1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/abd.h>
34 #include <sys/fs/zfs.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/vdev_raidz.h>
37 #include <sys/vdev_raidz_impl.h>
38 
39 #ifdef ZFS_DEBUG
40 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_raidz_io_verify() */
41 #endif
42 
43 /*
44  * Virtual device vector for RAID-Z.
45  *
46  * This vdev supports single, double, and triple parity. For single parity,
47  * we use a simple XOR of all the data columns. For double or triple parity,
48  * we use a special case of Reed-Solomon coding. This extends the
49  * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
50  * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
51  * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
52  * former is also based. The latter is designed to provide higher performance
53  * for writes.
54  *
55  * Note that the Plank paper claimed to support arbitrary N+M, but was then
56  * amended six years later identifying a critical flaw that invalidates its
57  * claims. Nevertheless, the technique can be adapted to work for up to
58  * triple parity. For additional parity, the amendment "Note: Correction to
59  * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
60  * is viable, but the additional complexity means that write performance will
61  * suffer.
62  *
63  * All of the methods above operate on a Galois field, defined over the
64  * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
65  * can be expressed with a single byte. Briefly, the operations on the
66  * field are defined as follows:
67  *
68  *   o addition (+) is represented by a bitwise XOR
69  *   o subtraction (-) is therefore identical to addition: A + B = A - B
70  *   o multiplication of A by 2 is defined by the following bitwise expression:
71  *
72  *	(A * 2)_7 = A_6
73  *	(A * 2)_6 = A_5
74  *	(A * 2)_5 = A_4
75  *	(A * 2)_4 = A_3 + A_7
76  *	(A * 2)_3 = A_2 + A_7
77  *	(A * 2)_2 = A_1 + A_7
78  *	(A * 2)_1 = A_0
79  *	(A * 2)_0 = A_7
80  *
81  * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
82  * As an aside, this multiplication is derived from the error correcting
83  * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
84  *
85  * Observe that any number in the field (except for 0) can be expressed as a
86  * power of 2 -- a generator for the field. We store a table of the powers of
87  * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
88  * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
89  * than field addition). The inverse of a field element A (A^-1) is therefore
90  * A ^ (255 - 1) = A^254.
91  *
92  * The up-to-three parity columns, P, Q, R over several data columns,
93  * D_0, ... D_n-1, can be expressed by field operations:
94  *
95  *	P = D_0 + D_1 + ... + D_n-2 + D_n-1
96  *	Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
97  *	  = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
98  *	R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
99  *	  = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
100  *
101  * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
102  * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
103  * independent coefficients. (There are no additional coefficients that have
104  * this property which is why the uncorrected Plank method breaks down.)
105  *
106  * See the reconstruction code below for how P, Q and R can used individually
107  * or in concert to recover missing data columns.
108  */
109 
110 #define	VDEV_RAIDZ_P		0
111 #define	VDEV_RAIDZ_Q		1
112 #define	VDEV_RAIDZ_R		2
113 
114 #define	VDEV_RAIDZ_MUL_2(x)	(((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
115 #define	VDEV_RAIDZ_MUL_4(x)	(VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
116 
117 /*
118  * We provide a mechanism to perform the field multiplication operation on a
119  * 64-bit value all at once rather than a byte at a time. This works by
120  * creating a mask from the top bit in each byte and using that to
121  * conditionally apply the XOR of 0x1d.
122  */
123 #define	VDEV_RAIDZ_64MUL_2(x, mask) \
124 { \
125 	(mask) = (x) & 0x8080808080808080ULL; \
126 	(mask) = ((mask) << 1) - ((mask) >> 7); \
127 	(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
128 	    ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
129 }
130 
131 #define	VDEV_RAIDZ_64MUL_4(x, mask) \
132 { \
133 	VDEV_RAIDZ_64MUL_2((x), mask); \
134 	VDEV_RAIDZ_64MUL_2((x), mask); \
135 }
136 
137 void
138 vdev_raidz_map_free(raidz_map_t *rm)
139 {
140 	int c;
141 
142 	for (c = 0; c < rm->rm_firstdatacol; c++) {
143 		abd_free(rm->rm_col[c].rc_abd);
144 
145 		if (rm->rm_col[c].rc_gdata != NULL)
146 			abd_free(rm->rm_col[c].rc_gdata);
147 	}
148 
149 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
150 		abd_put(rm->rm_col[c].rc_abd);
151 
152 	if (rm->rm_abd_copy != NULL)
153 		abd_free(rm->rm_abd_copy);
154 
155 	kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
156 }
157 
158 static void
159 vdev_raidz_map_free_vsd(zio_t *zio)
160 {
161 	raidz_map_t *rm = zio->io_vsd;
162 
163 	ASSERT0(rm->rm_freed);
164 	rm->rm_freed = 1;
165 
166 	if (rm->rm_reports == 0)
167 		vdev_raidz_map_free(rm);
168 }
169 
170 /*ARGSUSED*/
171 static void
172 vdev_raidz_cksum_free(void *arg, size_t ignored)
173 {
174 	raidz_map_t *rm = arg;
175 
176 	ASSERT3U(rm->rm_reports, >, 0);
177 
178 	if (--rm->rm_reports == 0 && rm->rm_freed != 0)
179 		vdev_raidz_map_free(rm);
180 }
181 
182 static void
183 vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
184 {
185 	raidz_map_t *rm = zcr->zcr_cbdata;
186 	const size_t c = zcr->zcr_cbinfo;
187 	size_t x, offset;
188 
189 	const abd_t *good = NULL;
190 	const abd_t *bad = rm->rm_col[c].rc_abd;
191 
192 	if (good_data == NULL) {
193 		zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
194 		return;
195 	}
196 
197 	if (c < rm->rm_firstdatacol) {
198 		/*
199 		 * The first time through, calculate the parity blocks for
200 		 * the good data (this relies on the fact that the good
201 		 * data never changes for a given logical ZIO)
202 		 */
203 		if (rm->rm_col[0].rc_gdata == NULL) {
204 			abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY];
205 
206 			/*
207 			 * Set up the rm_col[]s to generate the parity for
208 			 * good_data, first saving the parity bufs and
209 			 * replacing them with buffers to hold the result.
210 			 */
211 			for (x = 0; x < rm->rm_firstdatacol; x++) {
212 				bad_parity[x] = rm->rm_col[x].rc_abd;
213 				rm->rm_col[x].rc_abd =
214 				    rm->rm_col[x].rc_gdata =
215 				    abd_alloc_sametype(rm->rm_col[x].rc_abd,
216 				    rm->rm_col[x].rc_size);
217 			}
218 
219 			/* fill in the data columns from good_data */
220 			offset = 0;
221 			for (; x < rm->rm_cols; x++) {
222 				abd_put(rm->rm_col[x].rc_abd);
223 
224 				rm->rm_col[x].rc_abd =
225 				    abd_get_offset_size((abd_t *)good_data,
226 				    offset, rm->rm_col[x].rc_size);
227 				offset += rm->rm_col[x].rc_size;
228 			}
229 
230 			/*
231 			 * Construct the parity from the good data.
232 			 */
233 			vdev_raidz_generate_parity(rm);
234 
235 			/* restore everything back to its original state */
236 			for (x = 0; x < rm->rm_firstdatacol; x++)
237 				rm->rm_col[x].rc_abd = bad_parity[x];
238 
239 			offset = 0;
240 			for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
241 				abd_put(rm->rm_col[x].rc_abd);
242 				rm->rm_col[x].rc_abd = abd_get_offset_size(
243 				    rm->rm_abd_copy, offset,
244 				    rm->rm_col[x].rc_size);
245 				offset += rm->rm_col[x].rc_size;
246 			}
247 		}
248 
249 		ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
250 		good = abd_get_offset_size(rm->rm_col[c].rc_gdata, 0,
251 		    rm->rm_col[c].rc_size);
252 	} else {
253 		/* adjust good_data to point at the start of our column */
254 		offset = 0;
255 		for (x = rm->rm_firstdatacol; x < c; x++)
256 			offset += rm->rm_col[x].rc_size;
257 
258 		good = abd_get_offset_size((abd_t *)good_data, offset,
259 		    rm->rm_col[c].rc_size);
260 	}
261 
262 	/* we drop the ereport if it ends up that the data was good */
263 	zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
264 	abd_put((abd_t *)good);
265 }
266 
267 /*
268  * Invoked indirectly by zfs_ereport_start_checksum(), called
269  * below when our read operation fails completely.  The main point
270  * is to keep a copy of everything we read from disk, so that at
271  * vdev_raidz_cksum_finish() time we can compare it with the good data.
272  */
273 static void
274 vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
275 {
276 	size_t c = (size_t)(uintptr_t)arg;
277 	size_t offset;
278 
279 	raidz_map_t *rm = zio->io_vsd;
280 	size_t size;
281 
282 	/* set up the report and bump the refcount  */
283 	zcr->zcr_cbdata = rm;
284 	zcr->zcr_cbinfo = c;
285 	zcr->zcr_finish = vdev_raidz_cksum_finish;
286 	zcr->zcr_free = vdev_raidz_cksum_free;
287 
288 	rm->rm_reports++;
289 	ASSERT3U(rm->rm_reports, >, 0);
290 
291 	if (rm->rm_abd_copy != NULL)
292 		return;
293 
294 	/*
295 	 * It's the first time we're called for this raidz_map_t, so we need
296 	 * to copy the data aside; there's no guarantee that our zio's buffer
297 	 * won't be re-used for something else.
298 	 *
299 	 * Our parity data is already in separate buffers, so there's no need
300 	 * to copy them.
