1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/abd.h>
38 #include <sys/zfs_rlock.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/vdev_raidz.h>
42 #include <sys/vdev_raidz_impl.h>
43 #include <sys/vdev_draid.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/dsl_scan.h>
46 
47 #ifdef ZFS_DEBUG
48 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_raidz_io_verify() */
49 #endif
50 
51 /*
52  * Virtual device vector for RAID-Z.
53  *
54  * This vdev supports single, double, and triple parity. For single parity,
55  * we use a simple XOR of all the data columns. For double or triple parity,
56  * we use a special case of Reed-Solomon coding. This extends the
57  * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
58  * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
59  * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
60  * former is also based. The latter is designed to provide higher performance
61  * for writes.
62  *
63  * Note that the Plank paper claimed to support arbitrary N+M, but was then
64  * amended six years later identifying a critical flaw that invalidates its
65  * claims. Nevertheless, the technique can be adapted to work for up to
66  * triple parity. For additional parity, the amendment "Note: Correction to
67  * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
68  * is viable, but the additional complexity means that write performance will
69  * suffer.
70  *
71  * All of the methods above operate on a Galois field, defined over the
72  * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
73  * can be expressed with a single byte. Briefly, the operations on the
74  * field are defined as follows:
75  *
76  *   o addition (+) is represented by a bitwise XOR
77  *   o subtraction (-) is therefore identical to addition: A + B = A - B
78  *   o multiplication of A by 2 is defined by the following bitwise expression:
79  *
80  *	(A * 2)_7 = A_6
81  *	(A * 2)_6 = A_5
82  *	(A * 2)_5 = A_4
83  *	(A * 2)_4 = A_3 + A_7
84  *	(A * 2)_3 = A_2 + A_7
85  *	(A * 2)_2 = A_1 + A_7
86  *	(A * 2)_1 = A_0
87  *	(A * 2)_0 = A_7
88  *
89  * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
90  * As an aside, this multiplication is derived from the error correcting
91  * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
92  *
93  * Observe that any number in the field (except for 0) can be expressed as a
94  * power of 2 -- a generator for the field. We store a table of the powers of
95  * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
96  * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
97  * than field addition). The inverse of a field element A (A^-1) is therefore
98  * A ^ (255 - 1) = A^254.
99  *
100  * The up-to-three parity columns, P, Q, R over several data columns,
101  * D_0, ... D_n-1, can be expressed by field operations:
102  *
103  *	P = D_0 + D_1 + ... + D_n-2 + D_n-1
104  *	Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
105  *	  = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
106  *	R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
107  *	  = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
108  *
109  * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
110  * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
111  * independent coefficients. (There are no additional coefficients that have
112  * this property which is why the uncorrected Plank method breaks down.)
113  *
114  * See the reconstruction code below for how P, Q and R can used individually
115  * or in concert to recover missing data columns.
116  */
117 
118 #define	VDEV_RAIDZ_P		0
119 #define	VDEV_RAIDZ_Q		1
120 #define	VDEV_RAIDZ_R		2
121 
122 #define	VDEV_RAIDZ_MUL_2(x)	(((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
123 #define	VDEV_RAIDZ_MUL_4(x)	(VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
124 
125 /*
126  * We provide a mechanism to perform the field multiplication operation on a
127  * 64-bit value all at once rather than a byte at a time. This works by
128  * creating a mask from the top bit in each byte and using that to
129  * conditionally apply the XOR of 0x1d.
130  */
131 #define	VDEV_RAIDZ_64MUL_2(x, mask) \
132 { \
133 	(mask) = (x) & 0x8080808080808080ULL; \
134 	(mask) = ((mask) << 1) - ((mask) >> 7); \
135 	(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
136 	    ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
137 }
138 
139 #define	VDEV_RAIDZ_64MUL_4(x, mask) \
140 { \
141 	VDEV_RAIDZ_64MUL_2((x), mask); \
142 	VDEV_RAIDZ_64MUL_2((x), mask); \
143 }
144 
145 
146 /*
147  * Big Theory Statement for how a RAIDZ VDEV is expanded
148  *
149  * An existing RAIDZ VDEV can be expanded by attaching a new disk. Expansion
150  * works with all three RAIDZ parity choices, including RAIDZ1, 2, or 3. VDEVs
151  * that have been previously expanded can be expanded again.
152  *
153  * The RAIDZ VDEV must be healthy (must be able to write to all the drives in
154  * the VDEV) when an expansion starts.  And the expansion will pause if any
155  * disk in the VDEV fails, and resume once the VDEV is healthy again. All other
156  * operations on the pool can continue while an expansion is in progress (e.g.
157  * read/write, snapshot, zpool add, etc). Except zpool checkpoint, zpool trim,
158  * and zpool initialize which can't be run during an expansion.  Following a
159  * reboot or export/import, the expansion resumes where it left off.
160  *
161  * == Reflowing the Data ==
162  *
163  * The expansion involves reflowing (copying) the data from the current set
164  * of disks to spread it across the new set which now has one more disk. This
165  * reflow operation is similar to reflowing text when the column width of a
166  * text editor window is expanded. The text doesn’t change but the location of
167  * the text changes to accommodate the new width. An example reflow result for
168  * a 4-wide RAIDZ1 to a 5-wide is shown below.
169  *
170  *                            Reflow End State
171  *            Each letter indicates a parity group (logical stripe)
172  *
173  *         Before expansion                         After Expansion
174  *     D1     D2     D3     D4               D1     D2     D3     D4     D5
175  *  +------+------+------+------+         +------+------+------+------+------+
176  *  |      |      |      |      |         |      |      |      |      |      |
177  *  |  A   |  A   |  A   |  A   |         |  A   |  A   |  A   |  A   |  B   |
178  *  |     1|     2|     3|     4|         |     1|     2|     3|     4|     5|
179  *  +------+------+------+------+         +------+------+------+------+------+
180  *  |      |      |      |      |         |      |      |      |      |      |
181  *  |  B   |  B   |  C   |  C   |         |  B   |  C   |  C   |  C   |  C   |
182  *  |     5|     6|     7|     8|         |     6|     7|     8|     9|    10|
183  *  +------+------+------+------+         +------+------+------+------+------+
184  *  |      |      |      |      |         |      |      |      |      |      |
185  *  |  C   |  C   |  D   |  D   |         |  D   |  D   |  E   |  E   |  E   |
186  *  |     9|    10|    11|    12|         |    11|    12|    13|    14|    15|
187  *  +------+------+------+------+         +------+------+------+------+------+
188  *  |      |      |      |      |         |      |      |      |      |      |
189  *  |  E   |  E   |  E   |  E   |   -->   |  E   |  F   |  F   |  G   |  G   |
190  *  |    13|    14|    15|    16|         |    16|    17|    18|p   19|    20|
191  *  +------+------+------+------+         +------+------+------+------+------+
192  *  |      |      |      |      |         |      |      |      |      |      |
193  *  |  F   |  F   |  G   |  G   |         |  G   |  G   |  H   |  H   |  H   |
194  *  |    17|    18|    19|    20|         |    21|    22|    23|    24|    25|
195  *  +------+------+------+------+         +------+------+------+------+------+
196  *  |      |      |      |      |         |      |      |      |      |      |
197  *  |  G   |  G   |  H   |  H   |         |  H   |  I   |  I   |  J   |  J   |
198  *  |    21|    22|    23|    24|         |    26|    27|    28|    29|    30|
199  *  +------+------+------+------+         +------+------+------+------+------+
200  *  |      |      |      |      |         |      |      |      |      |      |
201  *  |  H   |  H   |  I   |  I   |         |  J   |  J   |      |      |  K   |
202  *  |    25|    26|    27|    28|         |    31|    32|    33|    34|    35|
203  *  +------+------+------+------+         +------+------+------+------+------+
204  *
205  * This reflow approach has several advantages. There is no need to read or
206  * modify the block pointers or recompute any block checksums.  The reflow
207  * doesn’t need to know where the parity sectors reside. We can read and write
208  * data sequentially and the copy can occur in a background thread in open
209  * context. The design also allows for fast discovery of what data to copy.
210  *
211  * The VDEV metaslabs are processed, one at a time, to copy the block data to
212  * have it flow across all the disks. The metaslab is disabled for allocations
213  * during the copy. As an optimization, we only copy the allocated data which
214  * can be determined by looking at the metaslab range tree. During the copy we
215  * must maintain the redundancy guarantees of the RAIDZ VDEV (i.e., we still
216  * need to be able to survive losing parity count disks).  This means we
217  * cannot overwrite data during the reflow that would be needed if a disk is
218  * lost.
219  *
220  * After the reflow completes, all newly-written blocks will have the new
221  * layout, i.e., they will have the parity to data ratio implied by the new
222  * number of disks in the RAIDZ group.  Even though the reflow copies all of
223  * the allocated space (data and parity), it is only rearranged, not changed.
224  *
225  * This act of reflowing the data has a few implications about blocks
226  * that were written before the reflow completes:
227  *
228  *  - Old blocks will still use the same amount of space (i.e., they will have
229  *    the parity to data ratio implied by the old number of disks in the RAIDZ
230  *    group).
231  *  - Reading old blocks will be slightly slower than before the reflow, for
232  *    two reasons. First, we will have to read from all disks in the RAIDZ
233  *    VDEV, rather than being able to skip the children that contain only
234  *    parity of this block (because the data of a single block is now spread
235  *    out across all the disks).  Second, in most cases there will be an extra
236  *    bcopy, needed to rearrange the data back to its original layout in memory.
237  *
238  * == Scratch Area ==
239  *
240  * As we copy the block data, we can only progress to the point that writes
241  * will not overlap with blocks whose progress has not yet been recorded on
242  * disk.  Since partially-copied rows are always read from the old location,
243  * we need to stop one row before the sector-wise overlap, to prevent any
244  * row-wise overlap. For example, in the diagram above, when we reflow sector
245  * B6 it will overwite the original location for B5.
246  *
247  * To get around this, a scratch space is used so that we can start copying
248  * without risking data loss by overlapping the row. As an added benefit, it
249  * improves performance at the beginning of the reflow, but that small perf
250  * boost wouldn't be worth the complexity on its own.
251  *
252  * Ideally we want to copy at least 2 * (new_width)^2 so that we have a
253  * separation of 2*(new_width+1) and a chunk size of new_width+2. With the max
254  * RAIDZ width of 255 and 4K sectors this would be 2MB per disk. In practice
255  * the widths will likely be single digits so we can get a substantial chuck
256  * size using only a few MB of scratch per disk.
257  *
258  * The scratch area is persisted to disk which holds a large amount of reflowed
259  * state. We can always read the partially written stripes when a disk fails or
260  * the copy is interrupted (crash) during the initial copying phase and also
261  * get past a small chunk size restriction.  At a minimum, the scratch space
262  * must be large enough to get us to the point that one row does not overlap
263  * itself when moved (i.e new_width^2).  But going larger is even better. We
264  * use the 3.5 MiB reserved "boot" space that resides after the ZFS disk labels
265  * as our scratch space to handle overwriting the initial part of the VDEV.
266  *
267  *	0     256K   512K                    4M
268  *	+------+------+-----------------------+-----------------------------
269  *	| VDEV | VDEV |   Boot Block (3.5M)   |  Allocatable space ...
270  *	|  L0  |  L1  |       Reserved        |     (Metaslabs)
271  *	+------+------+-----------------------+-------------------------------
272  *                        Scratch Area
273  *
274  * == Reflow Progress Updates ==
275  * After the initial scratch-based reflow, the expansion process works
276  * similarly to device removal. We create a new open context thread which
277  * reflows the data, and periodically kicks off sync tasks to update logical
278  * state. In this case, state is the committed progress (offset of next data
279  * to copy). We need to persist the completed offset on disk, so that if we
280  * crash we know which format each VDEV offset is in.
281  *
282  * == Time Dependent Geometry ==
283  *
284  * In non-expanded RAIDZ, blocks are read from disk in a column by column
285  * fashion. For a multi-row block, the second sector is in the first column
286  * not in the second column. This allows us to issue full reads for each
287  * column directly into the request buffer. The block data is thus laid out
288  * sequentially in a column-by-column fashion.
289  *
290  * For example, in the before expansion diagram above, one logical block might
291  * be sectors G19-H26. The parity is in G19,H23; and the data is in
292  * G20,H24,G21,H25,G22,H26.
293  *
294  * After a block is reflowed, the sectors that were all in the original column
295  * data can now reside in different columns. When reading from an expanded
296  * VDEV, we need to know the logical stripe width for each block so we can
297  * reconstitute the block’s data after the reads are completed. Likewise,
298  * when we perform the combinatorial reconstruction we need to know the
299  * original width so we can retry combinations from the past layouts.
300  *
301  * Time dependent geometry is what we call having blocks with different layouts
302  * (stripe widths) in the same VDEV. This time-dependent geometry uses the
303  * block’s birth time (+ the time expansion ended) to establish the correct
304  * width for a given block. After an expansion completes, we record the time
305  * for blocks written with a particular width (geometry).
306  *
307  * == On Disk Format Changes ==
308  *
309  * New pool feature flag, 'raidz_expansion' whose reference count is the number
310  * of RAIDZ VDEVs that have been expanded.
311  *
312  * The blocks on expanded RAIDZ VDEV can have different logical stripe widths.
313  *
314  * Since the uberblock can point to arbitrary blocks, which might be on the
315  * expanding RAIDZ, and might or might not have been expanded. We need to know
316  * which way a block is laid out before reading it. This info is the next
317  * offset that needs to be reflowed and we persist that in the uberblock, in
318  * the new ub_raidz_reflow_info field, as opposed to the MOS or the vdev label.
319  * After the expansion is complete, we then use the raidz_expand_txgs array
320  * (see below) to determine how to read a block and the ub_raidz_reflow_info
321  * field no longer required.
322  *
323  * The uberblock's ub_raidz_reflow_info field also holds the scratch space
324  * state (i.e., active or not) which is also required before reading a block
325  * during the initial phase of reflowing the data.
326  *
327  * The top-level RAIDZ VDEV has two new entries in the nvlist:
328  *
329  * 'raidz_expand_txgs' array: logical stripe widths by txg are recorded here
330  *                            and used after the expansion is complete to
331  *                            determine how to read a raidz block
332  * 'raidz_expanding' boolean: present during reflow and removed after completion
333  *                            used during a spa import to resume an unfinished
334  *                            expansion
335  *
336  * And finally the VDEVs top zap adds the following informational entries:
337  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
338  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME
339  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
340  *   VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
341  */
342 
343 /*
344  * For testing only: pause the raidz expansion after reflowing this amount.
345  * (accessed by ZTS and ztest)
346  */
347 #ifdef	_KERNEL
348 static
349 #endif	/* _KERNEL */
350 unsigned long raidz_expand_max_reflow_bytes = 0;
351 
352 /*
353  * For testing only: pause the raidz expansion at a certain point.
354  */
355 uint_t raidz_expand_pause_point = 0;
356 
357 /*
358  * Maximum amount of copy io's outstanding at once.
359  */
360 static unsigned long raidz_expand_max_copy_bytes = 10 * SPA_MAXBLOCKSIZE;
361 
362 /*
363  * Apply raidz map abds aggregation if the number of rows in the map is equal
364  * or greater than the value below.
365  */
366 static unsigned long raidz_io_aggregate_rows = 4;
367 
368 /*
369  * Automatically start a pool scrub when a RAIDZ expansion completes in
370  * order to verify the checksums of all blocks which have been copied
371  * during the expansion.  Automatic scrubbing is enabled by default and
372  * is strongly recommended.
373  */
374 static int zfs_scrub_after_expand = 1;
375 
376 static void
vdev_raidz_row_free(raidz_row_t * rr)377 vdev_raidz_row_free(raidz_row_t *rr)
378 {
379 	for (int c = 0; c < rr->rr_cols; c++) {
380 		raidz_col_t *rc = &rr->rr_col[c];
381 
382 		if (rc->rc_size != 0)
383 			abd_free(rc->rc_abd);
384 		if (rc->rc_orig_data != NULL)
385 			abd_free(rc->rc_orig_data);
386 	}
387 
388 	if (rr->rr_abd_empty != NULL)
389 		abd_free(rr->rr_abd_empty);
390 
391 	kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols]));
392 }
393 
394 void
vdev_raidz_map_free(raidz_map_t * rm)395 vdev_raidz_map_free(raidz_map_t *rm)
396 {
397 	for (int i = 0; i < rm->rm_nrows; i++)
398 		vdev_raidz_row_free(rm->rm_row[i]);
399 
400 	if (rm->rm_nphys_cols) {
401 		for (int i = 0; i < rm->rm_nphys_cols; i++) {
402 			if (rm->rm_phys_col[i].rc_abd != NULL)
403 				abd_free(rm->rm_phys_col[i].rc_abd);
404 		}
405 
406 		kmem_free(rm->rm_phys_col, sizeof (raidz_col_t) *
407 		    rm->rm_nphys_cols);
408 	}
409 
410 	ASSERT3P(rm->rm_lr, ==, NULL);
411 	kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows]));
412 }
413 
414 static void
vdev_raidz_map_free_vsd(zio_t * zio)415 vdev_raidz_map_free_vsd(zio_t *zio)
416 {
417 	raidz_map_t *rm = zio->io_vsd;
418 
419 	vdev_raidz_map_free(rm);
420 }
421 
422 static int
vdev_raidz_reflow_compare(const void * x1,const void * x2)423 vdev_raidz_reflow_compare(const void *x1, const void *x2)
424 {
425 	const reflow_node_t *l = x1;
426 	const reflow_node_t *r = x2;
427 
428 	return (TREE_CMP(l->re_txg, r->re_txg));
429 }
430 
431 const zio_vsd_ops_t vdev_raidz_vsd_ops = {
432 	.vsd_free = vdev_raidz_map_free_vsd,
433 };
434 
435 raidz_row_t *
vdev_raidz_row_alloc(int cols)436 vdev_raidz_row_alloc(int cols)
437 {
438 	raidz_row_t *rr =
439 	    kmem_zalloc(offsetof(raidz_row_t, rr_col[cols]), KM_SLEEP);
440 
441 	rr->rr_cols = cols;
442 	rr->rr_scols = cols;
443 
444 	for (int c = 0; c < cols; c++) {
445 		raidz_col_t *rc = &rr->rr_col[c];
446 		rc->rc_shadow_devidx = INT_MAX;
447 		rc->rc_shadow_offset = UINT64_MAX;
448 		rc->rc_allow_repair = 1;
449 	}
450 	return (rr);
451 }
452 
453 static void
vdev_raidz_map_alloc_write(zio_t * zio,raidz_map_t * rm,uint64_t ashift)454 vdev_raidz_map_alloc_write(zio_t *zio, raidz_map_t *rm, uint64_t ashift)
455 {
456 	int c;
457 	int nwrapped = 0;
458 	uint64_t off = 0;
459 	raidz_row_t *rr = rm->rm_row[0];
460 
461 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
462 	ASSERT3U(rm->rm_nrows, ==, 1);
463 
464 	/*
465 	 * Pad any parity columns with additional space to account for skip
466 	 * sectors.
467 	 */
468 	if (rm->rm_skipstart < rr->rr_firstdatacol) {
469 		ASSERT0(rm->rm_skipstart);
470 		nwrapped = rm->rm_nskip;
471 	} else if (rr->rr_scols < (rm->rm_skipstart + rm->rm_nskip)) {
472 		nwrapped =
473 		    (rm->rm_skipstart + rm->rm_nskip) % rr->rr_scols;
474 	}
475 
476 	/*
477 	 * Optional single skip sectors (rc_size == 0) will be handled in
478 	 * vdev_raidz_io_start_write().
479 	 */
480 	int skipped = rr->rr_scols - rr->rr_cols;
481 
482 	/* Allocate buffers for the parity columns */
483 	for (c = 0; c < rr->rr_firstdatacol; c++) {
484 		raidz_col_t *rc = &rr->rr_col[c];
485 
486 		/*
487 		 * Parity columns will pad out a linear ABD to account for
488 		 * the skip sector. A linear ABD is used here because
489 		 * parity calculations use the ABD buffer directly to calculate
490 		 * parity. This avoids doing a memcpy back to the ABD after the
491 		 * parity has been calculated. By issuing the parity column
492 		 * with the skip sector we can reduce contention on the child
493 		 * VDEV queue locks (vq_lock).
494 		 */
495 		if (c < nwrapped) {
496 			rc->rc_abd = abd_alloc_linear(
497 			    rc->rc_size + (1ULL << ashift), B_FALSE);
498 			abd_zero_off(rc->rc_abd, rc->rc_size, 1ULL << ashift);
499 			skipped++;
500 		} else {
501 			rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
502 		}
503 	}
504 
505 	for (off = 0; c < rr->rr_cols; c++) {
506 		raidz_col_t *rc = &rr->rr_col[c];
507 		abd_t *abd = abd_get_offset_struct(&rc->rc_abdstruct,
508 		    zio->io_abd, off, rc->rc_size);
509 
510 		/*
511 		 * Generate I/O for skip sectors to improve aggregation
512 		 * continuity. We will use gang ABD's to reduce contention
513 		 * on the child VDEV queue locks (vq_lock) by issuing
514 		 * a single I/O that contains the data and skip sector.
515 		 *
516 		 * It is important to make sure that rc_size is not updated
517 		 * even though we are adding a skip sector to the ABD. When
518 		 * calculating the parity in vdev_raidz_generate_parity_row()
519 		 * the rc_size is used to iterate through the ABD's. We can
520 		 * not have zero'd out skip sectors used for calculating
521 		 * parity for raidz, because those same sectors are not used
522 		 * during reconstruction.
523 		 */
524 		if (c >= rm->rm_skipstart && skipped < rm->rm_nskip) {
525 			rc->rc_abd = abd_alloc_gang();
526 			abd_gang_add(rc->rc_abd, abd, B_TRUE);
527 			abd_gang_add(rc->rc_abd,
528 			    abd_get_zeros(1ULL << ashift), B_TRUE);
529 			skipped++;
530 		} else {
531 			rc->rc_abd = abd;
532 		}
533 		off += rc->rc_size;
534 	}
535 
536 	ASSERT3U(off, ==, zio->io_size);
537 	ASSERT3S(skipped, ==, rm->rm_nskip);
538 }
539 
540 static void
vdev_raidz_map_alloc_read(zio_t * zio,raidz_map_t * rm)541 vdev_raidz_map_alloc_read(zio_t *zio, raidz_map_t *rm)
542 {
543 	int c;
544 	raidz_row_t *rr = rm->rm_row[0];
545 
546 	ASSERT3U(rm->rm_nrows, ==, 1);
547 
548 	/* Allocate buffers for the parity columns */
549 	for (c = 0; c < rr->rr_firstdatacol; c++)
550 		rr->rr_col[c].rc_abd =
551 		    abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE);
552 
553 	for (uint64_t off = 0; c < rr->rr_cols; c++) {
554 		raidz_col_t *rc = &rr->rr_col[c];
555 		rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
556 		    zio->io_abd, off, rc->rc_size);
557 		off += rc->rc_size;
558 	}
559 }
560 
561 /*
562  * Divides the IO evenly across all child vdevs; usually, dcols is
563  * the number of children in the target vdev.
564  *
565  * Avoid inlining the function to keep vdev_raidz_io_start(), which
566  * is this functions only caller, as small as possible on the stack.
567  */
568 noinline raidz_map_t *
vdev_raidz_map_alloc(zio_t * zio,uint64_t ashift,uint64_t dcols,uint64_t nparity)569 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
570     uint64_t nparity)
571 {
572 	raidz_row_t *rr;
573 	/* The starting RAIDZ (parent) vdev sector of the block. */
574 	uint64_t b = zio->io_offset >> ashift;
575 	/* The zio's size in units of the vdev's minimum sector size. */
576 	uint64_t s = zio->io_size >> ashift;
577 	/* The first column for this stripe. */
578 	uint64_t f = b % dcols;
579 	/* The starting byte offset on each child vdev. */
580 	uint64_t o = (b / dcols) << ashift;
581 	uint64_t acols, scols;
582 
583 	raidz_map_t *rm =
584 	    kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP);
585 	rm->rm_nrows = 1;
586 
587 	/*
588 	 * "Quotient": The number of data sectors for this stripe on all but
589 	 * the "big column" child vdevs that also contain "remainder" data.
590 	 */
591 	uint64_t q = s / (dcols - nparity);
592 
593 	/*
594 	 * "Remainder": The number of partial stripe data sectors in this I/O.
595 	 * This will add a sector to some, but not all, child vdevs.
596 	 */
597 	uint64_t r = s - q * (dcols - nparity);
598 
599 	/* The number of "big columns" - those which contain remainder data. */
600 	uint64_t bc = (r == 0 ? 0 : r + nparity);
601 
602 	/*
603 	 * The total number of data and parity sectors associated with
604 	 * this I/O.
605 	 */
606 	uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
607 
608 	/*
609 	 * acols: The columns that will be accessed.
