			break;
420 
421 		case T_XMMFLT:		/* SIMD floating-point exception */
422 			ucode = fputrap_sse();
423 			if (ucode == -1)
424 				return;
425 			signo = SIGFPE;
426 			break;
427 #ifdef KDTRACE_HOOKS
428 		case T_DTRACE_RET:
429 			(void)trap_user_dtrace(frame, &dtrace_return_probe_ptr);
430 			return;
431 #endif
432 		}
433 	} else {
434 		/* kernel trap */
435 
436 		KASSERT(cold || td->td_ucred != NULL,
437 		    ("kernel trap doesn't have ucred"));
438 		switch (type) {
439 		case T_PAGEFLT:			/* page fault */
440 			(void)trap_pfault(frame, false, NULL, NULL);
441 			return;
442 
443 		case T_DNA:
444 			if (PCB_USER_FPU(td->td_pcb))
445 				panic("Unregistered use of FPU in kernel");
446 			fpudna();
447 			return;
448 
449 		case T_ARITHTRAP:	/* arithmetic trap */
450 		case T_XMMFLT:		/* SIMD floating-point exception */
451 		case T_FPOPFLT:		/* FPU operand fetch fault */
452 			/*
453 			 * For now, supporting kernel handler
454 			 * registration for FPU traps is overkill.
455 			 */
456 			trap_fatal(frame, 0);
457 			return;
458 
459 		case T_STKFLT:		/* stack fault */
460 		case T_PROTFLT:		/* general protection fault */
461 		case T_SEGNPFLT:	/* segment not present fault */
462 			if (td->td_intr_nesting_level != 0)
463 				break;
464 
465 			/*
466 			 * Invalid segment selectors and out of bounds
467 			 * %rip's and %rsp's can be set up in user mode.
468 			 * This causes a fault in kernel mode when the
469 			 * kernel tries to return to user mode.  We want
470 			 * to get this fault so that we can fix the
471 			 * problem here and not have to check all the
472 			 * selectors and pointers when the user changes
473 			 * them.
474 			 *
475 			 * In case of PTI, the IRETQ faulted while the
476 			 * kernel used the pti stack, and exception
477 			 * frame records %rsp value pointing to that
478 			 * stack.  If we return normally to
479 			 * doreti_iret_fault, the trapframe is
480 			 * reconstructed on pti stack, and calltrap()
481 			 * called on it as well.  Due to the very
482 			 * limited pti stack size, kernel does not
483 			 * survive for too long.  Switch to the normal
484 			 * thread stack for the trap handling.
485 			 *
486 			 * Magic '5' is the number of qwords occupied by
487 			 * the hardware trap frame.
488 			 */
489 			if (frame->tf_rip == (long)doreti_iret) {
490 				KASSERT((read_rflags() & PSL_I) == 0,
491 				    ("interrupts enabled"));
492 				frame->tf_rip = (long)doreti_iret_fault;
493 				if ((PCPU_GET(curpmap)->pm_ucr3 !=
494 				    PMAP_NO_CR3) &&
495 				    (frame->tf_rsp == (uintptr_t)PCPU_GET(
496 				    pti_rsp0) - 5 * sizeof(register_t))) {
497 					frame->tf_rsp = PCPU_GET(rsp0) - 5 *
498 					    sizeof(register_t);
499 				}
500 				return;
501 			}
502 
503 			for (i = 0; i < nitems(sfhandlers); i++) {
504 				if (frame->tf_rip == sfhandlers[i].faddr) {
505 					KASSERT((read_rflags() & PSL_I) == 0,
506 					    ("interrupts enabled"));
507 					frame->tf_rip = sfhandlers[i].fhandler;
508 					return;
509 				}
510 			}
511 
512 			if (curpcb->pcb_onfault != NULL) {
513 				frame->tf_rip = (long)curpcb->pcb_onfault;
514 				return;
515 			}
516 			break;
517 
518 		case T_TSSFLT:
519 			/*
520 			 * PSL_NT can be set in user mode and isn't cleared
521 			 * automatically when the kernel is entered.  This
522 			 * causes a TSS fault when the kernel attempts to
523 			 * `iret' because the TSS link is uninitialized.  We
524 			 * want to get this fault so that we can fix the
525 			 * problem here and not every time the kernel is
526 			 * entered.
