xref: /freebsd/sys/amd64/amd64/trap.c (revision 9768746b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 /*
46  * AMD64 Trap and System call handling
47  */
48 
49 #include "opt_clock.h"
50 #include "opt_compat.h"
51 #include "opt_cpu.h"
52 #include "opt_hwpmc_hooks.h"
53 #include "opt_isa.h"
54 #include "opt_kdb.h"
55 
56 #include <sys/param.h>
57 #include <sys/asan.h>
58 #include <sys/bus.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/ptrace.h>
62 #include <sys/kdb.h>
63 #include <sys/kernel.h>
64 #include <sys/ktr.h>
65 #include <sys/lock.h>
66 #include <sys/msan.h>
67 #include <sys/mutex.h>
68 #include <sys/resourcevar.h>
69 #include <sys/signalvar.h>
70 #include <sys/syscall.h>
71 #include <sys/sysctl.h>
72 #include <sys/sysent.h>
73 #include <sys/uio.h>
74 #include <sys/vmmeter.h>
75 #ifdef HWPMC_HOOKS
76 #include <sys/pmckern.h>
77 PMC_SOFT_DEFINE( , , page_fault, all);
78 PMC_SOFT_DEFINE( , , page_fault, read);
79 PMC_SOFT_DEFINE( , , page_fault, write);
80 #endif
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_extern.h>
89 
90 #include <machine/cpu.h>
91 #include <machine/intr_machdep.h>
92 #include <x86/mca.h>
93 #include <machine/md_var.h>
94 #include <machine/pcb.h>
95 #ifdef SMP
96 #include <machine/smp.h>
97 #endif
98 #include <machine/stack.h>
99 #include <machine/trap.h>
100 #include <machine/tss.h>
101 
102 #ifdef KDTRACE_HOOKS
103 #include <sys/dtrace_bsd.h>
104 #endif
105 
106 extern inthand_t IDTVEC(bpt), IDTVEC(bpt_pti), IDTVEC(dbg),
107     IDTVEC(fast_syscall), IDTVEC(fast_syscall_pti), IDTVEC(fast_syscall32),
108     IDTVEC(int0x80_syscall_pti), IDTVEC(int0x80_syscall);
109 
110 void __noinline trap(struct trapframe *frame);
111 void trap_check(struct trapframe *frame);
112 void dblfault_handler(struct trapframe *frame);
113 
114 static int trap_pfault(struct trapframe *, bool, int *, int *);
115 static void trap_fatal(struct trapframe *, vm_offset_t);
116 #ifdef KDTRACE_HOOKS
117 static bool trap_user_dtrace(struct trapframe *,
118     int (**hook)(struct trapframe *));
119 #endif
120 
121 static const char UNKNOWN[] = "unknown";
122 static const char *const trap_msg[] = {
123 	[0] =			UNKNOWN,			/* unused */
124 	[T_PRIVINFLT] =		"privileged instruction fault",
125 	[2] =			UNKNOWN,			/* unused */
126 	[T_BPTFLT] =		"breakpoint instruction fault",
127 	[4] =			UNKNOWN,			/* unused */
128 	[5] =			UNKNOWN,			/* unused */
129 	[T_ARITHTRAP] =		"arithmetic trap",
130 	[7] =			UNKNOWN,			/* unused */
131 	[8] =			UNKNOWN,			/* unused */
132 	[T_PROTFLT] =		"general protection fault",
133 	[T_TRCTRAP] =		"debug exception",
134 	[11] =			UNKNOWN,			/* unused */
135 	[T_PAGEFLT] =		"page fault",
136 	[13] =			UNKNOWN,			/* unused */
137 	[T_ALIGNFLT] =		"alignment fault",
138 	[15] =			UNKNOWN,			/* unused */
139 	[16] =			UNKNOWN,			/* unused */
140 	[17] =			UNKNOWN,			/* unused */
141 	[T_DIVIDE] =		"integer divide fault",
142 	[T_NMI] =		"non-maskable interrupt trap",
143 	[T_OFLOW] =		"overflow trap",
144 	[T_BOUND] =		"FPU bounds check fault",
145 	[T_DNA] =		"FPU device not available",
146 	[T_DOUBLEFLT] =		"double fault",
147 	[T_FPOPFLT] =		"FPU operand fetch fault",
148 	[T_TSSFLT] =		"invalid TSS fault",
149 	[T_SEGNPFLT] =		"segment not present fault",
150 	[T_STKFLT] =		"stack fault",
151 	[T_MCHK] =		"machine check trap",
152 	[T_XMMFLT] =		"SIMD floating-point exception",
153 	[T_RESERVED] =		"reserved (unknown) fault",
154 	[31] =			UNKNOWN,			/* reserved */
155 	[T_DTRACE_RET] =	"DTrace pid return trap",
156 };
157 
158 static int uprintf_signal;
159 SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RWTUN,
160     &uprintf_signal, 0,
161     "Print debugging information on trap signal to ctty");
162 
163 /*
164  * Control L1D flush on return from NMI.
165  *
166  * Tunable  can be set to the following values:
167  * 0 - only enable flush on return from NMI if required by vmm.ko (default)
168  * >1 - always flush on return from NMI.
169  *
170  * Post-boot, the sysctl indicates if flushing is currently enabled.
171  */
172 int nmi_flush_l1d_sw;
173 SYSCTL_INT(_machdep, OID_AUTO, nmi_flush_l1d_sw, CTLFLAG_RWTUN,
174     &nmi_flush_l1d_sw, 0,
175     "Flush L1 Data Cache on NMI exit, software bhyve L1TF mitigation assist");
176 
177 /*
178  * Table of handlers for various segment load faults.
