1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <modes/modes.h>
28 #include <sys/crypto/common.h>
29 #include <sys/crypto/impl.h>
30 
31 #ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
32 #include <sys/byteorder.h>
33 #define	UNALIGNED_POINTERS_PERMITTED
34 #endif
35 
36 /*
37  * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
38  * is done in another function.
39  */
40 int
ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t * ctx,char * data,size_t length,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* copy_block)(uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))41 ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
42     crypto_data_t *out, size_t block_size,
43     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
44     void (*copy_block)(uint8_t *, uint8_t *),
45     void (*xor_block)(uint8_t *, uint8_t *))
46 {
47 	size_t remainder = length;
48 	size_t need = 0;
49 	uint8_t *datap = (uint8_t *)data;
50 	uint8_t *blockp;
51 	uint8_t *lastp;
52 	void *iov_or_mp;
53 	offset_t offset;
54 	uint8_t *out_data_1;
55 	uint8_t *out_data_2;
56 	size_t out_data_1_len;
57 	uint64_t counter;
58 	uint8_t *mac_buf;
59 
60 	if (length + ctx->ccm_remainder_len < block_size) {
61 		/* accumulate bytes here and return */
62 		memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
63 		    datap,
64 		    length);
65 		ctx->ccm_remainder_len += length;
66 		ctx->ccm_copy_to = datap;
67 		return (CRYPTO_SUCCESS);
68 	}
69 
70 	crypto_init_ptrs(out, &iov_or_mp, &offset);
71 
72 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
73 
74 	do {
75 		/* Unprocessed data from last call. */
76 		if (ctx->ccm_remainder_len > 0) {
77 			need = block_size - ctx->ccm_remainder_len;
78 
79 			if (need > remainder)
80 				return (CRYPTO_DATA_LEN_RANGE);
81 
82 			memcpy(&((uint8_t *)ctx->ccm_remainder)
83 			    [ctx->ccm_remainder_len], datap, need);
84 
85 			blockp = (uint8_t *)ctx->ccm_remainder;
86 		} else {
87 			blockp = datap;
88 		}
89 
90 		/*
91 		 * do CBC MAC
92 		 *
93 		 * XOR the previous cipher block current clear block.
94 		 * mac_buf always contain previous cipher block.
95 		 */
96 		xor_block(blockp, mac_buf);
97 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
98 
99 		/* ccm_cb is the counter block */
100 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
101 		    (uint8_t *)ctx->ccm_tmp);
102 
103 		lastp = (uint8_t *)ctx->ccm_tmp;
104 
105 		/*
106 		 * Increment counter. Counter bits are confined
107 		 * to the bottom 64 bits of the counter block.
108 		 */
109 #ifdef _ZFS_LITTLE_ENDIAN
110 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
111 		counter = htonll(counter + 1);
112 #else
113 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
114 		counter++;
115 #endif	/* _ZFS_LITTLE_ENDIAN */
116 		counter &= ctx->ccm_counter_mask;
117 		ctx->ccm_cb[1] =
118 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
119 
120 		/*
121 		 * XOR encrypted counter block with the current clear block.