527 			 */
528 			if (frame->tf_rflags & PSL_NT) {
529 				frame->tf_rflags &= ~PSL_NT;
530 				return;
531 			}
532 			break;
533 
534 		case T_TRCTRAP:	 /* debug exception */
535 			/* Clear any pending debug events. */
536 			dr6 = rdr6();
537 			load_dr6(0);
538 
539 			/*
540 			 * Ignore debug register exceptions due to
541 			 * accesses in the user's address space, which
542 			 * can happen under several conditions such as
543 			 * if a user sets a watchpoint on a buffer and
544 			 * then passes that buffer to a system call.
545 			 * We still want to get TRCTRAPS for addresses
546 			 * in kernel space because that is useful when
547 			 * debugging the kernel.
548 			 */
549 			if (user_dbreg_trap(dr6))
550 				return;
551 
552 			/*
553 			 * Malicious user code can configure a debug
554 			 * register watchpoint to trap on data access
555 			 * to the top of stack and then execute 'pop
556 			 * %ss; int 3'.  Due to exception deferral for
557 			 * 'pop %ss', the CPU will not interrupt 'int
558 			 * 3' to raise the DB# exception for the debug
559 			 * register but will postpone the DB# until
560 			 * execution of the first instruction of the
561 			 * BP# handler (in kernel mode).  Normally the
562 			 * previous check would ignore DB# exceptions
563 			 * for watchpoints on user addresses raised in
564 			 * kernel mode.  However, some CPU errata
565 			 * include cases where DB# exceptions do not
566 			 * properly set bits in %dr6, e.g. Haswell
567 			 * HSD23 and Skylake-X SKZ24.
568 			 *
569 			 * A deferred DB# can also be raised on the
570 			 * first instructions of system call entry
571 			 * points or single-step traps via similar use
572 			 * of 'pop %ss' or 'mov xxx, %ss'.
573 			 */
574 			if (pti) {
575 				if (frame->tf_rip ==
576 				    (uintptr_t)IDTVEC(fast_syscall_pti) ||
577 #ifdef COMPAT_FREEBSD32
578 				    frame->tf_rip ==
579 				    (uintptr_t)IDTVEC(int0x80_syscall_pti) ||
580 #endif
581 				    frame->tf_rip == (uintptr_t)IDTVEC(bpt_pti))
582 					return;
583 			} else {
584 				if (frame->tf_rip ==
585 				    (uintptr_t)IDTVEC(fast_syscall) ||
586 #ifdef COMPAT_FREEBSD32
587 				    frame->tf_rip ==
588 				    (uintptr_t)IDTVEC(int0x80_syscall) ||
589 #endif
590 				    frame->tf_rip == (uintptr_t)IDTVEC(bpt))
591 					return;
592 			}
593 			if (frame->tf_rip == (uintptr_t)IDTVEC(dbg) ||
594 			    /* Needed for AMD. */
595 			    frame->tf_rip == (uintptr_t)IDTVEC(fast_syscall32))
596 				return;
597 			/*
598 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
599 			 */
600 		case T_BPTFLT:
601 			/*
602 			 * If KDB is enabled, let it handle the debugger trap.
603 			 * Otherwise, debugger traps "can't happen".
604 			 */
605 #ifdef KDB
606 			if (kdb_trap(type, dr6, frame))
607 				return;
608 #endif
609 			break;
610 
611 		case T_NMI:
612 			nmi_handle_intr(type, frame);
613 			return;
614 		}
615 
616 		trap_fatal(frame, 0);
617 		return;
618 	}
619 
620 	ksiginfo_init_trap(&ksi);
621 	ksi.ksi_signo = signo;
622 	ksi.ksi_code = ucode;
623 	ksi.ksi_trapno = type;
624 	ksi.ksi_addr = (void *)addr;
625 	if (uprintf_signal) {
626 		uprintf("pid %d comm %s: signal %d err %#lx code %d type %d "
627 		    "addr %#lx rsp %#lx rip %#lx rax %#lx "
628 		    "<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
629 		    p->p_pid, p->p_comm, signo, frame->tf_err, ucode, type,
630 		    addr, frame->tf_rsp, frame->tf_rip, frame->tf_rax,
631 		    fubyte((void *)(frame->tf_rip + 0)),
632 		    fubyte((void *)(frame->tf_rip + 1)),
633 		    fubyte((void *)(frame->tf_rip + 2)),
634 		    fubyte((void *)(frame->tf_rip + 3)),
635 		    fubyte((void *)(frame->tf_rip + 4)),
636 		    fubyte((void *)(frame->tf_rip + 5)),
637 		    fubyte((void *)(frame->tf_rip + 6)),
638 		    fubyte((void *)(frame->tf_rip + 7)));
639 	}
640 	KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled"));
641 	trapsignal(td, &ksi);
642 
643 userret:
644 	userret(td, frame);
645 	KASSERT(PCB_USER_FPU(td->td_pcb),
646 	    ("Return from trap with kernel FPU ctx leaked"));
647 }
648 
649 /*
650  * Ensure that we ignore any DTrace-induced faults. This function cannot
651  * be instrumented, so it cannot generate such faults itself.