179  */
180 static const struct {
181 	uintptr_t	faddr;
182 	uintptr_t	fhandler;
183 } sfhandlers[] = {
184 	{
185 		.faddr = (uintptr_t)ld_ds,
186 		.fhandler = (uintptr_t)ds_load_fault,
187 	},
188 	{
189 		.faddr = (uintptr_t)ld_es,
190 		.fhandler = (uintptr_t)es_load_fault,
191 	},
192 	{
193 		.faddr = (uintptr_t)ld_fs,
194 		.fhandler = (uintptr_t)fs_load_fault,
195 	},
196 	{
197 		.faddr = (uintptr_t)ld_gs,
198 		.fhandler = (uintptr_t)gs_load_fault,
199 	},
200 	{
201 		.faddr = (uintptr_t)ld_gsbase,
202 		.fhandler = (uintptr_t)gsbase_load_fault
203 	},
204 	{
205 		.faddr = (uintptr_t)ld_fsbase,
206 		.fhandler = (uintptr_t)fsbase_load_fault,
207 	},
208 };
209 
210 /*
211  * Exception, fault, and trap interface to the FreeBSD kernel.
212  * This common code is called from assembly language IDT gate entry
213  * routines that prepare a suitable stack frame, and restore this
214  * frame after the exception has been processed.
215  */
216 
217 void
218 trap(struct trapframe *frame)
219 {
220 	ksiginfo_t ksi;
221 	struct thread *td;
222 	struct proc *p;
223 	register_t addr, dr6;
224 	size_t i;
225 	int pf, signo, ucode;
226 	u_int type;
227 
228 	td = curthread;
229 	p = td->td_proc;
230 	dr6 = 0;
231 
232 	kasan_mark(frame, sizeof(*frame), sizeof(*frame), 0);
233 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
234 
235 	VM_CNT_INC(v_trap);
236 	type = frame->tf_trapno;
237 
238 #ifdef SMP
239 	/* Handler for NMI IPIs used for stopping CPUs. */
240 	if (type == T_NMI && ipi_nmi_handler() == 0)
241 		return;
242 #endif
243 
244 #ifdef KDB
245 	if (kdb_active) {
246 		kdb_reenter();
247 		return;
248 	}
249 #endif
250 
251 	if (type == T_RESERVED) {
252 		trap_fatal(frame, 0);
253 		return;
254 	}
255 
256 	if (type == T_NMI) {
257 #ifdef HWPMC_HOOKS
258 		/*
259 		 * CPU PMCs interrupt using an NMI.  If the PMC module is
260 		 * active, pass the 'rip' value to the PMC module's interrupt
261 		 * handler.  A non-zero return value from the handler means that
262 		 * the NMI was consumed by it and we can return immediately.
263 		 */
264 		if (pmc_intr != NULL &&
265 		    (*pmc_intr)(frame) != 0)
266 			return;
267 #endif
268 	}
269 
270 	if ((frame->tf_rflags & PSL_I) == 0) {
271 		/*
272 		 * Buggy application or kernel code has disabled
273 		 * interrupts and then trapped.  Enabling interrupts
274 		 * now is wrong, but it is better than running with
275 		 * interrupts disabled until they are accidentally
276 		 * enabled later.
277 		 */
278 		if (TRAPF_USERMODE(frame)) {
279 			uprintf(
280 			    "pid %ld (%s): trap %d (%s) "
281 			    "with interrupts disabled\n",
282 			    (long)curproc->p_pid, curthread->td_name, type,
283 			    trap_msg[type]);
284 		} else {
285 			switch (type) {
286 			case T_NMI:
287 			case T_BPTFLT:
288 			case T_TRCTRAP:
289 			case T_PROTFLT:
290 			case T_SEGNPFLT:
291 			case T_STKFLT:
292 				break;
293 			default:
294 				printf(
295 				    "kernel trap %d with interrupts disabled\n",
296 				    type);
297 
298 				/*
299 				 * We shouldn't enable interrupts while holding a
300 				 * spin lock.
301 				 */
302 				if (td->td_md.md_spinlock_count == 0)
303 					enable_intr();
304 			}
305 		}
306 	}
307 
308 	if (TRAPF_USERMODE(frame)) {
309 		/* user trap */
310 
311 		td->td_pticks = 0;
312 		td->td_frame = frame;
313 		addr = frame->tf_rip;
314 		if (td->td_cowgen != atomic_load_int(&p->p_cowgen))
315 			thread_cow_update(td);
316 
317 		switch (type) {
318 		case T_PRIVINFLT:	/* privileged instruction fault */
319 			signo = SIGILL;
320 			ucode = ILL_PRVOPC;
321 			break;
322 
323 		case T_BPTFLT:		/* bpt instruction fault */
324 #ifdef KDTRACE_HOOKS
325 			if (trap_user_dtrace(frame, &dtrace_pid_probe_ptr))
326 				return;
327 #else
328 			enable_intr();
329 #endif
330 			signo = SIGTRAP;
331 			ucode = TRAP_BRKPT;
332 			break;
333 
334 		case T_TRCTRAP:		/* debug exception */
335 			enable_intr();
336 			signo = SIGTRAP;
337 			ucode = TRAP_TRACE;
338 			dr6 = rdr6();
339 			if ((dr6 & DBREG_DR6_BS) != 0) {
340 				PROC_LOCK(td->td_proc);
341 				if ((td->td_dbgflags & TDB_STEP) != 0) {
342 					td->td_frame->tf_rflags &= ~PSL_T;
343 					td->td_dbgflags &= ~TDB_STEP;
344 				}
345 				PROC_UNLOCK(td->td_proc);
346 			}
347 			break;
348 
349 		case T_ARITHTRAP:	/* arithmetic trap */
350 			ucode = fputrap_x87();
351 			if (ucode == -1)
352 				return;
353 			signo = SIGFPE;
354 			break;
355 
356 		case T_PROTFLT:		/* general protection fault */
357 			signo = SIGBUS;
358 			ucode = BUS_OBJERR;
359 			break;
360 		case T_STKFLT:		/* stack fault */
361 		case T_SEGNPFLT:	/* segment not present fault */
362 			signo = SIGBUS;
363 			ucode = BUS_ADRERR;
364 			break;
365 		case T_TSSFLT:		/* invalid TSS fault */
366 			signo = SIGBUS;
367 			ucode = BUS_OBJERR;
368 			break;
369 		case T_ALIGNFLT:
370 			signo = SIGBUS;
371 			ucode = BUS_ADRALN;
372 			break;
373 		case T_DOUBLEFLT:	/* double fault */
374 		default:
375 			signo = SIGBUS;
376 			ucode = BUS_OBJERR;
377 			break;
378 
379 		case T_PAGEFLT:		/* page fault */
380 			/*
381 			 * Can emulator handle this trap?