122 		 */
123 		xor_block(blockp, lastp);
124 
125 		ctx->ccm_processed_data_len += block_size;
126 
127 		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
128 		    &out_data_1_len, &out_data_2, block_size);
129 
130 		/* copy block to where it belongs */
131 		if (out_data_1_len == block_size) {
132 			copy_block(lastp, out_data_1);
133 		} else {
134 			memcpy(out_data_1, lastp, out_data_1_len);
135 			if (out_data_2 != NULL) {
136 				memcpy(out_data_2,
137 				    lastp + out_data_1_len,
138 				    block_size - out_data_1_len);
139 			}
140 		}
141 		/* update offset */
142 		out->cd_offset += block_size;
143 
144 		/* Update pointer to next block of data to be processed. */
145 		if (ctx->ccm_remainder_len != 0) {
146 			datap += need;
147 			ctx->ccm_remainder_len = 0;
148 		} else {
149 			datap += block_size;
150 		}
151 
152 		remainder = (size_t)&data[length] - (size_t)datap;
153 
154 		/* Incomplete last block. */
155 		if (remainder > 0 && remainder < block_size) {
156 			memcpy(ctx->ccm_remainder, datap, remainder);
157 			ctx->ccm_remainder_len = remainder;
158 			ctx->ccm_copy_to = datap;
159 			goto out;
160 		}
161 		ctx->ccm_copy_to = NULL;
162 
163 	} while (remainder > 0);
164 
165 out:
166 	return (CRYPTO_SUCCESS);
167 }
168 
169 void
calculate_ccm_mac(ccm_ctx_t * ctx,uint8_t * ccm_mac,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *))170 calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
171     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
172 {
173 	uint64_t counter;
174 	uint8_t *counterp, *mac_buf;
175 	int i;
176 
177 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
178 
179 	/* first counter block start with index 0 */
180 	counter = 0;
181 	ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
182 
183 	counterp = (uint8_t *)ctx->ccm_tmp;
184 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
185 
186 	/* calculate XOR of MAC with first counter block */
187 	for (i = 0; i < ctx->ccm_mac_len; i++) {
188 		ccm_mac[i] = mac_buf[i] ^ counterp[i];
189 	}
190 }
191 
192 int
ccm_encrypt_final(ccm_ctx_t * ctx,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))193 ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
194     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
195     void (*xor_block)(uint8_t *, uint8_t *))
196 {
197 	uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
198 	void *iov_or_mp;
199 	offset_t offset;
200 	uint8_t *out_data_1;
201 	uint8_t *out_data_2;
202 	size_t out_data_1_len;
203 	int i;
204 
205 	if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
206 		return (CRYPTO_DATA_LEN_RANGE);
207 	}
208 
209 	/*
210 	 * When we get here, the number of bytes of payload processed
211 	 * plus whatever data remains, if any,
212 	 * should be the same as the number of bytes that's being
213 	 * passed in the argument during init time.
214 	 */
215 	if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
216 	    != (ctx->ccm_data_len)) {
217 		return (CRYPTO_DATA_LEN_RANGE);
218 	}
219 
220 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
221 
222 	if (ctx->ccm_remainder_len > 0) {
223 
224 		/* ccm_mac_input_buf is not used for encryption */
225 		macp = (uint8_t *)ctx->ccm_mac_input_buf;
226 		memset(macp, 0, block_size);
227 
228 		/* copy remainder to temporary buffer */
229 		memcpy(macp, ctx->ccm_remainder, ctx->ccm_remainder_len);
230 
231 		/* calculate the CBC MAC */
232 		xor_block(macp, mac_buf);
233 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
234 
235 		/* calculate the counter mode */
236 		lastp = (uint8_t *)ctx->ccm_tmp;
237 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
238 
239 		/* XOR with counter block */
240 		for (i = 0; i < ctx->ccm_remainder_len; i++) {
241 			macp[i] ^= lastp[i];
242 		}
243 		ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
244 	}
245 
246 	/* Calculate the CCM MAC */
247 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
248 	calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
249 
250 	crypto_init_ptrs(out, &iov_or_mp, &offset);
251 	crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
252 	    &out_data_1_len, &out_data_2,
253 	    ctx->ccm_remainder_len + ctx->ccm_mac_len);
254 
255 	if (ctx->ccm_remainder_len > 0) {
256 		/* copy temporary block to where it belongs */
257 		if (out_data_2 == NULL) {
258 			/* everything will fit in out_data_1 */
259 			memcpy(out_data_1, macp, ctx->ccm_remainder_len);
260 			memcpy(out_data_1 + ctx->ccm_remainder_len, ccm_mac_p,
261 			    ctx->ccm_mac_len);
262 		} else {
263 			if (out_data_1_len < ctx->ccm_remainder_len) {
264 				size_t data_2_len_used;
265 
266 				memcpy(out_data_1, macp, out_data_1_len);
267 
268 				data_2_len_used = ctx->ccm_remainder_len
269 				    - out_data_1_len;
270 
271 				memcpy(out_data_2,
272 				    (uint8_t *)macp + out_data_1_len,
273 				    data_2_len_used);
274 				memcpy(out_data_2 + data_2_len_used,
275 				    ccm_mac_p,
276 				    ctx->ccm_mac_len);
277 			} else {
278 				memcpy(out_data_1, macp, out_data_1_len);
279 				if (out_data_1_len == ctx->ccm_remainder_len) {
280 					/* mac will be in out_data_2 */
281 					memcpy(out_data_2, ccm_mac_p,
282 					    ctx->ccm_mac_len);
283 				} else {
284 					size_t len_not_used = out_data_1_len -
285 					    ctx->ccm_remainder_len;
286 					/*
287 					 * part of mac in will be in
288 					 * out_data_1, part of the mac will be
289 					 * in out_data_2
290 					 */
291 					memcpy(out_data_1 +
292 					    ctx->ccm_remainder_len,
293 					    ccm_mac_p, len_not_used);
294 					memcpy(out_data_2,
295 					    ccm_mac_p + len_not_used,
296 					    ctx->ccm_mac_len - len_not_used);
297 
298 				}
299 			}
300 		}
301 	} else {
302 		/* copy block to where it belongs */
303 		memcpy(out_data_1, ccm_mac_p, out_data_1_len);
304 		if (out_data_2 != NULL) {
305 			memcpy(out_data_2, ccm_mac_p + out_data_1_len,
306 			    block_size - out_data_1_len);
307 		}
308 	}
309 	out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
310 	ctx->ccm_remainder_len = 0;
311 	return (CRYPTO_SUCCESS);
312 }
313 
314 /*
315  * This will only deal with decrypting the last block of the input that
316  * might not be a multiple of block length.