652  */
653 void
trap_check(struct trapframe * frame)654 trap_check(struct trapframe *frame)
655 {
656 
657 #ifdef KDTRACE_HOOKS
658 	if (dtrace_trap_func != NULL &&
659 	    (*dtrace_trap_func)(frame, frame->tf_trapno) != 0)
660 		return;
661 #endif
662 	trap(frame);
663 }
664 
665 static bool
trap_is_smap(struct trapframe * frame)666 trap_is_smap(struct trapframe *frame)
667 {
668 
669 	/*
670 	 * A page fault on a userspace address is classified as
671 	 * SMAP-induced if:
672 	 * - SMAP is supported;
673 	 * - kernel mode accessed present data page;
674 	 * - rflags.AC was cleared.
675 	 * Kernel must never access user space with rflags.AC cleared
676 	 * if SMAP is enabled.
677 	 */
678 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
679 	    (frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) ==
680 	    PGEX_P && (frame->tf_rflags & PSL_AC) == 0);
681 }
682 
683 static bool
trap_is_pti(struct trapframe * frame)684 trap_is_pti(struct trapframe *frame)
685 {
686 
687 	return (PCPU_GET(curpmap)->pm_ucr3 != PMAP_NO_CR3 &&
688 	    pg_nx != 0 && (frame->tf_err & (PGEX_P | PGEX_W |
689 	    PGEX_U | PGEX_I)) == (PGEX_P | PGEX_U | PGEX_I) &&
690 	    (curpcb->pcb_saved_ucr3 & ~CR3_PCID_MASK) ==
691 	    (PCPU_GET(curpmap)->pm_cr3 & ~CR3_PCID_MASK));
692 }
693 
694 /*
695  * Handle all details of a page fault.
696  * Returns:
697  * -1 if this fault was fatal, typically from kernel mode
698  *    (cannot happen, but we need to return something).
699  * 0  if this fault was handled by updating either the user or kernel
700  *    page table, execution can continue.
701  * 1  if this fault was from usermode and it was not handled, a synchronous
702  *    signal should be delivered to the thread.  *signo returns the signal
703  *    number, *ucode gives si_code.
704  */
705 static int
trap_pfault(struct trapframe * frame,bool usermode,int * signo,int * ucode)706 trap_pfault(struct trapframe *frame, bool usermode, int *signo, int *ucode)
707 {
708 	struct thread *td;
709 	struct proc *p;
710 	vm_map_t map;
711 	vm_offset_t eva;
712 	int rv;
713 	vm_prot_t ftype;
714 
715 	MPASS(!usermode || (signo != NULL && ucode != NULL));
716 
717 	td = curthread;
718 	p = td->td_proc;
719 	eva = frame->tf_addr;
720 
721 	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
722 		/*
723 		 * Due to both processor errata and lazy TLB invalidation when
724 		 * access restrictions are removed from virtual pages, memory
725 		 * accesses that are allowed by the physical mapping layer may
726 		 * nonetheless cause one spurious page fault per virtual page.
727 		 * When the thread is executing a "no faulting" section that
728 		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
729 		 * every page fault is treated as a spurious page fault,
730 		 * unless it accesses the same virtual address as the most
731 		 * recent page fault within the same "no faulting" section.