382 			 */
383 			if (*p->p_sysent->sv_trap != NULL &&
384 			    (*p->p_sysent->sv_trap)(td) == 0)
385 				return;
386 
387 			pf = trap_pfault(frame, true, &signo, &ucode);
388 			if (pf == -1)
389 				return;
390 			if (pf == 0)
391 				goto userret;
392 			addr = frame->tf_addr;
393 			break;
394 
395 		case T_DIVIDE:		/* integer divide fault */
396 			ucode = FPE_INTDIV;
397 			signo = SIGFPE;
398 			break;
399 
400 		case T_NMI:
401 			nmi_handle_intr(type, frame);
402 			return;
403 
404 		case T_OFLOW:		/* integer overflow fault */
405 			ucode = FPE_INTOVF;
406 			signo = SIGFPE;
407 			break;
408 
409 		case T_BOUND:		/* bounds check fault */
410 			ucode = FPE_FLTSUB;
411 			signo = SIGFPE;
412 			break;
413 
414 		case T_DNA:
415 			/* transparent fault (due to context switch "late") */
416 			KASSERT(PCB_USER_FPU(td->td_pcb),
417 			    ("kernel FPU ctx has leaked"));
418 			fpudna();
419 			return;
420 
421 		case T_FPOPFLT:		/* FPU operand fetch fault */
422 			ucode = ILL_COPROC;
423 			signo = SIGILL;
424 			break;
425 
426 		case T_XMMFLT:		/* SIMD floating-point exception */
427 			ucode = fputrap_sse();
428 			if (ucode == -1)
429 				return;
430 			signo = SIGFPE;
431 			break;
432 #ifdef KDTRACE_HOOKS
433 		case T_DTRACE_RET:
434 			(void)trap_user_dtrace(frame, &dtrace_return_probe_ptr);
435 			return;
436 #endif
437 		}
438 	} else {
439 		/* kernel trap */
440 
441 		KASSERT(cold || td->td_ucred != NULL,
442 		    ("kernel trap doesn't have ucred"));
443 		switch (type) {
444 		case T_PAGEFLT:			/* page fault */
445 			(void)trap_pfault(frame, false, NULL, NULL);
446 			return;
447 
448 		case T_DNA:
449 			if (PCB_USER_FPU(td->td_pcb))
450 				panic("Unregistered use of FPU in kernel");
451 			fpudna();
452 			return;
453 
454 		case T_ARITHTRAP:	/* arithmetic trap */
455 		case T_XMMFLT:		/* SIMD floating-point exception */
456 		case T_FPOPFLT:		/* FPU operand fetch fault */
457 			/*
458 			 * For now, supporting kernel handler
459 			 * registration for FPU traps is overkill.
460 			 */
461 			trap_fatal(frame, 0);
462 			return;
463 
464 		case T_STKFLT:		/* stack fault */
465 		case T_PROTFLT:		/* general protection fault */
466 		case T_SEGNPFLT:	/* segment not present fault */
467 			if (td->td_intr_nesting_level != 0)
468 				break;
469 
470 			/*
471 			 * Invalid segment selectors and out of bounds
472 			 * %rip's and %rsp's can be set up in user mode.
473 			 * This causes a fault in kernel mode when the
474 			 * kernel tries to return to user mode.  We want
475 			 * to get this fault so that we can fix the
476 			 * problem here and not have to check all the
477 			 * selectors and pointers when the user changes
478 			 * them.
479 			 *
480 			 * In case of PTI, the IRETQ faulted while the
481 			 * kernel used the pti stack, and exception
482 			 * frame records %rsp value pointing to that
483 			 * stack.  If we return normally to
484 			 * doreti_iret_fault, the trapframe is
485 			 * reconstructed on pti stack, and calltrap()
486 			 * called on it as well.  Due to the very
487 			 * limited pti stack size, kernel does not
488 			 * survive for too long.  Switch to the normal
489 			 * thread stack for the trap handling.
490 			 *
491 			 * Magic '5' is the number of qwords occupied by
492 			 * the hardware trap frame.
493 			 */
494 			if (frame->tf_rip == (long)doreti_iret) {
495 				KASSERT((read_rflags() & PSL_I) == 0,
496 				    ("interrupts enabled"));
497 				frame->tf_rip = (long)doreti_iret_fault;
498 				if ((PCPU_GET(curpmap)->pm_ucr3 !=
499 				    PMAP_NO_CR3) &&
500 				    (frame->tf_rsp == (uintptr_t)PCPU_GET(
501 				    pti_rsp0) - 5 * sizeof(register_t))) {
502 					frame->tf_rsp = PCPU_GET(rsp0) - 5 *
503 					    sizeof(register_t);
504 				}
505 				return;
506 			}
507 
508 			for (i = 0; i < nitems(sfhandlers); i++) {
509 				if (frame->tf_rip == sfhandlers[i].faddr) {
510 					KASSERT((read_rflags() & PSL_I) == 0,
511 					    ("interrupts enabled"));
512 					frame->tf_rip = sfhandlers[i].fhandler;
513 					return;
514 				}
515 			}
516 
517 			if (curpcb->pcb_onfault != NULL) {
518 				frame->tf_rip = (long)curpcb->pcb_onfault;
519 				return;
520 			}
521 			break;
522 
523 		case T_TSSFLT:
524 			/*
525 			 * PSL_NT can be set in user mode and isn't cleared
526 			 * automatically when the kernel is entered.  This
527 			 * causes a TSS fault when the kernel attempts to
528 			 * `iret' because the TSS link is uninitialized.  We
529 			 * want to get this fault so that we can fix the
530 			 * problem here and not every time the kernel is
531 			 * entered.