317  */
318 static void
ccm_decrypt_incomplete_block(ccm_ctx_t * ctx,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *))319 ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
320     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
321 {
322 	uint8_t *datap, *outp, *counterp;
323 	int i;
324 
325 	datap = (uint8_t *)ctx->ccm_remainder;
326 	outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
327 
328 	counterp = (uint8_t *)ctx->ccm_tmp;
329 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
330 
331 	/* XOR with counter block */
332 	for (i = 0; i < ctx->ccm_remainder_len; i++) {
333 		outp[i] = datap[i] ^ counterp[i];
334 	}
335 }
336 
337 /*
338  * This will decrypt the cipher text.  However, the plaintext won't be
339  * returned to the caller.  It will be returned when decrypt_final() is
340  * called if the MAC matches
341  */
342 int
ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t * ctx,char * data,size_t length,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* copy_block)(uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))343 ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
344     crypto_data_t *out, size_t block_size,
345     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
346     void (*copy_block)(uint8_t *, uint8_t *),
347     void (*xor_block)(uint8_t *, uint8_t *))
348 {
349 	(void) out;
350 	size_t remainder = length;
351 	size_t need = 0;
352 	uint8_t *datap = (uint8_t *)data;
353 	uint8_t *blockp;
354 	uint8_t *cbp;
355 	uint64_t counter;
356 	size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
357 	uint8_t *resultp;
358 
359 
360 	pm_len = ctx->ccm_processed_mac_len;
361 
362 	if (pm_len > 0) {
363 		uint8_t *tmp;
364 		/*
365 		 * all ciphertext has been processed, just waiting for
366 		 * part of the value of the mac
367 		 */
368 		if ((pm_len + length) > ctx->ccm_mac_len) {
369 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
370 		}
371 		tmp = (uint8_t *)ctx->ccm_mac_input_buf;
372 
373 		memcpy(tmp + pm_len, datap, length);
374 
375 		ctx->ccm_processed_mac_len += length;
376 		return (CRYPTO_SUCCESS);
377 	}
378 
379 	/*
380 	 * If we decrypt the given data, what total amount of data would
381 	 * have been decrypted?
382 	 */
383 	pd_len = ctx->ccm_processed_data_len;
384 	total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
385 
386 	if (total_decrypted_len >
387 	    (ctx->ccm_data_len + ctx->ccm_mac_len)) {
388 		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
389 	}
390 
391 	pt_len = ctx->ccm_data_len;
392 
393 	if (total_decrypted_len > pt_len) {
394 		/*
395 		 * part of the input will be the MAC, need to isolate that
396 		 * to be dealt with later.  The left-over data in
397 		 * ccm_remainder_len from last time will not be part of the
398 		 * MAC.  Otherwise, it would have already been taken out
399 		 * when this call is made last time.