610 	 * scols: The columns that will be accessed or skipped.
611 	 */
612 	if (q == 0) {
613 		/* Our I/O request doesn't span all child vdevs. */
614 		acols = bc;
615 		scols = MIN(dcols, roundup(bc, nparity + 1));
616 	} else {
617 		acols = dcols;
618 		scols = dcols;
619 	}
620 
621 	ASSERT3U(acols, <=, scols);
622 	rr = vdev_raidz_row_alloc(scols);
623 	rm->rm_row[0] = rr;
624 	rr->rr_cols = acols;
625 	rr->rr_bigcols = bc;
626 	rr->rr_firstdatacol = nparity;
627 #ifdef ZFS_DEBUG
628 	rr->rr_offset = zio->io_offset;
629 	rr->rr_size = zio->io_size;
630 #endif
631 
632 	uint64_t asize = 0;
633 
634 	for (uint64_t c = 0; c < scols; c++) {
635 		raidz_col_t *rc = &rr->rr_col[c];
636 		uint64_t col = f + c;
637 		uint64_t coff = o;
638 		if (col >= dcols) {
639 			col -= dcols;
640 			coff += 1ULL << ashift;
641 		}
642 		rc->rc_devidx = col;
643 		rc->rc_offset = coff;
644 
645 		if (c >= acols)
646 			rc->rc_size = 0;
647 		else if (c < bc)
648 			rc->rc_size = (q + 1) << ashift;
649 		else
650 			rc->rc_size = q << ashift;
651 
652 		asize += rc->rc_size;
653 	}
654 
655 	ASSERT3U(asize, ==, tot << ashift);
656 	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
657 	rm->rm_skipstart = bc;
658 
659 	/*
660 	 * If all data stored spans all columns, there's a danger that parity
661 	 * will always be on the same device and, since parity isn't read
662 	 * during normal operation, that device's I/O bandwidth won't be
663 	 * used effectively. We therefore switch the parity every 1MB.
664 	 *
665 	 * ... at least that was, ostensibly, the theory. As a practical
666 	 * matter unless we juggle the parity between all devices evenly, we
667 	 * won't see any benefit. Further, occasional writes that aren't a
668 	 * multiple of the LCM of the number of children and the minimum
669 	 * stripe width are sufficient to avoid pessimal behavior.
670 	 * Unfortunately, this decision created an implicit on-disk format
671 	 * requirement that we need to support for all eternity, but only
672 	 * for single-parity RAID-Z.
673 	 *
674 	 * If we intend to skip a sector in the zeroth column for padding
675 	 * we must make sure to note this swap. We will never intend to
676 	 * skip the first column since at least one data and one parity
677 	 * column must appear in each row.
678 	 */
679 	ASSERT(rr->rr_cols >= 2);
680 	ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
681 
682 	if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
683 		uint64_t devidx = rr->rr_col[0].rc_devidx;
684 		o = rr->rr_col[0].rc_offset;
685 		rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
686 		rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
687 		rr->rr_col[1].rc_devidx = devidx;
688 		rr->rr_col[1].rc_offset = o;
689 		if (rm->rm_skipstart == 0)
690 			rm->rm_skipstart = 1;
691 	}
692 
693 	if (zio->io_type == ZIO_TYPE_WRITE) {
694 		vdev_raidz_map_alloc_write(zio, rm, ashift);
695 	} else {
696 		vdev_raidz_map_alloc_read(zio, rm);
697 	}
698 	/* init RAIDZ parity ops */
699 	rm->rm_ops = vdev_raidz_math_get_ops();
700 
701 	return (rm);
702 }
703 
704 /*
705  * Everything before reflow_offset_synced should have been moved to the new
706  * location (read and write completed).  However, this may not yet be reflected
707  * in the on-disk format (e.g. raidz_reflow_sync() has been called but the
708  * uberblock has not yet been written). If reflow is not in progress,
709  * reflow_offset_synced should be UINT64_MAX. For each row, if the row is
710  * entirely before reflow_offset_synced, it will come from the new location.
711  * Otherwise this row will come from the old location.  Therefore, rows that
712  * straddle the reflow_offset_synced will come from the old location.
713  *
714  * For writes, reflow_offset_next is the next offset to copy.  If a sector has
715  * been copied, but not yet reflected in the on-disk progress
716  * (reflow_offset_synced), it will also be written to the new (already copied)
717  * offset.
718  */
719 noinline raidz_map_t *
vdev_raidz_map_alloc_expanded(zio_t * zio,uint64_t ashift,uint64_t physical_cols,uint64_t logical_cols,uint64_t nparity,uint64_t reflow_offset_synced,uint64_t reflow_offset_next,boolean_t use_scratch)720 vdev_raidz_map_alloc_expanded(zio_t *zio,
721     uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
722     uint64_t nparity, uint64_t reflow_offset_synced,
723     uint64_t reflow_offset_next, boolean_t use_scratch)
724 {
725 	abd_t *abd = zio->io_abd;
726 	uint64_t offset = zio->io_offset;
727 	uint64_t size = zio->io_size;
728 
729 	/* The zio's size in units of the vdev's minimum sector size. */
730 	uint64_t s = size >> ashift;
731 
732 	/*
733 	 * "Quotient": The number of data sectors for this stripe on all but
734 	 * the "big column" child vdevs that also contain "remainder" data.
735 	 * AKA "full rows"
736 	 */
737 	uint64_t q = s / (logical_cols - nparity);
738 
739 	/*
740 	 * "Remainder": The number of partial stripe data sectors in this I/O.
741 	 * This will add a sector to some, but not all, child vdevs.
742 	 */
743 	uint64_t r = s - q * (logical_cols - nparity);
744 
745 	/* The number of "big columns" - those which contain remainder data. */
746 	uint64_t bc = (r == 0 ? 0 : r + nparity);
747 
748 	/*
749 	 * The total number of data and parity sectors associated with
750 	 * this I/O.
751 	 */
752 	uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
753 
754 	/* How many rows contain data (not skip) */
755 	uint64_t rows = howmany(tot, logical_cols);
756 	int cols = MIN(tot, logical_cols);
757 
758 	raidz_map_t *rm =
759 	    kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
760 	    KM_SLEEP);
761 	rm->rm_nrows = rows;
762 	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
763 	rm->rm_skipstart = bc;
764 	uint64_t asize = 0;
765 
766 	for (uint64_t row = 0; row < rows; row++) {
767 		boolean_t row_use_scratch = B_FALSE;
768 		raidz_row_t *rr = vdev_raidz_row_alloc(cols);
769 		rm->rm_row[row] = rr;
770 
771 		/* The starting RAIDZ (parent) vdev sector of the row. */
772 		uint64_t b = (offset >> ashift) + row * logical_cols;
773 
774 		/*
775 		 * If we are in the middle of a reflow, and the copying has
776 		 * not yet completed for any part of this row, then use the
777 		 * old location of this row.  Note that reflow_offset_synced
778 		 * reflects the i/o that's been completed, because it's
779 		 * updated by a synctask, after zio_wait(spa_txg_zio[]).
780 		 * This is sufficient for our check, even if that progress
781 		 * has not yet been recorded to disk (reflected in
782 		 * spa_ubsync).  Also note that we consider the last row to
783 		 * be "full width" (`cols`-wide rather than `bc`-wide) for
784 		 * this calculation. This causes a tiny bit of unnecessary
785 		 * double-writes but is safe and simpler to calculate.
786 		 */
787 		int row_phys_cols = physical_cols;
788 		if (b + cols > reflow_offset_synced >> ashift)
789 			row_phys_cols--;
790 		else if (use_scratch)
791 			row_use_scratch = B_TRUE;
792 
793 		/* starting child of this row */
794 		uint64_t child_id = b % row_phys_cols;
795 		/* The starting byte offset on each child vdev. */
796 		uint64_t child_offset = (b / row_phys_cols) << ashift;
797 
798 		/*
799 		 * Note, rr_cols is the entire width of the block, even
800 		 * if this row is shorter.  This is needed because parity
801 		 * generation (for Q and R) needs to know the entire width,
802 		 * because it treats the short row as though it was
803 		 * full-width (and the "phantom" sectors were zero-filled).
804 		 *
805 		 * Another approach to this would be to set cols shorter
806 		 * (to just the number of columns that we might do i/o to)
807 		 * and have another mechanism to tell the parity generation
808 		 * about the "entire width".  Reconstruction (at least
809 		 * vdev_raidz_reconstruct_general()) would also need to
810 		 * know about the "entire width".
811 		 */
812 		rr->rr_firstdatacol = nparity;
813 #ifdef ZFS_DEBUG
814 		/*
815 		 * note: rr_size is PSIZE, not ASIZE
816 		 */
817 		rr->rr_offset = b << ashift;
818 		rr->rr_size = (rr->rr_cols - rr->rr_firstdatacol) << ashift;
819 #endif
820 
821 		for (int c = 0; c < rr->rr_cols; c++, child_id++) {
822 			if (child_id >= row_phys_cols) {
823 				child_id -= row_phys_cols;
824 				child_offset += 1ULL << ashift;
825 			}
826 			raidz_col_t *rc = &rr->rr_col[c];
827 			rc->rc_devidx = child_id;
828 			rc->rc_offset = child_offset;
829 
830 			/*
831 			 * Get this from the scratch space if appropriate.
832 			 * This only happens if we crashed in the middle of
833 			 * raidz_reflow_scratch_sync() (while it's running,
834 			 * the rangelock prevents us from doing concurrent
835 			 * io), and even then only during zpool import or
836 			 * when the pool is imported readonly.
837 			 */
838 			if (row_use_scratch)
839 				rc->rc_offset -= VDEV_BOOT_SIZE;
840 
841 			uint64_t dc = c - rr->rr_firstdatacol;
842 			if (c < rr->rr_firstdatacol) {
843 				rc->rc_size = 1ULL << ashift;
844 
845 				/*
846 				 * Parity sectors' rc_abd's are set below
847 				 * after determining if this is an aggregation.
848 				 */
849 			} else if (row == rows - 1 && bc != 0 && c >= bc) {
850 				/*
851 				 * Past the end of the block (even including
852 				 * skip sectors).  This sector is part of the
853 				 * map so that we have full rows for p/q parity
854 				 * generation.
855 				 */
856 				rc->rc_size = 0;
857 				rc->rc_abd = NULL;
858 			} else {
859 				/* "data column" (col excluding parity) */
860 				uint64_t off;
861 
862 				if (c < bc || r == 0) {
863 					off = dc * rows + row;
864 				} else {
865 					off = r * rows +
866 					    (dc - r) * (rows - 1) + row;
867 				}
868 				rc->rc_size = 1ULL << ashift;
869 				rc->rc_abd = abd_get_offset_struct(
870 				    &rc->rc_abdstruct, abd, off << ashift,
871 				    rc->rc_size);
872 			}
873 
874 			if (rc->rc_size == 0)
875 				continue;
876 
877 			/*
878 			 * If any part of this row is in both old and new
879 			 * locations, the primary location is the old
880 			 * location. If this sector was already copied to the
881 			 * new location, we need to also write to the new,
882 			 * "shadow" location.
883 			 *
884 			 * Note, `row_phys_cols != physical_cols` indicates
885 			 * that the primary location is the old location.
886 			 * `b+c < reflow_offset_next` indicates that the copy
887 			 * to the new location has been initiated. We know
888 			 * that the copy has completed because we have the
889 			 * rangelock, which is held exclusively while the
890 			 * copy is in progress.
891 			 */
892 			if (row_use_scratch ||
893 			    (row_phys_cols != physical_cols &&
894 			    b + c < reflow_offset_next >> ashift)) {
895 				rc->rc_shadow_devidx = (b + c) % physical_cols;
896 				rc->rc_shadow_offset =
897 				    ((b + c) / physical_cols) << ashift;
898 				if (row_use_scratch)
899 					rc->rc_shadow_offset -= VDEV_BOOT_SIZE;
900 			}
901 
902 			asize += rc->rc_size;
903 		}
904 
905 		/*
906 		 * See comment in vdev_raidz_map_alloc()
907 		 */
908 		if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
909 		    (offset & (1ULL << 20))) {
910 			ASSERT(rr->rr_cols >= 2);
911 			ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
912 
913 			int devidx0 = rr->rr_col[0].rc_devidx;
914 			uint64_t offset0 = rr->rr_col[0].rc_offset;
915 			int shadow_devidx0 = rr->rr_col[0].rc_shadow_devidx;
916 			uint64_t shadow_offset0 =
917 			    rr->rr_col[0].rc_shadow_offset;
918 
919 			rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
920 			rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
921 			rr->rr_col[0].rc_shadow_devidx =
922 			    rr->rr_col[1].rc_shadow_devidx;
923 			rr->rr_col[0].rc_shadow_offset =
924 			    rr->rr_col[1].rc_shadow_offset;
925 
926 			rr->rr_col[1].rc_devidx = devidx0;
927 			rr->rr_col[1].rc_offset = offset0;
928 			rr->rr_col[1].rc_shadow_devidx = shadow_devidx0;
929 			rr->rr_col[1].rc_shadow_offset = shadow_offset0;
930 		}
931 	}
932 	ASSERT3U(asize, ==, tot << ashift);
933 
934 	/*
935 	 * Determine if the block is contiguous, in which case we can use
936 	 * an aggregation.
937 	 */
938 	if (rows >= raidz_io_aggregate_rows) {
939 		rm->rm_nphys_cols = physical_cols;
940 		rm->rm_phys_col =
941 		    kmem_zalloc(sizeof (raidz_col_t) * rm->rm_nphys_cols,
942 		    KM_SLEEP);
943 
944 		/*
945 		 * Determine the aggregate io's offset and size, and check
946 		 * that the io is contiguous.
947 		 */
948 		for (int i = 0;
949 		    i < rm->rm_nrows && rm->rm_phys_col != NULL; i++) {
950 			raidz_row_t *rr = rm->rm_row[i];
951 			for (int c = 0; c < rr->rr_cols; c++) {
952 				raidz_col_t *rc = &rr->rr_col[c];
953 				raidz_col_t *prc =
954 				    &rm->rm_phys_col[rc->rc_devidx];
955 
956 				if (rc->rc_size == 0)
957 					continue;
958 
959 				if (prc->rc_size == 0) {
960 					ASSERT0(prc->rc_offset);
961 					prc->rc_offset = rc->rc_offset;
962 				} else if (prc->rc_offset + prc->rc_size !=
963 				    rc->rc_offset) {
964 					/*
965 					 * This block is not contiguous and
966 					 * therefore can't be aggregated.
967 					 * This is expected to be rare, so
968 					 * the cost of allocating and then
969 					 * freeing rm_phys_col is not
970 					 * significant.
971 					 */
972 					kmem_free(rm->rm_phys_col,
973 					    sizeof (raidz_col_t) *
974 					    rm->rm_nphys_cols);
975 					rm->rm_phys_col = NULL;
976 					rm->rm_nphys_cols = 0;
977 					break;
978 				}
979 				prc->rc_size += rc->rc_size;
980 			}
981 		}
982 	}
983 	if (rm->rm_phys_col != NULL) {
984 		/*
985 		 * Allocate aggregate ABD's.
986 		 */
987 		for (int i = 0; i < rm->rm_nphys_cols; i++) {
988 			raidz_col_t *prc = &rm->rm_phys_col[i];
989 
990 			prc->rc_devidx = i;
991 
992 			if (prc->rc_size == 0)
993 				continue;
994 
995 			prc->rc_abd =
996 			    abd_alloc_linear(rm->rm_phys_col[i].rc_size,
997 			    B_FALSE);
998 		}
999 
1000 		/*
1001 		 * Point the parity abd's into the aggregate abd's.
1002 		 */
1003 		for (int i = 0; i < rm->rm_nrows; i++) {
1004 			raidz_row_t *rr = rm->rm_row[i];
1005 			for (int c = 0; c < rr->rr_firstdatacol; c++) {
1006 				raidz_col_t *rc = &rr->rr_col[c];
1007 				raidz_col_t *prc =
1008 				    &rm->rm_phys_col[rc->rc_devidx];
1009 				rc->rc_abd =
1010 				    abd_get_offset_struct(&rc->rc_abdstruct,
1011 				    prc->rc_abd,
1012 				    rc->rc_offset - prc->rc_offset,
1013 				    rc->rc_size);
1014 			}
1015 		}
1016 	} else {
1017 		/*
1018 		 * Allocate new abd's for the parity sectors.
1019 		 */
1020 		for (int i = 0; i < rm->rm_nrows; i++) {
1021 			raidz_row_t *rr = rm->rm_row[i];
1022 			for (int c = 0; c < rr->rr_firstdatacol; c++) {
1023 				raidz_col_t *rc = &rr->rr_col[c];
1024 				rc->rc_abd =
1025 				    abd_alloc_linear(rc->rc_size,
1026 				    B_TRUE);
1027 			}
1028 		}
1029 	}
1030 	/* init RAIDZ parity ops */
1031 	rm->rm_ops = vdev_raidz_math_get_ops();
1032 
1033 	return (rm);
1034 }
1035 
1036 struct pqr_struct {
1037 	uint64_t *p;
1038 	uint64_t *q;
1039 	uint64_t *r;
1040 };
1041 
1042 static int
vdev_raidz_p_func(void * buf,size_t size,void * private)1043 vdev_raidz_p_func(void *buf, size_t size, void *private)
1044 {
1045 	struct pqr_struct *pqr = private;
1046 	const uint64_t *src = buf;
1047 	int cnt = size / sizeof (src[0]);
1048 
1049 	ASSERT(pqr->p && !pqr->q && !pqr->r);
1050 
1051 	for (int i = 0; i < cnt; i++, src++, pqr->p++)
1052 		*pqr->p ^= *src;
1053 
1054 	return (0);
1055 }
1056 
1057 static int
vdev_raidz_pq_func(void * buf,size_t size,void * private)1058 vdev_raidz_pq_func(void *buf, size_t size, void *private)
1059 {
1060 	struct pqr_struct *pqr = private;
1061 	const uint64_t *src = buf;
1062 	uint64_t mask;
1063 	int cnt = size / sizeof (src[0]);
1064 
1065 	ASSERT(pqr->p && pqr->q && !pqr->r);
1066 
1067 	for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
1068 		*pqr->p ^= *src;
1069 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
1070 		*pqr->q ^= *src;
1071 	}
1072 
1073 	return (0);
1074 }
1075 
1076 static int
vdev_raidz_pqr_func(void * buf,size_t size,void * private)1077 vdev_raidz_pqr_func(void *buf, size_t size, void *private)
1078 {
1079 	struct pqr_struct *pqr = private;
1080 	const uint64_t *src = buf;
1081 	uint64_t mask;
1082 	int cnt = size / sizeof (src[0]);
1083 
1084 	ASSERT(pqr->p && pqr->q && pqr->r);
1085 
1086 	for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
1087 		*pqr->p ^= *src;
1088 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
1089 		*pqr->q ^= *src;
1090 		VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
1091 		*pqr->r ^= *src;
1092 	}
1093 
1094 	return (0);
1095 }
1096 
1097 static void
vdev_raidz_generate_parity_p(raidz_row_t * rr)1098 vdev_raidz_generate_parity_p(raidz_row_t *rr)
1099 {
1100 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1101 
1102 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1103 		abd_t *src = rr->rr_col[c].rc_abd;
1104 
1105 		if (c == rr->rr_firstdatacol) {
1106 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
1107 		} else {
1108 			struct pqr_struct pqr = { p, NULL, NULL };
1109 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
1110 			    vdev_raidz_p_func, &pqr);
1111 		}
1112 	}
1113 }
1114 
1115 static void
vdev_raidz_generate_parity_pq(raidz_row_t * rr)1116 vdev_raidz_generate_parity_pq(raidz_row_t *rr)
1117 {
1118 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1119 	uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1120 	uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
1121 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
1122 	    rr->rr_col[VDEV_RAIDZ_Q].rc_size);
1123 
1124 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1125 		abd_t *src = rr->rr_col[c].rc_abd;
1126 
1127 		uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
1128 
1129 		if (c == rr->rr_firstdatacol) {
1130 			ASSERT(ccnt == pcnt || ccnt == 0);
1131 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
1132 			(void) memcpy(q, p, rr->rr_col[c].rc_size);
1133 
1134 			for (uint64_t i = ccnt; i < pcnt; i++) {
1135 				p[i] = 0;
1136 				q[i] = 0;
1137 			}
1138 		} else {
1139 			struct pqr_struct pqr = { p, q, NULL };
1140 
1141 			ASSERT(ccnt <= pcnt);
1142 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
1143 			    vdev_raidz_pq_func, &pqr);
1144 
1145 			/*
1146 			 * Treat short columns as though they are full of 0s.
1147 			 * Note that there's therefore nothing needed for P.
1148 			 */
1149 			uint64_t mask;
1150 			for (uint64_t i = ccnt; i < pcnt; i++) {
1151 				VDEV_RAIDZ_64MUL_2(q[i], mask);
1152 			}
1153 		}
1154 	}
1155 }
1156 
1157 static void
vdev_raidz_generate_parity_pqr(raidz_row_t * rr)1158 vdev_raidz_generate_parity_pqr(raidz_row_t *rr)
1159 {
1160 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1161 	uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1162 	uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd);
1163 	uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
1164 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
1165 	    rr->rr_col[VDEV_RAIDZ_Q].rc_size);
1166 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
1167 	    rr->rr_col[VDEV_RAIDZ_R].rc_size);
1168 
1169 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1170 		abd_t *src = rr->rr_col[c].rc_abd;
1171 
1172 		uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
1173 
1174 		if (c == rr->rr_firstdatacol) {
1175 			ASSERT(ccnt == pcnt || ccnt == 0);
1176 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
1177 			(void) memcpy(q, p, rr->rr_col[c].rc_size);
1178 			(void) memcpy(r, p, rr->rr_col[c].rc_size);
1179 
1180 			for (uint64_t i = ccnt; i < pcnt; i++) {
1181 				p[i] = 0;
1182 				q[i] = 0;
1183 				r[i] = 0;
1184 			}
1185 		} else {
1186 			struct pqr_struct pqr = { p, q, r };
1187 
1188 			ASSERT(ccnt <= pcnt);
1189 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
1190 			    vdev_raidz_pqr_func, &pqr);
1191 
1192 			/*
1193 			 * Treat short columns as though they are full of 0s.
1194 			 * Note that there's therefore nothing needed for P.
1195 			 */
1196 			uint64_t mask;
1197 			for (uint64_t i = ccnt; i < pcnt; i++) {
1198 				VDEV_RAIDZ_64MUL_2(q[i], mask);
1199 				VDEV_RAIDZ_64MUL_4(r[i], mask);
1200 			}
1201 		}
1202 	}
1203 }
1204 
1205 /*
1206  * Generate RAID parity in the first virtual columns according to the number of
1207  * parity columns available.
1208  */
1209 void
vdev_raidz_generate_parity_row(raidz_map_t * rm,raidz_row_t * rr)1210 vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr)
1211 {
1212 	if (rr->rr_cols == 0) {
1213 		/*
1214 		 * We are handling this block one row at a time (because
1215 		 * this block has a different logical vs physical width,
1216 		 * due to RAIDZ expansion), and this is a pad-only row,
1217 		 * which has no parity.
