xref: /freebsd/sys/arm64/arm64/strncmp.S (revision 8c6e5d8c)
1/*
2 * strncmp - compare two strings
3 *
4 * Copyright (c) 2013-2022, Arm Limited.
5 * SPDX-License-Identifier: MIT
6 */
7
8/* Assumptions:
9 *
10 * ARMv8-a, AArch64.
11 * MTE compatible.
12 */
13
14#include <machine/asm.h>
15
16#define L(l) .L ## l
17
18#define REP8_01 0x0101010101010101
19#define REP8_7f 0x7f7f7f7f7f7f7f7f
20
21/* Parameters and result.  */
22#define src1		x0
23#define src2		x1
24#define limit		x2
25#define result		x0
26
27/* Internal variables.  */
28#define data1		x3
29#define data1w		w3
30#define data2		x4
31#define data2w		w4
32#define has_nul		x5
33#define diff		x6
34#define syndrome	x7
35#define tmp1		x8
36#define tmp2		x9
37#define tmp3		x10
38#define zeroones	x11
39#define pos		x12
40#define mask		x13
41#define endloop		x14
42#define count		mask
43#define offset		pos
44#define neg_offset	x15
45
46/* Define endian dependent shift operations.
47   On big-endian early bytes are at MSB and on little-endian LSB.
48   LS_FW means shifting towards early bytes.
49   LS_BK means shifting towards later bytes.
50   */
51#ifdef __AARCH64EB__
52#define LS_FW lsl
53#define LS_BK lsr
54#else
55#define LS_FW lsr
56#define LS_BK lsl
57#endif
58
59ENTRY (strncmp)
60	cbz	limit, L(ret0)
61	eor	tmp1, src1, src2
62	mov	zeroones, #REP8_01
63	tst	tmp1, #7
64	and	count, src1, #7
65	b.ne	L(misaligned8)
66	cbnz	count, L(mutual_align)
67
68	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
69	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
70	   can be done in parallel across the entire word.  */
71	.p2align 4
72L(loop_aligned):
73	ldr	data1, [src1], #8
74	ldr	data2, [src2], #8
75L(start_realigned):
76	subs	limit, limit, #8
77	sub	tmp1, data1, zeroones
78	orr	tmp2, data1, #REP8_7f
79	eor	diff, data1, data2	/* Non-zero if differences found.  */
80	csinv	endloop, diff, xzr, hi	/* Last Dword or differences.  */
81	bics	has_nul, tmp1, tmp2	/* Non-zero if NUL terminator.  */
82	ccmp	endloop, #0, #0, eq
83	b.eq	L(loop_aligned)
84	/* End of main loop */
85
86L(full_check):
87#ifndef __AARCH64EB__
88	orr	syndrome, diff, has_nul
89	add	limit, limit, 8	/* Rewind limit to before last subs. */
90L(syndrome_check):
91	/* Limit was reached. Check if the NUL byte or the difference
92	   is before the limit. */
93	rev	syndrome, syndrome
94	rev	data1, data1
95	clz	pos, syndrome
96	rev	data2, data2
97	lsl	data1, data1, pos
98	cmp	limit, pos, lsr #3
99	lsl	data2, data2, pos
100	/* But we need to zero-extend (char is unsigned) the value and then
101	   perform a signed 32-bit subtraction.  */
102	lsr	data1, data1, #56
103	sub	result, data1, data2, lsr #56
104	csel result, result, xzr, hi
105	ret
106#else
107	/* Not reached the limit, must have found the end or a diff.  */
108	tbz	limit, #63, L(not_limit)
109	add	tmp1, limit, 8
110	cbz	limit, L(not_limit)
111
112	lsl	limit, tmp1, #3	/* Bits -> bytes.  */
113	mov	mask, #~0
114	lsr	mask, mask, limit
115	bic	data1, data1, mask
116	bic	data2, data2, mask
117
118	/* Make sure that the NUL byte is marked in the syndrome.  */
119	orr	has_nul, has_nul, mask
120
121L(not_limit):
122	/* For big-endian we cannot use the trick with the syndrome value
123	   as carry-propagation can corrupt the upper bits if the trailing
124	   bytes in the string contain 0x01.  */
125	/* However, if there is no NUL byte in the dword, we can generate
126	   the result directly.  We can't just subtract the bytes as the
127	   MSB might be significant.  */
128	cbnz	has_nul, 1f
129	cmp	data1, data2
130	cset	result, ne
131	cneg	result, result, lo
132	ret
1331:
134	/* Re-compute the NUL-byte detection, using a byte-reversed value.  */
135	rev	tmp3, data1
136	sub	tmp1, tmp3, zeroones
137	orr	tmp2, tmp3, #REP8_7f
138	bic	has_nul, tmp1, tmp2
139	rev	has_nul, has_nul
140	orr	syndrome, diff, has_nul
141	clz	pos, syndrome
142	/* The most-significant-non-zero bit of the syndrome marks either the
143	   first bit that is different, or the top bit of the first zero byte.