532 			 */
533 			if (frame->tf_rflags & PSL_NT) {
534 				frame->tf_rflags &= ~PSL_NT;
535 				return;
536 			}
537 			break;
538 
539 		case T_TRCTRAP:	 /* debug exception */
540 			/* Clear any pending debug events. */
541 			dr6 = rdr6();
542 			load_dr6(0);
543 
544 			/*
545 			 * Ignore debug register exceptions due to
546 			 * accesses in the user's address space, which
547 			 * can happen under several conditions such as
548 			 * if a user sets a watchpoint on a buffer and
549 			 * then passes that buffer to a system call.
550 			 * We still want to get TRCTRAPS for addresses
551 			 * in kernel space because that is useful when
552 			 * debugging the kernel.
553 			 */
554 			if (user_dbreg_trap(dr6))
555 				return;
556 
557 			/*
558 			 * Malicious user code can configure a debug
559 			 * register watchpoint to trap on data access
560 			 * to the top of stack and then execute 'pop
561 			 * %ss; int 3'.  Due to exception deferral for
562 			 * 'pop %ss', the CPU will not interrupt 'int
563 			 * 3' to raise the DB# exception for the debug
564 			 * register but will postpone the DB# until
565 			 * execution of the first instruction of the
566 			 * BP# handler (in kernel mode).  Normally the
567 			 * previous check would ignore DB# exceptions
568 			 * for watchpoints on user addresses raised in
569 			 * kernel mode.  However, some CPU errata
570 			 * include cases where DB# exceptions do not
571 			 * properly set bits in %dr6, e.g. Haswell
572 			 * HSD23 and Skylake-X SKZ24.
573 			 *
574 			 * A deferred DB# can also be raised on the
575 			 * first instructions of system call entry
576 			 * points or single-step traps via similar use
577 			 * of 'pop %ss' or 'mov xxx, %ss'.
578 			 */
579 			if (pti) {
580 				if (frame->tf_rip ==
581 				    (uintptr_t)IDTVEC(fast_syscall_pti) ||
582 #ifdef COMPAT_FREEBSD32
583 				    frame->tf_rip ==
584 				    (uintptr_t)IDTVEC(int0x80_syscall_pti) ||
585 #endif
586 				    frame->tf_rip == (uintptr_t)IDTVEC(bpt_pti))
587 					return;
588 			} else {
589 				if (frame->tf_rip ==
590 				    (uintptr_t)IDTVEC(fast_syscall) ||
591 #ifdef COMPAT_FREEBSD32
592 				    frame->tf_rip ==
593 				    (uintptr_t)IDTVEC(int0x80_syscall) ||
594 #endif
595 				    frame->tf_rip == (uintptr_t)IDTVEC(bpt))
596 					return;
597 			}
598 			if (frame->tf_rip == (uintptr_t)IDTVEC(dbg) ||
599 			    /* Needed for AMD. */
600 			    frame->tf_rip == (uintptr_t)IDTVEC(fast_syscall32))
601 				return;
602 			/*
603 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
604 			 */
605 		case T_BPTFLT:
606 			/*
607 			 * If KDB is enabled, let it handle the debugger trap.
608 			 * Otherwise, debugger traps "can't happen".
609 			 */
610 #ifdef KDB
611 			if (kdb_trap(type, dr6, frame))
612 				return;
613 #endif
614 			break;
615 
616 		case T_NMI:
617 			nmi_handle_intr(type, frame);
618 			return;
619 		}
620 
621 		trap_fatal(frame, 0);
622 		return;
623 	}
624 
625 	ksiginfo_init_trap(&ksi);
626 	ksi.ksi_signo = signo;
627 	ksi.ksi_code = ucode;
628 	ksi.ksi_trapno = type;
629 	ksi.ksi_addr = (void *)addr;
630 	if (uprintf_signal) {
631 		uprintf("pid %d comm %s: signal %d err %#lx code %d type %d "
632 		    "addr %#lx rsp %#lx rip %#lx rax %#lx"
633 		    "<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
634 		    p->p_pid, p->p_comm, signo, frame->tf_err, ucode, type,
635 		    addr, frame->tf_rsp, frame->tf_rip, frame->tf_rax,
636 		    fubyte((void *)(frame->tf_rip + 0)),
637 		    fubyte((void *)(frame->tf_rip + 1)),
638 		    fubyte((void *)(frame->tf_rip + 2)),
639 		    fubyte((void *)(frame->tf_rip + 3)),
640 		    fubyte((void *)(frame->tf_rip + 4)),
641 		    fubyte((void *)(frame->tf_rip + 5)),
642 		    fubyte((void *)(frame->tf_rip + 6)),
643 		    fubyte((void *)(frame->tf_rip + 7)));
644 	}
645 	KASSERT((read_rflags() & PSL_I) != 0, ("interrupts disabled"));
646 	trapsignal(td, &ksi);
647 
648 userret:
649 	userret(td, frame);
650 	KASSERT(PCB_USER_FPU(td->td_pcb),
651 	    ("Return from trap with kernel FPU ctx leaked"));
652 }
653 
654 /*
655  * Ensure that we ignore any DTrace-induced faults. This function cannot
656  * be instrumented, so it cannot generate such faults itself.