1218 		 */
1219 		return;
1220 	}
1221 
1222 	/* Generate using the new math implementation */
1223 	if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL)
1224 		return;
1225 
1226 	switch (rr->rr_firstdatacol) {
1227 	case 1:
1228 		vdev_raidz_generate_parity_p(rr);
1229 		break;
1230 	case 2:
1231 		vdev_raidz_generate_parity_pq(rr);
1232 		break;
1233 	case 3:
1234 		vdev_raidz_generate_parity_pqr(rr);
1235 		break;
1236 	default:
1237 		cmn_err(CE_PANIC, "invalid RAID-Z configuration");
1238 	}
1239 }
1240 
1241 void
vdev_raidz_generate_parity(raidz_map_t * rm)1242 vdev_raidz_generate_parity(raidz_map_t *rm)
1243 {
1244 	for (int i = 0; i < rm->rm_nrows; i++) {
1245 		raidz_row_t *rr = rm->rm_row[i];
1246 		vdev_raidz_generate_parity_row(rm, rr);
1247 	}
1248 }
1249 
1250 static int
vdev_raidz_reconst_p_func(void * dbuf,void * sbuf,size_t size,void * private)1251 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
1252 {
1253 	(void) private;
1254 	uint64_t *dst = dbuf;
1255 	uint64_t *src = sbuf;
1256 	int cnt = size / sizeof (src[0]);
1257 
1258 	for (int i = 0; i < cnt; i++) {
1259 		dst[i] ^= src[i];
1260 	}
1261 
1262 	return (0);
1263 }
1264 
1265 static int
vdev_raidz_reconst_q_pre_func(void * dbuf,void * sbuf,size_t size,void * private)1266 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
1267     void *private)
1268 {
1269 	(void) private;
1270 	uint64_t *dst = dbuf;
1271 	uint64_t *src = sbuf;
1272 	uint64_t mask;
1273 	int cnt = size / sizeof (dst[0]);
1274 
1275 	for (int i = 0; i < cnt; i++, dst++, src++) {
1276 		VDEV_RAIDZ_64MUL_2(*dst, mask);
1277 		*dst ^= *src;
1278 	}
1279 
1280 	return (0);
1281 }
1282 
1283 static int
vdev_raidz_reconst_q_pre_tail_func(void * buf,size_t size,void * private)1284 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
1285 {
1286 	(void) private;
1287 	uint64_t *dst = buf;
1288 	uint64_t mask;
1289 	int cnt = size / sizeof (dst[0]);
1290 
1291 	for (int i = 0; i < cnt; i++, dst++) {
1292 		/* same operation as vdev_raidz_reconst_q_pre_func() on dst */
1293 		VDEV_RAIDZ_64MUL_2(*dst, mask);
1294 	}
1295 
1296 	return (0);
1297 }
1298 
1299 struct reconst_q_struct {
1300 	uint64_t *q;
1301 	int exp;
1302 };
1303 
1304 static int
vdev_raidz_reconst_q_post_func(void * buf,size_t size,void * private)1305 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
1306 {
1307 	struct reconst_q_struct *rq = private;
1308 	uint64_t *dst = buf;
1309 	int cnt = size / sizeof (dst[0]);
1310 
1311 	for (int i = 0; i < cnt; i++, dst++, rq->q++) {
1312 		int j;
1313 		uint8_t *b;
1314 
1315 		*dst ^= *rq->q;
1316 		for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
1317 			*b = vdev_raidz_exp2(*b, rq->exp);
1318 		}
1319 	}
1320 
1321 	return (0);
1322 }
1323 
1324 struct reconst_pq_struct {
1325 	uint8_t *p;
1326 	uint8_t *q;
1327 	uint8_t *pxy;
1328 	uint8_t *qxy;
1329 	int aexp;
1330 	int bexp;
1331 };
1332 
1333 static int
vdev_raidz_reconst_pq_func(void * xbuf,void * ybuf,size_t size,void * private)1334 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
1335 {
1336 	struct reconst_pq_struct *rpq = private;
1337 	uint8_t *xd = xbuf;
1338 	uint8_t *yd = ybuf;
1339 
1340 	for (int i = 0; i < size;
1341 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
1342 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
1343 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
1344 		*yd = *rpq->p ^ *rpq->pxy ^ *xd;
1345 	}
1346 
1347 	return (0);
1348 }
1349 
1350 static int
vdev_raidz_reconst_pq_tail_func(void * xbuf,size_t size,void * private)1351 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
1352 {
1353 	struct reconst_pq_struct *rpq = private;
1354 	uint8_t *xd = xbuf;
1355 
1356 	for (int i = 0; i < size;
1357 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
1358 		/* same operation as vdev_raidz_reconst_pq_func() on xd */
1359 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
1360 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
1361 	}
1362 
1363 	return (0);
1364 }
1365 
1366 static void
vdev_raidz_reconstruct_p(raidz_row_t * rr,int * tgts,int ntgts)1367 vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts)
1368 {
1369 	int x = tgts[0];
1370 	abd_t *dst, *src;
1371 
1372 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1373 		zfs_dbgmsg("reconstruct_p(rm=%px x=%u)", rr, x);
1374 
1375 	ASSERT3U(ntgts, ==, 1);
1376 	ASSERT3U(x, >=, rr->rr_firstdatacol);
1377 	ASSERT3U(x, <, rr->rr_cols);
1378 
1379 	ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size);
1380 
1381 	src = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
1382 	dst = rr->rr_col[x].rc_abd;
1383 
1384 	abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size);
1385 
1386 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1387 		uint64_t size = MIN(rr->rr_col[x].rc_size,
1388 		    rr->rr_col[c].rc_size);
1389 
1390 		src = rr->rr_col[c].rc_abd;
1391 
1392 		if (c == x)
1393 			continue;
1394 
1395 		(void) abd_iterate_func2(dst, src, 0, 0, size,
1396 		    vdev_raidz_reconst_p_func, NULL);
1397 	}
1398 }
1399 
1400 static void
vdev_raidz_reconstruct_q(raidz_row_t * rr,int * tgts,int ntgts)1401 vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts)
1402 {
1403 	int x = tgts[0];
1404 	int c, exp;
1405 	abd_t *dst, *src;
1406 
1407 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1408 		zfs_dbgmsg("reconstruct_q(rm=%px x=%u)", rr, x);
1409 
1410 	ASSERT(ntgts == 1);
1411 
1412 	ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size);
1413 
1414 	for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1415 		uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size,
1416 		    rr->rr_col[c].rc_size);
1417 
1418 		src = rr->rr_col[c].rc_abd;
1419 		dst = rr->rr_col[x].rc_abd;
1420 
1421 		if (c == rr->rr_firstdatacol) {
1422 			abd_copy(dst, src, size);
1423 			if (rr->rr_col[x].rc_size > size) {
1424 				abd_zero_off(dst, size,
1425 				    rr->rr_col[x].rc_size - size);
1426 			}
1427 		} else {
1428 			ASSERT3U(size, <=, rr->rr_col[x].rc_size);
1429 			(void) abd_iterate_func2(dst, src, 0, 0, size,
1430 			    vdev_raidz_reconst_q_pre_func, NULL);
1431 			(void) abd_iterate_func(dst,
1432 			    size, rr->rr_col[x].rc_size - size,
1433 			    vdev_raidz_reconst_q_pre_tail_func, NULL);
1434 		}
1435 	}
1436 
1437 	src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
1438 	dst = rr->rr_col[x].rc_abd;
1439 	exp = 255 - (rr->rr_cols - 1 - x);
1440 
1441 	struct reconst_q_struct rq = { abd_to_buf(src), exp };
1442 	(void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size,
1443 	    vdev_raidz_reconst_q_post_func, &rq);
1444 }
1445 
1446 static void
vdev_raidz_reconstruct_pq(raidz_row_t * rr,int * tgts,int ntgts)1447 vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts)
1448 {
1449 	uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
1450 	abd_t *pdata, *qdata;
1451 	uint64_t xsize, ysize;
1452 	int x = tgts[0];
1453 	int y = tgts[1];
1454 	abd_t *xd, *yd;
1455 
1456 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1457 		zfs_dbgmsg("reconstruct_pq(rm=%px x=%u y=%u)", rr, x, y);
1458 
1459 	ASSERT(ntgts == 2);
1460 	ASSERT(x < y);
1461 	ASSERT(x >= rr->rr_firstdatacol);
1462 	ASSERT(y < rr->rr_cols);
1463 
1464 	ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size);
1465 
1466 	/*
1467 	 * Move the parity data aside -- we're going to compute parity as
1468 	 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
1469 	 * reuse the parity generation mechanism without trashing the actual
1470 	 * parity so we make those columns appear to be full of zeros by
1471 	 * setting their lengths to zero.
1472 	 */
1473 	pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
1474 	qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
1475 	xsize = rr->rr_col[x].rc_size;
1476 	ysize = rr->rr_col[y].rc_size;
1477 
1478 	rr->rr_col[VDEV_RAIDZ_P].rc_abd =
1479 	    abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
1480 	rr->rr_col[VDEV_RAIDZ_Q].rc_abd =
1481 	    abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
1482 	rr->rr_col[x].rc_size = 0;
1483 	rr->rr_col[y].rc_size = 0;
1484 
1485 	vdev_raidz_generate_parity_pq(rr);
1486 
1487 	rr->rr_col[x].rc_size = xsize;
1488 	rr->rr_col[y].rc_size = ysize;
1489 
1490 	p = abd_to_buf(pdata);
1491 	q = abd_to_buf(qdata);
1492 	pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1493 	qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1494 	xd = rr->rr_col[x].rc_abd;
1495 	yd = rr->rr_col[y].rc_abd;
1496 
1497 	/*
1498 	 * We now have:
1499 	 *	Pxy = P + D_x + D_y
1500 	 *	Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
1501 	 *
1502 	 * We can then solve for D_x:
1503 	 *	D_x = A * (P + Pxy) + B * (Q + Qxy)
1504 	 * where
1505 	 *	A = 2^(x - y) * (2^(x - y) + 1)^-1
1506 	 *	B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
1507 	 *
1508 	 * With D_x in hand, we can easily solve for D_y:
1509 	 *	D_y = P + Pxy + D_x
1510 	 */
1511 
1512 	a = vdev_raidz_pow2[255 + x - y];
1513 	b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)];
1514 	tmp = 255 - vdev_raidz_log2[a ^ 1];
1515 
1516 	aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
1517 	bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
1518 
1519 	ASSERT3U(xsize, >=, ysize);
1520 	struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
1521 
1522 	(void) abd_iterate_func2(xd, yd, 0, 0, ysize,
1523 	    vdev_raidz_reconst_pq_func, &rpq);
1524 	(void) abd_iterate_func(xd, ysize, xsize - ysize,
1525 	    vdev_raidz_reconst_pq_tail_func, &rpq);
1526 
1527 	abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
1528 	abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
1529 
1530 	/*
1531 	 * Restore the saved parity data.
1532 	 */
1533 	rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata;
1534 	rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata;
1535 }
1536 
1537 /*
1538  * In the general case of reconstruction, we must solve the system of linear
1539  * equations defined by the coefficients used to generate parity as well as
1540  * the contents of the data and parity disks. This can be expressed with
1541  * vectors for the original data (D) and the actual data (d) and parity (p)
1542  * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
1543  *
1544  *            __   __                     __     __
1545  *            |     |         __     __   |  p_0  |
1546  *            |  V  |         |  D_0  |   | p_m-1 |
1547  *            |     |    x    |   :   | = |  d_0  |
1548  *            |  I  |         | D_n-1 |   |   :   |
1549  *            |     |         ~~     ~~   | d_n-1 |
1550  *            ~~   ~~                     ~~     ~~
1551  *
1552  * I is simply a square identity matrix of size n, and V is a vandermonde
1553  * matrix defined by the coefficients we chose for the various parity columns
1554  * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
1555  * computation as well as linear separability.
1556  *
1557  *      __               __               __     __
1558  *      |   1   ..  1 1 1 |               |  p_0  |
1559  *      | 2^n-1 ..  4 2 1 |   __     __   |   :   |
1560  *      | 4^n-1 .. 16 4 1 |   |  D_0  |   | p_m-1 |
1561  *      |   1   ..  0 0 0 |   |  D_1  |   |  d_0  |
1562  *      |   0   ..  0 0 0 | x |  D_2  | = |  d_1  |
1563  *      |   :       : : : |   |   :   |   |  d_2  |
1564  *      |   0   ..  1 0 0 |   | D_n-1 |   |   :   |
1565  *      |   0   ..  0 1 0 |   ~~     ~~   |   :   |
1566  *      |   0   ..  0 0 1 |               | d_n-1 |
1567  *      ~~               ~~               ~~     ~~
1568  *
1569  * Note that I, V, d, and p are known. To compute D, we must invert the
1570  * matrix and use the known data and parity values to reconstruct the unknown
1571  * data values. We begin by removing the rows in V|I and d|p that correspond
1572  * to failed or missing columns; we then make V|I square (n x n) and d|p
1573  * sized n by removing rows corresponding to unused parity from the bottom up
1574  * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
1575  * using Gauss-Jordan elimination. In the example below we use m=3 parity
1576  * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
1577  *           __                               __
1578  *           |  1   1   1   1   1   1   1   1  |
1579  *           | 128  64  32  16  8   4   2   1  | <-----+-+-- missing disks
1580  *           |  19 205 116  29  64  16  4   1  |      / /
1581  *           |  1   0   0   0   0   0   0   0  |     / /
1582  *           |  0   1   0   0   0   0   0   0  | <--' /
1583  *  (V|I)  = |  0   0   1   0   0   0   0   0  | <---'
1584  *           |  0   0   0   1   0   0   0   0  |
1585  *           |  0   0   0   0   1   0   0   0  |
1586  *           |  0   0   0   0   0   1   0   0  |
1587  *           |  0   0   0   0   0   0   1   0  |
1588  *           |  0   0   0   0   0   0   0   1  |
1589  *           ~~                               ~~
1590  *           __                               __
1591  *           |  1   1   1   1   1   1   1   1  |
1592  *           | 128  64  32  16  8   4   2   1  |
1593  *           |  19 205 116  29  64  16  4   1  |
1594  *           |  1   0   0   0   0   0   0   0  |
1595  *           |  0   1   0   0   0   0   0   0  |
1596  *  (V|I)' = |  0   0   1   0   0   0   0   0  |
1597  *           |  0   0   0   1   0   0   0   0  |
1598  *           |  0   0   0   0   1   0   0   0  |
1599  *           |  0   0   0   0   0   1   0   0  |
1600  *           |  0   0   0   0   0   0   1   0  |
1601  *           |  0   0   0   0   0   0   0   1  |
1602  *           ~~                               ~~
1603  *
1604  * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
1605  * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1606  * matrix is not singular.
1607  * __                                                                 __
1608  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1609  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1610  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1611  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1612  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1613  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1614  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1615  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1616  * ~~                                                                 ~~
1617  * __                                                                 __
1618  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1619  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1620  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1621  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1622  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1623  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1624  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1625  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1626  * ~~                                                                 ~~
1627  * __                                                                 __
1628  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1629  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1630  * |  0  205 116  0   0   0   0   0     0   1   19  29  64  16  4   1  |
1631  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1632  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1633  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1634  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1635  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1636  * ~~                                                                 ~~
1637  * __                                                                 __
1638  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1639  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1640  * |  0   0  185  0   0   0   0   0    205  1  222 208 141 221 201 204 |
1641  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1642  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1643  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1644  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1645  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1646  * ~~                                                                 ~~
1647  * __                                                                 __
1648  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1649  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1650  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1651  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1652  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1653  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1654  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1655  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1656  * ~~                                                                 ~~
1657  * __                                                                 __
1658  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1659  * |  0   1   0   0   0   0   0   0    167 100  5   41 159 169 217 208 |
1660  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1661  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1662  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1663  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1664  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1665  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1666  * ~~                                                                 ~~
1667  *                   __                               __
1668  *                   |  0   0   1   0   0   0   0   0  |
1669  *                   | 167 100  5   41 159 169 217 208 |
1670  *                   | 166 100  4   40 158 168 216 209 |
1671  *       (V|I)'^-1 = |  0   0   0   1   0   0   0   0  |
1672  *                   |  0   0   0   0   1   0   0   0  |
1673  *                   |  0   0   0   0   0   1   0   0  |
1674  *                   |  0   0   0   0   0   0   1   0  |
1675  *                   |  0   0   0   0   0   0   0   1  |
1676  *                   ~~                               ~~
1677  *
1678  * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1679  * of the missing data.
1680  *
1681  * As is apparent from the example above, the only non-trivial rows in the
1682  * inverse matrix correspond to the data disks that we're trying to
1683  * reconstruct. Indeed, those are the only rows we need as the others would
1684  * only be useful for reconstructing data known or assumed to be valid. For
1685  * that reason, we only build the coefficients in the rows that correspond to
1686  * targeted columns.
1687  */
1688 
1689 static void
vdev_raidz_matrix_init(raidz_row_t * rr,int n,int nmap,int * map,uint8_t ** rows)1690 vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map,
1691     uint8_t **rows)
1692 {
1693 	int i, j;
1694 	int pow;
1695 
1696 	ASSERT(n == rr->rr_cols - rr->rr_firstdatacol);
1697 
1698 	/*
1699 	 * Fill in the missing rows of interest.
1700 	 */
1701 	for (i = 0; i < nmap; i++) {
1702 		ASSERT3S(0, <=, map[i]);
1703 		ASSERT3S(map[i], <=, 2);
1704 
1705 		pow = map[i] * n;
1706 		if (pow > 255)
1707 			pow -= 255;
1708 		ASSERT(pow <= 255);
1709 
1710 		for (j = 0; j < n; j++) {
1711 			pow -= map[i];
1712 			if (pow < 0)
1713 				pow += 255;
1714 			rows[i][j] = vdev_raidz_pow2[pow];
1715 		}
1716 	}
1717 }
1718 
1719 static void
vdev_raidz_matrix_invert(raidz_row_t * rr,int n,int nmissing,int * missing,uint8_t ** rows,uint8_t ** invrows,const uint8_t * used)1720 vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing,
1721     uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1722 {
1723 	int i, j, ii, jj;
1724 	uint8_t log;
1725 
1726 	/*
1727 	 * Assert that the first nmissing entries from the array of used
1728 	 * columns correspond to parity columns and that subsequent entries
1729 	 * correspond to data columns.
1730 	 */
1731 	for (i = 0; i < nmissing; i++) {
1732 		ASSERT3S(used[i], <, rr->rr_firstdatacol);
1733 	}
1734 	for (; i < n; i++) {
1735 		ASSERT3S(used[i], >=, rr->rr_firstdatacol);
1736 	}
1737 
1738 	/*
1739 	 * First initialize the storage where we'll compute the inverse rows.
1740 	 */
1741 	for (i = 0; i < nmissing; i++) {
1742 		for (j = 0; j < n; j++) {
1743 			invrows[i][j] = (i == j) ? 1 : 0;
1744 		}
1745 	}
1746 
1747 	/*
1748 	 * Subtract all trivial rows from the rows of consequence.
1749 	 */
1750 	for (i = 0; i < nmissing; i++) {
1751 		for (j = nmissing; j < n; j++) {
1752 			ASSERT3U(used[j], >=, rr->rr_firstdatacol);
1753 			jj = used[j] - rr->rr_firstdatacol;
1754 			ASSERT3S(jj, <, n);
1755 			invrows[i][j] = rows[i][jj];
1756 			rows[i][jj] = 0;
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * For each of the rows of interest, we must normalize it and subtract
1762 	 * a multiple of it from the other rows.
1763 	 */
1764 	for (i = 0; i < nmissing; i++) {
1765 		for (j = 0; j < missing[i]; j++) {
1766 			ASSERT0(rows[i][j]);
1767 		}
1768 		ASSERT3U(rows[i][missing[i]], !=, 0);
1769 
1770 		/*
1771 		 * Compute the inverse of the first element and multiply each
1772 		 * element in the row by that value.
1773 		 */
1774 		log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1775 
1776 		for (j = 0; j < n; j++) {
1777 			rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1778 			invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1779 		}
1780 
1781 		for (ii = 0; ii < nmissing; ii++) {
1782 			if (i == ii)
1783 				continue;
1784 
1785 			ASSERT3U(rows[ii][missing[i]], !=, 0);
1786 
1787 			log = vdev_raidz_log2[rows[ii][missing[i]]];
1788 
1789 			for (j = 0; j < n; j++) {
1790 				rows[ii][j] ^=
1791 				    vdev_raidz_exp2(rows[i][j], log);
1792 				invrows[ii][j] ^=
1793 				    vdev_raidz_exp2(invrows[i][j], log);
1794 			}
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * Verify that the data that is left in the rows are properly part of
1800 	 * an identity matrix.
1801 	 */
1802 	for (i = 0; i < nmissing; i++) {
1803 		for (j = 0; j < n; j++) {
1804 			if (j == missing[i]) {
1805 				ASSERT3U(rows[i][j], ==, 1);
1806 			} else {
1807 				ASSERT0(rows[i][j]);
1808 			}
1809 		}
1810 	}
1811 }
1812 
1813 static void
vdev_raidz_matrix_reconstruct(raidz_row_t * rr,int n,int nmissing,int * missing,uint8_t ** invrows,const uint8_t * used)1814 vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing,
1815     int *missing, uint8_t **invrows, const uint8_t *used)
1816 {
1817 	int i, j, x, cc, c;
1818 	uint8_t *src;
1819 	uint64_t ccount;
1820 	uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
1821 	uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
1822 	uint8_t log = 0;
1823 	uint8_t val;
1824 	int ll;
1825 	uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1826 	uint8_t *p, *pp;
1827 	size_t psize;
1828 
1829 	psize = sizeof (invlog[0][0]) * n * nmissing;
1830 	p = kmem_alloc(psize, KM_SLEEP);
1831 
1832 	for (pp = p, i = 0; i < nmissing; i++) {
1833 		invlog[i] = pp;
1834 		pp += n;
1835 	}
1836 
1837 	for (i = 0; i < nmissing; i++) {
1838 		for (j = 0; j < n; j++) {
1839 			ASSERT3U(invrows[i][j], !=, 0);
1840 			invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1841 		}
1842 	}
1843 
1844 	for (i = 0; i < n; i++) {
1845 		c = used[i];
1846 		ASSERT3U(c, <, rr->rr_cols);
1847 
1848 		ccount = rr->rr_col[c].rc_size;
1849 		ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0);
1850 		if (ccount == 0)
1851 			continue;
1852 		src = abd_to_buf(rr->rr_col[c].rc_abd);
1853 		for (j = 0; j < nmissing; j++) {
1854 			cc = missing[j] + rr->rr_firstdatacol;
1855 			ASSERT3U(cc, >=, rr->rr_firstdatacol);
1856 			ASSERT3U(cc, <, rr->rr_cols);
1857 			ASSERT3U(cc, !=, c);
1858 
1859 			dcount[j] = rr->rr_col[cc].rc_size;
1860 			if (dcount[j] != 0)
1861 				dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd);
1862 		}
1863 
1864 		for (x = 0; x < ccount; x++, src++) {
1865 			if (*src != 0)
1866 				log = vdev_raidz_log2[*src];
1867 
1868 			for (cc = 0; cc < nmissing; cc++) {
1869 				if (x >= dcount[cc])
1870 					continue;
1871 
1872 				if (*src == 0) {
1873 					val = 0;
1874 				} else {
1875 					if ((ll = log + invlog[cc][i]) >= 255)
1876 						ll -= 255;
1877 					val = vdev_raidz_pow2[ll];
1878 				}
1879 
1880 				if (i == 0)
1881 					dst[cc][x] = val;
1882 				else
1883 					dst[cc][x] ^= val;
1884 			}
1885 		}
1886 	}
1887 
1888 	kmem_free(p, psize);
1889 }
1890 
1891 static void
vdev_raidz_reconstruct_general(raidz_row_t * rr,int * tgts,int ntgts)1892 vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts)
1893 {
1894 	int i, c, t, tt;
1895 	unsigned int n;
1896 	unsigned int nmissing_rows;
1897 	int missing_rows[VDEV_RAIDZ_MAXPARITY];
1898 	int parity_map[VDEV_RAIDZ_MAXPARITY];
1899 	uint8_t *p, *pp;
1900 	size_t psize;
1901 	uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1902 	uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1903 	uint8_t *used;
1904 
1905 	abd_t **bufs = NULL;
1906 
1907 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
1908 		zfs_dbgmsg("reconstruct_general(rm=%px ntgts=%u)", rr, ntgts);
1909 	/*
1910 	 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1911 	 * temporary linear ABDs if any non-linear ABDs are found.
1912 	 */
1913 	for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) {
1914 		ASSERT(rr->rr_col[i].rc_abd != NULL);
1915 		if (!abd_is_linear(rr->rr_col[i].rc_abd)) {
1916 			bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *),
1917 			    KM_PUSHPAGE);
1918 
1919 			for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1920 				raidz_col_t *col = &rr->rr_col[c];
1921 
1922 				bufs[c] = col->rc_abd;
1923 				if (bufs[c] != NULL) {
1924 					col->rc_abd = abd_alloc_linear(
1925 					    col->rc_size, B_TRUE);
1926 					abd_copy(col->rc_abd, bufs[c],
1927 					    col->rc_size);
1928 				}
1929 			}
1930 
1931 			break;
1932 		}
1933 	}
1934 
1935 	n = rr->rr_cols - rr->rr_firstdatacol;
1936 
1937 	/*
1938 	 * Figure out which data columns are missing.
1939 	 */
1940 	nmissing_rows = 0;
1941 	for (t = 0; t < ntgts; t++) {
1942 		if (tgts[t] >= rr->rr_firstdatacol) {
1943 			missing_rows[nmissing_rows++] =
1944 			    tgts[t] - rr->rr_firstdatacol;
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * Figure out which parity columns to use to help generate the missing
1950 	 * data columns.
1951 	 */
1952 	for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1953 		ASSERT(tt < ntgts);
1954 		ASSERT(c < rr->rr_firstdatacol);
1955 
1956 		/*
1957 		 * Skip any targeted parity columns.