144	   Shifting left now will bring the critical information into the
145	   top bits.  */
146L(end_quick):
147	lsl	data1, data1, pos
148	lsl	data2, data2, pos
149	/* But we need to zero-extend (char is unsigned) the value and then
150	   perform a signed 32-bit subtraction.  */
151	lsr	data1, data1, #56
152	sub	result, data1, data2, lsr #56
153	ret
154#endif
155
156L(mutual_align):
157	/* Sources are mutually aligned, but are not currently at an
158	   alignment boundary.  Round down the addresses and then mask off
159	   the bytes that precede the start point.
160	   We also need to adjust the limit calculations, but without
161	   overflowing if the limit is near ULONG_MAX.  */
162	bic	src1, src1, #7
163	bic	src2, src2, #7
164	ldr	data1, [src1], #8
165	neg	tmp3, count, lsl #3	/* 64 - bits(bytes beyond align). */
166	ldr	data2, [src2], #8
167	mov	tmp2, #~0
168	LS_FW	tmp2, tmp2, tmp3	/* Shift (count & 63).  */
169	/* Adjust the limit and ensure it doesn't overflow.  */
170	adds	limit, limit, count
171	csinv	limit, limit, xzr, lo
172	orr	data1, data1, tmp2
173	orr	data2, data2, tmp2
174	b	L(start_realigned)
175
176	.p2align 4
177	/* Don't bother with dwords for up to 16 bytes.  */
178L(misaligned8):
179	cmp	limit, #16
180	b.hs	L(try_misaligned_words)
181
182L(byte_loop):
183	/* Perhaps we can do better than this.  */
184	ldrb	data1w, [src1], #1
185	ldrb	data2w, [src2], #1
186	subs	limit, limit, #1
187	ccmp	data1w, #1, #0, hi	/* NZCV = 0b0000.  */
188	ccmp	data1w, data2w, #0, cs	/* NZCV = 0b0000.  */
189	b.eq	L(byte_loop)
190L(done):
191	sub	result, data1, data2
192	ret
193	/* Align the SRC1 to a dword by doing a bytewise compare and then do
194	   the dword loop.  */
195L(try_misaligned_words):
196	cbz	count, L(src1_aligned)
197
198	neg	count, count
199	and	count, count, #7
200	sub	limit, limit, count
201
202L(page_end_loop):
203	ldrb	data1w, [src1], #1
204	ldrb	data2w, [src2], #1
205	cmp	data1w, #1
206	ccmp	data1w, data2w, #0, cs	/* NZCV = 0b0000.  */
207	b.ne	L(done)
208	subs	count, count, #1
209	b.hi	L(page_end_loop)
210
211	/* The following diagram explains the comparison of misaligned strings.
212	   The bytes are shown in natural order. For little-endian, it is
213	   reversed in the registers. The "x" bytes are before the string.
214	   The "|" separates data that is loaded at one time.
215	   src1     | a a a a a a a a | b b b c c c c c | . . .
216	   src2     | x x x x x a a a   a a a a a b b b | c c c c c . . .