400 		 */
401 		size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
402 
403 		mac_len = length - pt_part;
404 
405 		ctx->ccm_processed_mac_len = mac_len;
406 		memcpy(ctx->ccm_mac_input_buf, data + pt_part, mac_len);
407 
408 		if (pt_part + ctx->ccm_remainder_len < block_size) {
409 			/*
410 			 * since this is last of the ciphertext, will
411 			 * just decrypt with it here
412 			 */
413 			memcpy(&((uint8_t *)ctx->ccm_remainder)
414 			    [ctx->ccm_remainder_len], datap, pt_part);
415 			ctx->ccm_remainder_len += pt_part;
416 			ccm_decrypt_incomplete_block(ctx, encrypt_block);
417 			ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
418 			ctx->ccm_remainder_len = 0;
419 			return (CRYPTO_SUCCESS);
420 		} else {
421 			/* let rest of the code handle this */
422 			length = pt_part;
423 		}
424 	} else if (length + ctx->ccm_remainder_len < block_size) {
425 		/* accumulate bytes here and return */
426 		memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
427 		    datap,
428 		    length);
429 		ctx->ccm_remainder_len += length;
430 		ctx->ccm_copy_to = datap;
431 		return (CRYPTO_SUCCESS);
432 	}
433 
434 	do {
435 		/* Unprocessed data from last call. */
436 		if (ctx->ccm_remainder_len > 0) {
437 			need = block_size - ctx->ccm_remainder_len;
438 
439 			if (need > remainder)
440 				return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
441 
442 			memcpy(&((uint8_t *)ctx->ccm_remainder)
443 			    [ctx->ccm_remainder_len], datap, need);
444 
445 			blockp = (uint8_t *)ctx->ccm_remainder;
446 		} else {
447 			blockp = datap;
448 		}
449 
450 		/* Calculate the counter mode, ccm_cb is the counter block */
451 		cbp = (uint8_t *)ctx->ccm_tmp;
452 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
453 
454 		/*
455 		 * Increment counter.
456 		 * Counter bits are confined to the bottom 64 bits
457 		 */
458 #ifdef _ZFS_LITTLE_ENDIAN
459 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
460 		counter = htonll(counter + 1);
461 #else
462 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
463 		counter++;
464 #endif	/* _ZFS_LITTLE_ENDIAN */
465 		counter &= ctx->ccm_counter_mask;
466 		ctx->ccm_cb[1] =
467 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
468 
469 		/* XOR with the ciphertext */
470 		xor_block(blockp, cbp);
471 
472 		/* Copy the plaintext to the "holding buffer" */
473 		resultp = (uint8_t *)ctx->ccm_pt_buf +
474 		    ctx->ccm_processed_data_len;
475 		copy_block(cbp, resultp);
476 
477 		ctx->ccm_processed_data_len += block_size;
478 
479 		ctx->ccm_lastp = blockp;
480 
481 		/* Update pointer to next block of data to be processed. */
482 		if (ctx->ccm_remainder_len != 0) {
483 			datap += need;
484 			ctx->ccm_remainder_len = 0;
485 		} else {
486 			datap += block_size;
487 		}
488 
489 		remainder = (size_t)&data[length] - (size_t)datap;
490 
491 		/* Incomplete last block */
492 		if (remainder > 0 && remainder < block_size) {
493 			memcpy(ctx->ccm_remainder, datap, remainder);
494 			ctx->ccm_remainder_len = remainder;
495 			ctx->ccm_copy_to = datap;
496 			if (ctx->ccm_processed_mac_len > 0) {
497 				/*
498 				 * not expecting anymore ciphertext, just
499 				 * compute plaintext for the remaining input
500 				 */
501 				ccm_decrypt_incomplete_block(ctx,
502 				    encrypt_block);
503 				ctx->ccm_processed_data_len += remainder;
504 				ctx->ccm_remainder_len = 0;
505 			}
506 			goto out;
507 		}
508 		ctx->ccm_copy_to = NULL;
509 
510 	} while (remainder > 0);
511 
512 out:
513 	return (CRYPTO_SUCCESS);
514 }
515 
516 int
ccm_decrypt_final(ccm_ctx_t * ctx,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* copy_block)(uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))517 ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
518     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
519     void (*copy_block)(uint8_t *, uint8_t *),
520     void (*xor_block)(uint8_t *, uint8_t *))
521 {
522 	size_t mac_remain, pt_len;
523 	uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
524 	int rv;
525 
526 	pt_len = ctx->ccm_data_len;
527 
528 	/* Make sure output buffer can fit all of the plaintext */
529 	if (out->cd_length < pt_len) {
530 		return (CRYPTO_DATA_LEN_RANGE);
531 	}
532 
533 	pt = ctx->ccm_pt_buf;
534 	mac_remain = ctx->ccm_processed_data_len;
535 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
536 
537 	macp = (uint8_t *)ctx->ccm_tmp;
538 
539 	while (mac_remain > 0) {
540 		if (mac_remain < block_size) {