1958 		 */
1959 		if (c == tgts[tt]) {
1960 			tt++;
1961 			continue;
1962 		}
1963 
1964 		parity_map[i] = c;
1965 		i++;
1966 	}
1967 
1968 	psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1969 	    nmissing_rows * n + sizeof (used[0]) * n;
1970 	p = kmem_alloc(psize, KM_SLEEP);
1971 
1972 	for (pp = p, i = 0; i < nmissing_rows; i++) {
1973 		rows[i] = pp;
1974 		pp += n;
1975 		invrows[i] = pp;
1976 		pp += n;
1977 	}
1978 	used = pp;
1979 
1980 	for (i = 0; i < nmissing_rows; i++) {
1981 		used[i] = parity_map[i];
1982 	}
1983 
1984 	for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1985 		if (tt < nmissing_rows &&
1986 		    c == missing_rows[tt] + rr->rr_firstdatacol) {
1987 			tt++;
1988 			continue;
1989 		}
1990 
1991 		ASSERT3S(i, <, n);
1992 		used[i] = c;
1993 		i++;
1994 	}
1995 
1996 	/*
1997 	 * Initialize the interesting rows of the matrix.
1998 	 */
1999 	vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows);
2000 
2001 	/*
2002 	 * Invert the matrix.
2003 	 */
2004 	vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows,
2005 	    invrows, used);
2006 
2007 	/*
2008 	 * Reconstruct the missing data using the generated matrix.
2009 	 */
2010 	vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows,
2011 	    invrows, used);
2012 
2013 	kmem_free(p, psize);
2014 
2015 	/*
2016 	 * copy back from temporary linear abds and free them
2017 	 */
2018 	if (bufs) {
2019 		for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
2020 			raidz_col_t *col = &rr->rr_col[c];
2021 
2022 			if (bufs[c] != NULL) {
2023 				abd_copy(bufs[c], col->rc_abd, col->rc_size);
2024 				abd_free(col->rc_abd);
2025 			}
2026 			col->rc_abd = bufs[c];
2027 		}
2028 		kmem_free(bufs, rr->rr_cols * sizeof (abd_t *));
2029 	}
2030 }
2031 
2032 static void
vdev_raidz_reconstruct_row(raidz_map_t * rm,raidz_row_t * rr,const int * t,int nt)2033 vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr,
2034     const int *t, int nt)
2035 {
2036 	int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
2037 	int ntgts;
2038 	int i, c, ret;
2039 	int nbadparity, nbaddata;
2040 	int parity_valid[VDEV_RAIDZ_MAXPARITY];
2041 
2042 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
2043 		zfs_dbgmsg("reconstruct(rm=%px nt=%u cols=%u md=%u mp=%u)",
2044 		    rr, nt, (int)rr->rr_cols, (int)rr->rr_missingdata,
2045 		    (int)rr->rr_missingparity);
2046 	}
2047 
2048 	nbadparity = rr->rr_firstdatacol;
2049 	nbaddata = rr->rr_cols - nbadparity;
2050 	ntgts = 0;
2051 	for (i = 0, c = 0; c < rr->rr_cols; c++) {
2052 		if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
2053 			zfs_dbgmsg("reconstruct(rm=%px col=%u devid=%u "
2054 			    "offset=%llx error=%u)",
2055 			    rr, c, (int)rr->rr_col[c].rc_devidx,
2056 			    (long long)rr->rr_col[c].rc_offset,
2057 			    (int)rr->rr_col[c].rc_error);
2058 		}
2059 		if (c < rr->rr_firstdatacol)
2060 			parity_valid[c] = B_FALSE;
2061 
2062 		if (i < nt && c == t[i]) {
2063 			tgts[ntgts++] = c;
2064 			i++;
2065 		} else if (rr->rr_col[c].rc_error != 0) {
2066 			tgts[ntgts++] = c;
2067 		} else if (c >= rr->rr_firstdatacol) {
2068 			nbaddata--;
2069 		} else {
2070 			parity_valid[c] = B_TRUE;
2071 			nbadparity--;
2072 		}
2073 	}
2074 
2075 	ASSERT(ntgts >= nt);
2076 	ASSERT(nbaddata >= 0);
2077 	ASSERT(nbaddata + nbadparity == ntgts);
2078 
2079 	dt = &tgts[nbadparity];
2080 
2081 	/* Reconstruct using the new math implementation */
2082 	ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata);
2083 	if (ret != RAIDZ_ORIGINAL_IMPL)
2084 		return;
2085 
2086 	/*
2087 	 * See if we can use any of our optimized reconstruction routines.
2088 	 */
2089 	switch (nbaddata) {
2090 	case 1:
2091 		if (parity_valid[VDEV_RAIDZ_P]) {
2092 			vdev_raidz_reconstruct_p(rr, dt, 1);
2093 			return;
2094 		}
2095 
2096 		ASSERT(rr->rr_firstdatacol > 1);
2097 
2098 		if (parity_valid[VDEV_RAIDZ_Q]) {
2099 			vdev_raidz_reconstruct_q(rr, dt, 1);
2100 			return;
2101 		}
2102 
2103 		ASSERT(rr->rr_firstdatacol > 2);
2104 		break;
2105 
2106 	case 2:
2107 		ASSERT(rr->rr_firstdatacol > 1);
2108 
2109 		if (parity_valid[VDEV_RAIDZ_P] &&
2110 		    parity_valid[VDEV_RAIDZ_Q]) {
2111 			vdev_raidz_reconstruct_pq(rr, dt, 2);
2112 			return;
2113 		}
2114 
2115 		ASSERT(rr->rr_firstdatacol > 2);
2116 
2117 		break;
2118 	}
2119 
2120 	vdev_raidz_reconstruct_general(rr, tgts, ntgts);
2121 }
2122 
2123 static int
vdev_raidz_open(vdev_t * vd,uint64_t * asize,uint64_t * max_asize,uint64_t * logical_ashift,uint64_t * physical_ashift)2124 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
2125     uint64_t *logical_ashift, uint64_t *physical_ashift)
2126 {
2127 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2128 	uint64_t nparity = vdrz->vd_nparity;
2129 	int c;
2130 	int lasterror = 0;
2131 	int numerrors = 0;
2132 
2133 	ASSERT(nparity > 0);
2134 
2135 	if (nparity > VDEV_RAIDZ_MAXPARITY ||
2136 	    vd->vdev_children < nparity + 1) {
2137 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
2138 		return (SET_ERROR(EINVAL));
2139 	}
2140 
2141 	vdev_open_children(vd);
2142 
2143 	for (c = 0; c < vd->vdev_children; c++) {
2144 		vdev_t *cvd = vd->vdev_child[c];
2145 
2146 		if (cvd->vdev_open_error != 0) {
2147 			lasterror = cvd->vdev_open_error;
2148 			numerrors++;
2149 			continue;
2150 		}
2151 
2152 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
2153 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
2154 		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
2155 	}
2156 	for (c = 0; c < vd->vdev_children; c++) {
2157 		vdev_t *cvd = vd->vdev_child[c];
2158 
2159 		if (cvd->vdev_open_error != 0)
2160 			continue;
2161 		*physical_ashift = vdev_best_ashift(*logical_ashift,
2162 		    *physical_ashift, cvd->vdev_physical_ashift);
2163 	}
2164 
2165 	if (vd->vdev_rz_expanding) {
2166 		*asize *= vd->vdev_children - 1;
2167 		*max_asize *= vd->vdev_children - 1;
2168 
2169 		vd->vdev_min_asize = *asize;
2170 	} else {
2171 		*asize *= vd->vdev_children;
2172 		*max_asize *= vd->vdev_children;
2173 	}
2174 
2175 	if (numerrors > nparity) {
2176 		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
2177 		return (lasterror);
2178 	}
2179 
2180 	return (0);
2181 }
2182 
2183 static void
vdev_raidz_close(vdev_t * vd)2184 vdev_raidz_close(vdev_t *vd)
2185 {
2186 	for (int c = 0; c < vd->vdev_children; c++) {
2187 		if (vd->vdev_child[c] != NULL)
2188 			vdev_close(vd->vdev_child[c]);
2189 	}
2190 }
2191 
2192 /*
2193  * Return the logical width to use, given the txg in which the allocation
2194  * happened.  Note that BP_GET_BIRTH() is usually the txg in which the
2195  * BP was allocated.  Remapped BP's (that were relocated due to device
2196  * removal, see remap_blkptr_cb()), will have a more recent physical birth
2197  * which reflects when the BP was relocated, but we can ignore these because
2198  * they can't be on RAIDZ (device removal doesn't support RAIDZ).
2199  */
2200 static uint64_t
vdev_raidz_get_logical_width(vdev_raidz_t * vdrz,uint64_t txg)2201 vdev_raidz_get_logical_width(vdev_raidz_t *vdrz, uint64_t txg)
2202 {
2203 	reflow_node_t lookup = {
2204 		.re_txg = txg,
2205 	};
2206 	avl_index_t where;
2207 
2208 	uint64_t width;
2209 	mutex_enter(&vdrz->vd_expand_lock);
2210 	reflow_node_t *re = avl_find(&vdrz->vd_expand_txgs, &lookup, &where);
2211 	if (re != NULL) {
2212 		width = re->re_logical_width;
2213 	} else {
2214 		re = avl_nearest(&vdrz->vd_expand_txgs, where, AVL_BEFORE);
2215 		if (re != NULL)
2216 			width = re->re_logical_width;
2217 		else
2218 			width = vdrz->vd_original_width;
2219 	}
2220 	mutex_exit(&vdrz->vd_expand_lock);
2221 	return (width);
2222 }
2223 
2224 /*
2225  * Note: If the RAIDZ vdev has been expanded, older BP's may have allocated
2226  * more space due to the lower data-to-parity ratio.  In this case it's
2227  * important to pass in the correct txg.  Note that vdev_gang_header_asize()
2228  * relies on a constant asize for psize=SPA_GANGBLOCKSIZE=SPA_MINBLOCKSIZE,
2229  * regardless of txg.  This is assured because for a single data sector, we
2230  * allocate P+1 sectors regardless of width ("cols", which is at least P+1).
2231  */
2232 static uint64_t
vdev_raidz_asize(vdev_t * vd,uint64_t psize,uint64_t txg)2233 vdev_raidz_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
2234 {
2235 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2236 	uint64_t asize;
2237 	uint64_t ashift = vd->vdev_top->vdev_ashift;
2238 	uint64_t cols = vdrz->vd_original_width;
2239 	uint64_t nparity = vdrz->vd_nparity;
2240 
2241 	cols = vdev_raidz_get_logical_width(vdrz, txg);
2242 
2243 	asize = ((psize - 1) >> ashift) + 1;
2244 	asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
2245 	asize = roundup(asize, nparity + 1) << ashift;
2246 
2247 #ifdef ZFS_DEBUG
2248 	uint64_t asize_new = ((psize - 1) >> ashift) + 1;
2249 	uint64_t ncols_new = vdrz->vd_physical_width;
2250 	asize_new += nparity * ((asize_new + ncols_new - nparity - 1) /
2251 	    (ncols_new - nparity));
2252 	asize_new = roundup(asize_new, nparity + 1) << ashift;
2253 	VERIFY3U(asize_new, <=, asize);
2254 #endif
2255 
2256 	return (asize);
2257 }
2258 
2259 /*
2260  * The allocatable space for a raidz vdev is N * sizeof(smallest child)
2261  * so each child must provide at least 1/Nth of its asize.
2262  */
2263 static uint64_t
vdev_raidz_min_asize(vdev_t * vd)2264 vdev_raidz_min_asize(vdev_t *vd)
2265 {
2266 	return ((vd->vdev_min_asize + vd->vdev_children - 1) /
2267 	    vd->vdev_children);
2268 }
2269 
2270 void
vdev_raidz_child_done(zio_t * zio)2271 vdev_raidz_child_done(zio_t *zio)
2272 {
2273 	raidz_col_t *rc = zio->io_private;
2274 
2275 	ASSERT3P(rc->rc_abd, !=, NULL);
2276 	rc->rc_error = zio->io_error;
2277 	rc->rc_tried = 1;
2278 	rc->rc_skipped = 0;
2279 }
2280 
2281 static void
vdev_raidz_shadow_child_done(zio_t * zio)2282 vdev_raidz_shadow_child_done(zio_t *zio)
2283 {
2284 	raidz_col_t *rc = zio->io_private;
2285 
2286 	rc->rc_shadow_error = zio->io_error;
2287 }
2288 
2289 static void
vdev_raidz_io_verify(zio_t * zio,raidz_map_t * rm,raidz_row_t * rr,int col)2290 vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, raidz_row_t *rr, int col)
2291 {
2292 	(void) rm;
2293 #ifdef ZFS_DEBUG
2294 	range_seg64_t logical_rs, physical_rs, remain_rs;
2295 	logical_rs.rs_start = rr->rr_offset;
2296 	logical_rs.rs_end = logical_rs.rs_start +
2297 	    vdev_raidz_asize(zio->io_vd, rr->rr_size,
2298 	    BP_GET_BIRTH(zio->io_bp));
2299 
2300 	raidz_col_t *rc = &rr->rr_col[col];
2301 	vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
2302 
2303 	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
2304 	ASSERT(vdev_xlate_is_empty(&remain_rs));
2305 	if (vdev_xlate_is_empty(&physical_rs)) {
2306 		/*
2307 		 * If we are in the middle of expansion, the
2308 		 * physical->logical mapping is changing so vdev_xlate()
2309 		 * can't give us a reliable answer.
2310 		 */
2311 		return;
2312 	}
2313 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
2314 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
2315 	/*
2316 	 * It would be nice to assert that rs_end is equal
2317 	 * to rc_offset + rc_size but there might be an
2318 	 * optional I/O at the end that is not accounted in
2319 	 * rc_size.
2320 	 */
2321 	if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
2322 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
2323 		    rc->rc_size + (1 << zio->io_vd->vdev_top->vdev_ashift));
2324 	} else {
2325 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
2326 	}
2327 #endif
2328 }
2329 
2330 static void
vdev_raidz_io_start_write(zio_t * zio,raidz_row_t * rr)2331 vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr)
2332 {
2333 	vdev_t *vd = zio->io_vd;
2334 	raidz_map_t *rm = zio->io_vsd;
2335 
2336 	vdev_raidz_generate_parity_row(rm, rr);
2337 
2338 	for (int c = 0; c < rr->rr_scols; c++) {
2339 		raidz_col_t *rc = &rr->rr_col[c];
2340 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2341 
2342 		/* Verify physical to logical translation */
2343 		vdev_raidz_io_verify(zio, rm, rr, c);
2344 
2345 		if (rc->rc_size == 0)
2346 			continue;
2347 
2348 		ASSERT3U(rc->rc_offset + rc->rc_size, <,
2349 		    cvd->vdev_psize - VDEV_LABEL_END_SIZE);
2350 
2351 		ASSERT3P(rc->rc_abd, !=, NULL);
2352 		zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2353 		    rc->rc_offset, rc->rc_abd,
2354 		    abd_get_size(rc->rc_abd), zio->io_type,
2355 		    zio->io_priority, 0, vdev_raidz_child_done, rc));
2356 
2357 		if (rc->rc_shadow_devidx != INT_MAX) {
2358 			vdev_t *cvd2 = vd->vdev_child[rc->rc_shadow_devidx];
2359 
2360 			ASSERT3U(
2361 			    rc->rc_shadow_offset + abd_get_size(rc->rc_abd), <,
2362 			    cvd2->vdev_psize - VDEV_LABEL_END_SIZE);
2363 
2364 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd2,
2365 			    rc->rc_shadow_offset, rc->rc_abd,
2366 			    abd_get_size(rc->rc_abd),
2367 			    zio->io_type, zio->io_priority, 0,
2368 			    vdev_raidz_shadow_child_done, rc));
2369 		}
2370 	}
2371 }
2372 
2373 /*
2374  * Generate optional I/Os for skip sectors to improve aggregation contiguity.
2375  * This only works for vdev_raidz_map_alloc() (not _expanded()).
2376  */
2377 static void
raidz_start_skip_writes(zio_t * zio)2378 raidz_start_skip_writes(zio_t *zio)
2379 {
2380 	vdev_t *vd = zio->io_vd;
2381 	uint64_t ashift = vd->vdev_top->vdev_ashift;
2382 	raidz_map_t *rm = zio->io_vsd;
2383 	ASSERT3U(rm->rm_nrows, ==, 1);
2384 	raidz_row_t *rr = rm->rm_row[0];
2385 	for (int c = 0; c < rr->rr_scols; c++) {
2386 		raidz_col_t *rc = &rr->rr_col[c];
2387 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2388 		if (rc->rc_size != 0)
2389 			continue;
2390 		ASSERT3P(rc->rc_abd, ==, NULL);
2391 
2392 		ASSERT3U(rc->rc_offset, <,
2393 		    cvd->vdev_psize - VDEV_LABEL_END_SIZE);
2394 
2395 		zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset,
2396 		    NULL, 1ULL << ashift, zio->io_type, zio->io_priority,
2397 		    ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
2398 	}
2399 }
2400 
2401 static void
vdev_raidz_io_start_read_row(zio_t * zio,raidz_row_t * rr,boolean_t forceparity)2402 vdev_raidz_io_start_read_row(zio_t *zio, raidz_row_t *rr, boolean_t forceparity)
2403 {
2404 	vdev_t *vd = zio->io_vd;
2405 
2406 	/*
2407 	 * Iterate over the columns in reverse order so that we hit the parity
2408 	 * last -- any errors along the way will force us to read the parity.
2409 	 */
2410 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
2411 		raidz_col_t *rc = &rr->rr_col[c];
2412 		if (rc->rc_size == 0)
2413 			continue;
2414 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2415 		if (!vdev_readable(cvd)) {
2416 			if (c >= rr->rr_firstdatacol)
2417 				rr->rr_missingdata++;
2418 			else
2419 				rr->rr_missingparity++;
2420 			rc->rc_error = SET_ERROR(ENXIO);
2421 			rc->rc_tried = 1;	/* don't even try */
2422 			rc->rc_skipped = 1;
2423 			continue;
2424 		}
2425 		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
2426 			if (c >= rr->rr_firstdatacol)
2427 				rr->rr_missingdata++;
2428 			else
2429 				rr->rr_missingparity++;
2430 			rc->rc_error = SET_ERROR(ESTALE);
2431 			rc->rc_skipped = 1;
2432 			continue;
2433 		}
2434 		if (forceparity ||
2435 		    c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
2436 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
2437 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2438 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2439 			    zio->io_type, zio->io_priority, 0,
2440 			    vdev_raidz_child_done, rc));
2441 		}
2442 	}
2443 }
2444 
2445 static void
vdev_raidz_io_start_read_phys_cols(zio_t * zio,raidz_map_t * rm)2446 vdev_raidz_io_start_read_phys_cols(zio_t *zio, raidz_map_t *rm)
2447 {
2448 	vdev_t *vd = zio->io_vd;
2449 
2450 	for (int i = 0; i < rm->rm_nphys_cols; i++) {
2451 		raidz_col_t *prc = &rm->rm_phys_col[i];
2452 		if (prc->rc_size == 0)
2453 			continue;
2454 
2455 		ASSERT3U(prc->rc_devidx, ==, i);
2456 		vdev_t *cvd = vd->vdev_child[i];
2457 		if (!vdev_readable(cvd)) {
2458 			prc->rc_error = SET_ERROR(ENXIO);
2459 			prc->rc_tried = 1;	/* don't even try */
2460 			prc->rc_skipped = 1;
2461 			continue;
2462 		}
2463 		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
2464 			prc->rc_error = SET_ERROR(ESTALE);
2465 			prc->rc_skipped = 1;
2466 			continue;
2467 		}
2468 		zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2469 		    prc->rc_offset, prc->rc_abd, prc->rc_size,
2470 		    zio->io_type, zio->io_priority, 0,
2471 		    vdev_raidz_child_done, prc));
2472 	}
2473 }
2474 
2475 static void
vdev_raidz_io_start_read(zio_t * zio,raidz_map_t * rm)2476 vdev_raidz_io_start_read(zio_t *zio, raidz_map_t *rm)
2477 {
2478 	/*
2479 	 * If there are multiple rows, we will be hitting
2480 	 * all disks, so go ahead and read the parity so
2481 	 * that we are reading in decent size chunks.
2482 	 */
2483 	boolean_t forceparity = rm->rm_nrows > 1;
2484 
2485 	if (rm->rm_phys_col) {
2486 		vdev_raidz_io_start_read_phys_cols(zio, rm);
2487 	} else {
2488 		for (int i = 0; i < rm->rm_nrows; i++) {
2489 			raidz_row_t *rr = rm->rm_row[i];
2490 			vdev_raidz_io_start_read_row(zio, rr, forceparity);
2491 		}
2492 	}
2493 }
2494 
2495 /*
2496  * Start an IO operation on a RAIDZ VDev
2497  *
2498  * Outline:
2499  * - For write operations:
2500  *   1. Generate the parity data
2501  *   2. Create child zio write operations to each column's vdev, for both
2502  *      data and parity.
2503  *   3. If the column skips any sectors for padding, create optional dummy
2504  *      write zio children for those areas to improve aggregation continuity.
2505  * - For read operations:
2506  *   1. Create child zio read operations to each data column's vdev to read
2507  *      the range of data required for zio.
2508  *   2. If this is a scrub or resilver operation, or if any of the data
2509  *      vdevs have had errors, then create zio read operations to the parity
2510  *      columns' VDevs as well.
2511  */
2512 static void
vdev_raidz_io_start(zio_t * zio)2513 vdev_raidz_io_start(zio_t *zio)
2514 {
2515 	vdev_t *vd = zio->io_vd;
2516 	vdev_t *tvd = vd->vdev_top;
2517 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2518 	raidz_map_t *rm;
2519 
2520 	uint64_t logical_width = vdev_raidz_get_logical_width(vdrz,
2521 	    BP_GET_BIRTH(zio->io_bp));
2522 	if (logical_width != vdrz->vd_physical_width) {
2523 		zfs_locked_range_t *lr = NULL;
2524 		uint64_t synced_offset = UINT64_MAX;
2525 		uint64_t next_offset = UINT64_MAX;
2526 		boolean_t use_scratch = B_FALSE;
2527 		/*
2528 		 * Note: when the expansion is completing, we set
2529 		 * vre_state=DSS_FINISHED (in raidz_reflow_complete_sync())
2530 		 * in a later txg than when we last update spa_ubsync's state
2531 		 * (see the end of spa_raidz_expand_thread()).  Therefore we
2532 		 * may see vre_state!=SCANNING before
2533 		 * VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE=DSS_FINISHED is reflected
2534 		 * on disk, but the copying progress has been synced to disk
2535 		 * (and reflected in spa_ubsync).  In this case it's fine to
2536 		 * treat the expansion as completed, since if we crash there's
2537 		 * no additional copying to do.
2538 		 */
2539 		if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
2540 			ASSERT3P(vd->vdev_spa->spa_raidz_expand, ==,
2541 			    &vdrz->vn_vre);
2542 			lr = zfs_rangelock_enter(&vdrz->vn_vre.vre_rangelock,
2543 			    zio->io_offset, zio->io_size, RL_READER);
2544 			use_scratch =
2545 			    (RRSS_GET_STATE(&vd->vdev_spa->spa_ubsync) ==
2546 			    RRSS_SCRATCH_VALID);
2547 			synced_offset =
2548 			    RRSS_GET_OFFSET(&vd->vdev_spa->spa_ubsync);
2549 			next_offset = vdrz->vn_vre.vre_offset;
2550 			/*
2551 			 * If we haven't resumed expanding since importing the
2552 			 * pool, vre_offset won't have been set yet.  In
2553 			 * this case the next offset to be copied is the same
2554 			 * as what was synced.
2555 			 */
2556 			if (next_offset == UINT64_MAX) {
2557 				next_offset = synced_offset;
2558 			}
2559 		}
2560 		if (use_scratch) {
2561 			zfs_dbgmsg("zio=%px %s io_offset=%llu offset_synced="
2562 			    "%lld next_offset=%lld use_scratch=%u",
2563 			    zio,
2564 			    zio->io_type == ZIO_TYPE_WRITE ? "WRITE" : "READ",
2565 			    (long long)zio->io_offset,
2566 			    (long long)synced_offset,
2567 			    (long long)next_offset,
2568 			    use_scratch);
2569 		}
2570 
2571 		rm = vdev_raidz_map_alloc_expanded(zio,
2572 		    tvd->vdev_ashift, vdrz->vd_physical_width,
2573 		    logical_width, vdrz->vd_nparity,
2574 		    synced_offset, next_offset, use_scratch);
2575 		rm->rm_lr = lr;
2576 	} else {
2577 		rm = vdev_raidz_map_alloc(zio,
2578 		    tvd->vdev_ashift, logical_width, vdrz->vd_nparity);
2579 	}
2580 	rm->rm_original_width = vdrz->vd_original_width;
2581 
2582 	zio->io_vsd = rm;
2583 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
2584 	if (zio->io_type == ZIO_TYPE_WRITE) {
2585 		for (int i = 0; i < rm->rm_nrows; i++) {
2586 			vdev_raidz_io_start_write(zio, rm->rm_row[i]);
2587 		}
2588 
2589 		if (logical_width == vdrz->vd_physical_width) {
2590 			raidz_start_skip_writes(zio);
2591 		}
2592 	} else {
2593 		ASSERT(zio->io_type == ZIO_TYPE_READ);
2594 		vdev_raidz_io_start_read(zio, rm);
2595 	}
2596 
2597 	zio_execute(zio);
2598 }
2599 
2600 /*
2601  * Report a checksum error for a child of a RAID-Z device.