301 	 */
302 
303 	size = 0;
304 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
305 		size += rm->rm_col[c].rc_size;
306 
307 	rm->rm_abd_copy = abd_alloc_for_io(size, B_FALSE);
308 
309 	for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
310 		raidz_col_t *col = &rm->rm_col[c];
311 		abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset,
312 		    col->rc_size);
313 
314 		abd_copy(tmp, col->rc_abd, col->rc_size);
315 
316 		abd_put(col->rc_abd);
317 		col->rc_abd = tmp;
318 
319 		offset += col->rc_size;
320 	}
321 	ASSERT3U(offset, ==, size);
322 }
323 
324 static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
325 	.vsd_free = vdev_raidz_map_free_vsd,
326 	.vsd_cksum_report = vdev_raidz_cksum_report
327 };
328 
329 /*
330  * Divides the IO evenly across all child vdevs; usually, dcols is
331  * the number of children in the target vdev.
332  *
333  * Avoid inlining the function to keep vdev_raidz_io_start(), which
334  * is this functions only caller, as small as possible on the stack.
335  */
336 noinline raidz_map_t *
337 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
338     uint64_t nparity)
339 {
340 	raidz_map_t *rm;
341 	/* The starting RAIDZ (parent) vdev sector of the block. */
342 	uint64_t b = zio->io_offset >> ashift;
343 	/* The zio's size in units of the vdev's minimum sector size. */
344 	uint64_t s = zio->io_size >> ashift;
345 	/* The first column for this stripe. */
346 	uint64_t f = b % dcols;
347 	/* The starting byte offset on each child vdev. */
348 	uint64_t o = (b / dcols) << ashift;
349 	uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
350 	uint64_t off = 0;
351 
352 	/*
353 	 * "Quotient": The number of data sectors for this stripe on all but
354 	 * the "big column" child vdevs that also contain "remainder" data.
355 	 */
356 	q = s / (dcols - nparity);
357 
358 	/*
359 	 * "Remainder": The number of partial stripe data sectors in this I/O.
360 	 * This will add a sector to some, but not all, child vdevs.
361 	 */
362 	r = s - q * (dcols - nparity);
363 
364 	/* The number of "big columns" - those which contain remainder data. */
365 	bc = (r == 0 ? 0 : r + nparity);
366 
367 	/*
368 	 * The total number of data and parity sectors associated with
369 	 * this I/O.
370 	 */
371 	tot = s + nparity * (q + (r == 0 ? 0 : 1));
372 
373 	/* acols: The columns that will be accessed. */
374 	/* scols: The columns that will be accessed or skipped. */
375 	if (q == 0) {
376 		/* Our I/O request doesn't span all child vdevs. */
377 		acols = bc;
378 		scols = MIN(dcols, roundup(bc, nparity + 1));
379 	} else {
380 		acols = dcols;
381 		scols = dcols;
382 	}
383 
384 	ASSERT3U(acols, <=, scols);
385 
386 	rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
387 
388 	rm->rm_cols = acols;
389 	rm->rm_scols = scols;
390 	rm->rm_bigcols = bc;
391 	rm->rm_skipstart = bc;
392 	rm->rm_missingdata = 0;
393 	rm->rm_missingparity = 0;
394 	rm->rm_firstdatacol = nparity;
395 	rm->rm_abd_copy = NULL;
396 	rm->rm_reports = 0;
397 	rm->rm_freed = 0;
398 	rm->rm_ecksuminjected = 0;
399 
400 	asize = 0;
401 
402 	for (c = 0; c < scols; c++) {
403 		col = f + c;
404 		coff = o;
405 		if (col >= dcols) {
406 			col -= dcols;
407 			coff += 1ULL << ashift;
408 		}
409 		rm->rm_col[c].rc_devidx = col;
410 		rm->rm_col[c].rc_offset = coff;
411 		rm->rm_col[c].rc_abd = NULL;
412 		rm->rm_col[c].rc_gdata = NULL;
413 		rm->rm_col[c].rc_error = 0;
414 		rm->rm_col[c].rc_tried = 0;
415 		rm->rm_col[c].rc_skipped = 0;
416 
417 		if (c >= acols)
418 			rm->rm_col[c].rc_size = 0;
419 		else if (c < bc)
420 			rm->rm_col[c].rc_size = (q + 1) << ashift;
421 		else
422 			rm->rm_col[c].rc_size = q << ashift;
423 
424 		asize += rm->rm_col[c].rc_size;
425 	}
426 
427 	ASSERT3U(asize, ==, tot << ashift);
428 	rm->rm_asize = roundup(asize, (nparity + 1) << ashift);
429 	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
430 	ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << ashift);
431 	ASSERT3U(rm->rm_nskip, <=, nparity);
432 
433 	for (c = 0; c < rm->rm_firstdatacol; c++)
434 		rm->rm_col[c].rc_abd =
435 		    abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE);
436 
437 	rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
438 	    rm->rm_col[c].rc_size);
439 	off = rm->rm_col[c].rc_size;
440 
441 	for (c = c + 1; c < acols; c++) {
442 		rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off,
443 		    rm->rm_col[c].rc_size);
444 		off += rm->rm_col[c].rc_size;
445 	}
446 
447 	/*
448 	 * If all data stored spans all columns, there's a danger that parity
449 	 * will always be on the same device and, since parity isn't read
450 	 * during normal operation, that device's I/O bandwidth won't be
451 	 * used effectively. We therefore switch the parity every 1MB.
452 	 *
453 	 * ... at least that was, ostensibly, the theory. As a practical
454 	 * matter unless we juggle the parity between all devices evenly, we
455 	 * won't see any benefit. Further, occasional writes that aren't a
456 	 * multiple of the LCM of the number of children and the minimum
457 	 * stripe width are sufficient to avoid pessimal behavior.
458 	 * Unfortunately, this decision created an implicit on-disk format
459 	 * requirement that we need to support for all eternity, but only
460 	 * for single-parity RAID-Z.
461 	 *
462 	 * If we intend to skip a sector in the zeroth column for padding
463 	 * we must make sure to note this swap. We will never intend to
464 	 * skip the first column since at least one data and one parity
465 	 * column must appear in each row.
466 	 */
467 	ASSERT(rm->rm_cols >= 2);
468 	ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
469 
470 	if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
471 		devidx = rm->rm_col[0].rc_devidx;
472 		o = rm->rm_col[0].rc_offset;
473 		rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
474 		rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
475 		rm->rm_col[1].rc_devidx = devidx;
476 		rm->rm_col[1].rc_offset = o;
477 
478 		if (rm->rm_skipstart == 0)
479 			rm->rm_skipstart = 1;
480 	}
481 
482 	zio->io_vsd = rm;
483 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
484 
485 	/* init RAIDZ parity ops */
486 	rm->rm_ops = vdev_raidz_math_get_ops();
487 
488 	return (rm);
489 }
490 
491 struct pqr_struct {
492 	uint64_t *p;
493 	uint64_t *q;
494 	uint64_t *r;
495 };
496 
497 static int
498 vdev_raidz_p_func(void *buf, size_t size, void *private)
499 {
500 	struct pqr_struct *pqr = private;
501 	const uint64_t *src = buf;
502 	int i, cnt = size / sizeof (src[0]);
503 
504 	ASSERT(pqr->p && !pqr->q && !pqr->r);
505 
506 	for (i = 0; i < cnt; i++, src++, pqr->p++)
507 		*pqr->p ^= *src;
508 
509 	return (0);
510 }
511 
512 static int
513 vdev_raidz_pq_func(void *buf, size_t size, void *private)
514 {
515 	struct pqr_struct *pqr = private;
516 	const uint64_t *src = buf;
517 	uint64_t mask;
518 	int i, cnt = size / sizeof (src[0]);
519 
520 	ASSERT(pqr->p && pqr->q && !pqr->r);
521 
522 	for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
523 		*pqr->p ^= *src;
524 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
525 		*pqr->q ^= *src;
526 	}
527 
528 	return (0);
529 }
530 
531 static int
532 vdev_raidz_pqr_func(void *buf, size_t size, void *private)
533 {
534 	struct pqr_struct *pqr = private;
535 	const uint64_t *src = buf;
536 	uint64_t mask;
537 	int i, cnt = size / sizeof (src[0]);
538 
539 	ASSERT(pqr->p && pqr->q && pqr->r);
540 
541 	for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
542 		*pqr->p ^= *src;
543 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
544 		*pqr->q ^= *src;
545 		VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
546 		*pqr->r ^= *src;
547 	}
548 
549 	return (0);
550 }
551 
552 static void
553 vdev_raidz_generate_parity_p(raidz_map_t *rm)
554 {
555 	uint64_t *p;
556 	int c;
557 	abd_t *src;
558 
559 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
560 		src = rm->rm_col[c].rc_abd;
561 		p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
562 
563 		if (c == rm->rm_firstdatacol) {
564 			abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
565 		} else {
566 			struct pqr_struct pqr = { p, NULL, NULL };
567 			(void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
568 			    vdev_raidz_p_func, &pqr);
569 		}
570 	}
571 }
572 
573 static void
574 vdev_raidz_generate_parity_pq(raidz_map_t *rm)
575 {
576 	uint64_t *p, *q, pcnt, ccnt, mask, i;
577 	int c;
578 	abd_t *src;
579 
580 	pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
581 	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
582 	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);
583 
584 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
585 		src = rm->rm_col[c].rc_abd;
586 		p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
587 		q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
588 
589 		ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
590 
591 		if (c == rm->rm_firstdatacol) {
592 			ASSERT(ccnt == pcnt || ccnt == 0);
593 			abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
594 			(void) memcpy(q, p, rm->rm_col[c].rc_size);
595 
596 			for (i = ccnt; i < pcnt; i++) {
597 				p[i] = 0;
598 				q[i] = 0;
599 			}
600 		} else {
601 			struct pqr_struct pqr = { p, q, NULL };
602 
603 			ASSERT(ccnt <= pcnt);
604 			(void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
605 			    vdev_raidz_pq_func, &pqr);
606 
607 			/*
608 			 * Treat short columns as though they are full of 0s.