541 			memset(macp, 0, block_size);
542 			memcpy(macp, pt, mac_remain);
543 			mac_remain = 0;
544 		} else {
545 			copy_block(pt, macp);
546 			mac_remain -= block_size;
547 			pt += block_size;
548 		}
549 
550 		/* calculate the CBC MAC */
551 		xor_block(macp, mac_buf);
552 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
553 	}
554 
555 	/* Calculate the CCM MAC */
556 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
557 	calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
558 
559 	/* compare the input CCM MAC value with what we calculated */
560 	if (memcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
561 		/* They don't match */
562 		return (CRYPTO_INVALID_MAC);
563 	} else {
564 		rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
565 		if (rv != CRYPTO_SUCCESS)
566 			return (rv);
567 		out->cd_offset += pt_len;
568 	}
569 	return (CRYPTO_SUCCESS);
570 }
571 
572 static int
ccm_validate_args(CK_AES_CCM_PARAMS * ccm_param,boolean_t is_encrypt_init)573 ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
574 {
575 	size_t macSize, nonceSize;
576 	uint8_t q;
577 	uint64_t maxValue;
578 
579 	/*
580 	 * Check the length of the MAC.  The only valid
581 	 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
582 	 */
583 	macSize = ccm_param->ulMACSize;
584 	if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
585 		return (CRYPTO_MECHANISM_PARAM_INVALID);
586 	}
587 
588 	/* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
589 	nonceSize = ccm_param->ulNonceSize;
590 	if ((nonceSize < 7) || (nonceSize > 13)) {
591 		return (CRYPTO_MECHANISM_PARAM_INVALID);
592 	}
593 
594 	/* q is the length of the field storing the length, in bytes */
595 	q = (uint8_t)((15 - nonceSize) & 0xFF);
596 
597 
598 	/*
599 	 * If it is decrypt, need to make sure size of ciphertext is at least
600 	 * bigger than MAC len
601 	 */
602 	if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
603 		return (CRYPTO_MECHANISM_PARAM_INVALID);
604 	}
605 
606 	/*
607 	 * Check to make sure the length of the payload is within the
608 	 * range of values allowed by q
609 	 */
610 	if (q < 8) {
611 		maxValue = (1ULL << (q * 8)) - 1;
612 	} else {
613 		maxValue = ULONG_MAX;
614 	}
615 
616 	if (ccm_param->ulDataSize > maxValue) {
617 		return (CRYPTO_MECHANISM_PARAM_INVALID);
618 	}
619 	return (CRYPTO_SUCCESS);
620 }
621 
622 /*
623  * Format the first block used in CBC-MAC (B0) and the initial counter
624  * block based on formatting functions and counter generation functions
625  * specified in RFC 3610 and NIST publication 800-38C, appendix A
626  *
627  * b0 is the first block used in CBC-MAC
628  * cb0 is the first counter block
629  *
630  * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
631  *
632  */
633 static void
ccm_format_initial_blocks(uchar_t * nonce,ulong_t nonceSize,ulong_t authDataSize,uint8_t * b0,ccm_ctx_t * aes_ctx)634 ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
635     ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
636 {
637 	uint64_t payloadSize;
638 	uint8_t t, q, have_adata = 0;
639 	size_t limit;
640 	int i, j, k;
641 	uint64_t mask = 0;
642 	uint8_t *cb;
643 
644 	q = (uint8_t)((15 - nonceSize) & 0xFF);
645 	t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
646 
647 	/* Construct the first octet of b0 */
648 	if (authDataSize > 0) {
649 		have_adata = 1;
650 	}
651 	b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);
652 
653 	/* copy the nonce value into b0 */
654 	memcpy(&(b0[1]), nonce, nonceSize);
655 
656 	/* store the length of the payload into b0 */
657 	memset(&(b0[1+nonceSize]), 0, q);
658 
659 	payloadSize = aes_ctx->ccm_data_len;
660 	limit = MIN(8, q);
661 
662 	for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
663 		b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
664 	}
665 
666 	/* format the counter block */
667 
668 	cb = (uint8_t *)aes_ctx->ccm_cb;
669 
670 	cb[0] = 0x07 & (q-1); /* first byte */
671 
672 	/* copy the nonce value into the counter block */
673 	memcpy(&(cb[1]), nonce, nonceSize);
674 
675 	memset(&(cb[1+nonceSize]), 0, q);
676 
677 	/* Create the mask for the counter field based on the size of nonce */
678 	q <<= 3;
679 	while (q-- > 0) {
680 		mask |= (1ULL << q);
681 	}
682 
683 #ifdef _ZFS_LITTLE_ENDIAN
684 	mask = htonll(mask);
685 #endif
686 	aes_ctx->ccm_counter_mask = mask;
687 
688 	/*
689 	 * During calculation, we start using counter block 1, we will
690 	 * set it up right here.