657  */
658 void
659 trap_check(struct trapframe *frame)
660 {
661 
662 #ifdef KDTRACE_HOOKS
663 	if (dtrace_trap_func != NULL &&
664 	    (*dtrace_trap_func)(frame, frame->tf_trapno) != 0)
665 		return;
666 #endif
667 	trap(frame);
668 }
669 
670 static bool
671 trap_is_smap(struct trapframe *frame)
672 {
673 
674 	/*
675 	 * A page fault on a userspace address is classified as
676 	 * SMAP-induced if:
677 	 * - SMAP is supported;
678 	 * - kernel mode accessed present data page;
679 	 * - rflags.AC was cleared.
680 	 * Kernel must never access user space with rflags.AC cleared
681 	 * if SMAP is enabled.
682 	 */
683 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
684 	    (frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) ==
685 	    PGEX_P && (frame->tf_rflags & PSL_AC) == 0);
686 }
687 
688 static bool
689 trap_is_pti(struct trapframe *frame)
690 {
691 
692 	return (PCPU_GET(curpmap)->pm_ucr3 != PMAP_NO_CR3 &&
693 	    pg_nx != 0 && (frame->tf_err & (PGEX_P | PGEX_W |
694 	    PGEX_U | PGEX_I)) == (PGEX_P | PGEX_U | PGEX_I) &&
695 	    (curpcb->pcb_saved_ucr3 & ~CR3_PCID_MASK) ==
696 	    (PCPU_GET(curpmap)->pm_cr3 & ~CR3_PCID_MASK));
697 }
698 
699 /*
700  * Handle all details of a page fault.
701  * Returns:
702  * -1 if this fault was fatal, typically from kernel mode
703  *    (cannot happen, but we need to return something).
704  * 0  if this fault was handled by updating either the user or kernel
705  *    page table, execution can continue.
706  * 1  if this fault was from usermode and it was not handled, a synchronous
707  *    signal should be delivered to the thread.  *signo returns the signal
708  *    number, *ucode gives si_code.
709  */
710 static int
711 trap_pfault(struct trapframe *frame, bool usermode, int *signo, int *ucode)
712 {
713 	struct thread *td;
714 	struct proc *p;
715 	vm_map_t map;
716 	vm_offset_t eva;
717 	int rv;
718 	vm_prot_t ftype;
719 
720 	MPASS(!usermode || (signo != NULL && ucode != NULL));
721 
722 	td = curthread;
723 	p = td->td_proc;
724 	eva = frame->tf_addr;
725 
726 	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
727 		/*
728 		 * Due to both processor errata and lazy TLB invalidation when
729 		 * access restrictions are removed from virtual pages, memory
730 		 * accesses that are allowed by the physical mapping layer may
731 		 * nonetheless cause one spurious page fault per virtual page.
732 		 * When the thread is executing a "no faulting" section that
733 		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
734 		 * every page fault is treated as a spurious page fault,
735 		 * unless it accesses the same virtual address as the most
736 		 * recent page fault within the same "no faulting" section.
737 		 */
738 		if (td->td_md.md_spurflt_addr != eva ||
739 		    (td->td_pflags & TDP_RESETSPUR) != 0) {
740 			/*
741 			 * Do nothing to the TLB.  A stale TLB entry is
742 			 * flushed automatically by a page fault.
743 			 */
744 			td->td_md.md_spurflt_addr = eva;
745 			td->td_pflags &= ~TDP_RESETSPUR;
746 			return (0);
747 		}
748 	} else {
749 		/*
750 		 * If we get a page fault while in a critical section, then
751 		 * it is most likely a fatal kernel page fault.  The kernel
752 		 * is already going to panic trying to get a sleep lock to
753 		 * do the VM lookup, so just consider it a fatal trap so the
754 		 * kernel can print out a useful trap message and even get
755 		 * to the debugger.
756 		 *
757 		 * If we get a page fault while holding a non-sleepable
758 		 * lock, then it is most likely a fatal kernel page fault.
759 		 * If WITNESS is enabled, then it's going to whine about
760 		 * bogus LORs with various VM locks, so just skip to the
761 		 * fatal trap handling directly.
762 		 */
763 		if (td->td_critnest != 0 ||
764 		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
765 		    "Kernel page fault") != 0) {
766 			trap_fatal(frame, eva);
767 			return (-1);
768 		}
769 	}
770 	if (eva >= VM_MIN_KERNEL_ADDRESS) {
771 		/*
772 		 * Don't allow user-mode faults in kernel address space.
773 		 */
774 		if (usermode) {
775 			*signo = SIGSEGV;
776 			*ucode = SEGV_MAPERR;
777 			return (1);
778 		}
779 
780 		map = kernel_map;
781 	} else {
782 		map = &p->p_vmspace->vm_map;
783 
784 		/*
785 		 * When accessing a usermode address, kernel must be
786 		 * ready to accept the page fault, and provide a
787 		 * handling routine.  Since accessing the address
788 		 * without the handler is a bug, do not try to handle
789 		 * it normally, and panic immediately.
790 		 *
791 		 * If SMAP is enabled, filter SMAP faults also,
792 		 * because illegal access might occur to the mapped
793 		 * user address, causing infinite loop.
794 		 */
795 		if (!usermode && (td->td_intr_nesting_level != 0 ||
796 		    trap_is_smap(frame) || curpcb->pcb_onfault == NULL)) {
797 			trap_fatal(frame, eva);
798 			return (-1);
799 		}
800 	}
801 
802 	/*
803 	 * If the trap was caused by errant bits in the PTE then panic.
804 	 */
805 	if (frame->tf_err & PGEX_RSV) {
806 		trap_fatal(frame, eva);
807 		return (-1);
808 	}
809 
810 	/*
811 	 * User-mode protection key violation (PKU).  May happen
812 	 * either from usermode or from kernel if copyin accessed
813 	 * key-protected mapping.