609 			 * Note that there's therefore nothing needed for P.
610 			 */
611 			for (i = ccnt; i < pcnt; i++) {
612 				VDEV_RAIDZ_64MUL_2(q[i], mask);
613 			}
614 		}
615 	}
616 }
617 
618 static void
619 vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
620 {
621 	uint64_t *p, *q, *r, pcnt, ccnt, mask, i;
622 	int c;
623 	abd_t *src;
624 
625 	pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
626 	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
627 	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);
628 	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
629 	    rm->rm_col[VDEV_RAIDZ_R].rc_size);
630 
631 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
632 		src = rm->rm_col[c].rc_abd;
633 		p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
634 		q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
635 		r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd);
636 
637 		ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
638 
639 		if (c == rm->rm_firstdatacol) {
640 			ASSERT(ccnt == pcnt || ccnt == 0);
641 			abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
642 			(void) memcpy(q, p, rm->rm_col[c].rc_size);
643 			(void) memcpy(r, p, rm->rm_col[c].rc_size);
644 
645 			for (i = ccnt; i < pcnt; i++) {
646 				p[i] = 0;
647 				q[i] = 0;
648 				r[i] = 0;
649 			}
650 		} else {
651 			struct pqr_struct pqr = { p, q, r };
652 
653 			ASSERT(ccnt <= pcnt);
654 			(void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
655 			    vdev_raidz_pqr_func, &pqr);
656 
657 			/*
658 			 * Treat short columns as though they are full of 0s.
659 			 * Note that there's therefore nothing needed for P.
660 			 */
661 			for (i = ccnt; i < pcnt; i++) {
662 				VDEV_RAIDZ_64MUL_2(q[i], mask);
663 				VDEV_RAIDZ_64MUL_4(r[i], mask);
664 			}
665 		}
666 	}
667 }
668 
669 /*
670  * Generate RAID parity in the first virtual columns according to the number of
671  * parity columns available.
672  */
673 void
674 vdev_raidz_generate_parity(raidz_map_t *rm)
675 {
676 	/* Generate using the new math implementation */
677 	if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
678 		return;
679 
680 	switch (rm->rm_firstdatacol) {
681 	case 1:
682 		vdev_raidz_generate_parity_p(rm);
683 		break;
684 	case 2:
685 		vdev_raidz_generate_parity_pq(rm);
686 		break;
687 	case 3:
688 		vdev_raidz_generate_parity_pqr(rm);
689 		break;
690 	default:
691 		cmn_err(CE_PANIC, "invalid RAID-Z configuration");
692 	}
693 }
694 
695 /* ARGSUSED */
696 static int
697 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
698 {
699 	uint64_t *dst = dbuf;
700 	uint64_t *src = sbuf;
701 	int cnt = size / sizeof (src[0]);
702 
703 	for (int i = 0; i < cnt; i++) {
704 		dst[i] ^= src[i];
705 	}
706 
707 	return (0);
708 }
709 
710 /* ARGSUSED */
711 static int
712 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
713     void *private)
714 {
715 	uint64_t *dst = dbuf;
716 	uint64_t *src = sbuf;
717 	uint64_t mask;
718 	int cnt = size / sizeof (dst[0]);
719 
720 	for (int i = 0; i < cnt; i++, dst++, src++) {
721 		VDEV_RAIDZ_64MUL_2(*dst, mask);
722 		*dst ^= *src;
723 	}
724 
725 	return (0);
726 }
727 
728 /* ARGSUSED */
729 static int
730 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
731 {
732 	uint64_t *dst = buf;
733 	uint64_t mask;
734 	int cnt = size / sizeof (dst[0]);
735 
736 	for (int i = 0; i < cnt; i++, dst++) {
737 		/* same operation as vdev_raidz_reconst_q_pre_func() on dst */
738 		VDEV_RAIDZ_64MUL_2(*dst, mask);
739 	}
740 
741 	return (0);
742 }
743 
744 struct reconst_q_struct {
745 	uint64_t *q;
746 	int exp;
747 };
748 
749 static int
750 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
751 {
752 	struct reconst_q_struct *rq = private;
753 	uint64_t *dst = buf;
754 	int cnt = size / sizeof (dst[0]);
755 
756 	for (int i = 0; i < cnt; i++, dst++, rq->q++) {
757 		int j;
758 		uint8_t *b;
759 
760 		*dst ^= *rq->q;
761 		for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
762 			*b = vdev_raidz_exp2(*b, rq->exp);
763 		}
764 	}
765 
766 	return (0);
767 }
768 
769 struct reconst_pq_struct {
770 	uint8_t *p;
771 	uint8_t *q;
772 	uint8_t *pxy;
773 	uint8_t *qxy;
774 	int aexp;
775 	int bexp;
776 };
777 
778 static int
779 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
780 {
781 	struct reconst_pq_struct *rpq = private;
782 	uint8_t *xd = xbuf;
783 	uint8_t *yd = ybuf;
784 
785 	for (int i = 0; i < size;
786 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
787 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
788 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
789 		*yd = *rpq->p ^ *rpq->pxy ^ *xd;
790 	}
791 
792 	return (0);
793 }
794 
795 static int
796 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
797 {
798 	struct reconst_pq_struct *rpq = private;
799 	uint8_t *xd = xbuf;
800 
801 	for (int i = 0; i < size;
802 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
803 		/* same operation as vdev_raidz_reconst_pq_func() on xd */
804 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
805 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
806 	}
807 
808 	return (0);
809 }
810 
811 static int
812 vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
813 {
814 	int x = tgts[0];
815 	int c;
816 	abd_t *dst, *src;
817 
818 	ASSERT(ntgts == 1);
819 	ASSERT(x >= rm->rm_firstdatacol);
820 	ASSERT(x < rm->rm_cols);
821 
822 	ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size);
823 	ASSERT(rm->rm_col[x].rc_size > 0);
824 
825 	src = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
826 	dst = rm->rm_col[x].rc_abd;
827 
828 	abd_copy_from_buf(dst, abd_to_buf(src), rm->rm_col[x].rc_size);
829 
830 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
831 		uint64_t size = MIN(rm->rm_col[x].rc_size,
832 		    rm->rm_col[c].rc_size);
833 
834 		src = rm->rm_col[c].rc_abd;
835 		dst = rm->rm_col[x].rc_abd;
836 
837 		if (c == x)
838 			continue;
839 
840 		(void) abd_iterate_func2(dst, src, 0, 0, size,
841 		    vdev_raidz_reconst_p_func, NULL);
842 	}
843 
844 	return (1 << VDEV_RAIDZ_P);
845 }
846 
847 static int
848 vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
849 {
850 	int x = tgts[0];
851 	int c, exp;
852 	abd_t *dst, *src;
853 
854 	ASSERT(ntgts == 1);
855 
856 	ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size);
857 
858 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
859 		uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size,
860 		    rm->rm_col[c].rc_size);
861 
862 		src = rm->rm_col[c].rc_abd;
863 		dst = rm->rm_col[x].rc_abd;
864 
865 		if (c == rm->rm_firstdatacol) {
866 			abd_copy(dst, src, size);
867 			if (rm->rm_col[x].rc_size > size)
868 				abd_zero_off(dst, size,
869 				    rm->rm_col[x].rc_size - size);
870 
871 		} else {
872 			ASSERT3U(size, <=, rm->rm_col[x].rc_size);
873 			(void) abd_iterate_func2(dst, src, 0, 0, size,
874 			    vdev_raidz_reconst_q_pre_func, NULL);
875 			(void) abd_iterate_func(dst,
876 			    size, rm->rm_col[x].rc_size - size,
877 			    vdev_raidz_reconst_q_pre_tail_func, NULL);
878 		}
879 	}
880 
881 	src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
882 	dst = rm->rm_col[x].rc_abd;
883 	exp = 255 - (rm->rm_cols - 1 - x);
884 
885 	struct reconst_q_struct rq = { abd_to_buf(src), exp };
886 	(void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size,
887 	    vdev_raidz_reconst_q_post_func, &rq);
888 
889 	return (1 << VDEV_RAIDZ_Q);
890 }
891 
892 static int
893 vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
894 {
895 	uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
896 	abd_t *pdata, *qdata;
897 	uint64_t xsize, ysize;
898 	int x = tgts[0];
899 	int y = tgts[1];
900 	abd_t *xd, *yd;
901 
902 	ASSERT(ntgts == 2);
903 	ASSERT(x < y);
904 	ASSERT(x >= rm->rm_firstdatacol);
905 	ASSERT(y < rm->rm_cols);
906 
907 	ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
908 
909 	/*
910 	 * Move the parity data aside -- we're going to compute parity as
911 	 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
912 	 * reuse the parity generation mechanism without trashing the actual
913 	 * parity so we make those columns appear to be full of zeros by
914 	 * setting their lengths to zero.