691 	 * We can just set the last byte to have the value 1, because
692 	 * even with the biggest nonce of 13, the last byte of the
693 	 * counter block will be used for the counter value.
694 	 */
695 	cb[15] = 0x01;
696 }
697 
698 /*
699  * Encode the length of the associated data as
700  * specified in RFC 3610 and NIST publication 800-38C, appendix A
701  */
702 static void
encode_adata_len(ulong_t auth_data_len,uint8_t * encoded,size_t * encoded_len)703 encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
704 {
705 #ifdef UNALIGNED_POINTERS_PERMITTED
706 	uint32_t	*lencoded_ptr;
707 #ifdef _LP64
708 	uint64_t	*llencoded_ptr;
709 #endif
710 #endif	/* UNALIGNED_POINTERS_PERMITTED */
711 
712 	if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
713 		/* 0 < a < (2^16-2^8) */
714 		*encoded_len = 2;
715 		encoded[0] = (auth_data_len & 0xff00) >> 8;
716 		encoded[1] = auth_data_len & 0xff;
717 
718 	} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
719 	    (auth_data_len < (1ULL << 31))) {
720 		/* (2^16-2^8) <= a < 2^32 */
721 		*encoded_len = 6;
722 		encoded[0] = 0xff;
723 		encoded[1] = 0xfe;
724 #ifdef UNALIGNED_POINTERS_PERMITTED
725 		lencoded_ptr = (uint32_t *)&encoded[2];
726 		*lencoded_ptr = htonl(auth_data_len);
727 #else
728 		encoded[2] = (auth_data_len & 0xff000000) >> 24;
729 		encoded[3] = (auth_data_len & 0xff0000) >> 16;
730 		encoded[4] = (auth_data_len & 0xff00) >> 8;
731 		encoded[5] = auth_data_len & 0xff;
732 #endif	/* UNALIGNED_POINTERS_PERMITTED */
733 
734 #ifdef _LP64
735 	} else {
736 		/* 2^32 <= a < 2^64 */
737 		*encoded_len = 10;
738 		encoded[0] = 0xff;
739 		encoded[1] = 0xff;
740 #ifdef UNALIGNED_POINTERS_PERMITTED
741 		llencoded_ptr = (uint64_t *)&encoded[2];
742 		*llencoded_ptr = htonl(auth_data_len);
743 #else
744 		encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
745 		encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
746 		encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
747 		encoded[5] = (auth_data_len & 0xff00000000) >> 32;
748 		encoded[6] = (auth_data_len & 0xff000000) >> 24;
749 		encoded[7] = (auth_data_len & 0xff0000) >> 16;
750 		encoded[8] = (auth_data_len & 0xff00) >> 8;
751 		encoded[9] = auth_data_len & 0xff;
752 #endif	/* UNALIGNED_POINTERS_PERMITTED */
753 #endif	/* _LP64 */
754 	}
755 }
756 
757 static int
ccm_init(ccm_ctx_t * ctx,unsigned char * nonce,size_t nonce_len,unsigned char * auth_data,size_t auth_data_len,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))758 ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
759     unsigned char *auth_data, size_t auth_data_len, size_t block_size,
760     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
761     void (*xor_block)(uint8_t *, uint8_t *))
762 {
763 	uint8_t *mac_buf, *datap, *ivp, *authp;
764 	size_t remainder, processed;
765 	uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
766 	size_t encoded_a_len = 0;
767 
768 	mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
769 
770 	/*
771 	 * Format the 1st block for CBC-MAC and construct the
772 	 * 1st counter block.