2602  */
2603 void
vdev_raidz_checksum_error(zio_t * zio,raidz_col_t * rc,abd_t * bad_data)2604 vdev_raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
2605 {
2606 	vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
2607 
2608 	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) &&
2609 	    zio->io_priority != ZIO_PRIORITY_REBUILD) {
2610 		zio_bad_cksum_t zbc;
2611 		raidz_map_t *rm = zio->io_vsd;
2612 
2613 		zbc.zbc_has_cksum = 0;
2614 		zbc.zbc_injected = rm->rm_ecksuminjected;
2615 
2616 		mutex_enter(&vd->vdev_stat_lock);
2617 		vd->vdev_stat.vs_checksum_errors++;
2618 		mutex_exit(&vd->vdev_stat_lock);
2619 		(void) zfs_ereport_post_checksum(zio->io_spa, vd,
2620 		    &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
2621 		    rc->rc_abd, bad_data, &zbc);
2622 	}
2623 }
2624 
2625 /*
2626  * We keep track of whether or not there were any injected errors, so that
2627  * any ereports we generate can note it.
2628  */
2629 static int
raidz_checksum_verify(zio_t * zio)2630 raidz_checksum_verify(zio_t *zio)
2631 {
2632 	zio_bad_cksum_t zbc = {0};
2633 	raidz_map_t *rm = zio->io_vsd;
2634 
2635 	int ret = zio_checksum_error(zio, &zbc);
2636 	if (ret != 0 && zbc.zbc_injected != 0)
2637 		rm->rm_ecksuminjected = 1;
2638 
2639 	return (ret);
2640 }
2641 
2642 /*
2643  * Generate the parity from the data columns. If we tried and were able to
2644  * read the parity without error, verify that the generated parity matches the
2645  * data we read. If it doesn't, we fire off a checksum error. Return the
2646  * number of such failures.
2647  */
2648 static int
raidz_parity_verify(zio_t * zio,raidz_row_t * rr)2649 raidz_parity_verify(zio_t *zio, raidz_row_t *rr)
2650 {
2651 	abd_t *orig[VDEV_RAIDZ_MAXPARITY];
2652 	int c, ret = 0;
2653 	raidz_map_t *rm = zio->io_vsd;
2654 	raidz_col_t *rc;
2655 
2656 	blkptr_t *bp = zio->io_bp;
2657 	enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
2658 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
2659 
2660 	if (checksum == ZIO_CHECKSUM_NOPARITY)
2661 		return (ret);
2662 
2663 	for (c = 0; c < rr->rr_firstdatacol; c++) {
2664 		rc = &rr->rr_col[c];
2665 		if (!rc->rc_tried || rc->rc_error != 0)
2666 			continue;
2667 
2668 		orig[c] = rc->rc_abd;
2669 		ASSERT3U(abd_get_size(rc->rc_abd), ==, rc->rc_size);
2670 		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
2671 	}
2672 
2673 	/*
2674 	 * Verify any empty sectors are zero filled to ensure the parity
2675 	 * is calculated correctly even if these non-data sectors are damaged.
2676 	 */
2677 	if (rr->rr_nempty && rr->rr_abd_empty != NULL)
2678 		ret += vdev_draid_map_verify_empty(zio, rr);
2679 
2680 	/*
2681 	 * Regenerates parity even for !tried||rc_error!=0 columns.  This
2682 	 * isn't harmful but it does have the side effect of fixing stuff
2683 	 * we didn't realize was necessary (i.e. even if we return 0).
2684 	 */
2685 	vdev_raidz_generate_parity_row(rm, rr);
2686 
2687 	for (c = 0; c < rr->rr_firstdatacol; c++) {
2688 		rc = &rr->rr_col[c];
2689 
2690 		if (!rc->rc_tried || rc->rc_error != 0)
2691 			continue;
2692 
2693 		if (abd_cmp(orig[c], rc->rc_abd) != 0) {
2694 			zfs_dbgmsg("found error on col=%u devidx=%u off %llx",
2695 			    c, (int)rc->rc_devidx, (u_longlong_t)rc->rc_offset);
2696 			vdev_raidz_checksum_error(zio, rc, orig[c]);
2697 			rc->rc_error = SET_ERROR(ECKSUM);
2698 			ret++;
2699 		}
2700 		abd_free(orig[c]);
2701 	}
2702 
2703 	return (ret);
2704 }
2705 
2706 static int
vdev_raidz_worst_error(raidz_row_t * rr)2707 vdev_raidz_worst_error(raidz_row_t *rr)
2708 {
2709 	int error = 0;
2710 
2711 	for (int c = 0; c < rr->rr_cols; c++) {
2712 		error = zio_worst_error(error, rr->rr_col[c].rc_error);
2713 		error = zio_worst_error(error, rr->rr_col[c].rc_shadow_error);
2714 	}
2715 
2716 	return (error);
2717 }
2718 
2719 static void
vdev_raidz_io_done_verified(zio_t * zio,raidz_row_t * rr)2720 vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
2721 {
2722 	int unexpected_errors = 0;
2723 	int parity_errors = 0;
2724 	int parity_untried = 0;
2725 	int data_errors = 0;
2726 
2727 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
2728 
2729 	for (int c = 0; c < rr->rr_cols; c++) {
2730 		raidz_col_t *rc = &rr->rr_col[c];
2731 
2732 		if (rc->rc_error) {
2733 			if (c < rr->rr_firstdatacol)
2734 				parity_errors++;
2735 			else
2736 				data_errors++;
2737 
2738 			if (!rc->rc_skipped)
2739 				unexpected_errors++;
2740 		} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
2741 			parity_untried++;
2742 		}
2743 
2744 		if (rc->rc_force_repair)
2745 			unexpected_errors++;
2746 	}
2747 
2748 	/*
2749 	 * If we read more parity disks than were used for
2750 	 * reconstruction, confirm that the other parity disks produced
2751 	 * correct data.
2752 	 *
2753 	 * Note that we also regenerate parity when resilvering so we
2754 	 * can write it out to failed devices later.
2755 	 */
2756 	if (parity_errors + parity_untried <
2757 	    rr->rr_firstdatacol - data_errors ||
2758 	    (zio->io_flags & ZIO_FLAG_RESILVER)) {
2759 		int n = raidz_parity_verify(zio, rr);
2760 		unexpected_errors += n;
2761 	}
2762 
2763 	if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2764 	    (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2765 		/*
2766 		 * Use the good data we have in hand to repair damaged children.
2767 		 */
2768 		for (int c = 0; c < rr->rr_cols; c++) {
2769 			raidz_col_t *rc = &rr->rr_col[c];
2770 			vdev_t *vd = zio->io_vd;
2771 			vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2772 
2773 			if (!rc->rc_allow_repair) {
2774 				continue;
2775 			} else if (!rc->rc_force_repair &&
2776 			    (rc->rc_error == 0 || rc->rc_size == 0)) {
2777 				continue;
2778 			}
2779 
2780 			zfs_dbgmsg("zio=%px repairing c=%u devidx=%u "
2781 			    "offset=%llx",
2782 			    zio, c, rc->rc_devidx, (long long)rc->rc_offset);
2783 
2784 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2785 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2786 			    ZIO_TYPE_WRITE,
2787 			    zio->io_priority == ZIO_PRIORITY_REBUILD ?
2788 			    ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
2789 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2790 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2791 		}
2792 	}
2793 
2794 	/*
2795 	 * Scrub or resilver i/o's: overwrite any shadow locations with the
2796 	 * good data.  This ensures that if we've already copied this sector,
2797 	 * it will be corrected if it was damaged.  This writes more than is
2798 	 * necessary, but since expansion is paused during scrub/resilver, at
2799 	 * most a single row will have a shadow location.
2800 	 */
2801 	if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2802 	    (zio->io_flags & (ZIO_FLAG_RESILVER | ZIO_FLAG_SCRUB))) {
2803 		for (int c = 0; c < rr->rr_cols; c++) {
2804 			raidz_col_t *rc = &rr->rr_col[c];
2805 			vdev_t *vd = zio->io_vd;
2806 
2807 			if (rc->rc_shadow_devidx == INT_MAX || rc->rc_size == 0)
2808 				continue;
2809 			vdev_t *cvd = vd->vdev_child[rc->rc_shadow_devidx];
2810 
2811 			/*
2812 			 * Note: We don't want to update the repair stats
2813 			 * because that would incorrectly indicate that there
2814 			 * was bad data to repair, which we aren't sure about.
2815 			 * By clearing the SCAN_THREAD flag, we prevent this
2816 			 * from happening, despite having the REPAIR flag set.
2817 			 * We need to set SELF_HEAL so that this i/o can't be
2818 			 * bypassed by zio_vdev_io_start().
2819 			 */
2820 			zio_t *cio = zio_vdev_child_io(zio, NULL, cvd,
2821 			    rc->rc_shadow_offset, rc->rc_abd, rc->rc_size,
2822 			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
2823 			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
2824 			    NULL, NULL);
2825 			cio->io_flags &= ~ZIO_FLAG_SCAN_THREAD;
2826 			zio_nowait(cio);
2827 		}
2828 	}
2829 }
2830 
2831 static void
raidz_restore_orig_data(raidz_map_t * rm)2832 raidz_restore_orig_data(raidz_map_t *rm)
2833 {
2834 	for (int i = 0; i < rm->rm_nrows; i++) {
2835 		raidz_row_t *rr = rm->rm_row[i];
2836 		for (int c = 0; c < rr->rr_cols; c++) {
2837 			raidz_col_t *rc = &rr->rr_col[c];
2838 			if (rc->rc_need_orig_restore) {
2839 				abd_copy(rc->rc_abd,
2840 				    rc->rc_orig_data, rc->rc_size);
2841 				rc->rc_need_orig_restore = B_FALSE;
2842 			}
2843 		}
2844 	}
2845 }
2846 
2847 /*
2848  * During raidz_reconstruct() for expanded VDEV, we need special consideration
2849  * failure simulations.  See note in raidz_reconstruct() on simulating failure
2850  * of a pre-expansion device.
2851  *
2852  * Treating logical child i as failed, return TRUE if the given column should
2853  * be treated as failed.  The idea of logical children allows us to imagine
2854  * that a disk silently failed before a RAIDZ expansion (reads from this disk
2855  * succeed but return the wrong data).  Since the expansion doesn't verify
2856  * checksums, the incorrect data will be moved to new locations spread among
2857  * the children (going diagonally across them).
2858  *
2859  * Higher "logical child failures" (values of `i`) indicate these
2860  * "pre-expansion failures".  The first physical_width values imagine that a
2861  * current child failed; the next physical_width-1 values imagine that a
2862  * child failed before the most recent expansion; the next physical_width-2
2863  * values imagine a child failed in the expansion before that, etc.
2864  */
2865 static boolean_t
raidz_simulate_failure(int physical_width,int original_width,int ashift,int i,raidz_col_t * rc)2866 raidz_simulate_failure(int physical_width, int original_width, int ashift,
2867     int i, raidz_col_t *rc)
2868 {
2869 	uint64_t sector_id =
2870 	    physical_width * (rc->rc_offset >> ashift) +
2871 	    rc->rc_devidx;
2872 
2873 	for (int w = physical_width; w >= original_width; w--) {
2874 		if (i < w) {
2875 			return (sector_id % w == i);
2876 		} else {
2877 			i -= w;
2878 		}
2879 	}
2880 	ASSERT(!"invalid logical child id");
2881 	return (B_FALSE);
2882 }
2883 
2884 /*
2885  * returns EINVAL if reconstruction of the block will not be possible
2886  * returns ECKSUM if this specific reconstruction failed
2887  * returns 0 on successful reconstruction
2888  */
2889 static int
raidz_reconstruct(zio_t * zio,int * ltgts,int ntgts,int nparity)2890 raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity)
2891 {
2892 	raidz_map_t *rm = zio->io_vsd;
2893 	int physical_width = zio->io_vd->vdev_children;
2894 	int original_width = (rm->rm_original_width != 0) ?
2895 	    rm->rm_original_width : physical_width;
2896 	int dbgmsg = zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT;
2897 
2898 	if (dbgmsg) {
2899 		zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px ltgts=%u,%u,%u "
2900 		    "ntgts=%u", zio, ltgts[0], ltgts[1], ltgts[2], ntgts);
2901 	}
2902 
2903 	/* Reconstruct each row */
2904 	for (int r = 0; r < rm->rm_nrows; r++) {
2905 		raidz_row_t *rr = rm->rm_row[r];
2906 		int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */
2907 		int t = 0;
2908 		int dead = 0;
2909 		int dead_data = 0;
2910 
2911 		if (dbgmsg)
2912 			zfs_dbgmsg("raidz_reconstruct_expanded(row=%u)", r);
2913 
2914 		for (int c = 0; c < rr->rr_cols; c++) {
2915 			raidz_col_t *rc = &rr->rr_col[c];
2916 			ASSERT0(rc->rc_need_orig_restore);
2917 			if (rc->rc_error != 0) {
2918 				dead++;
2919 				if (c >= nparity)
2920 					dead_data++;
2921 				continue;
2922 			}
2923 			if (rc->rc_size == 0)
2924 				continue;
2925 			for (int lt = 0; lt < ntgts; lt++) {
2926 				if (raidz_simulate_failure(physical_width,
2927 				    original_width,
2928 				    zio->io_vd->vdev_top->vdev_ashift,
2929 				    ltgts[lt], rc)) {
2930 					if (rc->rc_orig_data == NULL) {
2931 						rc->rc_orig_data =
2932 						    abd_alloc_linear(
2933 						    rc->rc_size, B_TRUE);
2934 						abd_copy(rc->rc_orig_data,
2935 						    rc->rc_abd, rc->rc_size);
2936 					}
2937 					rc->rc_need_orig_restore = B_TRUE;
2938 
2939 					dead++;
2940 					if (c >= nparity)
2941 						dead_data++;
2942 					/*
2943 					 * Note: simulating failure of a
2944 					 * pre-expansion device can hit more
2945 					 * than one column, in which case we
2946 					 * might try to simulate more failures
2947 					 * than can be reconstructed, which is
2948 					 * also more than the size of my_tgts.
2949 					 * This check prevents accessing past
2950 					 * the end of my_tgts.  The "dead >
2951 					 * nparity" check below will fail this
2952 					 * reconstruction attempt.
2953 					 */
2954 					if (t < VDEV_RAIDZ_MAXPARITY) {
2955 						my_tgts[t++] = c;
2956 						if (dbgmsg) {
2957 							zfs_dbgmsg("simulating "
2958 							    "failure of col %u "
2959 							    "devidx %u", c,
2960 							    (int)rc->rc_devidx);
2961 						}
2962 					}
2963 					break;
2964 				}
2965 			}
2966 		}
2967 		if (dead > nparity) {
2968 			/* reconstruction not possible */
2969 			if (dbgmsg) {
2970 				zfs_dbgmsg("reconstruction not possible; "
2971 				    "too many failures");
2972 			}
2973 			raidz_restore_orig_data(rm);
2974 			return (EINVAL);
2975 		}
2976 		if (dead_data > 0)
2977 			vdev_raidz_reconstruct_row(rm, rr, my_tgts, t);
2978 	}
2979 
2980 	/* Check for success */
2981 	if (raidz_checksum_verify(zio) == 0) {
2982 
2983 		/* Reconstruction succeeded - report errors */
2984 		for (int i = 0; i < rm->rm_nrows; i++) {
2985 			raidz_row_t *rr = rm->rm_row[i];
2986 
2987 			for (int c = 0; c < rr->rr_cols; c++) {
2988 				raidz_col_t *rc = &rr->rr_col[c];
2989 				if (rc->rc_need_orig_restore) {
2990 					/*
2991 					 * Note: if this is a parity column,
2992 					 * we don't really know if it's wrong.
2993 					 * We need to let
2994 					 * vdev_raidz_io_done_verified() check
2995 					 * it, and if we set rc_error, it will
2996 					 * think that it is a "known" error
2997 					 * that doesn't need to be checked
2998 					 * or corrected.
2999 					 */
3000 					if (rc->rc_error == 0 &&
3001 					    c >= rr->rr_firstdatacol) {
3002 						vdev_raidz_checksum_error(zio,
3003 						    rc, rc->rc_orig_data);
3004 						rc->rc_error =
3005 						    SET_ERROR(ECKSUM);
3006 					}
3007 					rc->rc_need_orig_restore = B_FALSE;
3008 				}
3009 			}
3010 
3011 			vdev_raidz_io_done_verified(zio, rr);
3012 		}
3013 
3014 		zio_checksum_verified(zio);
3015 
3016 		if (dbgmsg) {
3017 			zfs_dbgmsg("reconstruction successful "
3018 			    "(checksum verified)");
3019 		}
3020 		return (0);
3021 	}
3022 
3023 	/* Reconstruction failed - restore original data */
3024 	raidz_restore_orig_data(rm);
3025 	if (dbgmsg) {
3026 		zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px) checksum "
3027 		    "failed", zio);
3028 	}
3029 	return (ECKSUM);
3030 }
3031 
3032 /*
3033  * Iterate over all combinations of N bad vdevs and attempt a reconstruction.
3034  * Note that the algorithm below is non-optimal because it doesn't take into
3035  * account how reconstruction is actually performed. For example, with
3036  * triple-parity RAID-Z the reconstruction procedure is the same if column 4
3037  * is targeted as invalid as if columns 1 and 4 are targeted since in both
3038  * cases we'd only use parity information in column 0.
3039  *
3040  * The order that we find the various possible combinations of failed
3041  * disks is dictated by these rules:
3042  * - Examine each "slot" (the "i" in tgts[i])
3043  *   - Try to increment this slot (tgts[i] += 1)
3044  *   - if we can't increment because it runs into the next slot,
3045  *     reset our slot to the minimum, and examine the next slot
3046  *
3047  *  For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
3048  *  3 columns to reconstruct), we will generate the following sequence:
3049  *
3050  *  STATE        ACTION
3051  *  0 1 2        special case: skip since these are all parity
3052  *  0 1   3      first slot: reset to 0; middle slot: increment to 2
3053  *  0   2 3      first slot: increment to 1
3054  *    1 2 3      first: reset to 0; middle: reset to 1; last: increment to 4
3055  *  0 1     4    first: reset to 0; middle: increment to 2
3056  *  0   2   4    first: increment to 1
3057  *    1 2   4    first: reset to 0; middle: increment to 3
3058  *  0     3 4    first: increment to 1
3059  *    1   3 4    first: increment to 2
3060  *      2 3 4    first: reset to 0; middle: reset to 1; last: increment to 5
3061  *  0 1       5  first: reset to 0; middle: increment to 2
3062  *  0   2     5  first: increment to 1
3063  *    1 2     5  first: reset to 0; middle: increment to 3
3064  *  0     3   5  first: increment to 1
3065  *    1   3   5  first: increment to 2
3066  *      2 3   5  first: reset to 0; middle: increment to 4
3067  *  0       4 5  first: increment to 1
3068  *    1     4 5  first: increment to 2
3069  *      2   4 5  first: increment to 3
3070  *        3 4 5  done
3071  *
3072  * This strategy works for dRAID but is less efficient when there are a large
3073  * number of child vdevs and therefore permutations to check. Furthermore,
3074  * since the raidz_map_t rows likely do not overlap, reconstruction would be
3075  * possible as long as there are no more than nparity data errors per row.
3076  * These additional permutations are not currently checked but could be as
3077  * a future improvement.
3078  *
3079  * Returns 0 on success, ECKSUM on failure.
3080  */
3081 static int
vdev_raidz_combrec(zio_t * zio)3082 vdev_raidz_combrec(zio_t *zio)
3083 {
3084 	int nparity = vdev_get_nparity(zio->io_vd);
3085 	raidz_map_t *rm = zio->io_vsd;
3086 	int physical_width = zio->io_vd->vdev_children;
3087 	int original_width = (rm->rm_original_width != 0) ?
3088 	    rm->rm_original_width : physical_width;
3089 
3090 	for (int i = 0; i < rm->rm_nrows; i++) {
3091 		raidz_row_t *rr = rm->rm_row[i];
3092 		int total_errors = 0;
3093 
3094 		for (int c = 0; c < rr->rr_cols; c++) {
3095 			if (rr->rr_col[c].rc_error)
3096 				total_errors++;
3097 		}
3098 
3099 		if (total_errors > nparity)
3100 			return (vdev_raidz_worst_error(rr));
3101 	}
3102 
3103 	for (int num_failures = 1; num_failures <= nparity; num_failures++) {
3104 		int tstore[VDEV_RAIDZ_MAXPARITY + 2];
3105 		int *ltgts = &tstore[1]; /* value is logical child ID */
3106 
3107 
3108 		/*
3109 		 * Determine number of logical children, n.  See comment
3110 		 * above raidz_simulate_failure().
3111 		 */
3112 		int n = 0;
3113 		for (int w = physical_width;
3114 		    w >= original_width; w--) {
3115 			n += w;
3116 		}
3117 
3118 		ASSERT3U(num_failures, <=, nparity);
3119 		ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY);
3120 
3121 		/* Handle corner cases in combrec logic */
3122 		ltgts[-1] = -1;
3123 		for (int i = 0; i < num_failures; i++) {
3124 			ltgts[i] = i;
3125 		}
3126 		ltgts[num_failures] = n;
3127 
3128 		for (;;) {
3129 			int err = raidz_reconstruct(zio, ltgts, num_failures,
3130 			    nparity);
3131 			if (err == EINVAL) {
3132 				/*
3133 				 * Reconstruction not possible with this #
3134 				 * failures; try more failures.
3135 				 */
3136 				break;
3137 			} else if (err == 0)
3138 				return (0);
3139 
3140 			/* Compute next targets to try */
3141 			for (int t = 0; ; t++) {
3142 				ASSERT3U(t, <, num_failures);
3143 				ltgts[t]++;
3144 				if (ltgts[t] == n) {
3145 					/* try more failures */
3146 					ASSERT3U(t, ==, num_failures - 1);
3147 					if (zfs_flags &
3148 					    ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
3149 						zfs_dbgmsg("reconstruction "
3150 						    "failed for num_failures="
3151 						    "%u; tried all "
3152 						    "combinations",
3153 						    num_failures);
3154 					}
3155 					break;
3156 				}
3157 
3158 				ASSERT3U(ltgts[t], <, n);
3159 				ASSERT3U(ltgts[t], <=, ltgts[t + 1]);
3160 
3161 				/*
3162 				 * If that spot is available, we're done here.
3163 				 * Try the next combination.
3164 				 */
3165 				if (ltgts[t] != ltgts[t + 1])
3166 					break; // found next combination
3167 
3168 				/*
3169 				 * Otherwise, reset this tgt to the minimum,
3170 				 * and move on to the next tgt.
3171 				 */
3172 				ltgts[t] = ltgts[t - 1] + 1;
3173 				ASSERT3U(ltgts[t], ==, t);
3174 			}
3175 
3176 			/* Increase the number of failures and keep trying. */
3177 			if (ltgts[num_failures - 1] == n)
3178 				break;
3179 		}
3180 	}
3181 	if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
3182 		zfs_dbgmsg("reconstruction failed for all num_failures");
3183 	return (ECKSUM);
3184 }
3185 
3186 void
vdev_raidz_reconstruct(raidz_map_t * rm,const int * t,int nt)3187 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
3188 {
3189 	for (uint64_t row = 0; row < rm->rm_nrows; row++) {
3190 		raidz_row_t *rr = rm->rm_row[row];
3191 		vdev_raidz_reconstruct_row(rm, rr, t, nt);
3192 	}
3193 }
3194 
3195 /*
3196  * Complete a write IO operation on a RAIDZ VDev
3197  *
3198  * Outline:
3199  *   1. Check for errors on the child IOs.
3200  *   2. Return, setting an error code if too few child VDevs were written
3201  *      to reconstruct the data later.  Note that partial writes are
3202  *      considered successful if they can be reconstructed at all.
3203  */
3204 static void
vdev_raidz_io_done_write_impl(zio_t * zio,raidz_row_t * rr)3205 vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr)
3206 {
3207 	int normal_errors = 0;
3208 	int shadow_errors = 0;
3209 
3210 	ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
3211 	ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
3212 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3213 
3214 	for (int c = 0; c < rr->rr_cols; c++) {
3215 		raidz_col_t *rc = &rr->rr_col[c];
3216 
3217 		if (rc->rc_error != 0) {
3218 			ASSERT(rc->rc_error != ECKSUM);	/* child has no bp */
3219 			normal_errors++;
3220 		}
3221 		if (rc->rc_shadow_error != 0) {
3222 			ASSERT(rc->rc_shadow_error != ECKSUM);
3223 			shadow_errors++;
3224 		}
3225 	}
3226 
3227 	/*
3228 	 * Treat partial writes as a success. If we couldn't write enough
3229 	 * columns to reconstruct the data, the I/O failed.  Otherwise, good
3230 	 * enough.  Note that in the case of a shadow write (during raidz
3231 	 * expansion), depending on if we crash, either the normal (old) or
3232 	 * shadow (new) location may become the "real" version of the block,
3233 	 * so both locations must have sufficient redundancy.