915 	 */
916 	pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
917 	qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
918 	xsize = rm->rm_col[x].rc_size;
919 	ysize = rm->rm_col[y].rc_size;
920 
921 	rm->rm_col[VDEV_RAIDZ_P].rc_abd =
922 	    abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
923 	rm->rm_col[VDEV_RAIDZ_Q].rc_abd =
924 	    abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
925 	rm->rm_col[x].rc_size = 0;
926 	rm->rm_col[y].rc_size = 0;
927 
928 	vdev_raidz_generate_parity_pq(rm);
929 
930 	rm->rm_col[x].rc_size = xsize;
931 	rm->rm_col[y].rc_size = ysize;
932 
933 	p = abd_to_buf(pdata);
934 	q = abd_to_buf(qdata);
935 	pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
936 	qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
937 	xd = rm->rm_col[x].rc_abd;
938 	yd = rm->rm_col[y].rc_abd;
939 
940 	/*
941 	 * We now have:
942 	 *	Pxy = P + D_x + D_y
943 	 *	Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
944 	 *
945 	 * We can then solve for D_x:
946 	 *	D_x = A * (P + Pxy) + B * (Q + Qxy)
947 	 * where
948 	 *	A = 2^(x - y) * (2^(x - y) + 1)^-1
949 	 *	B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
950 	 *
951 	 * With D_x in hand, we can easily solve for D_y:
952 	 *	D_y = P + Pxy + D_x
953 	 */
954 
955 	a = vdev_raidz_pow2[255 + x - y];
956 	b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
957 	tmp = 255 - vdev_raidz_log2[a ^ 1];
958 
959 	aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
960 	bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
961 
962 	ASSERT3U(xsize, >=, ysize);
963 	struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
964 
965 	(void) abd_iterate_func2(xd, yd, 0, 0, ysize,
966 	    vdev_raidz_reconst_pq_func, &rpq);
967 	(void) abd_iterate_func(xd, ysize, xsize - ysize,
968 	    vdev_raidz_reconst_pq_tail_func, &rpq);
969 
970 	abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
971 	abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
972 
973 	/*
974 	 * Restore the saved parity data.
975 	 */
976 	rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata;
977 	rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata;
978 
979 	return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
980 }
981 
982 /* BEGIN CSTYLED */
983 /*
984  * In the general case of reconstruction, we must solve the system of linear
985  * equations defined by the coefficients used to generate parity as well as
986  * the contents of the data and parity disks. This can be expressed with
987  * vectors for the original data (D) and the actual data (d) and parity (p)
988  * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
989  *
990  *            __   __                     __     __
991  *            |     |         __     __   |  p_0  |
992  *            |  V  |         |  D_0  |   | p_m-1 |
993  *            |     |    x    |   :   | = |  d_0  |
994  *            |  I  |         | D_n-1 |   |   :   |
995  *            |     |         ~~     ~~   | d_n-1 |
996  *            ~~   ~~                     ~~     ~~
997  *
998  * I is simply a square identity matrix of size n, and V is a vandermonde
999  * matrix defined by the coefficients we chose for the various parity columns
1000  * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
1001  * computation as well as linear separability.
1002  *
1003  *      __               __               __     __
1004  *      |   1   ..  1 1 1 |               |  p_0  |
1005  *      | 2^n-1 ..  4 2 1 |   __     __   |   :   |
1006  *      | 4^n-1 .. 16 4 1 |   |  D_0  |   | p_m-1 |
1007  *      |   1   ..  0 0 0 |   |  D_1  |   |  d_0  |
1008  *      |   0   ..  0 0 0 | x |  D_2  | = |  d_1  |
1009  *      |   :       : : : |   |   :   |   |  d_2  |
1010  *      |   0   ..  1 0 0 |   | D_n-1 |   |   :   |
1011  *      |   0   ..  0 1 0 |   ~~     ~~   |   :   |
1012  *      |   0   ..  0 0 1 |               | d_n-1 |
1013  *      ~~               ~~               ~~     ~~
1014  *
1015  * Note that I, V, d, and p are known. To compute D, we must invert the
1016  * matrix and use the known data and parity values to reconstruct the unknown
1017  * data values. We begin by removing the rows in V|I and d|p that correspond
1018  * to failed or missing columns; we then make V|I square (n x n) and d|p
1019  * sized n by removing rows corresponding to unused parity from the bottom up
1020  * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
1021  * using Gauss-Jordan elimination. In the example below we use m=3 parity
1022  * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
1023  *           __                               __
1024  *           |  1   1   1   1   1   1   1   1  |
1025  *           | 128  64  32  16  8   4   2   1  | <-----+-+-- missing disks
1026  *           |  19 205 116  29  64  16  4   1  |      / /
1027  *           |  1   0   0   0   0   0   0   0  |     / /
1028  *           |  0   1   0   0   0   0   0   0  | <--' /
1029  *  (V|I)  = |  0   0   1   0   0   0   0   0  | <---'
1030  *           |  0   0   0   1   0   0   0   0  |
1031  *           |  0   0   0   0   1   0   0   0  |
1032  *           |  0   0   0   0   0   1   0   0  |
1033  *           |  0   0   0   0   0   0   1   0  |
1034  *           |  0   0   0   0   0   0   0   1  |
1035  *           ~~                               ~~
1036  *           __                               __
1037  *           |  1   1   1   1   1   1   1   1  |
1038  *           | 128  64  32  16  8   4   2   1  |
1039  *           |  19 205 116  29  64  16  4   1  |
1040  *           |  1   0   0   0   0   0   0   0  |
1041  *           |  0   1   0   0   0   0   0   0  |
1042  *  (V|I)' = |  0   0   1   0   0   0   0   0  |
1043  *           |  0   0   0   1   0   0   0   0  |
1044  *           |  0   0   0   0   1   0   0   0  |
1045  *           |  0   0   0   0   0   1   0   0  |
1046  *           |  0   0   0   0   0   0   1   0  |
1047  *           |  0   0   0   0   0   0   0   1  |
1048  *           ~~                               ~~
1049  *
1050  * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
1051  * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1052  * matrix is not singular.
1053  * __                                                                 __
1054  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1055  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1056  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1057  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1058  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1059  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1060  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1061  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1062  * ~~                                                                 ~~
1063  * __                                                                 __
1064  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1065  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1066  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1067  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1068  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1069  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1070  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1071  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1072  * ~~                                                                 ~~
1073  * __                                                                 __
1074  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1075  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1076  * |  0  205 116  0   0   0   0   0     0   1   19  29  64  16  4   1  |
1077  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1078  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1079  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1080  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1081  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1082  * ~~                                                                 ~~
1083  * __                                                                 __
1084  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1085  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1086  * |  0   0  185  0   0   0   0   0    205  1  222 208 141 221 201 204 |
1087  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1088  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1089  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1090  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1091  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1092  * ~~                                                                 ~~
1093  * __                                                                 __
1094  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1095  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1096  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1097  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1098  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1099  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1100  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1101  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1102  * ~~                                                                 ~~
1103  * __                                                                 __
1104  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1105  * |  0   1   0   0   0   0   0   0    167 100  5   41 159 169 217 208 |
1106  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1107  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1108  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1109  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1110  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1111  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1112  * ~~                                                                 ~~
1113  *                   __                               __
1114  *                   |  0   0   1   0   0   0   0   0  |
1115  *                   | 167 100  5   41 159 169 217 208 |
1116  *                   | 166 100  4   40 158 168 216 209 |
1117  *       (V|I)'^-1 = |  0   0   0   1   0   0   0   0  |
1118  *                   |  0   0   0   0   1   0   0   0  |
1119  *                   |  0   0   0   0   0   1   0   0  |
1120  *                   |  0   0   0   0   0   0   1   0  |
1121  *                   |  0   0   0   0   0   0   0   1  |
1122  *                   ~~                               ~~
1123  *
1124  * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1125  * of the missing data.
1126  *
1127  * As is apparent from the example above, the only non-trivial rows in the
1128  * inverse matrix correspond to the data disks that we're trying to
1129  * reconstruct. Indeed, those are the only rows we need as the others would
1130  * only be useful for reconstructing data known or assumed to be valid. For
1131  * that reason, we only build the coefficients in the rows that correspond to
1132  * targeted columns.
1133  */
1134 /* END CSTYLED */
1135 
1136 static void
1137 vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
1138     uint8_t **rows)
1139 {
1140 	int i, j;
1141 	int pow;
1142 
1143 	ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
1144 
1145 	/*
1146 	 * Fill in the missing rows of interest.
1147 	 */
1148 	for (i = 0; i < nmap; i++) {
1149 		ASSERT3S(0, <=, map[i]);
1150 		ASSERT3S(map[i], <=, 2);
1151 
1152 		pow = map[i] * n;
1153 		if (pow > 255)
1154 			pow -= 255;
1155 		ASSERT(pow <= 255);
1156 
1157 		for (j = 0; j < n; j++) {
1158 			pow -= map[i];
1159 			if (pow < 0)
1160 				pow += 255;
1161 			rows[i][j] = vdev_raidz_pow2[pow];
1162 		}
1163 	}
1164 }
1165 
1166 static void
1167 vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
1168     uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1169 {
1170 	int i, j, ii, jj;
1171 	uint8_t log;
1172 
1173 	/*
1174 	 * Assert that the first nmissing entries from the array of used
1175 	 * columns correspond to parity columns and that subsequent entries
1176 	 * correspond to data columns.
1177 	 */
1178 	for (i = 0; i < nmissing; i++) {
1179 		ASSERT3S(used[i], <, rm->rm_firstdatacol);
1180 	}
1181 	for (; i < n; i++) {
1182 		ASSERT3S(used[i], >=, rm->rm_firstdatacol);
1183 	}
1184 
1185 	/*
1186 	 * First initialize the storage where we'll compute the inverse rows.
1187 	 */
1188 	for (i = 0; i < nmissing; i++) {
1189 		for (j = 0; j < n; j++) {
1190 			invrows[i][j] = (i == j) ? 1 : 0;
1191 		}
1192 	}
1193 
1194 	/*
1195 	 * Subtract all trivial rows from the rows of consequence.
1196 	 */
1197 	for (i = 0; i < nmissing; i++) {
1198 		for (j = nmissing; j < n; j++) {
1199 			ASSERT3U(used[j], >=, rm->rm_firstdatacol);
1200 			jj = used[j] - rm->rm_firstdatacol;
1201 			ASSERT3S(jj, <, n);
1202 			invrows[i][j] = rows[i][jj];
1203 			rows[i][jj] = 0;
1204 		}
1205 	}
1206 
1207 	/*
1208 	 * For each of the rows of interest, we must normalize it and subtract
1209 	 * a multiple of it from the other rows.