732 		 */
733 		if (td->td_md.md_spurflt_addr != eva ||
734 		    (td->td_pflags & TDP_RESETSPUR) != 0) {
735 			/*
736 			 * Do nothing to the TLB.  A stale TLB entry is
737 			 * flushed automatically by a page fault.
738 			 */
739 			td->td_md.md_spurflt_addr = eva;
740 			td->td_pflags &= ~TDP_RESETSPUR;
741 			return (0);
742 		}
743 	} else {
744 		/*
745 		 * If we get a page fault while in a critical section, then
746 		 * it is most likely a fatal kernel page fault.  The kernel
747 		 * is already going to panic trying to get a sleep lock to
748 		 * do the VM lookup, so just consider it a fatal trap so the
749 		 * kernel can print out a useful trap message and even get
750 		 * to the debugger.
751 		 *
752 		 * If we get a page fault while holding a non-sleepable
753 		 * lock, then it is most likely a fatal kernel page fault.
754 		 * If WITNESS is enabled, then it's going to whine about
755 		 * bogus LORs with various VM locks, so just skip to the
756 		 * fatal trap handling directly.
757 		 */
758 		if (td->td_critnest != 0 ||
759 		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
760 		    "Kernel page fault") != 0) {
761 			trap_fatal(frame, eva);
762 			return (-1);
763 		}
764 	}
765 	if (eva >= VM_MIN_KERNEL_ADDRESS) {
766 		/*
767 		 * Don't allow user-mode faults in kernel address space.
768 		 */
769 		if (usermode) {
770 			*signo = SIGSEGV;
771 			*ucode = SEGV_MAPERR;
772 			return (1);
773 		}
774 
775 		map = kernel_map;
776 	} else {
777 		map = &p->p_vmspace->vm_map;
778 
779 		/*
780 		 * When accessing a usermode address, kernel must be
781 		 * ready to accept the page fault, and provide a
782 		 * handling routine.  Since accessing the address
783 		 * without the handler is a bug, do not try to handle
784 		 * it normally, and panic immediately.
785 		 *
786 		 * If SMAP is enabled, filter SMAP faults also,
787 		 * because illegal access might occur to the mapped
788 		 * user address, causing infinite loop.
789 		 */
790 		if (!usermode && (td->td_intr_nesting_level != 0 ||
791 		    trap_is_smap(frame) || curpcb->pcb_onfault == NULL)) {
792 			trap_fatal(frame, eva);
793 			return (-1);
794 		}
795 	}
796 
797 	/*
798 	 * If the trap was caused by errant bits in the PTE then panic.
799 	 */
800 	if (frame->tf_err & PGEX_RSV) {
801 		trap_fatal(frame, eva);
802 		return (-1);
803 	}
804 
805 	/*
806 	 * User-mode protection key violation (PKU).  May happen
807 	 * either from usermode or from kernel if copyin accessed
808 	 * key-protected mapping.
809 	 */
810 	if ((frame->tf_err & PGEX_PK) != 0) {
811 		if (eva > VM_MAXUSER_ADDRESS) {
812 			trap_fatal(frame, eva);
813 			return (-1);
814 		}
815 		if (usermode) {
816 			*signo = SIGSEGV;
817 			*ucode = SEGV_PKUERR;
818 			return (1);
819 		}
820 		goto after_vmfault;
821 	}
822 
823 	/*
824 	 * If nx protection of the usermode portion of kernel page
825 	 * tables caused trap, panic.
826 	 */
827 	if (usermode && trap_is_pti(frame))
828 		panic("PTI: pid %d comm %s tf_err %#lx", p->p_pid,
829 		    p->p_comm, frame->tf_err);
830 
831 	/*
832 	 * PGEX_I is defined only if the execute disable bit capability is
833 	 * supported and enabled.