3234 	 *
3235 	 * Now that we support write reallocation, it would be better
3236 	 * to treat partial failure as real failure unless there are
3237 	 * no non-degraded top-level vdevs left, and not update DTLs
3238 	 * if we intend to reallocate.
3239 	 */
3240 	if (normal_errors > rr->rr_firstdatacol ||
3241 	    shadow_errors > rr->rr_firstdatacol) {
3242 		zio->io_error = zio_worst_error(zio->io_error,
3243 		    vdev_raidz_worst_error(rr));
3244 	}
3245 }
3246 
3247 static void
vdev_raidz_io_done_reconstruct_known_missing(zio_t * zio,raidz_map_t * rm,raidz_row_t * rr)3248 vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
3249     raidz_row_t *rr)
3250 {
3251 	int parity_errors = 0;
3252 	int parity_untried = 0;
3253 	int data_errors = 0;
3254 	int total_errors = 0;
3255 
3256 	ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
3257 	ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
3258 
3259 	for (int c = 0; c < rr->rr_cols; c++) {
3260 		raidz_col_t *rc = &rr->rr_col[c];
3261 
3262 		/*
3263 		 * If scrubbing and a replacing/sparing child vdev determined
3264 		 * that not all of its children have an identical copy of the
3265 		 * data, then clear the error so the column is treated like
3266 		 * any other read and force a repair to correct the damage.
3267 		 */
3268 		if (rc->rc_error == ECKSUM) {
3269 			ASSERT(zio->io_flags & ZIO_FLAG_SCRUB);
3270 			vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
3271 			rc->rc_force_repair = 1;
3272 			rc->rc_error = 0;
3273 		}
3274 
3275 		if (rc->rc_error) {
3276 			if (c < rr->rr_firstdatacol)
3277 				parity_errors++;
3278 			else
3279 				data_errors++;
3280 
3281 			total_errors++;
3282 		} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
3283 			parity_untried++;
3284 		}
3285 	}
3286 
3287 	/*
3288 	 * If there were data errors and the number of errors we saw was
3289 	 * correctable -- less than or equal to the number of parity disks read
3290 	 * -- reconstruct based on the missing data.
3291 	 */
3292 	if (data_errors != 0 &&
3293 	    total_errors <= rr->rr_firstdatacol - parity_untried) {
3294 		/*
3295 		 * We either attempt to read all the parity columns or
3296 		 * none of them. If we didn't try to read parity, we
3297 		 * wouldn't be here in the correctable case. There must
3298 		 * also have been fewer parity errors than parity
3299 		 * columns or, again, we wouldn't be in this code path.
3300 		 */
3301 		ASSERT(parity_untried == 0);
3302 		ASSERT(parity_errors < rr->rr_firstdatacol);
3303 
3304 		/*
3305 		 * Identify the data columns that reported an error.
3306 		 */
3307 		int n = 0;
3308 		int tgts[VDEV_RAIDZ_MAXPARITY];
3309 		for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
3310 			raidz_col_t *rc = &rr->rr_col[c];
3311 			if (rc->rc_error != 0) {
3312 				ASSERT(n < VDEV_RAIDZ_MAXPARITY);
3313 				tgts[n++] = c;
3314 			}
3315 		}
3316 
3317 		ASSERT(rr->rr_firstdatacol >= n);
3318 
3319 		vdev_raidz_reconstruct_row(rm, rr, tgts, n);
3320 	}
3321 }
3322 
3323 /*
3324  * Return the number of reads issued.
3325  */
3326 static int
vdev_raidz_read_all(zio_t * zio,raidz_row_t * rr)3327 vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr)
3328 {
3329 	vdev_t *vd = zio->io_vd;
3330 	int nread = 0;
3331 
3332 	rr->rr_missingdata = 0;
3333 	rr->rr_missingparity = 0;
3334 
3335 	/*
3336 	 * If this rows contains empty sectors which are not required
3337 	 * for a normal read then allocate an ABD for them now so they
3338 	 * may be read, verified, and any needed repairs performed.
3339 	 */
3340 	if (rr->rr_nempty != 0 && rr->rr_abd_empty == NULL)
3341 		vdev_draid_map_alloc_empty(zio, rr);
3342 
3343 	for (int c = 0; c < rr->rr_cols; c++) {
3344 		raidz_col_t *rc = &rr->rr_col[c];
3345 		if (rc->rc_tried || rc->rc_size == 0)
3346 			continue;
3347 
3348 		zio_nowait(zio_vdev_child_io(zio, NULL,
3349 		    vd->vdev_child[rc->rc_devidx],
3350 		    rc->rc_offset, rc->rc_abd, rc->rc_size,
3351 		    zio->io_type, zio->io_priority, 0,
3352 		    vdev_raidz_child_done, rc));
3353 		nread++;
3354 	}
3355 	return (nread);
3356 }
3357 
3358 /*
3359  * We're here because either there were too many errors to even attempt
3360  * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
3361  * failed. In either case, there is enough bad data to prevent reconstruction.
3362  * Start checksum ereports for all children which haven't failed.
3363  */
3364 static void
vdev_raidz_io_done_unrecoverable(zio_t * zio)3365 vdev_raidz_io_done_unrecoverable(zio_t *zio)
3366 {
3367 	raidz_map_t *rm = zio->io_vsd;
3368 
3369 	for (int i = 0; i < rm->rm_nrows; i++) {
3370 		raidz_row_t *rr = rm->rm_row[i];
3371 
3372 		for (int c = 0; c < rr->rr_cols; c++) {
3373 			raidz_col_t *rc = &rr->rr_col[c];
3374 			vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
3375 
3376 			if (rc->rc_error != 0)
3377 				continue;
3378 
3379 			zio_bad_cksum_t zbc;
3380 			zbc.zbc_has_cksum = 0;
3381 			zbc.zbc_injected = rm->rm_ecksuminjected;
3382 
3383 			mutex_enter(&cvd->vdev_stat_lock);
3384 			cvd->vdev_stat.vs_checksum_errors++;
3385 			mutex_exit(&cvd->vdev_stat_lock);
3386 			(void) zfs_ereport_start_checksum(zio->io_spa,
3387 			    cvd, &zio->io_bookmark, zio, rc->rc_offset,
3388 			    rc->rc_size, &zbc);
3389 		}
3390 	}
3391 }
3392 
3393 void
vdev_raidz_io_done(zio_t * zio)3394 vdev_raidz_io_done(zio_t *zio)
3395 {
3396 	raidz_map_t *rm = zio->io_vsd;
3397 
3398 	ASSERT(zio->io_bp != NULL);
3399 	if (zio->io_type == ZIO_TYPE_WRITE) {
3400 		for (int i = 0; i < rm->rm_nrows; i++) {
3401 			vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]);
3402 		}
3403 	} else {
3404 		if (rm->rm_phys_col) {
3405 			/*
3406 			 * This is an aggregated read.  Copy the data and status
3407 			 * from the aggregate abd's to the individual rows.
3408 			 */
3409 			for (int i = 0; i < rm->rm_nrows; i++) {
3410 				raidz_row_t *rr = rm->rm_row[i];
3411 
3412 				for (int c = 0; c < rr->rr_cols; c++) {
3413 					raidz_col_t *rc = &rr->rr_col[c];
3414 					if (rc->rc_tried || rc->rc_size == 0)
3415 						continue;
3416 
3417 					raidz_col_t *prc =
3418 					    &rm->rm_phys_col[rc->rc_devidx];
3419 					rc->rc_error = prc->rc_error;
3420 					rc->rc_tried = prc->rc_tried;
3421 					rc->rc_skipped = prc->rc_skipped;
3422 					if (c >= rr->rr_firstdatacol) {
3423 						/*
3424 						 * Note: this is slightly faster
3425 						 * than using abd_copy_off().
3426 						 */
3427 						char *physbuf = abd_to_buf(
3428 						    prc->rc_abd);
3429 						void *physloc = physbuf +
3430 						    rc->rc_offset -
3431 						    prc->rc_offset;
3432 
3433 						abd_copy_from_buf(rc->rc_abd,
3434 						    physloc, rc->rc_size);
3435 					}
3436 				}
3437 			}
3438 		}
3439 
3440 		for (int i = 0; i < rm->rm_nrows; i++) {
3441 			raidz_row_t *rr = rm->rm_row[i];
3442 			vdev_raidz_io_done_reconstruct_known_missing(zio,
3443 			    rm, rr);
3444 		}
3445 
3446 		if (raidz_checksum_verify(zio) == 0) {
3447 			for (int i = 0; i < rm->rm_nrows; i++) {
3448 				raidz_row_t *rr = rm->rm_row[i];
3449 				vdev_raidz_io_done_verified(zio, rr);
3450 			}
3451 			zio_checksum_verified(zio);
3452 		} else {
3453 			/*
3454 			 * A sequential resilver has no checksum which makes
3455 			 * combinatoral reconstruction impossible. This code
3456 			 * path is unreachable since raidz_checksum_verify()
3457 			 * has no checksum to verify and must succeed.
3458 			 */
3459 			ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD);
3460 
3461 			/*
3462 			 * This isn't a typical situation -- either we got a
3463 			 * read error or a child silently returned bad data.
3464 			 * Read every block so we can try again with as much
3465 			 * data and parity as we can track down. If we've
3466 			 * already been through once before, all children will
3467 			 * be marked as tried so we'll proceed to combinatorial
3468 			 * reconstruction.
3469 			 */
3470 			int nread = 0;
3471 			for (int i = 0; i < rm->rm_nrows; i++) {
3472 				nread += vdev_raidz_read_all(zio,
3473 				    rm->rm_row[i]);
3474 			}
3475 			if (nread != 0) {
3476 				/*
3477 				 * Normally our stage is VDEV_IO_DONE, but if
3478 				 * we've already called redone(), it will have
3479 				 * changed to VDEV_IO_START, in which case we
3480 				 * don't want to call redone() again.
3481 				 */
3482 				if (zio->io_stage != ZIO_STAGE_VDEV_IO_START)
3483 					zio_vdev_io_redone(zio);
3484 				return;
3485 			}
3486 			/*
3487 			 * It would be too expensive to try every possible
3488 			 * combination of failed sectors in every row, so
3489 			 * instead we try every combination of failed current or
3490 			 * past physical disk. This means that if the incorrect
3491 			 * sectors were all on Nparity disks at any point in the
3492 			 * past, we will find the correct data.  The only known
3493 			 * case where this is less durable than a non-expanded
3494 			 * RAIDZ, is if we have a silent failure during
3495 			 * expansion.  In that case, one block could be
3496 			 * partially in the old format and partially in the
3497 			 * new format, so we'd lost some sectors from the old
3498 			 * format and some from the new format.
3499 			 *
3500 			 * e.g. logical_width=4 physical_width=6
3501 			 * the 15 (6+5+4) possible failed disks are:
3502 			 * width=6 child=0
3503 			 * width=6 child=1
3504 			 * width=6 child=2
3505 			 * width=6 child=3
3506 			 * width=6 child=4
3507 			 * width=6 child=5
3508 			 * width=5 child=0
3509 			 * width=5 child=1
3510 			 * width=5 child=2
3511 			 * width=5 child=3
3512 			 * width=5 child=4
3513 			 * width=4 child=0
3514 			 * width=4 child=1
3515 			 * width=4 child=2
3516 			 * width=4 child=3
3517 			 * And we will try every combination of Nparity of these
3518 			 * failing.
3519 			 *
3520 			 * As a first pass, we can generate every combo,
3521 			 * and try reconstructing, ignoring any known
3522 			 * failures.  If any row has too many known + simulated
3523 			 * failures, then we bail on reconstructing with this
3524 			 * number of simulated failures.  As an improvement,
3525 			 * we could detect the number of whole known failures
3526 			 * (i.e. we have known failures on these disks for
3527 			 * every row; the disks never succeeded), and
3528 			 * subtract that from the max # failures to simulate.
3529 			 * We could go even further like the current
3530 			 * combrec code, but that doesn't seem like it
3531 			 * gains us very much.  If we simulate a failure
3532 			 * that is also a known failure, that's fine.
3533 			 */
3534 			zio->io_error = vdev_raidz_combrec(zio);
3535 			if (zio->io_error == ECKSUM &&
3536 			    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3537 				vdev_raidz_io_done_unrecoverable(zio);
3538 			}
3539 		}
3540 	}
3541 	if (rm->rm_lr != NULL) {
3542 		zfs_rangelock_exit(rm->rm_lr);
3543 		rm->rm_lr = NULL;
3544 	}
3545 }
3546 
3547 static void
vdev_raidz_state_change(vdev_t * vd,int faulted,int degraded)3548 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
3549 {
3550 	vdev_raidz_t *vdrz = vd->vdev_tsd;
3551 	if (faulted > vdrz->vd_nparity)
3552 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3553 		    VDEV_AUX_NO_REPLICAS);
3554 	else if (degraded + faulted != 0)
3555 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
3556 	else
3557 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
3558 }
3559 
3560 /*
3561  * Determine if any portion of the provided block resides on a child vdev
3562  * with a dirty DTL and therefore needs to be resilvered.  The function
3563  * assumes that at least one DTL is dirty which implies that full stripe
3564  * width blocks must be resilvered.
3565  */
3566 static boolean_t
vdev_raidz_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3567 vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3568     uint64_t phys_birth)
3569 {
3570 	vdev_raidz_t *vdrz = vd->vdev_tsd;
3571 
3572 	/*
3573 	 * If we're in the middle of a RAIDZ expansion, this block may be in
3574 	 * the old and/or new location.  For simplicity, always resilver it.
3575 	 */
3576 	if (vdrz->vn_vre.vre_state == DSS_SCANNING)
3577 		return (B_TRUE);
3578 
3579 	uint64_t dcols = vd->vdev_children;
3580 	uint64_t nparity = vdrz->vd_nparity;
3581 	uint64_t ashift = vd->vdev_top->vdev_ashift;
3582 	/* The starting RAIDZ (parent) vdev sector of the block. */
3583 	uint64_t b = DVA_GET_OFFSET(dva) >> ashift;
3584 	/* The zio's size in units of the vdev's minimum sector size. */
3585 	uint64_t s = ((psize - 1) >> ashift) + 1;
3586 	/* The first column for this stripe. */
3587 	uint64_t f = b % dcols;
3588 
3589 	/* Unreachable by sequential resilver. */
3590 	ASSERT3U(phys_birth, !=, TXG_UNKNOWN);
3591 
3592 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3593 		return (B_FALSE);
3594 
3595 	if (s + nparity >= dcols)
3596 		return (B_TRUE);
3597 
3598 	for (uint64_t c = 0; c < s + nparity; c++) {
3599 		uint64_t devidx = (f + c) % dcols;
3600 		vdev_t *cvd = vd->vdev_child[devidx];
3601 
3602 		/*
3603 		 * dsl_scan_need_resilver() already checked vd with
3604 		 * vdev_dtl_contains(). So here just check cvd with
3605 		 * vdev_dtl_empty(), cheaper and a good approximation.
3606 		 */
3607 		if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
3608 			return (B_TRUE);
3609 	}
3610 
3611 	return (B_FALSE);
3612 }
3613 
3614 static void
vdev_raidz_xlate(vdev_t * cvd,const range_seg64_t * logical_rs,range_seg64_t * physical_rs,range_seg64_t * remain_rs)3615 vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
3616     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
3617 {
3618 	(void) remain_rs;
3619 
3620 	vdev_t *raidvd = cvd->vdev_parent;
3621 	ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3622 
3623 	vdev_raidz_t *vdrz = raidvd->vdev_tsd;
3624 
3625 	if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
3626 		/*
3627 		 * We're in the middle of expansion, in which case the
3628 		 * translation is in flux.  Any answer we give may be wrong
3629 		 * by the time we return, so it isn't safe for the caller to
3630 		 * act on it.  Therefore we say that this range isn't present
3631 		 * on any children.  The only consumers of this are "zpool
3632 		 * initialize" and trimming, both of which are "best effort"
3633 		 * anyway.
3634 		 */
3635 		physical_rs->rs_start = physical_rs->rs_end = 0;
3636 		remain_rs->rs_start = remain_rs->rs_end = 0;
3637 		return;
3638 	}
3639 
3640 	uint64_t width = vdrz->vd_physical_width;
3641 	uint64_t tgt_col = cvd->vdev_id;
3642 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
3643 
3644 	/* make sure the offsets are block-aligned */
3645 	ASSERT0(logical_rs->rs_start % (1 << ashift));
3646 	ASSERT0(logical_rs->rs_end % (1 << ashift));
3647 	uint64_t b_start = logical_rs->rs_start >> ashift;
3648 	uint64_t b_end = logical_rs->rs_end >> ashift;
3649 
3650 	uint64_t start_row = 0;
3651 	if (b_start > tgt_col) /* avoid underflow */
3652 		start_row = ((b_start - tgt_col - 1) / width) + 1;
3653 
3654 	uint64_t end_row = 0;
3655 	if (b_end > tgt_col)
3656 		end_row = ((b_end - tgt_col - 1) / width) + 1;
3657 
3658 	physical_rs->rs_start = start_row << ashift;
3659 	physical_rs->rs_end = end_row << ashift;
3660 
3661 	ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start);
3662 	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
3663 	    logical_rs->rs_end - logical_rs->rs_start);
3664 }
3665 
3666 static void
raidz_reflow_sync(void * arg,dmu_tx_t * tx)3667 raidz_reflow_sync(void *arg, dmu_tx_t *tx)
3668 {
3669 	spa_t *spa = arg;
3670 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
3671 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
3672 
3673 	/*
3674 	 * Ensure there are no i/os to the range that is being committed.
3675 	 */
3676 	uint64_t old_offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3677 	ASSERT3U(vre->vre_offset_pertxg[txgoff], >=, old_offset);
3678 
3679 	mutex_enter(&vre->vre_lock);
3680 	uint64_t new_offset =
3681 	    MIN(vre->vre_offset_pertxg[txgoff], vre->vre_failed_offset);
3682 	/*
3683 	 * We should not have committed anything that failed.
3684 	 */
3685 	VERIFY3U(vre->vre_failed_offset, >=, old_offset);
3686 	mutex_exit(&vre->vre_lock);
3687 
3688 	zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
3689 	    old_offset, new_offset - old_offset,
3690 	    RL_WRITER);
3691 
3692 	/*
3693 	 * Update the uberblock that will be written when this txg completes.
3694 	 */
3695 	RAIDZ_REFLOW_SET(&spa->spa_uberblock,
3696 	    RRSS_SCRATCH_INVALID_SYNCED_REFLOW, new_offset);
3697 	vre->vre_offset_pertxg[txgoff] = 0;
3698 	zfs_rangelock_exit(lr);
3699 
3700 	mutex_enter(&vre->vre_lock);
3701 	vre->vre_bytes_copied += vre->vre_bytes_copied_pertxg[txgoff];
3702 	vre->vre_bytes_copied_pertxg[txgoff] = 0;
3703 	mutex_exit(&vre->vre_lock);
3704 
3705 	vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
3706 	VERIFY0(zap_update(spa->spa_meta_objset,
3707 	    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
3708 	    sizeof (vre->vre_bytes_copied), 1, &vre->vre_bytes_copied, tx));
3709 }
3710 
3711 static void
raidz_reflow_complete_sync(void * arg,dmu_tx_t * tx)3712 raidz_reflow_complete_sync(void *arg, dmu_tx_t *tx)
3713 {
3714 	spa_t *spa = arg;
3715 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
3716 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3717 	vdev_raidz_t *vdrz = raidvd->vdev_tsd;
3718 
3719 	for (int i = 0; i < TXG_SIZE; i++)
3720 		VERIFY0(vre->vre_offset_pertxg[i]);
3721 
3722 	reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
3723 	re->re_txg = tx->tx_txg + TXG_CONCURRENT_STATES;
3724 	re->re_logical_width = vdrz->vd_physical_width;
3725 	mutex_enter(&vdrz->vd_expand_lock);
3726 	avl_add(&vdrz->vd_expand_txgs, re);
3727 	mutex_exit(&vdrz->vd_expand_lock);
3728 
3729 	vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
3730 
3731 	/*
3732 	 * Dirty the config so that the updated ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS
3733 	 * will get written (based on vd_expand_txgs).
3734 	 */
3735 	vdev_config_dirty(vd);
3736 
3737 	/*
3738 	 * Before we change vre_state, the on-disk state must reflect that we
3739 	 * have completed all copying, so that vdev_raidz_io_start() can use
3740 	 * vre_state to determine if the reflow is in progress.  See also the
3741 	 * end of spa_raidz_expand_thread().
3742 	 */
3743 	VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==,
3744 	    raidvd->vdev_ms_count << raidvd->vdev_ms_shift);
3745 
3746 	vre->vre_end_time = gethrestime_sec();
3747 	vre->vre_state = DSS_FINISHED;
3748 
3749 	uint64_t state = vre->vre_state;
3750 	VERIFY0(zap_update(spa->spa_meta_objset,
3751 	    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
3752 	    sizeof (state), 1, &state, tx));
3753 
3754 	uint64_t end_time = vre->vre_end_time;
3755 	VERIFY0(zap_update(spa->spa_meta_objset,
3756 	    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
3757 	    sizeof (end_time), 1, &end_time, tx));
3758 
3759 	spa->spa_uberblock.ub_raidz_reflow_info = 0;
3760 
3761 	spa_history_log_internal(spa, "raidz vdev expansion completed",  tx,
3762 	    "%s vdev %llu new width %llu", spa_name(spa),
3763 	    (unsigned long long)vd->vdev_id,
3764 	    (unsigned long long)vd->vdev_children);
3765 
3766 	spa->spa_raidz_expand = NULL;
3767 	raidvd->vdev_rz_expanding = B_FALSE;
3768 
3769 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
3770 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
3771 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
3772 
3773 	spa_notify_waiters(spa);
3774 
3775 	/*
3776 	 * While we're in syncing context take the opportunity to
3777 	 * setup a scrub. All the data has been sucessfully copied
3778 	 * but we have not validated any checksums.
3779 	 */
3780 	pool_scan_func_t func = POOL_SCAN_SCRUB;
3781 	if (zfs_scrub_after_expand && dsl_scan_setup_check(&func, tx) == 0)
3782 		dsl_scan_setup_sync(&func, tx);
3783 }
3784 
3785 /*
3786  * Struct for one copy zio.
3787  */
3788 typedef struct raidz_reflow_arg {
3789 	vdev_raidz_expand_t *rra_vre;
3790 	zfs_locked_range_t *rra_lr;
3791 	uint64_t rra_txg;
3792 } raidz_reflow_arg_t;
3793 
3794 /*
3795  * The write of the new location is done.
3796  */
3797 static void
raidz_reflow_write_done(zio_t * zio)3798 raidz_reflow_write_done(zio_t *zio)
3799 {
3800 	raidz_reflow_arg_t *rra = zio->io_private;
3801 	vdev_raidz_expand_t *vre = rra->rra_vre;
3802 
3803 	abd_free(zio->io_abd);
3804 
3805 	mutex_enter(&vre->vre_lock);
3806 	if (zio->io_error != 0) {
3807 		/* Force a reflow pause on errors */
3808 		vre->vre_failed_offset =
3809 		    MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
3810 	}
3811 	ASSERT3U(vre->vre_outstanding_bytes, >=, zio->io_size);
3812 	vre->vre_outstanding_bytes -= zio->io_size;
3813 	if (rra->rra_lr->lr_offset + rra->rra_lr->lr_length <
3814 	    vre->vre_failed_offset) {
3815 		vre->vre_bytes_copied_pertxg[rra->rra_txg & TXG_MASK] +=
3816 		    zio->io_size;
3817 	}
3818 	cv_signal(&vre->vre_cv);
3819 	mutex_exit(&vre->vre_lock);
3820 
3821 	zfs_rangelock_exit(rra->rra_lr);
3822 
3823 	kmem_free(rra, sizeof (*rra));
3824 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
3825 }
3826 
3827 /*
3828  * The read of the old location is done.  The parent zio is the write to
3829  * the new location.  Allow it to start.
3830  */
3831 static void
raidz_reflow_read_done(zio_t * zio)3832 raidz_reflow_read_done(zio_t *zio)
3833 {
3834 	raidz_reflow_arg_t *rra = zio->io_private;
3835 	vdev_raidz_expand_t *vre = rra->rra_vre;
3836 
3837 	/*
3838 	 * If the read failed, or if it was done on a vdev that is not fully
3839 	 * healthy (e.g. a child that has a resilver in progress), we may not
3840 	 * have the correct data.  Note that it's OK if the write proceeds.