773 	 *
774 	 * aes_ctx->ccm_iv is used for storing the counter block
775 	 * mac_buf will store b0 at this time.
776 	 */
777 	ccm_format_initial_blocks(nonce, nonce_len,
778 	    auth_data_len, mac_buf, ctx);
779 
780 	/* The IV for CBC MAC for AES CCM mode is always zero */
781 	ivp = (uint8_t *)ctx->ccm_tmp;
782 	memset(ivp, 0, block_size);
783 
784 	xor_block(ivp, mac_buf);
785 
786 	/* encrypt the nonce */
787 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
788 
789 	/* take care of the associated data, if any */
790 	if (auth_data_len == 0) {
791 		return (CRYPTO_SUCCESS);
792 	}
793 
794 	encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
795 
796 	remainder = auth_data_len;
797 
798 	/* 1st block: it contains encoded associated data, and some data */
799 	authp = (uint8_t *)ctx->ccm_tmp;
800 	memset(authp, 0, block_size);
801 	memcpy(authp, encoded_a, encoded_a_len);
802 	processed = block_size - encoded_a_len;
803 	if (processed > auth_data_len) {
804 		/* in case auth_data is very small */
805 		processed = auth_data_len;
806 	}
807 	memcpy(authp+encoded_a_len, auth_data, processed);
808 	/* xor with previous buffer */
809 	xor_block(authp, mac_buf);
810 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
811 	remainder -= processed;
812 	if (remainder == 0) {
813 		/* a small amount of associated data, it's all done now */
814 		return (CRYPTO_SUCCESS);
815 	}
816 
817 	do {
818 		if (remainder < block_size) {
819 			/*
820 			 * There's not a block full of data, pad rest of
821 			 * buffer with zero
822 			 */
823 			memset(authp, 0, block_size);
824 			memcpy(authp, &(auth_data[processed]), remainder);
825 			datap = (uint8_t *)authp;
826 			remainder = 0;
827 		} else {
828 			datap = (uint8_t *)(&(auth_data[processed]));
829 			processed += block_size;
830 			remainder -= block_size;
831 		}
832 
833 		xor_block(datap, mac_buf);
834 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
835 
836 	} while (remainder > 0);
837 
838 	return (CRYPTO_SUCCESS);
839 }
840 
841 /*
842  * The following function should be call at encrypt or decrypt init time
843  * for AES CCM mode.
844  */
845 int
ccm_init_ctx(ccm_ctx_t * ccm_ctx,char * param,int kmflag,boolean_t is_encrypt_init,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))846 ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
847     boolean_t is_encrypt_init, size_t block_size,
848     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
849     void (*xor_block)(uint8_t *, uint8_t *))
850 {
851 	int rv;
852 	CK_AES_CCM_PARAMS *ccm_param;
853 
854 	if (param != NULL) {
855 		ccm_param = (CK_AES_CCM_PARAMS *)param;
856 
857 		if ((rv = ccm_validate_args(ccm_param,
858 		    is_encrypt_init)) != 0) {
859 			return (rv);
860 		}
861 
862 		ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
863 		if (is_encrypt_init) {
864 			ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
865 		} else {
866 			ccm_ctx->ccm_data_len =
867 			    ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
868 			ccm_ctx->ccm_processed_mac_len = 0;
869 		}
870 		ccm_ctx->ccm_processed_data_len = 0;
871 
872 		ccm_ctx->ccm_flags |= CCM_MODE;
873 	} else {
874 		return (CRYPTO_MECHANISM_PARAM_INVALID);
875 	}
876 
877 	if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
878 	    ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
879 	    encrypt_block, xor_block) != 0) {
880 		return (CRYPTO_MECHANISM_PARAM_INVALID);
881 	}
882 	if (!is_encrypt_init) {
883 		/* allocate buffer for storing decrypted plaintext */
884 		ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
885 		    kmflag);
886 		if (ccm_ctx->ccm_pt_buf == NULL) {
887 			rv = CRYPTO_HOST_MEMORY;
888 		}
889 	}
890 	return (rv);
891 }
892 
893 void *
ccm_alloc_ctx(int kmflag)894 ccm_alloc_ctx(int kmflag)
895 {
896 	ccm_ctx_t *ccm_ctx;
897 
898 	if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
899 		return (NULL);
900 
901 	ccm_ctx->ccm_flags = CCM_MODE;
902 	return (ccm_ctx);
903 }
904