834 	 */
835 	if (frame->tf_err & PGEX_W)
836 		ftype = VM_PROT_WRITE;
837 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
838 		ftype = VM_PROT_EXECUTE;
839 	else
840 		ftype = VM_PROT_READ;
841 
842 	/* Fault in the page. */
843 	rv = vm_fault_trap(map, eva, ftype, VM_FAULT_NORMAL, signo, ucode);
844 	if (rv == KERN_SUCCESS) {
845 #ifdef HWPMC_HOOKS
846 		if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
847 			PMC_SOFT_CALL_TF( , , page_fault, all, frame);
848 			if (ftype == VM_PROT_READ)
849 				PMC_SOFT_CALL_TF( , , page_fault, read,
850 				    frame);
851 			else
852 				PMC_SOFT_CALL_TF( , , page_fault, write,
853 				    frame);
854 		}
855 #endif
856 		return (0);
857 	}
858 
859 	if (usermode)
860 		return (1);
861 after_vmfault:
862 	if (td->td_intr_nesting_level == 0 &&
863 	    curpcb->pcb_onfault != NULL) {
864 		frame->tf_rip = (long)curpcb->pcb_onfault;
865 		return (0);
866 	}
867 	trap_fatal(frame, eva);
868 	return (-1);
869 }
870 
871 static void
trap_fatal(struct trapframe * frame,vm_offset_t eva)872 trap_fatal(struct trapframe *frame, vm_offset_t eva)
873 {
874 	int code, ss;
875 	u_int type;
876 	struct soft_segment_descriptor softseg;
877 	struct user_segment_descriptor *gdt;
878 #ifdef KDB
879 	bool handled;
880 #endif
881 
882 	code = frame->tf_err;
883 	type = frame->tf_trapno;
884 	gdt = *PCPU_PTR(gdt);
885 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
886 
887 	printf("\n\nFatal trap %d: %s while in %s mode\n", type,
888 	    type < nitems(trap_msg) ? trap_msg[type] : UNKNOWN,
889 	    TRAPF_USERMODE(frame) ? "user" : "kernel");
890 #ifdef SMP
891 	/* two separate prints in case of a trap on an unmapped page */
892 	printf("cpuid = %d; ", PCPU_GET(cpuid));
893 	printf("apic id = %02x\n", PCPU_GET(apic_id));
894 #endif
895 	if (type == T_PAGEFLT) {
896 		printf("fault virtual address	= 0x%lx\n", eva);
897 		printf("fault code		= %s %s %s%s%s, %s\n",
898 			code & PGEX_U ? "user" : "supervisor",
899 			code & PGEX_W ? "write" : "read",
900 			code & PGEX_I ? "instruction" : "data",
901 			code & PGEX_PK ? " prot key" : "",
902 			code & PGEX_SGX ? " SGX" : "",
903 			code & PGEX_RSV ? "reserved bits in PTE" :
904 			code & PGEX_P ? "protection violation" : "page not present");
905 	}
906 	printf("instruction pointer	= 0x%lx:0x%lx\n",
907 	       frame->tf_cs & 0xffff, frame->tf_rip);
908 	ss = frame->tf_ss & 0xffff;
909 	printf("stack pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rsp);
910 	printf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
911 	printf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
912 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
913 	printf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
914 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
915 	       softseg.ssd_gran);
916 	printf("processor eflags	= ");
917 	if (frame->tf_rflags & PSL_T)
918 		printf("trace trap, ");
919 	if (frame->tf_rflags & PSL_I)
920 		printf("interrupt enabled, ");
921 	if (frame->tf_rflags & PSL_NT)
922 		printf("nested task, ");
923 	if (frame->tf_rflags & PSL_RF)
924 		printf("resume, ");
925 	printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
926 	printf("current process		= %d (%s)\n",
927 	    curproc->p_pid, curthread->td_name);
928 
929 	printf("rdi: %016lx rsi: %016lx rdx: %016lx\n", frame->tf_rdi,
930 	    frame->tf_rsi, frame->tf_rdx);
931 	printf("rcx: %016lx  r8: %016lx  r9: %016lx\n", frame->tf_rcx,
932 	    frame->tf_r8, frame->tf_r9);
933 	printf("rax: %016lx rbx: %016lx rbp: %016lx\n", frame->tf_rax,
934 	    frame->tf_rbx, frame->tf_rbp);
935 	printf("r10: %016lx r11: %016lx r12: %016lx\n", frame->tf_r10,
936 	    frame->tf_r11, frame->tf_r12);
937 	printf("r13: %016lx r14: %016lx r15: %016lx\n", frame->tf_r13,
938 	    frame->tf_r14, frame->tf_r15);
939 
940 #ifdef KDB
941 	if (debugger_on_trap) {
942 		kdb_why = KDB_WHY_TRAP;
943 		handled = kdb_trap(type, 0, frame);
944 		kdb_why = KDB_WHY_UNSET;
945 		if (handled)
946 			return;
947 	}
948 #endif
949 	printf("trap number		= %d\n", type);
950 	panic("%s", type < nitems(trap_msg) ? trap_msg[type] :
951 	    "unknown/reserved trap");
952 }
953 
954 #ifdef KDTRACE_HOOKS
955 /*
956  * Invoke a userspace DTrace hook.  The hook pointer is cleared when no
957  * userspace probes are enabled, so we must synchronize with DTrace to ensure
958  * that a trapping thread is able to call the hook before it is cleared.