217
218	   After shifting in each step, the data looks like this:
219	                STEP_A              STEP_B              STEP_C
220	   data1    a a a a a a a a     b b b c c c c c     b b b c c c c c
221	   data2    a a a a a a a a     b b b 0 0 0 0 0     0 0 0 c c c c c
222
223	   The bytes with "0" are eliminated from the syndrome via mask.
224
225	   Align SRC2 down to 16 bytes. This way we can read 16 bytes at a
226	   time from SRC2. The comparison happens in 3 steps. After each step
227	   the loop can exit, or read from SRC1 or SRC2. */
228L(src1_aligned):
229	/* Calculate offset from 8 byte alignment to string start in bits. No
230	   need to mask offset since shifts are ignoring upper bits. */
231	lsl	offset, src2, #3
232	bic	src2, src2, #0xf
233	mov	mask, -1
234	neg	neg_offset, offset
235	ldr	data1, [src1], #8
236	ldp	tmp1, tmp2, [src2], #16
237	LS_BK	mask, mask, neg_offset
238	and	neg_offset, neg_offset, #63	/* Need actual value for cmp later. */
239	/* Skip the first compare if data in tmp1 is irrelevant. */
240	tbnz	offset, 6, L(misaligned_mid_loop)
241
242L(loop_misaligned):
243	/* STEP_A: Compare full 8 bytes when there is enough data from SRC2.*/
244	LS_FW	data2, tmp1, offset
245	LS_BK	tmp1, tmp2, neg_offset
246	subs	limit, limit, #8
247	orr	data2, data2, tmp1	/* 8 bytes from SRC2 combined from two regs.*/
248	sub	has_nul, data1, zeroones
249	eor	diff, data1, data2	/* Non-zero if differences found.  */
250	orr	tmp3, data1, #REP8_7f
251	csinv	endloop, diff, xzr, hi	/* If limit, set to all ones. */
252	bic	has_nul, has_nul, tmp3	/* Non-zero if NUL byte found in SRC1. */
253	orr	tmp3, endloop, has_nul
254	cbnz	tmp3, L(full_check)
255
256	ldr	data1, [src1], #8
257L(misaligned_mid_loop):
258	/* STEP_B: Compare first part of data1 to second part of tmp2. */
259	LS_FW	data2, tmp2, offset
260#ifdef __AARCH64EB__
261	/* For big-endian we do a byte reverse to avoid carry-propagation
262	problem described above. This way we can reuse the has_nul in the
263	next step and also use syndrome value trick at the end. */
264	rev	tmp3, data1
265	#define data1_fixed tmp3
266#else
267	#define data1_fixed data1
268#endif
269	sub	has_nul, data1_fixed, zeroones
270	orr	tmp3, data1_fixed, #REP8_7f
271	eor	diff, data2, data1	/* Non-zero if differences found.  */
272	bic	has_nul, has_nul, tmp3	/* Non-zero if NUL terminator.  */
273#ifdef __AARCH64EB__
274	rev	has_nul, has_nul
275#endif
276	cmp	limit, neg_offset, lsr #3
277	orr	syndrome, diff, has_nul
278	bic	syndrome, syndrome, mask	/* Ignore later bytes. */
279	csinv	tmp3, syndrome, xzr, hi	/* If limit, set to all ones. */
280	cbnz	tmp3, L(syndrome_check)
281
282	/* STEP_C: Compare second part of data1 to first part of tmp1. */
283	ldp	tmp1, tmp2, [src2], #16
284	cmp	limit, #8
285	LS_BK	data2, tmp1, neg_offset
286	eor	diff, data2, data1	/* Non-zero if differences found.  */
287	orr	syndrome, diff, has_nul
288	and	syndrome, syndrome, mask	/* Ignore earlier bytes. */
289	csinv	tmp3, syndrome, xzr, hi	/* If limit, set to all ones. */
290	cbnz	tmp3, L(syndrome_check)
291
292	ldr	data1, [src1], #8
293	sub	limit, limit, #8
294	b	L(loop_misaligned)
295
296#ifdef	__AARCH64EB__
297L(syndrome_check):
298	clz	pos, syndrome
299	cmp	pos, limit, lsl #3
300	b.lo	L(end_quick)
301#endif
302
303L(ret0):
304	mov	result, #0
305	ret
306END(strncmp)
307
308