1210 	 */
1211 	for (i = 0; i < nmissing; i++) {
1212 		for (j = 0; j < missing[i]; j++) {
1213 			ASSERT0(rows[i][j]);
1214 		}
1215 		ASSERT3U(rows[i][missing[i]], !=, 0);
1216 
1217 		/*
1218 		 * Compute the inverse of the first element and multiply each
1219 		 * element in the row by that value.
1220 		 */
1221 		log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1222 
1223 		for (j = 0; j < n; j++) {
1224 			rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1225 			invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1226 		}
1227 
1228 		for (ii = 0; ii < nmissing; ii++) {
1229 			if (i == ii)
1230 				continue;
1231 
1232 			ASSERT3U(rows[ii][missing[i]], !=, 0);
1233 
1234 			log = vdev_raidz_log2[rows[ii][missing[i]]];
1235 
1236 			for (j = 0; j < n; j++) {
1237 				rows[ii][j] ^=
1238 				    vdev_raidz_exp2(rows[i][j], log);
1239 				invrows[ii][j] ^=
1240 				    vdev_raidz_exp2(invrows[i][j], log);
1241 			}
1242 		}
1243 	}
1244 
1245 	/*
1246 	 * Verify that the data that is left in the rows are properly part of
1247 	 * an identity matrix.
1248 	 */
1249 	for (i = 0; i < nmissing; i++) {
1250 		for (j = 0; j < n; j++) {
1251 			if (j == missing[i]) {
1252 				ASSERT3U(rows[i][j], ==, 1);
1253 			} else {
1254 				ASSERT0(rows[i][j]);
1255 			}
1256 		}
1257 	}
1258 }
1259 
1260 static void
1261 vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
1262     int *missing, uint8_t **invrows, const uint8_t *used)
1263 {
1264 	int i, j, x, cc, c;
1265 	uint8_t *src;
1266 	uint64_t ccount;
1267 	uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
1268 	uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
1269 	uint8_t log = 0;
1270 	uint8_t val;
1271 	int ll;
1272 	uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1273 	uint8_t *p, *pp;
1274 	size_t psize;
1275 
1276 	psize = sizeof (invlog[0][0]) * n * nmissing;
1277 	p = kmem_alloc(psize, KM_SLEEP);
1278 
1279 	for (pp = p, i = 0; i < nmissing; i++) {
1280 		invlog[i] = pp;
1281 		pp += n;
1282 	}
1283 
1284 	for (i = 0; i < nmissing; i++) {
1285 		for (j = 0; j < n; j++) {
1286 			ASSERT3U(invrows[i][j], !=, 0);
1287 			invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1288 		}
1289 	}
1290 
1291 	for (i = 0; i < n; i++) {
1292 		c = used[i];
1293 		ASSERT3U(c, <, rm->rm_cols);
1294 
1295 		src = abd_to_buf(rm->rm_col[c].rc_abd);
1296 		ccount = rm->rm_col[c].rc_size;
1297 		for (j = 0; j < nmissing; j++) {
1298 			cc = missing[j] + rm->rm_firstdatacol;
1299 			ASSERT3U(cc, >=, rm->rm_firstdatacol);
1300 			ASSERT3U(cc, <, rm->rm_cols);
1301 			ASSERT3U(cc, !=, c);
1302 
1303 			dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd);
1304 			dcount[j] = rm->rm_col[cc].rc_size;
1305 		}
1306 
1307 		ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
1308 
1309 		for (x = 0; x < ccount; x++, src++) {
1310 			if (*src != 0)
1311 				log = vdev_raidz_log2[*src];
1312 
1313 			for (cc = 0; cc < nmissing; cc++) {
1314 				if (x >= dcount[cc])
1315 					continue;
1316 
1317 				if (*src == 0) {
1318 					val = 0;
1319 				} else {
1320 					if ((ll = log + invlog[cc][i]) >= 255)
1321 						ll -= 255;
1322 					val = vdev_raidz_pow2[ll];
1323 				}
1324 
1325 				if (i == 0)
1326 					dst[cc][x] = val;
1327 				else
1328 					dst[cc][x] ^= val;
1329 			}
1330 		}
1331 	}
1332 
1333 	kmem_free(p, psize);
1334 }
1335 
1336 static int
1337 vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
1338 {
1339 	int n, i, c, t, tt;
1340 	int nmissing_rows;
1341 	int missing_rows[VDEV_RAIDZ_MAXPARITY];
1342 	int parity_map[VDEV_RAIDZ_MAXPARITY];
1343 
1344 	uint8_t *p, *pp;
1345 	size_t psize;
1346 
1347 	uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1348 	uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1349 	uint8_t *used;
1350 
1351 	abd_t **bufs = NULL;
1352 
1353 	int code = 0;
1354 
1355 	/*
1356 	 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1357 	 * temporary linear ABDs.
1358 	 */
1359 	if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) {
1360 		bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE);
1361 
1362 		for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1363 			raidz_col_t *col = &rm->rm_col[c];
1364 
1365 			bufs[c] = col->rc_abd;
1366 			col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE);
1367 			abd_copy(col->rc_abd, bufs[c], col->rc_size);
1368 		}
1369 	}
1370 
1371 	n = rm->rm_cols - rm->rm_firstdatacol;
1372 
1373 	/*
1374 	 * Figure out which data columns are missing.
1375 	 */
1376 	nmissing_rows = 0;
1377 	for (t = 0; t < ntgts; t++) {
1378 		if (tgts[t] >= rm->rm_firstdatacol) {
1379 			missing_rows[nmissing_rows++] =
1380 			    tgts[t] - rm->rm_firstdatacol;
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * Figure out which parity columns to use to help generate the missing
1386 	 * data columns.
1387 	 */
1388 	for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1389 		ASSERT(tt < ntgts);
1390 		ASSERT(c < rm->rm_firstdatacol);
1391 
1392 		/*
1393 		 * Skip any targeted parity columns.
1394 		 */
1395 		if (c == tgts[tt]) {
1396 			tt++;
1397 			continue;
1398 		}
1399 
1400 		code |= 1 << c;
1401 
1402 		parity_map[i] = c;
1403 		i++;
1404 	}
1405 
1406 	ASSERT(code != 0);
1407 	ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
1408 
1409 	psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1410 	    nmissing_rows * n + sizeof (used[0]) * n;
1411 	p = kmem_alloc(psize, KM_SLEEP);
1412 
1413 	for (pp = p, i = 0; i < nmissing_rows; i++) {
1414 		rows[i] = pp;
1415 		pp += n;
1416 		invrows[i] = pp;
1417 		pp += n;
1418 	}
1419 	used = pp;
1420 
1421 	for (i = 0; i < nmissing_rows; i++) {
1422 		used[i] = parity_map[i];
1423 	}
1424 
1425 	for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1426 		if (tt < nmissing_rows &&
1427 		    c == missing_rows[tt] + rm->rm_firstdatacol) {
1428 			tt++;
1429 			continue;
1430 		}
1431 
1432 		ASSERT3S(i, <, n);
1433 		used[i] = c;
1434 		i++;
1435 	}
1436 
1437 	/*
1438 	 * Initialize the interesting rows of the matrix.
1439 	 */
1440 	vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
1441 
1442 	/*
1443 	 * Invert the matrix.
1444 	 */
1445 	vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
1446 	    invrows, used);
1447 
1448 	/*
1449 	 * Reconstruct the missing data using the generated matrix.
1450 	 */
1451 	vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
1452 	    invrows, used);
1453 
1454 	kmem_free(p, psize);
1455 
1456 	/*
1457 	 * copy back from temporary linear abds and free them
1458 	 */
1459 	if (bufs) {
1460 		for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1461 			raidz_col_t *col = &rm->rm_col[c];
1462 
1463 			abd_copy(bufs[c], col->rc_abd, col->rc_size);
1464 			abd_free(col->rc_abd);
1465 			col->rc_abd = bufs[c];
1466 		}
1467 		kmem_free(bufs, rm->rm_cols * sizeof (abd_t *));
1468 	}
1469 
1470 	return (code);
1471 }
1472 
1473 int
1474 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
1475 {
1476 	int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
1477 	int ntgts;
1478 	int i, c, ret;
1479 	int code;
1480 	int nbadparity, nbaddata;
1481 	int parity_valid[VDEV_RAIDZ_MAXPARITY];
1482 
1483 	/*
1484 	 * The tgts list must already be sorted.
1485 	 */
1486 	for (i = 1; i < nt; i++) {
1487 		ASSERT(t[i] > t[i - 1]);
1488 	}
1489 
1490 	nbadparity = rm->rm_firstdatacol;
1491 	nbaddata = rm->rm_cols - nbadparity;
1492 	ntgts = 0;
1493 	for (i = 0, c = 0; c < rm->rm_cols; c++) {
1494 		if (c < rm->rm_firstdatacol)
1495 			parity_valid[c] = B_FALSE;
1496 
1497 		if (i < nt && c == t[i]) {
1498 			tgts[ntgts++] = c;
1499 			i++;
1500 		} else if (rm->rm_col[c].rc_error != 0) {
1501 			tgts[ntgts++] = c;
1502 		} else if (c >= rm->rm_firstdatacol) {
1503 			nbaddata--;
1504 		} else {
1505 			parity_valid[c] = B_TRUE;
1506 			nbadparity--;
1507 		}
1508 	}
1509 
1510 	ASSERT(ntgts >= nt);
1511 	ASSERT(nbaddata >= 0);
1512 	ASSERT(nbaddata + nbadparity == ntgts);
1513 
1514 	dt = &tgts[nbadparity];
1515 
1516 	/* Reconstruct using the new math implementation */
1517 	ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
1518 	if (ret != RAIDZ_ORIGINAL_IMPL)
1519 		return (ret);
1520 
1521 	/*
1522 	 * See if we can use any of our optimized reconstruction routines.