959  */
960 static bool
trap_user_dtrace(struct trapframe * frame,int (** hookp)(struct trapframe *))961 trap_user_dtrace(struct trapframe *frame, int (**hookp)(struct trapframe *))
962 {
963 	int (*hook)(struct trapframe *);
964 
965 	hook = atomic_load_ptr(hookp);
966 	enable_intr();
967 	if (hook != NULL)
968 		return ((hook)(frame) == 0);
969 	return (false);
970 }
971 #endif
972 
973 /*
974  * Double fault handler. Called when a fault occurs while writing
975  * a frame for a trap/exception onto the stack. This usually occurs
976  * when the stack overflows (such is the case with infinite recursion,
977  * for example).
978  */
979 void
dblfault_handler(struct trapframe * frame)980 dblfault_handler(struct trapframe *frame)
981 {
982 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
983 #ifdef KDTRACE_HOOKS
984 	if (dtrace_doubletrap_func != NULL)
985 		(*dtrace_doubletrap_func)();
986 #endif
987 	printf("\nFatal double fault\n"
988 	    "rip %#lx rsp %#lx rbp %#lx\n"
989 	    "rax %#lx rdx %#lx rbx %#lx\n"
990 	    "rcx %#lx rsi %#lx rdi %#lx\n"
991 	    "r8 %#lx r9 %#lx r10 %#lx\n"
992 	    "r11 %#lx r12 %#lx r13 %#lx\n"
993 	    "r14 %#lx r15 %#lx rflags %#lx\n"
994 	    "cs %#lx ss %#lx ds %#hx es %#hx fs %#hx gs %#hx\n"
995 	    "fsbase %#lx gsbase %#lx kgsbase %#lx\n",
996 	    frame->tf_rip, frame->tf_rsp, frame->tf_rbp,
997 	    frame->tf_rax, frame->tf_rdx, frame->tf_rbx,
998 	    frame->tf_rcx, frame->tf_rdi, frame->tf_rsi,
999 	    frame->tf_r8, frame->tf_r9, frame->tf_r10,
1000 	    frame->tf_r11, frame->tf_r12, frame->tf_r13,
1001 	    frame->tf_r14, frame->tf_r15, frame->tf_rflags,
1002 	    frame->tf_cs, frame->tf_ss, frame->tf_ds, frame->tf_es,
1003 	    frame->tf_fs, frame->tf_gs,
1004 	    rdmsr(MSR_FSBASE), rdmsr(MSR_GSBASE), rdmsr(MSR_KGSBASE));
1005 #ifdef SMP
1006 	/* two separate prints in case of a trap on an unmapped page */
1007 	printf("cpuid = %d; ", PCPU_GET(cpuid));
1008 	printf("apic id = %02x\n", PCPU_GET(apic_id));
1009 #endif
1010 	panic("double fault");
1011 }
1012 
1013 static int __noinline
cpu_fetch_syscall_args_fallback(struct thread * td,struct syscall_args * sa)1014 cpu_fetch_syscall_args_fallback(struct thread *td, struct syscall_args *sa)
1015 {
1016 	struct proc *p;
1017 	struct trapframe *frame;
1018 	syscallarg_t *argp;
1019 	caddr_t params;
1020 	int reg, regcnt, error;
1021 
1022 	p = td->td_proc;
1023 	frame = td->td_frame;
1024 	reg = 0;
1025 	regcnt = NARGREGS;
1026 
1027 	if (sa->code == SYS_syscall || sa->code == SYS___syscall) {
1028 		sa->code = frame->tf_rdi;
1029 		reg++;
1030 		regcnt--;
1031 	}
1032 
1033 	if (sa->code >= p->p_sysent->sv_size)
1034 		sa->callp = &nosys_sysent;
1035 	else
1036 		sa->callp = &p->p_sysent->sv_table[sa->code];
1037 
1038 	KASSERT(sa->callp->sy_narg <= nitems(sa->args),
1039 	    ("Too many syscall arguments!"));
1040 	argp = &frame->tf_rdi;
1041 	argp += reg;
1042 	memcpy(sa->args, argp, sizeof(sa->args[0]) * NARGREGS);
1043 	if (sa->callp->sy_narg > regcnt) {