814 	 */
815 	if ((frame->tf_err & PGEX_PK) != 0) {
816 		if (eva > VM_MAXUSER_ADDRESS) {
817 			trap_fatal(frame, eva);
818 			return (-1);
819 		}
820 		if (usermode) {
821 			*signo = SIGSEGV;
822 			*ucode = SEGV_PKUERR;
823 			return (1);
824 		}
825 		goto after_vmfault;
826 	}
827 
828 	/*
829 	 * If nx protection of the usermode portion of kernel page
830 	 * tables caused trap, panic.
831 	 */
832 	if (usermode && trap_is_pti(frame))
833 		panic("PTI: pid %d comm %s tf_err %#lx", p->p_pid,
834 		    p->p_comm, frame->tf_err);
835 
836 	/*
837 	 * PGEX_I is defined only if the execute disable bit capability is
838 	 * supported and enabled.
839 	 */
840 	if (frame->tf_err & PGEX_W)
841 		ftype = VM_PROT_WRITE;
842 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
843 		ftype = VM_PROT_EXECUTE;
844 	else
845 		ftype = VM_PROT_READ;
846 
847 	/* Fault in the page. */
848 	rv = vm_fault_trap(map, eva, ftype, VM_FAULT_NORMAL, signo, ucode);
849 	if (rv == KERN_SUCCESS) {
850 #ifdef HWPMC_HOOKS
851 		if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
852 			PMC_SOFT_CALL_TF( , , page_fault, all, frame);
853 			if (ftype == VM_PROT_READ)
854 				PMC_SOFT_CALL_TF( , , page_fault, read,
855 				    frame);
856 			else
857 				PMC_SOFT_CALL_TF( , , page_fault, write,
858 				    frame);
859 		}
860 #endif
861 		return (0);
862 	}
863 
864 	if (usermode)
865 		return (1);
866 after_vmfault:
867 	if (td->td_intr_nesting_level == 0 &&
868 	    curpcb->pcb_onfault != NULL) {
869 		frame->tf_rip = (long)curpcb->pcb_onfault;
870 		return (0);
871 	}
872 	trap_fatal(frame, eva);
873 	return (-1);
874 }
875 
876 static void
877 trap_fatal(struct trapframe *frame, vm_offset_t eva)
878 {
879 	int code, ss;
880 	u_int type;
881 	struct soft_segment_descriptor softseg;
882 	struct user_segment_descriptor *gdt;
883 #ifdef KDB
884 	bool handled;
885 #endif
886 
887 	code = frame->tf_err;
888 	type = frame->tf_trapno;
889 	gdt = *PCPU_PTR(gdt);
890 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
891 
892 	printf("\n\nFatal trap %d: %s while in %s mode\n", type,
893 	    type < nitems(trap_msg) ? trap_msg[type] : UNKNOWN,
894 	    TRAPF_USERMODE(frame) ? "user" : "kernel");
895 #ifdef SMP
896 	/* two separate prints in case of a trap on an unmapped page */
897 	printf("cpuid = %d; ", PCPU_GET(cpuid));
898 	printf("apic id = %02x\n", PCPU_GET(apic_id));
899 #endif
900 	if (type == T_PAGEFLT) {
901 		printf("fault virtual address	= 0x%lx\n", eva);
902 		printf("fault code		= %s %s %s%s%s, %s\n",
903 			code & PGEX_U ? "user" : "supervisor",
904 			code & PGEX_W ? "write" : "read",
905 			code & PGEX_I ? "instruction" : "data",
906 			code & PGEX_PK ? " prot key" : "",
907 			code & PGEX_SGX ? " SGX" : "",
908 			code & PGEX_RSV ? "reserved bits in PTE" :
909 			code & PGEX_P ? "protection violation" : "page not present");
910 	}
911 	printf("instruction pointer	= 0x%lx:0x%lx\n",
912 	       frame->tf_cs & 0xffff, frame->tf_rip);
913 	ss = frame->tf_ss & 0xffff;
914 	printf("stack pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rsp);
915 	printf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
916 	printf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
917 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
918 	printf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
919 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
920 	       softseg.ssd_gran);
921 	printf("processor eflags	= ");
922 	if (frame->tf_rflags & PSL_T)
923 		printf("trace trap, ");
924 	if (frame->tf_rflags & PSL_I)
925 		printf("interrupt enabled, ");
926 	if (frame->tf_rflags & PSL_NT)
927 		printf("nested task, ");
928 	if (frame->tf_rflags & PSL_RF)
929 		printf("resume, ");
930 	printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
931 	printf("current process		= %d (%s)\n",
932 	    curproc->p_pid, curthread->td_name);
933 
934 	printf("rdi: %16lx rsi: %16lx rdx: %16lx\n", frame->tf_rdi,
935 	    frame->tf_rsi, frame->tf_rdx);
936 	printf("rcx: %16lx  r8: %16lx  r9: %16lx\n", frame->tf_rcx,
937 	    frame->tf_r8, frame->tf_r9);
938 	printf("rax: %16lx rbx: %16lx rbp: %16lx\n", frame->tf_rax,
939 	    frame->tf_rbx, frame->tf_rbp);
940 	printf("r10: %16lx r11: %16lx r12: %16lx\n", frame->tf_r10,
941 	    frame->tf_r11, frame->tf_r12);
942 	printf("r13: %16lx r14: %16lx r15: %16lx\n", frame->tf_r13,
943 	    frame->tf_r14, frame->tf_r15);
944 
945 #ifdef KDB
946 	if (debugger_on_trap) {
947 		kdb_why = KDB_WHY_TRAP;
948 		handled = kdb_trap(type, 0, frame);
949 		kdb_why = KDB_WHY_UNSET;
950 		if (handled)
951 			return;
952 	}
953 #endif
954 	printf("trap number		= %d\n", type);
955 	panic("%s", type < nitems(trap_msg) ? trap_msg[type] :
956 	    "unknown/reserved trap");
957 }
958 
959 #ifdef KDTRACE_HOOKS
960 /*
961  * Invoke a userspace DTrace hook.  The hook pointer is cleared when no
962  * userspace probes are enabled, so we must synchronize with DTrace to ensure
963  * that a trapping thread is able to call the hook before it is cleared.