1523 	 */
1524 	switch (nbaddata) {
1525 	case 1:
1526 		if (parity_valid[VDEV_RAIDZ_P])
1527 			return (vdev_raidz_reconstruct_p(rm, dt, 1));
1528 
1529 		ASSERT(rm->rm_firstdatacol > 1);
1530 
1531 		if (parity_valid[VDEV_RAIDZ_Q])
1532 			return (vdev_raidz_reconstruct_q(rm, dt, 1));
1533 
1534 		ASSERT(rm->rm_firstdatacol > 2);
1535 		break;
1536 
1537 	case 2:
1538 		ASSERT(rm->rm_firstdatacol > 1);
1539 
1540 		if (parity_valid[VDEV_RAIDZ_P] &&
1541 		    parity_valid[VDEV_RAIDZ_Q])
1542 			return (vdev_raidz_reconstruct_pq(rm, dt, 2));
1543 
1544 		ASSERT(rm->rm_firstdatacol > 2);
1545 
1546 		break;
1547 	}
1548 
1549 	code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
1550 	ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
1551 	ASSERT(code > 0);
1552 	return (code);
1553 }
1554 
1555 static int
1556 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1557     uint64_t *logical_ashift, uint64_t *physical_ashift)
1558 {
1559 	vdev_t *cvd;
1560 	uint64_t nparity = vd->vdev_nparity;
1561 	int c;
1562 	int lasterror = 0;
1563 	int numerrors = 0;
1564 
1565 	ASSERT(nparity > 0);
1566 
1567 	if (nparity > VDEV_RAIDZ_MAXPARITY ||
1568 	    vd->vdev_children < nparity + 1) {
1569 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1570 		return (SET_ERROR(EINVAL));
1571 	}
1572 
1573 	vdev_open_children(vd);
1574 
1575 	for (c = 0; c < vd->vdev_children; c++) {
1576 		cvd = vd->vdev_child[c];
1577 
1578 		if (cvd->vdev_open_error != 0) {
1579 			lasterror = cvd->vdev_open_error;
1580 			numerrors++;
1581 			continue;
1582 		}
1583 
1584 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
1585 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1586 		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
1587 		*physical_ashift = MAX(*physical_ashift,
1588 		    cvd->vdev_physical_ashift);
1589 	}
1590 
1591 	*asize *= vd->vdev_children;
1592 	*max_asize *= vd->vdev_children;
1593 
1594 	if (numerrors > nparity) {
1595 		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1596 		return (lasterror);
1597 	}
1598 
1599 	return (0);
1600 }
1601 
1602 static void
1603 vdev_raidz_close(vdev_t *vd)
1604 {
1605 	int c;
1606 
1607 	for (c = 0; c < vd->vdev_children; c++)
1608 		vdev_close(vd->vdev_child[c]);
1609 }
1610 
1611 static uint64_t
1612 vdev_raidz_asize(vdev_t *vd, uint64_t psize)
1613 {
1614 	uint64_t asize;
1615 	uint64_t ashift = vd->vdev_top->vdev_ashift;
1616 	uint64_t cols = vd->vdev_children;
1617 	uint64_t nparity = vd->vdev_nparity;
1618 
1619 	asize = ((psize - 1) >> ashift) + 1;
1620 	asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1621 	asize = roundup(asize, nparity + 1) << ashift;
1622 
1623 	return (asize);
1624 }
1625 
1626 static void
1627 vdev_raidz_child_done(zio_t *zio)
1628 {
1629 	raidz_col_t *rc = zio->io_private;
1630 
1631 	rc->rc_error = zio->io_error;
1632 	rc->rc_tried = 1;
1633 	rc->rc_skipped = 0;
1634 }
1635 
1636 static void
1637 vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, int col)
1638 {
1639 #ifdef ZFS_DEBUG
1640 	vdev_t *vd = zio->io_vd;
1641 	vdev_t *tvd = vd->vdev_top;
1642 
1643 	range_seg64_t logical_rs, physical_rs;
1644 	logical_rs.rs_start = zio->io_offset;
1645 	logical_rs.rs_end = logical_rs.rs_start +
1646 	    vdev_raidz_asize(zio->io_vd, zio->io_size);
1647 
1648 	raidz_col_t *rc = &rm->rm_col[col];
1649 	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1650 
1651 	vdev_xlate(cvd, &logical_rs, &physical_rs);
1652 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1653 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1654 	/*
1655 	 * It would be nice to assert that rs_end is equal
1656 	 * to rc_offset + rc_size but there might be an
1657 	 * optional I/O at the end that is not accounted in
1658 	 * rc_size.
1659 	 */
1660 	if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
1661 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
1662 		    rc->rc_size + (1 << tvd->vdev_ashift));
1663 	} else {
1664 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
1665 	}
1666 #endif
1667 }
1668 
1669 /*
1670  * Start an IO operation on a RAIDZ VDev
1671  *
1672  * Outline:
1673  * - For write operations:
1674  *   1. Generate the parity data
1675  *   2. Create child zio write operations to each column's vdev, for both
1676  *      data and parity.
1677  *   3. If the column skips any sectors for padding, create optional dummy
1678  *      write zio children for those areas to improve aggregation continuity.
1679  * - For read operations:
1680  *   1. Create child zio read operations to each data column's vdev to read
1681  *      the range of data required for zio.
1682  *   2. If this is a scrub or resilver operation, or if any of the data
1683  *      vdevs have had errors, then create zio read operations to the parity
1684  *      columns' VDevs as well.
1685  */
1686 static void
1687 vdev_raidz_io_start(zio_t *zio)
1688 {
1689 	vdev_t *vd = zio->io_vd;
1690 	vdev_t *tvd = vd->vdev_top;
1691 	vdev_t *cvd;
1692 	raidz_map_t *rm;
1693 	raidz_col_t *rc;
1694 	int c, i;
1695 
1696 	rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1697 	    vd->vdev_nparity);
1698 
1699 	ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
1700 
1701 	if (zio->io_type == ZIO_TYPE_WRITE) {
1702 		vdev_raidz_generate_parity(rm);
1703 
1704 		for (c = 0; c < rm->rm_cols; c++) {
1705 			rc = &rm->rm_col[c];
1706 			cvd = vd->vdev_child[rc->rc_devidx];
1707 
1708 			/*
1709 			 * Verify physical to logical translation.
1710 			 */
1711 			vdev_raidz_io_verify(zio, rm, c);
1712 
1713 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1714 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
1715 			    zio->io_type, zio->io_priority, 0,
1716 			    vdev_raidz_child_done, rc));
1717 		}
1718 
1719 		/*
1720 		 * Generate optional I/Os for any skipped sectors to improve
1721 		 * aggregation contiguity.
1722 		 */
1723 		for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
1724 			ASSERT(c <= rm->rm_scols);
1725 			if (c == rm->rm_scols)
1726 				c = 0;
1727 			rc = &rm->rm_col[c];
1728 			cvd = vd->vdev_child[rc->rc_devidx];
1729 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1730 			    rc->rc_offset + rc->rc_size, NULL,
1731 			    1 << tvd->vdev_ashift,
1732 			    zio->io_type, zio->io_priority,
1733 			    ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
1734 		}
1735 
1736 		zio_execute(zio);
1737 		return;
1738 	}
1739 
1740 	ASSERT(zio->io_type == ZIO_TYPE_READ);
1741 
1742 	/*
1743 	 * Iterate over the columns in reverse order so that we hit the parity
1744 	 * last -- any errors along the way will force us to read the parity.
1745 	 */
1746 	for (c = rm->rm_cols - 1; c >= 0; c--) {
1747 		rc = &rm->rm_col[c];
1748 		cvd = vd->vdev_child[rc->rc_devidx];
1749 		if (!vdev_readable(cvd)) {
1750 			if (c >= rm->rm_firstdatacol)
1751 				rm->rm_missingdata++;
1752 			else
1753 				rm->rm_missingparity++;
1754 			rc->rc_error = SET_ERROR(ENXIO);
1755 			rc->rc_tried = 1;	/* don't even try */
1756 			rc->rc_skipped = 1;
1757 			continue;
1758 		}
1759 		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1760 			if (c >= rm->rm_firstdatacol)
1761 				rm->rm_missingdata++;
1762 			else
1763 				rm->rm_missingparity++;
1764 			rc->rc_error = SET_ERROR(ESTALE);
1765 			rc->rc_skipped = 1;
1766 			continue;
1767 		}
1768 		if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
1769 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1770 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1771 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
1772 			    zio->io_type, zio->io_priority, 0,
1773 			    vdev_raidz_child_done, rc));
1774 		}
1775 	}
1776 
1777 	zio_execute(zio);
1778 }
1779 
1780 
1781 /*
1782  * Report a checksum error for a child of a RAID-Z device.
1783  */
1784 static void
1785 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
1786 {
1787 	vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
1788 
1789 	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1790 		zio_bad_cksum_t zbc;
1791 		raidz_map_t *rm = zio->io_vsd;
1792 
1793 		zbc.zbc_has_cksum = 0;
1794 		zbc.zbc_injected = rm->rm_ecksuminjected;
1795 
1796 		int ret = zfs_ereport_post_checksum(zio->io_spa, vd,
1797 		    &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
1798 		    rc->rc_abd, bad_data, &zbc);
1799 		if (ret != EALREADY) {
1800 			mutex_enter(&vd->vdev_stat_lock);
1801 			vd->vdev_stat.vs_checksum_errors++;
1802 			mutex_exit(&vd->vdev_stat_lock);
1803 		}
1804 	}
1805 }
1806 
1807 /*
1808  * We keep track of whether or not there were any injected errors, so that
1809  * any ereports we generate can note it.