3841 	 * It may write garbage but the location is otherwise unused and we
3842 	 * will retry later due to vre_failed_offset.
3843 	 */
3844 	if (zio->io_error != 0 || !vdev_dtl_empty(zio->io_vd, DTL_MISSING)) {
3845 		zfs_dbgmsg("reflow read failed off=%llu size=%llu txg=%llu "
3846 		    "err=%u partial_dtl_empty=%u missing_dtl_empty=%u",
3847 		    (long long)rra->rra_lr->lr_offset,
3848 		    (long long)rra->rra_lr->lr_length,
3849 		    (long long)rra->rra_txg,
3850 		    zio->io_error,
3851 		    vdev_dtl_empty(zio->io_vd, DTL_PARTIAL),
3852 		    vdev_dtl_empty(zio->io_vd, DTL_MISSING));
3853 		mutex_enter(&vre->vre_lock);
3854 		/* Force a reflow pause on errors */
3855 		vre->vre_failed_offset =
3856 		    MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
3857 		mutex_exit(&vre->vre_lock);
3858 	}
3859 
3860 	zio_nowait(zio_unique_parent(zio));
3861 }
3862 
3863 static void
raidz_reflow_record_progress(vdev_raidz_expand_t * vre,uint64_t offset,dmu_tx_t * tx)3864 raidz_reflow_record_progress(vdev_raidz_expand_t *vre, uint64_t offset,
3865     dmu_tx_t *tx)
3866 {
3867 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
3868 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
3869 
3870 	if (offset == 0)
3871 		return;
3872 
3873 	mutex_enter(&vre->vre_lock);
3874 	ASSERT3U(vre->vre_offset, <=, offset);
3875 	vre->vre_offset = offset;
3876 	mutex_exit(&vre->vre_lock);
3877 
3878 	if (vre->vre_offset_pertxg[txgoff] == 0) {
3879 		dsl_sync_task_nowait(dmu_tx_pool(tx), raidz_reflow_sync,
3880 		    spa, tx);
3881 	}
3882 	vre->vre_offset_pertxg[txgoff] = offset;
3883 }
3884 
3885 static boolean_t
vdev_raidz_expand_child_replacing(vdev_t * raidz_vd)3886 vdev_raidz_expand_child_replacing(vdev_t *raidz_vd)
3887 {
3888 	for (int i = 0; i < raidz_vd->vdev_children; i++) {
3889 		/* Quick check if a child is being replaced */
3890 		if (!raidz_vd->vdev_child[i]->vdev_ops->vdev_op_leaf)
3891 			return (B_TRUE);
3892 	}
3893 	return (B_FALSE);
3894 }
3895 
3896 static boolean_t
raidz_reflow_impl(vdev_t * vd,vdev_raidz_expand_t * vre,range_tree_t * rt,dmu_tx_t * tx)3897 raidz_reflow_impl(vdev_t *vd, vdev_raidz_expand_t *vre, range_tree_t *rt,
3898     dmu_tx_t *tx)
3899 {
3900 	spa_t *spa = vd->vdev_spa;
3901 	int ashift = vd->vdev_top->vdev_ashift;
3902 	uint64_t offset, size;
3903 
3904 	if (!range_tree_find_in(rt, 0, vd->vdev_top->vdev_asize,
3905 	    &offset, &size)) {
3906 		return (B_FALSE);
3907 	}
3908 	ASSERT(IS_P2ALIGNED(offset, 1 << ashift));
3909 	ASSERT3U(size, >=, 1 << ashift);
3910 	uint64_t length = 1 << ashift;
3911 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
3912 
3913 	uint64_t blkid = offset >> ashift;
3914 
3915 	int old_children = vd->vdev_children - 1;
3916 
3917 	/*
3918 	 * We can only progress to the point that writes will not overlap
3919 	 * with blocks whose progress has not yet been recorded on disk.
3920 	 * Since partially-copied rows are still read from the old location,
3921 	 * we need to stop one row before the sector-wise overlap, to prevent
3922 	 * row-wise overlap.
3923 	 *
3924 	 * Note that even if we are skipping over a large unallocated region,
3925 	 * we can't move the on-disk progress to `offset`, because concurrent
3926 	 * writes/allocations could still use the currently-unallocated
3927 	 * region.
3928 	 */
3929 	uint64_t ubsync_blkid =
3930 	    RRSS_GET_OFFSET(&spa->spa_ubsync) >> ashift;
3931 	uint64_t next_overwrite_blkid = ubsync_blkid +
3932 	    ubsync_blkid / old_children - old_children;
3933 	VERIFY3U(next_overwrite_blkid, >, ubsync_blkid);
3934 
3935 	if (blkid >= next_overwrite_blkid) {
3936 		raidz_reflow_record_progress(vre,
3937 		    next_overwrite_blkid << ashift, tx);
3938 		return (B_TRUE);
3939 	}
3940 
3941 	range_tree_remove(rt, offset, length);
3942 
3943 	raidz_reflow_arg_t *rra = kmem_zalloc(sizeof (*rra), KM_SLEEP);
3944 	rra->rra_vre = vre;
3945 	rra->rra_lr = zfs_rangelock_enter(&vre->vre_rangelock,
3946 	    offset, length, RL_WRITER);
3947 	rra->rra_txg = dmu_tx_get_txg(tx);
3948 
3949 	raidz_reflow_record_progress(vre, offset + length, tx);
3950 
3951 	mutex_enter(&vre->vre_lock);
3952 	vre->vre_outstanding_bytes += length;
3953 	mutex_exit(&vre->vre_lock);
3954 
3955 	/*
3956 	 * SCL_STATE will be released when the read and write are done,
3957 	 * by raidz_reflow_write_done().
3958 	 */
3959 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3960 
3961 	/* check if a replacing vdev was added, if so treat it as an error */
3962 	if (vdev_raidz_expand_child_replacing(vd)) {
3963 		zfs_dbgmsg("replacing vdev encountered, reflow paused at "
3964 		    "offset=%llu txg=%llu",
3965 		    (long long)rra->rra_lr->lr_offset,
3966 		    (long long)rra->rra_txg);
3967 
3968 		mutex_enter(&vre->vre_lock);
3969 		vre->vre_failed_offset =
3970 		    MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
3971 		cv_signal(&vre->vre_cv);
3972 		mutex_exit(&vre->vre_lock);
3973 
3974 		/* drop everything we acquired */
3975 		zfs_rangelock_exit(rra->rra_lr);
3976 		kmem_free(rra, sizeof (*rra));
3977 		spa_config_exit(spa, SCL_STATE, spa);
3978 		return (B_TRUE);
3979 	}
3980 
3981 	zio_t *pio = spa->spa_txg_zio[txgoff];
3982 	abd_t *abd = abd_alloc_for_io(length, B_FALSE);
3983 	zio_t *write_zio = zio_vdev_child_io(pio, NULL,
3984 	    vd->vdev_child[blkid % vd->vdev_children],
3985 	    (blkid / vd->vdev_children) << ashift,
3986 	    abd, length,
3987 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
3988 	    ZIO_FLAG_CANFAIL,
3989 	    raidz_reflow_write_done, rra);
3990 
3991 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
3992 	    vd->vdev_child[blkid % old_children],
3993 	    (blkid / old_children) << ashift,
3994 	    abd, length,
3995 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
3996 	    ZIO_FLAG_CANFAIL,
3997 	    raidz_reflow_read_done, rra));
3998 
3999 	return (B_FALSE);
4000 }
4001 
4002 /*
4003  * For testing (ztest specific)
4004  */
4005 static void
raidz_expand_pause(uint_t pause_point)4006 raidz_expand_pause(uint_t pause_point)
4007 {
4008 	while (raidz_expand_pause_point != 0 &&
4009 	    raidz_expand_pause_point <= pause_point)
4010 		delay(hz);
4011 }
4012 
4013 static void
raidz_scratch_child_done(zio_t * zio)4014 raidz_scratch_child_done(zio_t *zio)
4015 {
4016 	zio_t *pio = zio->io_private;
4017 
4018 	mutex_enter(&pio->io_lock);
4019 	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
4020 	mutex_exit(&pio->io_lock);
4021 }
4022 
4023 /*
4024  * Reflow the beginning portion of the vdev into an intermediate scratch area
4025  * in memory and on disk. This operation must be persisted on disk before we
4026  * proceed to overwrite the beginning portion with the reflowed data.
4027  *
4028  * This multi-step task can fail to complete if disk errors are encountered
4029  * and we can return here after a pause (waiting for disk to become healthy).
4030  */
4031 static void
raidz_reflow_scratch_sync(void * arg,dmu_tx_t * tx)4032 raidz_reflow_scratch_sync(void *arg, dmu_tx_t *tx)
4033 {
4034 	vdev_raidz_expand_t *vre = arg;
4035 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
4036 	zio_t *pio;
4037 	int error;
4038 
4039 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4040 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4041 	int ashift = raidvd->vdev_ashift;
4042 	uint64_t write_size = P2ALIGN(VDEV_BOOT_SIZE, 1 << ashift);
4043 	uint64_t logical_size = write_size * raidvd->vdev_children;
4044 	uint64_t read_size =
4045 	    P2ROUNDUP(DIV_ROUND_UP(logical_size, (raidvd->vdev_children - 1)),
4046 	    1 << ashift);
4047 
4048 	/*
4049 	 * The scratch space must be large enough to get us to the point
4050 	 * that one row does not overlap itself when moved.  This is checked
4051 	 * by vdev_raidz_attach_check().
4052 	 */
4053 	VERIFY3U(write_size, >=, raidvd->vdev_children << ashift);
4054 	VERIFY3U(write_size, <=, VDEV_BOOT_SIZE);
4055 	VERIFY3U(write_size, <=, read_size);
4056 
4057 	zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
4058 	    0, logical_size, RL_WRITER);
4059 
4060 	abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
4061 	    KM_SLEEP);
4062 	for (int i = 0; i < raidvd->vdev_children; i++) {
4063 		abds[i] = abd_alloc_linear(read_size, B_FALSE);
4064 	}
4065 
4066 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_1);
4067 
4068 	/*
4069 	 * If we have already written the scratch area then we must read from
4070 	 * there, since new writes were redirected there while we were paused
4071 	 * or the original location may have been partially overwritten with
4072 	 * reflowed data.
4073 	 */
4074 	if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID) {
4075 		VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==, logical_size);
4076 		/*
4077 		 * Read from scratch space.
4078 		 */
4079 		pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4080 		for (int i = 0; i < raidvd->vdev_children; i++) {
4081 			/*
4082 			 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE
4083 			 * to the offset to calculate the physical offset to
4084 			 * write to.  Passing in a negative offset makes us
4085 			 * access the scratch area.
4086 			 */
4087 			zio_nowait(zio_vdev_child_io(pio, NULL,
4088 			    raidvd->vdev_child[i],
4089 			    VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
4090 			    write_size, ZIO_TYPE_READ, ZIO_PRIORITY_ASYNC_READ,
4091 			    ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
4092 		}
4093 		error = zio_wait(pio);
4094 		if (error != 0) {
4095 			zfs_dbgmsg("reflow: error %d reading scratch location",
4096 			    error);
4097 			goto io_error_exit;
4098 		}
4099 		goto overwrite;
4100 	}
4101 
4102 	/*
4103 	 * Read from original location.
4104 	 */
4105 	pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4106 	for (int i = 0; i < raidvd->vdev_children - 1; i++) {
4107 		ASSERT0(vdev_is_dead(raidvd->vdev_child[i]));
4108 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4109 		    0, abds[i], read_size, ZIO_TYPE_READ,
4110 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
4111 		    raidz_scratch_child_done, pio));
4112 	}
4113 	error = zio_wait(pio);
4114 	if (error != 0) {
4115 		zfs_dbgmsg("reflow: error %d reading original location", error);
4116 io_error_exit:
4117 		for (int i = 0; i < raidvd->vdev_children; i++)
4118 			abd_free(abds[i]);
4119 		kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
4120 		zfs_rangelock_exit(lr);
4121 		spa_config_exit(spa, SCL_STATE, FTAG);
4122 		return;
4123 	}
4124 
4125 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_2);
4126 
4127 	/*
4128 	 * Reflow in memory.
4129 	 */
4130 	uint64_t logical_sectors = logical_size >> ashift;
4131 	for (int i = raidvd->vdev_children - 1; i < logical_sectors; i++) {
4132 		int oldchild = i % (raidvd->vdev_children - 1);
4133 		uint64_t oldoff = (i / (raidvd->vdev_children - 1)) << ashift;
4134 
4135 		int newchild = i % raidvd->vdev_children;
4136 		uint64_t newoff = (i / raidvd->vdev_children) << ashift;
4137 
4138 		/* a single sector should not be copying over itself */
4139 		ASSERT(!(newchild == oldchild && newoff == oldoff));
4140 
4141 		abd_copy_off(abds[newchild], abds[oldchild],
4142 		    newoff, oldoff, 1 << ashift);
4143 	}
4144 
4145 	/*
4146 	 * Verify that we filled in everything we intended to (write_size on
4147 	 * each child).
4148 	 */
4149 	VERIFY0(logical_sectors % raidvd->vdev_children);
4150 	VERIFY3U((logical_sectors / raidvd->vdev_children) << ashift, ==,
4151 	    write_size);
4152 
4153 	/*
4154 	 * Write to scratch location (boot area).
4155 	 */
4156 	pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4157 	for (int i = 0; i < raidvd->vdev_children; i++) {
4158 		/*
4159 		 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
4160 		 * the offset to calculate the physical offset to write to.
4161 		 * Passing in a negative offset lets us access the boot area.
4162 		 */
4163 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4164 		    VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
4165 		    write_size, ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
4166 		    ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
4167 	}
4168 	error = zio_wait(pio);
4169 	if (error != 0) {
4170 		zfs_dbgmsg("reflow: error %d writing scratch location", error);
4171 		goto io_error_exit;
4172 	}
4173 	pio = zio_root(spa, NULL, NULL, 0);
4174 	zio_flush(pio, raidvd);
4175 	zio_wait(pio);
4176 
4177 	zfs_dbgmsg("reflow: wrote %llu bytes (logical) to scratch area",
4178 	    (long long)logical_size);
4179 
4180 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_3);
4181 
4182 	/*
4183 	 * Update uberblock to indicate that scratch space is valid.  This is
4184 	 * needed because after this point, the real location may be
4185 	 * overwritten.  If we crash, we need to get the data from the
4186 	 * scratch space, rather than the real location.
4187 	 *
4188 	 * Note: ub_timestamp is bumped so that vdev_uberblock_compare()
4189 	 * will prefer this uberblock.
4190 	 */
4191 	RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_VALID, logical_size);
4192 	spa->spa_ubsync.ub_timestamp++;
4193 	ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
4194 	    &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
4195 	if (spa_multihost(spa))
4196 		mmp_update_uberblock(spa, &spa->spa_ubsync);
4197 
4198 	zfs_dbgmsg("reflow: uberblock updated "
4199 	    "(txg %llu, SCRATCH_VALID, size %llu, ts %llu)",
4200 	    (long long)spa->spa_ubsync.ub_txg,
4201 	    (long long)logical_size,
4202 	    (long long)spa->spa_ubsync.ub_timestamp);
4203 
4204 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_VALID);
4205 
4206 	/*
4207 	 * Overwrite with reflow'ed data.
4208 	 */
4209 overwrite:
4210 	pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4211 	for (int i = 0; i < raidvd->vdev_children; i++) {
4212 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4213 		    0, abds[i], write_size, ZIO_TYPE_WRITE,
4214 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL,
4215 		    raidz_scratch_child_done, pio));
4216 	}
4217 	error = zio_wait(pio);
4218 	if (error != 0) {
4219 		/*
4220 		 * When we exit early here and drop the range lock, new
4221 		 * writes will go into the scratch area so we'll need to
4222 		 * read from there when we return after pausing.
4223 		 */
4224 		zfs_dbgmsg("reflow: error %d writing real location", error);
4225 		/*
4226 		 * Update the uberblock that is written when this txg completes.
4227 		 */
4228 		RAIDZ_REFLOW_SET(&spa->spa_uberblock, RRSS_SCRATCH_VALID,
4229 		    logical_size);
4230 		goto io_error_exit;
4231 	}
4232 	pio = zio_root(spa, NULL, NULL, 0);
4233 	zio_flush(pio, raidvd);
4234 	zio_wait(pio);
4235 
4236 	zfs_dbgmsg("reflow: overwrote %llu bytes (logical) to real location",
4237 	    (long long)logical_size);
4238 	for (int i = 0; i < raidvd->vdev_children; i++)
4239 		abd_free(abds[i]);
4240 	kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
4241 
4242 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_REFLOWED);
4243 
4244 	/*
4245 	 * Update uberblock to indicate that the initial part has been
4246 	 * reflow'ed.  This is needed because after this point (when we exit
4247 	 * the rangelock), we allow regular writes to this region, which will
4248 	 * be written to the new location only (because reflow_offset_next ==
4249 	 * reflow_offset_synced).  If we crashed and re-copied from the
4250 	 * scratch space, we would lose the regular writes.
4251 	 */
4252 	RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_INVALID_SYNCED,
4253 	    logical_size);
4254 	spa->spa_ubsync.ub_timestamp++;
4255 	ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
4256 	    &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
4257 	if (spa_multihost(spa))
4258 		mmp_update_uberblock(spa, &spa->spa_ubsync);
4259 
4260 	zfs_dbgmsg("reflow: uberblock updated "
4261 	    "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
4262 	    (long long)spa->spa_ubsync.ub_txg,
4263 	    (long long)logical_size,
4264 	    (long long)spa->spa_ubsync.ub_timestamp);
4265 
4266 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_1);
4267 
4268 	/*
4269 	 * Update progress.
4270 	 */
4271 	vre->vre_offset = logical_size;
4272 	zfs_rangelock_exit(lr);
4273 	spa_config_exit(spa, SCL_STATE, FTAG);
4274 
4275 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
4276 	vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
4277 	vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
4278 	/*
4279 	 * Note - raidz_reflow_sync() will update the uberblock state to
4280 	 * RRSS_SCRATCH_INVALID_SYNCED_REFLOW
4281 	 */
4282 	raidz_reflow_sync(spa, tx);
4283 
4284 	raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2);
4285 }
4286 
4287 /*
4288  * We crashed in the middle of raidz_reflow_scratch_sync(); complete its work
4289  * here.  No other i/o can be in progress, so we don't need the vre_rangelock.
4290  */
4291 void
vdev_raidz_reflow_copy_scratch(spa_t * spa)4292 vdev_raidz_reflow_copy_scratch(spa_t *spa)
4293 {
4294 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4295 	uint64_t logical_size = RRSS_GET_OFFSET(&spa->spa_uberblock);
4296 	ASSERT3U(RRSS_GET_STATE(&spa->spa_uberblock), ==, RRSS_SCRATCH_VALID);
4297 
4298 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4299 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4300 	ASSERT0(logical_size % raidvd->vdev_children);
4301 	uint64_t write_size = logical_size / raidvd->vdev_children;
4302 
4303 	zio_t *pio;
4304 
4305 	/*
4306 	 * Read from scratch space.
4307 	 */
4308 	abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
4309 	    KM_SLEEP);
4310 	for (int i = 0; i < raidvd->vdev_children; i++) {
4311 		abds[i] = abd_alloc_linear(write_size, B_FALSE);
4312 	}
4313 
4314 	pio = zio_root(spa, NULL, NULL, 0);
4315 	for (int i = 0; i < raidvd->vdev_children; i++) {
4316 		/*
4317 		 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
4318 		 * the offset to calculate the physical offset to write to.
4319 		 * Passing in a negative offset lets us access the boot area.
4320 		 */
4321 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4322 		    VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
4323 		    write_size, ZIO_TYPE_READ,
4324 		    ZIO_PRIORITY_ASYNC_READ, 0,
4325 		    raidz_scratch_child_done, pio));
4326 	}
4327 	zio_wait(pio);
4328 
4329 	/*
4330 	 * Overwrite real location with reflow'ed data.
4331 	 */
4332 	pio = zio_root(spa, NULL, NULL, 0);
4333 	for (int i = 0; i < raidvd->vdev_children; i++) {
4334 		zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
4335 		    0, abds[i], write_size, ZIO_TYPE_WRITE,
4336 		    ZIO_PRIORITY_ASYNC_WRITE, 0,
4337 		    raidz_scratch_child_done, pio));
4338 	}
4339 	zio_wait(pio);
4340 	pio = zio_root(spa, NULL, NULL, 0);
4341 	zio_flush(pio, raidvd);
4342 	zio_wait(pio);
4343 
4344 	zfs_dbgmsg("reflow recovery: overwrote %llu bytes (logical) "
4345 	    "to real location", (long long)logical_size);
4346 
4347 	for (int i = 0; i < raidvd->vdev_children; i++)
4348 		abd_free(abds[i]);
4349 	kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
4350 
4351 	/*
4352 	 * Update uberblock.
4353 	 */
4354 	RAIDZ_REFLOW_SET(&spa->spa_ubsync,
4355 	    RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT, logical_size);
4356 	spa->spa_ubsync.ub_timestamp++;
4357 	VERIFY0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
4358 	    &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
4359 	if (spa_multihost(spa))
4360 		mmp_update_uberblock(spa, &spa->spa_ubsync);
4361 
4362 	zfs_dbgmsg("reflow recovery: uberblock updated "
4363 	    "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
4364 	    (long long)spa->spa_ubsync.ub_txg,
4365 	    (long long)logical_size,
4366 	    (long long)spa->spa_ubsync.ub_timestamp);
4367 
4368 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
4369 	    spa_first_txg(spa));
4370 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
4371 	vre->vre_offset = logical_size;
4372 	vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
4373 	vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
4374 	/*
4375 	 * Note that raidz_reflow_sync() will update the uberblock once more
4376 	 */
4377 	raidz_reflow_sync(spa, tx);
4378 
4379 	dmu_tx_commit(tx);
4380 
4381 	spa_config_exit(spa, SCL_STATE, FTAG);
4382 }
4383 
4384 static boolean_t
spa_raidz_expand_thread_check(void * arg,zthr_t * zthr)4385 spa_raidz_expand_thread_check(void *arg, zthr_t *zthr)
4386 {
4387 	(void) zthr;
4388 	spa_t *spa = arg;
4389 
4390 	return (spa->spa_raidz_expand != NULL &&
4391 	    !spa->spa_raidz_expand->vre_waiting_for_resilver);
4392 }
4393 
4394 /*
4395  * RAIDZ expansion background thread
4396  *
4397  * Can be called multiple times if the reflow is paused
4398  */
4399 static void
spa_raidz_expand_thread(void * arg,zthr_t * zthr)4400 spa_raidz_expand_thread(void *arg, zthr_t *zthr)
4401 {
4402 	spa_t *spa = arg;
4403 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4404 
4405 	if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID)
4406 		vre->vre_offset = 0;
4407 	else
4408 		vre->vre_offset = RRSS_GET_OFFSET(&spa->spa_ubsync);
4409 
4410 	/* Reflow the begining portion using the scratch area */
4411 	if (vre->vre_offset == 0) {
4412 		VERIFY0(dsl_sync_task(spa_name(spa),
4413 		    NULL, raidz_reflow_scratch_sync,
4414 		    vre, 0, ZFS_SPACE_CHECK_NONE));
4415 
4416 		/* if we encountered errors then pause */
4417 		if (vre->vre_offset == 0) {
4418 			mutex_enter(&vre->vre_lock);
4419 			vre->vre_waiting_for_resilver = B_TRUE;
4420 			mutex_exit(&vre->vre_lock);
4421 			return;
4422 		}
4423 	}
4424 
4425 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4426 	vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4427 
4428 	uint64_t guid = raidvd->vdev_guid;
4429 
4430 	/* Iterate over all the remaining metaslabs */
4431 	for (uint64_t i = vre->vre_offset >> raidvd->vdev_ms_shift;
4432 	    i < raidvd->vdev_ms_count &&
4433 	    !zthr_iscancelled(zthr) &&
4434 	    vre->vre_failed_offset == UINT64_MAX; i++) {
4435 		metaslab_t *msp = raidvd->vdev_ms[i];
4436 
4437 		metaslab_disable(msp);
4438 		mutex_enter(&msp->ms_lock);
4439 
4440 		/*
4441 		 * The metaslab may be newly created (for the expanded
4442 		 * space), in which case its trees won't exist yet,
4443 		 * so we need to bail out early.
4444 		 */
4445 		if (msp->ms_new) {
4446 			mutex_exit(&msp->ms_lock);
4447 			metaslab_enable(msp, B_FALSE, B_FALSE);
4448 			continue;
4449 		}
4450 
4451 		VERIFY0(metaslab_load(msp));
4452 
4453 		/*
4454 		 * We want to copy everything except the free (allocatable)
4455 		 * space.  Note that there may be a little bit more free
4456 		 * space (e.g. in ms_defer), and it's fine to copy that too.