964  */
965 static bool
966 trap_user_dtrace(struct trapframe *frame, int (**hookp)(struct trapframe *))
967 {
968 	int (*hook)(struct trapframe *);
969 
970 	hook = atomic_load_ptr(hookp);
971 	enable_intr();
972 	if (hook != NULL)
973 		return ((hook)(frame) == 0);
974 	return (false);
975 }
976 #endif
977 
978 /*
979  * Double fault handler. Called when a fault occurs while writing
980  * a frame for a trap/exception onto the stack. This usually occurs
981  * when the stack overflows (such is the case with infinite recursion,
982  * for example).
983  */
984 void
985 dblfault_handler(struct trapframe *frame)
986 {
987 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
988 #ifdef KDTRACE_HOOKS
989 	if (dtrace_doubletrap_func != NULL)
990 		(*dtrace_doubletrap_func)();
991 #endif
992 	printf("\nFatal double fault\n"
993 	    "rip %#lx rsp %#lx rbp %#lx\n"
994 	    "rax %#lx rdx %#lx rbx %#lx\n"
995 	    "rcx %#lx rsi %#lx rdi %#lx\n"
996 	    "r8 %#lx r9 %#lx r10 %#lx\n"
997 	    "r11 %#lx r12 %#lx r13 %#lx\n"
998 	    "r14 %#lx r15 %#lx rflags %#lx\n"
999 	    "cs %#lx ss %#lx ds %#hx es %#hx fs %#hx gs %#hx\n"
1000 	    "fsbase %#lx gsbase %#lx kgsbase %#lx\n",
1001 	    frame->tf_rip, frame->tf_rsp, frame->tf_rbp,
1002 	    frame->tf_rax, frame->tf_rdx, frame->tf_rbx,
1003 	    frame->tf_rcx, frame->tf_rdi, frame->tf_rsi,
1004 	    frame->tf_r8, frame->tf_r9, frame->tf_r10,
1005 	    frame->tf_r11, frame->tf_r12, frame->tf_r13,
1006 	    frame->tf_r14, frame->tf_r15, frame->tf_rflags,
1007 	    frame->tf_cs, frame->tf_ss, frame->tf_ds, frame->tf_es,
1008 	    frame->tf_fs, frame->tf_gs,
1009 	    rdmsr(MSR_FSBASE), rdmsr(MSR_GSBASE), rdmsr(MSR_KGSBASE));
1010 #ifdef SMP
1011 	/* two separate prints in case of a trap on an unmapped page */
1012 	printf("cpuid = %d; ", PCPU_GET(cpuid));
1013 	printf("apic id = %02x\n", PCPU_GET(apic_id));
1014 #endif
1015 	panic("double fault");
1016 }
1017 
1018 static int __noinline
1019 cpu_fetch_syscall_args_fallback(struct thread *td, struct syscall_args *sa)
1020 {
1021 	struct proc *p;
1022 	struct trapframe *frame;
1023 	syscallarg_t *argp;
1024 	caddr_t params;
1025 	int reg, regcnt, error;
1026 
1027 	p = td->td_proc;
1028 	frame = td->td_frame;
1029 	reg = 0;
1030 	regcnt = NARGREGS;
1031 
1032 	if (sa->code == SYS_syscall || sa->code == SYS___syscall) {
1033 		sa->code = frame->tf_rdi;
1034 		reg++;
1035 		regcnt--;
1036 	}
1037 
1038  	if (sa->code >= p->p_sysent->sv_size)
1039  		sa->callp = &p->p_sysent->sv_table[0];
1040   	else
1041  		sa->callp = &p->p_sysent->sv_table[sa->code];
1042 
1043 	KASSERT(sa->callp->sy_narg <= nitems(sa->args),
1044 	    ("Too many syscall arguments!"));
1045 	argp = &frame->tf_rdi;
1046 	argp += reg;
1047 	memcpy(sa->args, argp, sizeof(sa->args[0]) * NARGREGS);
1048 	if (sa->callp->sy_narg > regcnt) {
1049 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1050 		error = copyin(params, &sa->args[regcnt],
1051 	    	    (sa->callp->sy_narg - regcnt) * sizeof(sa->args[0]));
1052 		if (__predict_false(error != 0))
1053 			return (error);
1054 	}
1055 
1056 	td->td_retval[0] = 0;
1057 	td->td_retval[1] = frame->tf_rdx;
1058 
1059 	return (0);
1060 }
1061 
1062 int
1063 cpu_fetch_syscall_args(struct thread *td)
1064 {
1065 	struct proc *p;
1066 	struct trapframe *frame;
1067 	struct syscall_args *sa;
1068 
1069 	p = td->td_proc;
1070 	frame = td->td_frame;
1071 	sa = &td->td_sa;
1072 
1073 	sa->code = frame->tf_rax;
1074 	sa->original_code = sa->code;
1075 
1076 	if (__predict_false(sa->code == SYS_syscall ||
1077 	    sa->code == SYS___syscall ||
1078 	    sa->code >= p->p_sysent->sv_size))
1079 		return (cpu_fetch_syscall_args_fallback(td, sa));
1080 
1081 	sa->callp = &p->p_sysent->sv_table[sa->code];
1082 	KASSERT(sa->callp->sy_narg <= nitems(sa->args),
1083 	    ("Too many syscall arguments!"));
1084 
1085 	if (__predict_false(sa->callp->sy_narg > NARGREGS))
1086 		return (cpu_fetch_syscall_args_fallback(td, sa));
1087 
1088 	memcpy(sa->args, &frame->tf_rdi, sizeof(sa->args[0]) * NARGREGS);
1089 
1090 	td->td_retval[0] = 0;
1091 	td->td_retval[1] = frame->tf_rdx;
1092 
1093 	return (0);
1094 }
1095 
1096 #include "../../kern/subr_syscall.c"
1097 
1098 static void (*syscall_ret_l1d_flush)(void);