1810  */
1811 static int
1812 raidz_checksum_verify(zio_t *zio)
1813 {
1814 	zio_bad_cksum_t zbc;
1815 	raidz_map_t *rm = zio->io_vsd;
1816 
1817 	bzero(&zbc, sizeof (zio_bad_cksum_t));
1818 
1819 	int ret = zio_checksum_error(zio, &zbc);
1820 	if (ret != 0 && zbc.zbc_injected != 0)
1821 		rm->rm_ecksuminjected = 1;
1822 
1823 	return (ret);
1824 }
1825 
1826 /*
1827  * Generate the parity from the data columns. If we tried and were able to
1828  * read the parity without error, verify that the generated parity matches the
1829  * data we read. If it doesn't, we fire off a checksum error. Return the
1830  * number such failures.
1831  */
1832 static int
1833 raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
1834 {
1835 	abd_t *orig[VDEV_RAIDZ_MAXPARITY];
1836 	int c, ret = 0;
1837 	raidz_col_t *rc;
1838 
1839 	blkptr_t *bp = zio->io_bp;
1840 	enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
1841 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
1842 
1843 	if (checksum == ZIO_CHECKSUM_NOPARITY)
1844 		return (ret);
1845 
1846 	for (c = 0; c < rm->rm_firstdatacol; c++) {
1847 		rc = &rm->rm_col[c];
1848 		if (!rc->rc_tried || rc->rc_error != 0)
1849 			continue;
1850 
1851 		orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size);
1852 		abd_copy(orig[c], rc->rc_abd, rc->rc_size);
1853 	}
1854 
1855 	vdev_raidz_generate_parity(rm);
1856 
1857 	for (c = 0; c < rm->rm_firstdatacol; c++) {
1858 		rc = &rm->rm_col[c];
1859 		if (!rc->rc_tried || rc->rc_error != 0)
1860 			continue;
1861 		if (abd_cmp(orig[c], rc->rc_abd) != 0) {
1862 			raidz_checksum_error(zio, rc, orig[c]);
1863 			rc->rc_error = SET_ERROR(ECKSUM);
1864 			ret++;
1865 		}
1866 		abd_free(orig[c]);
1867 	}
1868 
1869 	return (ret);
1870 }
1871 
1872 static int
1873 vdev_raidz_worst_error(raidz_map_t *rm)
1874 {
1875 	int error = 0;
1876 
1877 	for (int c = 0; c < rm->rm_cols; c++)
1878 		error = zio_worst_error(error, rm->rm_col[c].rc_error);
1879 
1880 	return (error);
1881 }
1882 
1883 /*
1884  * Iterate over all combinations of bad data and attempt a reconstruction.
1885  * Note that the algorithm below is non-optimal because it doesn't take into
1886  * account how reconstruction is actually performed. For example, with
1887  * triple-parity RAID-Z the reconstruction procedure is the same if column 4
1888  * is targeted as invalid as if columns 1 and 4 are targeted since in both
1889  * cases we'd only use parity information in column 0.
1890  */
1891 static int
1892 vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
1893 {
1894 	raidz_map_t *rm = zio->io_vsd;
1895 	raidz_col_t *rc;
1896 	abd_t *orig[VDEV_RAIDZ_MAXPARITY];
1897 	int tstore[VDEV_RAIDZ_MAXPARITY + 2];
1898 	int *tgts = &tstore[1];
1899 	int curr, next, i, c, n;
1900 	int code, ret = 0;
1901 
1902 	ASSERT(total_errors < rm->rm_firstdatacol);
1903 
1904 	/*
1905 	 * This simplifies one edge condition.
1906 	 */
1907 	tgts[-1] = -1;
1908 
1909 	for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
1910 		/*
1911 		 * Initialize the targets array by finding the first n columns
1912 		 * that contain no error.
1913 		 *
1914 		 * If there were no data errors, we need to ensure that we're
1915 		 * always explicitly attempting to reconstruct at least one
1916 		 * data column. To do this, we simply push the highest target
1917 		 * up into the data columns.
1918 		 */
1919 		for (c = 0, i = 0; i < n; i++) {
1920 			if (i == n - 1 && data_errors == 0 &&
1921 			    c < rm->rm_firstdatacol) {
1922 				c = rm->rm_firstdatacol;
1923 			}
1924 
1925 			while (rm->rm_col[c].rc_error != 0) {
1926 				c++;
1927 				ASSERT3S(c, <, rm->rm_cols);
1928 			}
1929 
1930 			tgts[i] = c++;
1931 		}
1932 
1933 		/*
1934 		 * Setting tgts[n] simplifies the other edge condition.
1935 		 */
1936 		tgts[n] = rm->rm_cols;
1937 
1938 		/*
1939 		 * These buffers were allocated in previous iterations.
1940 		 */
1941 		for (i = 0; i < n - 1; i++) {
1942 			ASSERT(orig[i] != NULL);
1943 		}
1944 
1945 		orig[n - 1] = abd_alloc_sametype(rm->rm_col[0].rc_abd,
1946 		    rm->rm_col[0].rc_size);
1947 
1948 		curr = 0;
1949 		next = tgts[curr];
1950 
1951 		while (curr != n) {
1952 			tgts[curr] = next;
1953 			curr = 0;
1954 
1955 			/*
1956 			 * Save off the original data that we're going to
1957 			 * attempt to reconstruct.
1958 			 */
1959 			for (i = 0; i < n; i++) {
1960 				ASSERT(orig[i] != NULL);
1961 				c = tgts[i];
1962 				ASSERT3S(c, >=, 0);
1963 				ASSERT3S(c, <, rm->rm_cols);
1964 				rc = &rm->rm_col[c];
1965 				abd_copy(orig[i], rc->rc_abd, rc->rc_size);
1966 			}
1967 
1968 			/*
1969 			 * Attempt a reconstruction and exit the outer loop on
1970 			 * success.
1971 			 */
1972 			code = vdev_raidz_reconstruct(rm, tgts, n);
1973 			if (raidz_checksum_verify(zio) == 0) {
1974 
1975 				for (i = 0; i < n; i++) {
1976 					c = tgts[i];
1977 					rc = &rm->rm_col[c];
1978 					ASSERT(rc->rc_error == 0);
1979 					if (rc->rc_tried)
1980 						raidz_checksum_error(zio, rc,
1981 						    orig[i]);
1982 					rc->rc_error = SET_ERROR(ECKSUM);
1983 				}
1984 
1985 				ret = code;
1986 				goto done;
1987 			}
1988 
1989 			/*
1990 			 * Restore the original data.
1991 			 */
1992 			for (i = 0; i < n; i++) {
1993 				c = tgts[i];
1994 				rc = &rm->rm_col[c];
1995 				abd_copy(rc->rc_abd, orig[i], rc->rc_size);
1996 			}
1997 
1998 			do {
1999 				/*
2000 				 * Find the next valid column after the curr
2001 				 * position..
2002 				 */
2003 				for (next = tgts[curr] + 1;
2004 				    next < rm->rm_cols &&
2005 				    rm->rm_col[next].rc_error != 0; next++)
2006 					continue;
2007 
2008 				ASSERT(next <= tgts[curr + 1]);
2009 
2010 				/*
2011 				 * If that spot is available, we're done here.
2012 				 */
2013 				if (next != tgts[curr + 1])
2014 					break;
2015 
2016 				/*
2017 				 * Otherwise, find the next valid column after
2018 				 * the previous position.
2019 				 */
2020 				for (c = tgts[curr - 1] + 1;
2021 				    rm->rm_col[c].rc_error != 0; c++)
2022 					continue;
2023 
2024 				tgts[curr] = c;
2025 				curr++;
2026 
2027 			} while (curr != n);
2028 		}
2029 	}
2030 	n--;
2031 done:
2032 	for (i = 0; i < n; i++)
2033 		abd_free(orig[i]);
2034 
2035 	return (ret);
2036 }
2037 
2038 /*
2039  * Complete an IO operation on a RAIDZ VDev
2040  *
2041  * Outline:
2042  * - For write operations:
2043  *   1. Check for errors on the child IOs.
2044  *   2. Return, setting an error code if too few child VDevs were written
2045  *      to reconstruct the data later.  Note that partial writes are
2046  *      considered successful if they can be reconstructed at all.
2047  * - For read operations:
2048  *   1. Check for errors on the child IOs.
2049  *   2. If data errors occurred:
2050  *      a. Try to reassemble the data from the parity available.
2051  *      b. If we haven't yet read the parity drives, read them now.
2052  *      c. If all parity drives have been read but the data still doesn't
2053  *         reassemble with a correct checksum, then try combinatorial
2054  *         reconstruction.
2055  *      d. If that doesn't work, return an error.
2056  *   3. If there were unexpected errors or this is a resilver operation,
2057  *      rewrite the vdevs that had errors.