1044 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1045 		error = copyin(params, &sa->args[regcnt],
1046 		    (sa->callp->sy_narg - regcnt) * sizeof(sa->args[0]));
1047 		if (__predict_false(error != 0))
1048 			return (error);
1049 	}
1050 
1051 	td->td_retval[0] = 0;
1052 	td->td_retval[1] = frame->tf_rdx;
1053 
1054 	return (0);
1055 }
1056 
1057 int
cpu_fetch_syscall_args(struct thread * td)1058 cpu_fetch_syscall_args(struct thread *td)
1059 {
1060 	struct proc *p;
1061 	struct trapframe *frame;
1062 	struct syscall_args *sa;
1063 
1064 	p = td->td_proc;
1065 	frame = td->td_frame;
1066 	sa = &td->td_sa;
1067 
1068 	sa->code = frame->tf_rax;
1069 	sa->original_code = sa->code;
1070 
1071 	if (__predict_false(sa->code == SYS_syscall ||
1072 	    sa->code == SYS___syscall ||
1073 	    sa->code >= p->p_sysent->sv_size))
1074 		return (cpu_fetch_syscall_args_fallback(td, sa));
1075 
1076 	sa->callp = &p->p_sysent->sv_table[sa->code];
1077 	KASSERT(sa->callp->sy_narg <= nitems(sa->args),
1078 	    ("Too many syscall arguments!"));
1079 
1080 	if (__predict_false(sa->callp->sy_narg > NARGREGS))
1081 		return (cpu_fetch_syscall_args_fallback(td, sa));
1082 
1083 	memcpy(sa->args, &frame->tf_rdi, sizeof(sa->args[0]) * NARGREGS);
1084 
1085 	td->td_retval[0] = 0;
1086 	td->td_retval[1] = frame->tf_rdx;
1087 
1088 	return (0);
1089 }
1090 
1091 #include "../../kern/subr_syscall.c"
1092 
1093 static void (*syscall_ret_l1d_flush)(void);
1094 int syscall_ret_l1d_flush_mode;
1095 
1096 static void
flush_l1d_hw(void)1097 flush_l1d_hw(void)
1098 {
1099 
1100 	wrmsr(MSR_IA32_FLUSH_CMD, IA32_FLUSH_CMD_L1D);
1101 }
1102 
1103 static void __noinline
amd64_syscall_ret_flush_l1d_check(int error)1104 amd64_syscall_ret_flush_l1d_check(int error)
1105 {
1106 	void (*p)(void);
1107 
1108 	if (error != EEXIST && error != EAGAIN && error != EXDEV &&
1109 	    error != ENOENT && error != ENOTCONN && error != EINPROGRESS) {
1110 		p = atomic_load_ptr(&syscall_ret_l1d_flush);
1111 		if (p != NULL)
1112 			p();
1113 	}
1114 }
1115 
1116 static void __inline
amd64_syscall_ret_flush_l1d_check_inline(int error)1117 amd64_syscall_ret_flush_l1d_check_inline(int error)
1118 {
1119 
1120 	if (__predict_false(error != 0))
1121 		amd64_syscall_ret_flush_l1d_check(error);
1122 }
1123 
1124 void
amd64_syscall_ret_flush_l1d(int error)1125 amd64_syscall_ret_flush_l1d(int error)
1126 {
1127 
1128 	amd64_syscall_ret_flush_l1d_check_inline(error);
1129 }
1130 
1131 void
amd64_syscall_ret_flush_l1d_recalc(void)1132 amd64_syscall_ret_flush_l1d_recalc(void)
1133 {
1134 	bool l1d_hw;
1135 
1136 	l1d_hw = (cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) != 0;
1137 again:
1138 	switch (syscall_ret_l1d_flush_mode) {
1139 	case 0:
1140 		syscall_ret_l1d_flush = NULL;
1141 		break;
1142 	case 1:
1143 		syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw :
1144 		    flush_l1d_sw_abi;
1145 		break;
1146 	case 2:
1147 		syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw : NULL;