1099 int syscall_ret_l1d_flush_mode;
1100 
1101 static void
1102 flush_l1d_hw(void)
1103 {
1104 
1105 	wrmsr(MSR_IA32_FLUSH_CMD, IA32_FLUSH_CMD_L1D);
1106 }
1107 
1108 static void __noinline
1109 amd64_syscall_ret_flush_l1d_check(int error)
1110 {
1111 	void (*p)(void);
1112 
1113 	if (error != EEXIST && error != EAGAIN && error != EXDEV &&
1114 	    error != ENOENT && error != ENOTCONN && error != EINPROGRESS) {
1115 		p = atomic_load_ptr(&syscall_ret_l1d_flush);
1116 		if (p != NULL)
1117 			p();
1118 	}
1119 }
1120 
1121 static void __inline
1122 amd64_syscall_ret_flush_l1d_check_inline(int error)
1123 {
1124 
1125 	if (__predict_false(error != 0))
1126 		amd64_syscall_ret_flush_l1d_check(error);
1127 }
1128 
1129 void
1130 amd64_syscall_ret_flush_l1d(int error)
1131 {
1132 
1133 	amd64_syscall_ret_flush_l1d_check_inline(error);
1134 }
1135 
1136 void
1137 amd64_syscall_ret_flush_l1d_recalc(void)
1138 {
1139 	bool l1d_hw;
1140 
1141 	l1d_hw = (cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) != 0;
1142 again:
1143 	switch (syscall_ret_l1d_flush_mode) {
1144 	case 0:
1145 		syscall_ret_l1d_flush = NULL;
1146 		break;
1147 	case 1:
1148 		syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw :
1149 		    flush_l1d_sw_abi;
1150 		break;
1151 	case 2:
1152 		syscall_ret_l1d_flush = l1d_hw ? flush_l1d_hw : NULL;
1153 		break;
1154 	case 3:
1155 		syscall_ret_l1d_flush = flush_l1d_sw_abi;
1156 		break;
1157 	default:
1158 		syscall_ret_l1d_flush_mode = 1;
1159 		goto again;
1160 	}
1161 }
1162 
1163 static int
1164 machdep_syscall_ret_flush_l1d(SYSCTL_HANDLER_ARGS)
1165 {
1166 	int error, val;
1167 
1168 	val = syscall_ret_l1d_flush_mode;
1169 	error = sysctl_handle_int(oidp, &val, 0, req);
1170 	if (error != 0 || req->newptr == NULL)
1171 		return (error);
1172 	syscall_ret_l1d_flush_mode = val;
1173 	amd64_syscall_ret_flush_l1d_recalc();
1174 	return (0);
1175 }
1176 SYSCTL_PROC(_machdep, OID_AUTO, syscall_ret_flush_l1d, CTLTYPE_INT |
1177     CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, NULL, 0,
1178     machdep_syscall_ret_flush_l1d, "I",
1179     "Flush L1D on syscall return with error (0 - off, 1 - on, "
1180     "2 - use hw only, 3 - use sw only)");
1181 
1182 /*
1183  * System call handler for native binaries.  The trap frame is already
1184  * set up by the assembler trampoline and a pointer to it is saved in
1185  * td_frame.
1186  */
1187 void
1188 amd64_syscall(struct thread *td, int traced)
1189 {
1190 	ksiginfo_t ksi;
1191 
1192 	kmsan_mark(td->td_frame, sizeof(*td->td_frame), KMSAN_STATE_INITED);
1193 
1194 #ifdef DIAGNOSTIC
1195 	if (!TRAPF_USERMODE(td->td_frame)) {
1196 		panic("syscall");
1197 		/* NOT REACHED */
1198 	}
1199 #endif
1200 	syscallenter(td);
1201 
1202 	/*
1203 	 * Traced syscall.
1204 	 */
1205 	if (__predict_false(traced)) {
1206 		td->td_frame->tf_rflags &= ~PSL_T;
1207 		ksiginfo_init_trap(&ksi);
1208 		ksi.ksi_signo = SIGTRAP;
1209 		ksi.ksi_code = TRAP_TRACE;
1210 		ksi.ksi_addr = (void *)td->td_frame->tf_rip;
1211 		trapsignal(td, &ksi);
1212 	}
1213 
1214 	KASSERT(PCB_USER_FPU(td->td_pcb),
1215 	    ("System call %s returning with kernel FPU ctx leaked",
1216 	     syscallname(td->td_proc, td->td_sa.code)));
1217 	KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
1218 	    ("System call %s returning with mangled pcb_save",
1219 	     syscallname(td->td_proc, td->td_sa.code)));
1220 	KASSERT(pmap_not_in_di(),
1221 	    ("System call %s returning with leaked invl_gen %lu",
1222 	    syscallname(td->td_proc, td->td_sa.code),
1223 	    td->td_md.md_invl_gen.gen));
1224 
1225 	syscallret(td);
1226 
1227 	/*
1228 	 * If the user-supplied value of %rip is not a canonical
1229 	 * address, then some CPUs will trigger a ring 0 #GP during
1230 	 * the sysret instruction.  However, the fault handler would
1231 	 * execute in ring 0 with the user's %gs and %rsp which would
1232 	 * not be safe.  Instead, use the full return path which
1233 	 * catches the problem safely.
1234 	 */
1235 	if (__predict_false(td->td_frame->tf_rip >= (la57 ?
1236 	    VM_MAXUSER_ADDRESS_LA57 : VM_MAXUSER_ADDRESS_LA48)))
1237 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1238 
1239 	amd64_syscall_ret_flush_l1d_check_inline(td->td_errno);
1240 }
1241