4457 		 */
4458 		range_tree_t *rt = range_tree_create(NULL, RANGE_SEG64,
4459 		    NULL, 0, 0);
4460 		range_tree_add(rt, msp->ms_start, msp->ms_size);
4461 		range_tree_walk(msp->ms_allocatable, range_tree_remove, rt);
4462 		mutex_exit(&msp->ms_lock);
4463 
4464 		/*
4465 		 * Force the last sector of each metaslab to be copied.  This
4466 		 * ensures that we advance the on-disk progress to the end of
4467 		 * this metaslab while the metaslab is disabled.  Otherwise, we
4468 		 * could move past this metaslab without advancing the on-disk
4469 		 * progress, and then an allocation to this metaslab would not
4470 		 * be copied.
4471 		 */
4472 		int sectorsz = 1 << raidvd->vdev_ashift;
4473 		uint64_t ms_last_offset = msp->ms_start +
4474 		    msp->ms_size - sectorsz;
4475 		if (!range_tree_contains(rt, ms_last_offset, sectorsz)) {
4476 			range_tree_add(rt, ms_last_offset, sectorsz);
4477 		}
4478 
4479 		/*
4480 		 * When we are resuming from a paused expansion (i.e.
4481 		 * when importing a pool with a expansion in progress),
4482 		 * discard any state that we have already processed.
4483 		 */
4484 		range_tree_clear(rt, 0, vre->vre_offset);
4485 
4486 		while (!zthr_iscancelled(zthr) &&
4487 		    !range_tree_is_empty(rt) &&
4488 		    vre->vre_failed_offset == UINT64_MAX) {
4489 
4490 			/*
4491 			 * We need to periodically drop the config lock so that
4492 			 * writers can get in.  Additionally, we can't wait
4493 			 * for a txg to sync while holding a config lock
4494 			 * (since a waiting writer could cause a 3-way deadlock
4495 			 * with the sync thread, which also gets a config
4496 			 * lock for reader).  So we can't hold the config lock
4497 			 * while calling dmu_tx_assign().
4498 			 */
4499 			spa_config_exit(spa, SCL_CONFIG, FTAG);
4500 
4501 			/*
4502 			 * If requested, pause the reflow when the amount
4503 			 * specified by raidz_expand_max_reflow_bytes is reached
4504 			 *
4505 			 * This pause is only used during testing or debugging.
4506 			 */
4507 			while (raidz_expand_max_reflow_bytes != 0 &&
4508 			    raidz_expand_max_reflow_bytes <=
4509 			    vre->vre_bytes_copied && !zthr_iscancelled(zthr)) {
4510 				delay(hz);
4511 			}
4512 
4513 			mutex_enter(&vre->vre_lock);
4514 			while (vre->vre_outstanding_bytes >
4515 			    raidz_expand_max_copy_bytes) {
4516 				cv_wait(&vre->vre_cv, &vre->vre_lock);
4517 			}
4518 			mutex_exit(&vre->vre_lock);
4519 
4520 			dmu_tx_t *tx =
4521 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4522 
4523 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
4524 			uint64_t txg = dmu_tx_get_txg(tx);
4525 
4526 			/*
4527 			 * Reacquire the vdev_config lock.  Theoretically, the
4528 			 * vdev_t that we're expanding may have changed.
4529 			 */
4530 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4531 			raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4532 
4533 			boolean_t needsync =
4534 			    raidz_reflow_impl(raidvd, vre, rt, tx);
4535 
4536 			dmu_tx_commit(tx);
4537 
4538 			if (needsync) {
4539 				spa_config_exit(spa, SCL_CONFIG, FTAG);
4540 				txg_wait_synced(spa->spa_dsl_pool, txg);
4541 				spa_config_enter(spa, SCL_CONFIG, FTAG,
4542 				    RW_READER);
4543 			}
4544 		}
4545 
4546 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4547 
4548 		metaslab_enable(msp, B_FALSE, B_FALSE);
4549 		range_tree_vacate(rt, NULL, NULL);
4550 		range_tree_destroy(rt);
4551 
4552 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4553 		raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
4554 	}
4555 
4556 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4557 
4558 	/*
4559 	 * The txg_wait_synced() here ensures that all reflow zio's have
4560 	 * completed, and vre_failed_offset has been set if necessary.  It
4561 	 * also ensures that the progress of the last raidz_reflow_sync() is
4562 	 * written to disk before raidz_reflow_complete_sync() changes the
4563 	 * in-memory vre_state.  vdev_raidz_io_start() uses vre_state to
4564 	 * determine if a reflow is in progress, in which case we may need to
4565 	 * write to both old and new locations.  Therefore we can only change
4566 	 * vre_state once this is not necessary, which is once the on-disk
4567 	 * progress (in spa_ubsync) has been set past any possible writes (to
4568 	 * the end of the last metaslab).
4569 	 */
4570 	txg_wait_synced(spa->spa_dsl_pool, 0);
4571 
4572 	if (!zthr_iscancelled(zthr) &&
4573 	    vre->vre_offset == raidvd->vdev_ms_count << raidvd->vdev_ms_shift) {
4574 		/*
4575 		 * We are not being canceled or paused, so the reflow must be
4576 		 * complete. In that case also mark it as completed on disk.
4577 		 */
4578 		ASSERT3U(vre->vre_failed_offset, ==, UINT64_MAX);
4579 		VERIFY0(dsl_sync_task(spa_name(spa), NULL,
4580 		    raidz_reflow_complete_sync, spa,
4581 		    0, ZFS_SPACE_CHECK_NONE));
4582 		(void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL);
4583 	} else {
4584 		/*
4585 		 * Wait for all copy zio's to complete and for all the
4586 		 * raidz_reflow_sync() synctasks to be run.
4587 		 */
4588 		spa_history_log_internal(spa, "reflow pause",
4589 		    NULL, "offset=%llu failed_offset=%lld",
4590 		    (long long)vre->vre_offset,
4591 		    (long long)vre->vre_failed_offset);
4592 		mutex_enter(&vre->vre_lock);
4593 		if (vre->vre_failed_offset != UINT64_MAX) {
4594 			/*
4595 			 * Reset progress so that we will retry everything
4596 			 * after the point that something failed.
4597 			 */
4598 			vre->vre_offset = vre->vre_failed_offset;
4599 			vre->vre_failed_offset = UINT64_MAX;
4600 			vre->vre_waiting_for_resilver = B_TRUE;
4601 		}
4602 		mutex_exit(&vre->vre_lock);
4603 	}
4604 }
4605 
4606 void
spa_start_raidz_expansion_thread(spa_t * spa)4607 spa_start_raidz_expansion_thread(spa_t *spa)
4608 {
4609 	ASSERT3P(spa->spa_raidz_expand_zthr, ==, NULL);
4610 	spa->spa_raidz_expand_zthr = zthr_create("raidz_expand",
4611 	    spa_raidz_expand_thread_check, spa_raidz_expand_thread,
4612 	    spa, defclsyspri);
4613 }
4614 
4615 void
raidz_dtl_reassessed(vdev_t * vd)4616 raidz_dtl_reassessed(vdev_t *vd)
4617 {
4618 	spa_t *spa = vd->vdev_spa;
4619 	if (spa->spa_raidz_expand != NULL) {
4620 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4621 		/*
4622 		 * we get called often from vdev_dtl_reassess() so make
4623 		 * sure it's our vdev and any replacing is complete
4624 		 */
4625 		if (vd->vdev_top->vdev_id == vre->vre_vdev_id &&
4626 		    !vdev_raidz_expand_child_replacing(vd->vdev_top)) {
4627 			mutex_enter(&vre->vre_lock);
4628 			if (vre->vre_waiting_for_resilver) {
4629 				vdev_dbgmsg(vd, "DTL reassessed, "
4630 				    "continuing raidz expansion");
4631 				vre->vre_waiting_for_resilver = B_FALSE;
4632 				zthr_wakeup(spa->spa_raidz_expand_zthr);
4633 			}
4634 			mutex_exit(&vre->vre_lock);
4635 		}
4636 	}
4637 }
4638 
4639 int
vdev_raidz_attach_check(vdev_t * new_child)4640 vdev_raidz_attach_check(vdev_t *new_child)
4641 {
4642 	vdev_t *raidvd = new_child->vdev_parent;
4643 	uint64_t new_children = raidvd->vdev_children;
4644 
4645 	/*
4646 	 * We use the "boot" space as scratch space to handle overwriting the
4647 	 * initial part of the vdev.  If it is too small, then this expansion
4648 	 * is not allowed.  This would be very unusual (e.g. ashift > 13 and
4649 	 * >200 children).
4650 	 */
4651 	if (new_children << raidvd->vdev_ashift > VDEV_BOOT_SIZE) {
4652 		return (EINVAL);
4653 	}
4654 	return (0);
4655 }
4656 
4657 void
vdev_raidz_attach_sync(void * arg,dmu_tx_t * tx)4658 vdev_raidz_attach_sync(void *arg, dmu_tx_t *tx)
4659 {
4660 	vdev_t *new_child = arg;
4661 	spa_t *spa = new_child->vdev_spa;
4662 	vdev_t *raidvd = new_child->vdev_parent;
4663 	vdev_raidz_t *vdrz = raidvd->vdev_tsd;
4664 	ASSERT3P(raidvd->vdev_ops, ==, &vdev_raidz_ops);
4665 	ASSERT3P(raidvd->vdev_top, ==, raidvd);
4666 	ASSERT3U(raidvd->vdev_children, >, vdrz->vd_original_width);
4667 	ASSERT3U(raidvd->vdev_children, ==, vdrz->vd_physical_width + 1);
4668 	ASSERT3P(raidvd->vdev_child[raidvd->vdev_children - 1], ==,
4669 	    new_child);
4670 
4671 	spa_feature_incr(spa, SPA_FEATURE_RAIDZ_EXPANSION, tx);
4672 
4673 	vdrz->vd_physical_width++;
4674 
4675 	VERIFY0(spa->spa_uberblock.ub_raidz_reflow_info);
4676 	vdrz->vn_vre.vre_vdev_id = raidvd->vdev_id;
4677 	vdrz->vn_vre.vre_offset = 0;
4678 	vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
4679 	spa->spa_raidz_expand = &vdrz->vn_vre;
4680 	zthr_wakeup(spa->spa_raidz_expand_zthr);
4681 
4682 	/*
4683 	 * Dirty the config so that ZPOOL_CONFIG_RAIDZ_EXPANDING will get
4684 	 * written to the config.
4685 	 */
4686 	vdev_config_dirty(raidvd);
4687 
4688 	vdrz->vn_vre.vre_start_time = gethrestime_sec();
4689 	vdrz->vn_vre.vre_end_time = 0;
4690 	vdrz->vn_vre.vre_state = DSS_SCANNING;
4691 	vdrz->vn_vre.vre_bytes_copied = 0;
4692 
4693 	uint64_t state = vdrz->vn_vre.vre_state;
4694 	VERIFY0(zap_update(spa->spa_meta_objset,
4695 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
4696 	    sizeof (state), 1, &state, tx));
4697 
4698 	uint64_t start_time = vdrz->vn_vre.vre_start_time;
4699 	VERIFY0(zap_update(spa->spa_meta_objset,
4700 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
4701 	    sizeof (start_time), 1, &start_time, tx));
4702 
4703 	(void) zap_remove(spa->spa_meta_objset,
4704 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME, tx);
4705 	(void) zap_remove(spa->spa_meta_objset,
4706 	    raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED, tx);
4707 
4708 	spa_history_log_internal(spa, "raidz vdev expansion started",  tx,
4709 	    "%s vdev %llu new width %llu", spa_name(spa),
4710 	    (unsigned long long)raidvd->vdev_id,
4711 	    (unsigned long long)raidvd->vdev_children);
4712 }
4713 
4714 int
vdev_raidz_load(vdev_t * vd)4715 vdev_raidz_load(vdev_t *vd)
4716 {
4717 	vdev_raidz_t *vdrz = vd->vdev_tsd;
4718 	int err;
4719 
4720 	uint64_t state = DSS_NONE;
4721 	uint64_t start_time = 0;
4722 	uint64_t end_time = 0;
4723 	uint64_t bytes_copied = 0;
4724 
4725 	if (vd->vdev_top_zap != 0) {
4726 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4727 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
4728 		    sizeof (state), 1, &state);
4729 		if (err != 0 && err != ENOENT)
4730 			return (err);
4731 
4732 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4733 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
4734 		    sizeof (start_time), 1, &start_time);
4735 		if (err != 0 && err != ENOENT)
4736 			return (err);
4737 
4738 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4739 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
4740 		    sizeof (end_time), 1, &end_time);
4741 		if (err != 0 && err != ENOENT)
4742 			return (err);
4743 
4744 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
4745 		    vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
4746 		    sizeof (bytes_copied), 1, &bytes_copied);
4747 		if (err != 0 && err != ENOENT)
4748 			return (err);
4749 	}
4750 
4751 	/*
4752 	 * If we are in the middle of expansion, vre_state should have
4753 	 * already been set by vdev_raidz_init().
4754 	 */
4755 	EQUIV(vdrz->vn_vre.vre_state == DSS_SCANNING, state == DSS_SCANNING);
4756 	vdrz->vn_vre.vre_state = (dsl_scan_state_t)state;
4757 	vdrz->vn_vre.vre_start_time = start_time;
4758 	vdrz->vn_vre.vre_end_time = end_time;
4759 	vdrz->vn_vre.vre_bytes_copied = bytes_copied;
4760 
4761 	return (0);
4762 }
4763 
4764 int
spa_raidz_expand_get_stats(spa_t * spa,pool_raidz_expand_stat_t * pres)4765 spa_raidz_expand_get_stats(spa_t *spa, pool_raidz_expand_stat_t *pres)
4766 {
4767 	vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
4768 
4769 	if (vre == NULL) {
4770 		/* no removal in progress; find most recent completed */
4771 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
4772 			vdev_t *vd = spa->spa_root_vdev->vdev_child[c];
4773 			if (vd->vdev_ops == &vdev_raidz_ops) {
4774 				vdev_raidz_t *vdrz = vd->vdev_tsd;
4775 
4776 				if (vdrz->vn_vre.vre_end_time != 0 &&
4777 				    (vre == NULL ||
4778 				    vdrz->vn_vre.vre_end_time >
4779 				    vre->vre_end_time)) {
4780 					vre = &vdrz->vn_vre;
4781 				}
4782 			}
4783 		}
4784 	}
4785 
4786 	if (vre == NULL) {
4787 		return (SET_ERROR(ENOENT));
4788 	}
4789 
4790 	pres->pres_state = vre->vre_state;
4791 	pres->pres_expanding_vdev = vre->vre_vdev_id;
4792 
4793 	vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
4794 	pres->pres_to_reflow = vd->vdev_stat.vs_alloc;
4795 
4796 	mutex_enter(&vre->vre_lock);
4797 	pres->pres_reflowed = vre->vre_bytes_copied;
4798 	for (int i = 0; i < TXG_SIZE; i++)
4799 		pres->pres_reflowed += vre->vre_bytes_copied_pertxg[i];
4800 	mutex_exit(&vre->vre_lock);
4801 
4802 	pres->pres_start_time = vre->vre_start_time;
4803 	pres->pres_end_time = vre->vre_end_time;
4804 	pres->pres_waiting_for_resilver = vre->vre_waiting_for_resilver;
4805 
4806 	return (0);
4807 }
4808 
4809 /*
4810  * Initialize private RAIDZ specific fields from the nvlist.
4811  */
4812 static int
vdev_raidz_init(spa_t * spa,nvlist_t * nv,void ** tsd)4813 vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd)
4814 {
4815 	uint_t children;
4816 	nvlist_t **child;
4817 	int error = nvlist_lookup_nvlist_array(nv,
4818 	    ZPOOL_CONFIG_CHILDREN, &child, &children);
4819 	if (error != 0)
4820 		return (SET_ERROR(EINVAL));
4821 
4822 	uint64_t nparity;
4823 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) {
4824 		if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
4825 			return (SET_ERROR(EINVAL));
4826 
4827 		/*
4828 		 * Previous versions could only support 1 or 2 parity
4829 		 * device.
4830 		 */
4831 		if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2)
4832 			return (SET_ERROR(EINVAL));
4833 		else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3)
4834 			return (SET_ERROR(EINVAL));
4835 	} else {
4836 		/*
4837 		 * We require the parity to be specified for SPAs that
4838 		 * support multiple parity levels.
4839 		 */
4840 		if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
4841 			return (SET_ERROR(EINVAL));
4842 
4843 		/*
4844 		 * Otherwise, we default to 1 parity device for RAID-Z.
4845 		 */
4846 		nparity = 1;
4847 	}
4848 
4849 	vdev_raidz_t *vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP);
4850 	vdrz->vn_vre.vre_vdev_id = -1;
4851 	vdrz->vn_vre.vre_offset = UINT64_MAX;
4852 	vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
4853 	mutex_init(&vdrz->vn_vre.vre_lock, NULL, MUTEX_DEFAULT, NULL);
4854 	cv_init(&vdrz->vn_vre.vre_cv, NULL, CV_DEFAULT, NULL);
4855 	zfs_rangelock_init(&vdrz->vn_vre.vre_rangelock, NULL, NULL);
4856 	mutex_init(&vdrz->vd_expand_lock, NULL, MUTEX_DEFAULT, NULL);
4857 	avl_create(&vdrz->vd_expand_txgs, vdev_raidz_reflow_compare,
4858 	    sizeof (reflow_node_t), offsetof(reflow_node_t, re_link));
4859 
4860 	vdrz->vd_physical_width = children;
4861 	vdrz->vd_nparity = nparity;
4862 
4863 	/* note, the ID does not exist when creating a pool */
4864 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID,
4865 	    &vdrz->vn_vre.vre_vdev_id);
4866 
4867 	boolean_t reflow_in_progress =
4868 	    nvlist_exists(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
4869 	if (reflow_in_progress) {
4870 		spa->spa_raidz_expand = &vdrz->vn_vre;
4871 		vdrz->vn_vre.vre_state = DSS_SCANNING;
4872 	}
4873 
4874 	vdrz->vd_original_width = children;
4875 	uint64_t *txgs;
4876 	unsigned int txgs_size = 0;
4877 	error = nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
4878 	    &txgs, &txgs_size);
4879 	if (error == 0) {
4880 		for (int i = 0; i < txgs_size; i++) {
4881 			reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
4882 			re->re_txg = txgs[txgs_size - i - 1];
4883 			re->re_logical_width = vdrz->vd_physical_width - i;
4884 
4885 			if (reflow_in_progress)
4886 				re->re_logical_width--;
4887 
4888 			avl_add(&vdrz->vd_expand_txgs, re);
4889 		}
4890 
4891 		vdrz->vd_original_width = vdrz->vd_physical_width - txgs_size;
4892 	}
4893 	if (reflow_in_progress) {
4894 		vdrz->vd_original_width--;
4895 		zfs_dbgmsg("reflow_in_progress, %u wide, %d prior expansions",
4896 		    children, txgs_size);
4897 	}
4898 
4899 	*tsd = vdrz;
4900 
4901 	return (0);
4902 }
4903 
4904 static void
vdev_raidz_fini(vdev_t * vd)4905 vdev_raidz_fini(vdev_t *vd)
4906 {
4907 	vdev_raidz_t *vdrz = vd->vdev_tsd;
4908 	if (vd->vdev_spa->spa_raidz_expand == &vdrz->vn_vre)
4909 		vd->vdev_spa->spa_raidz_expand = NULL;
4910 	reflow_node_t *re;
4911 	void *cookie = NULL;
4912 	avl_tree_t *tree = &vdrz->vd_expand_txgs;
4913 	while ((re = avl_destroy_nodes(tree, &cookie)) != NULL)
4914 		kmem_free(re, sizeof (*re));
4915 	avl_destroy(&vdrz->vd_expand_txgs);
4916 	mutex_destroy(&vdrz->vd_expand_lock);
4917 	mutex_destroy(&vdrz->vn_vre.vre_lock);
4918 	cv_destroy(&vdrz->vn_vre.vre_cv);
4919 	zfs_rangelock_fini(&vdrz->vn_vre.vre_rangelock);
4920 	kmem_free(vdrz, sizeof (*vdrz));
4921 }
4922 
4923 /*
4924  * Add RAIDZ specific fields to the config nvlist.
4925  */
4926 static void
vdev_raidz_config_generate(vdev_t * vd,nvlist_t * nv)4927 vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv)
4928 {
4929 	ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops);
4930 	vdev_raidz_t *vdrz = vd->vdev_tsd;
4931 
4932 	/*
4933 	 * Make sure someone hasn't managed to sneak a fancy new vdev
4934 	 * into a crufty old storage pool.
4935 	 */
4936 	ASSERT(vdrz->vd_nparity == 1 ||
4937 	    (vdrz->vd_nparity <= 2 &&
4938 	    spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) ||
4939 	    (vdrz->vd_nparity <= 3 &&
4940 	    spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3));
4941 
4942 	/*
4943 	 * Note that we'll add these even on storage pools where they
4944 	 * aren't strictly required -- older software will just ignore
4945 	 * it.
4946 	 */
4947 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity);
4948 
4949 	if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
4950 		fnvlist_add_boolean(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
4951 	}
4952 
4953 	mutex_enter(&vdrz->vd_expand_lock);
4954 	if (!avl_is_empty(&vdrz->vd_expand_txgs)) {
4955 		uint64_t count = avl_numnodes(&vdrz->vd_expand_txgs);
4956 		uint64_t *txgs = kmem_alloc(sizeof (uint64_t) * count,
4957 		    KM_SLEEP);
4958 		uint64_t i = 0;
4959 
4960 		for (reflow_node_t *re = avl_first(&vdrz->vd_expand_txgs);
4961 		    re != NULL; re = AVL_NEXT(&vdrz->vd_expand_txgs, re)) {
4962 			txgs[i++] = re->re_txg;
4963 		}
4964 
4965 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
4966 		    txgs, count);
4967 
4968 		kmem_free(txgs, sizeof (uint64_t) * count);
4969 	}
4970 	mutex_exit(&vdrz->vd_expand_lock);
4971 }
4972 
4973 static uint64_t
vdev_raidz_nparity(vdev_t * vd)4974 vdev_raidz_nparity(vdev_t *vd)
4975 {
4976 	vdev_raidz_t *vdrz = vd->vdev_tsd;
4977 	return (vdrz->vd_nparity);
4978 }
4979 
4980 static uint64_t
vdev_raidz_ndisks(vdev_t * vd)4981 vdev_raidz_ndisks(vdev_t *vd)
4982 {
4983 	return (vd->vdev_children);
4984 }
4985 
4986 vdev_ops_t vdev_raidz_ops = {
4987 	.vdev_op_init = vdev_raidz_init,
4988 	.vdev_op_fini = vdev_raidz_fini,
4989 	.vdev_op_open = vdev_raidz_open,
4990 	.vdev_op_close = vdev_raidz_close,
4991 	.vdev_op_asize = vdev_raidz_asize,
4992 	.vdev_op_min_asize = vdev_raidz_min_asize,
4993 	.vdev_op_min_alloc = NULL,
4994 	.vdev_op_io_start = vdev_raidz_io_start,
4995 	.vdev_op_io_done = vdev_raidz_io_done,
4996 	.vdev_op_state_change = vdev_raidz_state_change,
4997 	.vdev_op_need_resilver = vdev_raidz_need_resilver,
4998 	.vdev_op_hold = NULL,
4999 	.vdev_op_rele = NULL,
5000 	.vdev_op_remap = NULL,
5001 	.vdev_op_xlate = vdev_raidz_xlate,
5002 	.vdev_op_rebuild_asize = NULL,
5003 	.vdev_op_metaslab_init = NULL,
5004 	.vdev_op_config_generate = vdev_raidz_config_generate,
5005 	.vdev_op_nparity = vdev_raidz_nparity,
5006 	.vdev_op_ndisks = vdev_raidz_ndisks,
5007 	.vdev_op_type = VDEV_TYPE_RAIDZ,	/* name of this vdev type */
5008 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
5009 };
5010 
5011 /* BEGIN CSTYLED */
5012 ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_reflow_bytes, ULONG, ZMOD_RW,
5013 	"For testing, pause RAIDZ expansion after reflowing this many bytes");
5014 ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_copy_bytes, ULONG, ZMOD_RW,
5015 	"Max amount of concurrent i/o for RAIDZ expansion");
5016 ZFS_MODULE_PARAM(zfs_vdev, raidz_, io_aggregate_rows, ULONG, ZMOD_RW,
5017 	"For expanded RAIDZ, aggregate reads that have more rows than this");
5018 ZFS_MODULE_PARAM(zfs, zfs_, scrub_after_expand, INT, ZMOD_RW,
5019 	"For expanded RAIDZ, automatically start a pool scrub when expansion "
5020 	"completes");
5021 /* END CSTYLED */
5022