1148 		break;
1149 	case 3:
1150 		syscall_ret_l1d_flush = flush_l1d_sw_abi;
1151 		break;
1152 	default:
1153 		syscall_ret_l1d_flush_mode = 1;
1154 		goto again;
1155 	}
1156 }
1157 
1158 static int
machdep_syscall_ret_flush_l1d(SYSCTL_HANDLER_ARGS)1159 machdep_syscall_ret_flush_l1d(SYSCTL_HANDLER_ARGS)
1160 {
1161 	int error, val;
1162 
1163 	val = syscall_ret_l1d_flush_mode;
1164 	error = sysctl_handle_int(oidp, &val, 0, req);
1165 	if (error != 0 || req->newptr == NULL)
1166 		return (error);
1167 	syscall_ret_l1d_flush_mode = val;
1168 	amd64_syscall_ret_flush_l1d_recalc();
1169 	return (0);
1170 }
1171 SYSCTL_PROC(_machdep, OID_AUTO, syscall_ret_flush_l1d, CTLTYPE_INT |
1172     CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0,
1173     machdep_syscall_ret_flush_l1d, "I",
1174     "Flush L1D on syscall return with error (0 - off, 1 - on, "
1175     "2 - use hw only, 3 - use sw only)");
1176 
1177 /*
1178  * System call handler for native binaries.  The trap frame is already
1179  * set up by the assembler trampoline and a pointer to it is saved in
1180  * td_frame.
1181  */
1182 void
amd64_syscall(struct thread * td,int traced)1183 amd64_syscall(struct thread *td, int traced)
1184 {
1185 	ksiginfo_t ksi;
1186 
1187 	kmsan_mark(td->td_frame, sizeof(*td->td_frame), KMSAN_STATE_INITED);
1188 
1189 	KASSERT(TRAPF_USERMODE(td->td_frame),
1190 	    ("%s: not from user mode", __func__));
1191 
1192 	syscallenter(td);
1193 
1194 	/*
1195 	 * Traced syscall.
1196 	 */
1197 	if (__predict_false(traced)) {
1198 		td->td_frame->tf_rflags &= ~PSL_T;
1199 		ksiginfo_init_trap(&ksi);
1200 		ksi.ksi_signo = SIGTRAP;
1201 		ksi.ksi_code = TRAP_TRACE;
1202 		ksi.ksi_addr = (void *)td->td_frame->tf_rip;
1203 		trapsignal(td, &ksi);
1204 	}
1205 
1206 	KASSERT(PCB_USER_FPU(td->td_pcb),
1207 	    ("System call %s returning with kernel FPU ctx leaked",
1208 	     syscallname(td->td_proc, td->td_sa.code)));
1209 	KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
1210 	    ("System call %s returning with mangled pcb_save",
1211 	     syscallname(td->td_proc, td->td_sa.code)));
1212 	KASSERT(pmap_not_in_di(),
1213 	    ("System call %s returning with leaked invl_gen %lu",
1214 	    syscallname(td->td_proc, td->td_sa.code),
1215 	    td->td_md.md_invl_gen.gen));
1216 
1217 	syscallret(td);
1218 
1219 	/*
1220 	 * If the user-supplied value of %rip is not a canonical
1221 	 * address, then some CPUs will trigger a ring 0 #GP during
1222 	 * the sysret instruction.  However, the fault handler would
1223 	 * execute in ring 0 with the user's %gs and %rsp which would
1224 	 * not be safe.  Instead, use the full return path which
1225 	 * catches the problem safely.
1226 	 */
1227 	if (__predict_false(td->td_frame->tf_rip >= (la57 ?
1228 	    VM_MAXUSER_ADDRESS_LA57 : VM_MAXUSER_ADDRESS_LA48)))
1229 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1230 
1231 	amd64_syscall_ret_flush_l1d_check_inline(td->td_errno);
1232 }
1233