2058  */
2059 static void
2060 vdev_raidz_io_done(zio_t *zio)
2061 {
2062 	vdev_t *vd = zio->io_vd;
2063 	vdev_t *cvd;
2064 	raidz_map_t *rm = zio->io_vsd;
2065 	raidz_col_t *rc = NULL;
2066 	int unexpected_errors = 0;
2067 	int parity_errors = 0;
2068 	int parity_untried = 0;
2069 	int data_errors = 0;
2070 	int total_errors = 0;
2071 	int n, c;
2072 	int tgts[VDEV_RAIDZ_MAXPARITY];
2073 	int code;
2074 
2075 	ASSERT(zio->io_bp != NULL);  /* XXX need to add code to enforce this */
2076 
2077 	ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
2078 	ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
2079 
2080 	for (c = 0; c < rm->rm_cols; c++) {
2081 		rc = &rm->rm_col[c];
2082 
2083 		if (rc->rc_error) {
2084 			ASSERT(rc->rc_error != ECKSUM);	/* child has no bp */
2085 
2086 			if (c < rm->rm_firstdatacol)
2087 				parity_errors++;
2088 			else
2089 				data_errors++;
2090 
2091 			if (!rc->rc_skipped)
2092 				unexpected_errors++;
2093 
2094 			total_errors++;
2095 		} else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
2096 			parity_untried++;
2097 		}
2098 	}
2099 
2100 	if (zio->io_type == ZIO_TYPE_WRITE) {
2101 		/*
2102 		 * XXX -- for now, treat partial writes as a success.
2103 		 * (If we couldn't write enough columns to reconstruct
2104 		 * the data, the I/O failed.  Otherwise, good enough.)
2105 		 *
2106 		 * Now that we support write reallocation, it would be better
2107 		 * to treat partial failure as real failure unless there are
2108 		 * no non-degraded top-level vdevs left, and not update DTLs
2109 		 * if we intend to reallocate.
2110 		 */
2111 		/* XXPOLICY */
2112 		if (total_errors > rm->rm_firstdatacol)
2113 			zio->io_error = vdev_raidz_worst_error(rm);
2114 
2115 		return;
2116 	}
2117 
2118 	ASSERT(zio->io_type == ZIO_TYPE_READ);
2119 	/*
2120 	 * There are three potential phases for a read:
2121 	 *	1. produce valid data from the columns read
2122 	 *	2. read all disks and try again
2123 	 *	3. perform combinatorial reconstruction
2124 	 *
2125 	 * Each phase is progressively both more expensive and less likely to
2126 	 * occur. If we encounter more errors than we can repair or all phases
2127 	 * fail, we have no choice but to return an error.
2128 	 */
2129 
2130 	/*
2131 	 * If the number of errors we saw was correctable -- less than or equal
2132 	 * to the number of parity disks read -- attempt to produce data that
2133 	 * has a valid checksum. Naturally, this case applies in the absence of
2134 	 * any errors.
2135 	 */
2136 	if (total_errors <= rm->rm_firstdatacol - parity_untried) {
2137 		if (data_errors == 0) {
2138 			if (raidz_checksum_verify(zio) == 0) {
2139 				/*
2140 				 * If we read parity information (unnecessarily
2141 				 * as it happens since no reconstruction was
2142 				 * needed) regenerate and verify the parity.
2143 				 * We also regenerate parity when resilvering
2144 				 * so we can write it out to the failed device
2145 				 * later.
2146 				 */
2147 				if (parity_errors + parity_untried <
2148 				    rm->rm_firstdatacol ||
2149 				    (zio->io_flags & ZIO_FLAG_RESILVER)) {
2150 					n = raidz_parity_verify(zio, rm);
2151 					unexpected_errors += n;
2152 					ASSERT(parity_errors + n <=
2153 					    rm->rm_firstdatacol);
2154 				}
2155 				goto done;
2156 			}
2157 		} else {
2158 			/*
2159 			 * We either attempt to read all the parity columns or
2160 			 * none of them. If we didn't try to read parity, we
2161 			 * wouldn't be here in the correctable case. There must
2162 			 * also have been fewer parity errors than parity
2163 			 * columns or, again, we wouldn't be in this code path.
2164 			 */
2165 			ASSERT(parity_untried == 0);
2166 			ASSERT(parity_errors < rm->rm_firstdatacol);
2167 
2168 			/*
2169 			 * Identify the data columns that reported an error.
2170 			 */
2171 			n = 0;
2172 			for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
2173 				rc = &rm->rm_col[c];
2174 				if (rc->rc_error != 0) {
2175 					ASSERT(n < VDEV_RAIDZ_MAXPARITY);
2176 					tgts[n++] = c;
2177 				}
2178 			}
2179 
2180 			ASSERT(rm->rm_firstdatacol >= n);
2181 
2182 			code = vdev_raidz_reconstruct(rm, tgts, n);
2183 
2184 			if (raidz_checksum_verify(zio) == 0) {
2185 				/*
2186 				 * If we read more parity disks than were used
2187 				 * for reconstruction, confirm that the other
2188 				 * parity disks produced correct data. This
2189 				 * routine is suboptimal in that it regenerates
2190 				 * the parity that we already used in addition
2191 				 * to the parity that we're attempting to
2192 				 * verify, but this should be a relatively
2193 				 * uncommon case, and can be optimized if it
2194 				 * becomes a problem. Note that we regenerate
2195 				 * parity when resilvering so we can write it
2196 				 * out to failed devices later.
2197 				 */
2198 				if (parity_errors < rm->rm_firstdatacol - n ||
2199 				    (zio->io_flags & ZIO_FLAG_RESILVER)) {
2200 					n = raidz_parity_verify(zio, rm);
2201 					unexpected_errors += n;
2202 					ASSERT(parity_errors + n <=
2203 					    rm->rm_firstdatacol);
2204 				}
2205 
2206 				goto done;
2207 			}
2208 		}
2209 	}
2210 
2211 	/*
2212 	 * This isn't a typical situation -- either we got a read error or
2213 	 * a child silently returned bad data. Read every block so we can
2214 	 * try again with as much data and parity as we can track down. If
2215 	 * we've already been through once before, all children will be marked
2216 	 * as tried so we'll proceed to combinatorial reconstruction.
2217 	 */
2218 	unexpected_errors = 1;
2219 	rm->rm_missingdata = 0;
2220 	rm->rm_missingparity = 0;
2221 
2222 	for (c = 0; c < rm->rm_cols; c++) {
2223 		if (rm->rm_col[c].rc_tried)
2224 			continue;
2225 
2226 		zio_vdev_io_redone(zio);
2227 		do {
2228 			rc = &rm->rm_col[c];
2229 			if (rc->rc_tried)
2230 				continue;
2231 			zio_nowait(zio_vdev_child_io(zio, NULL,
2232 			    vd->vdev_child[rc->rc_devidx],
2233 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2234 			    zio->io_type, zio->io_priority, 0,
2235 			    vdev_raidz_child_done, rc));
2236 		} while (++c < rm->rm_cols);
2237 
2238 		return;
2239 	}
2240 
2241 	/*
2242 	 * At this point we've attempted to reconstruct the data given the
2243 	 * errors we detected, and we've attempted to read all columns. There
2244 	 * must, therefore, be one or more additional problems -- silent errors
2245 	 * resulting in invalid data rather than explicit I/O errors resulting
2246 	 * in absent data. We check if there is enough additional data to
2247 	 * possibly reconstruct the data and then perform combinatorial
2248 	 * reconstruction over all possible combinations. If that fails,
2249 	 * we're cooked.
2250 	 */
2251 	if (total_errors > rm->rm_firstdatacol) {
2252 		zio->io_error = vdev_raidz_worst_error(rm);
2253 
2254 	} else if (total_errors < rm->rm_firstdatacol &&
2255 	    (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
2256 		/*
2257 		 * If we didn't use all the available parity for the
2258 		 * combinatorial reconstruction, verify that the remaining
2259 		 * parity is correct.
2260 		 */
2261 		if (code != (1 << rm->rm_firstdatacol) - 1)
2262 			(void) raidz_parity_verify(zio, rm);
2263 	} else {
2264 		/*
2265 		 * We're here because either:
2266 		 *
2267 		 *	total_errors == rm_first_datacol, or
2268 		 *	vdev_raidz_combrec() failed
2269 		 *
2270 		 * In either case, there is enough bad data to prevent
2271 		 * reconstruction.
2272 		 *
2273 		 * Start checksum ereports for all children which haven't
2274 		 * failed, and the IO wasn't speculative.
2275 		 */
2276 		zio->io_error = SET_ERROR(ECKSUM);
2277 
2278 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2279 			for (c = 0; c < rm->rm_cols; c++) {
2280 				vdev_t *cvd;
2281 				rc = &rm->rm_col[c];
2282 				cvd = vd->vdev_child[rc->rc_devidx];
2283 				if (rc->rc_error != 0)
2284 					continue;
2285 
2286 				zio_bad_cksum_t zbc;
2287 				zbc.zbc_has_cksum = 0;
2288 				zbc.zbc_injected = rm->rm_ecksuminjected;
2289 
2290 				int ret = zfs_ereport_start_checksum(
2291 				    zio->io_spa, cvd, &zio->io_bookmark, zio,
2292 				    rc->rc_offset, rc->rc_size,
2293 				    (void *)(uintptr_t)c, &zbc);
2294 				if (ret != EALREADY) {
2295 					mutex_enter(&cvd->vdev_stat_lock);
2296 					cvd->vdev_stat.vs_checksum_errors++;
2297 					mutex_exit(&cvd->vdev_stat_lock);
2298 				}
2299 			}
2300 		}
2301 	}
2302 
2303 done:
2304 	zio_checksum_verified(zio);
2305 
2306 	if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2307 	    (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2308 		/*
2309 		 * Use the good data we have in hand to repair damaged children.
2310 		 */
2311 		for (c = 0; c < rm->rm_cols; c++) {
2312 			rc = &rm->rm_col[c];
2313 			cvd = vd->vdev_child[rc->rc_devidx];
2314 
2315 			if (rc->rc_error == 0)
2316 				continue;
2317 
2318 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2319 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2320 			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
2321 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2322 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2323 		}
2324 	}
2325 }
2326 
2327 static void
2328 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
2329 {
2330 	if (faulted > vd->vdev_nparity)
2331 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2332 		    VDEV_AUX_NO_REPLICAS);
2333 	else if (degraded + faulted != 0)
2334 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2335 	else
2336 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2337 }
2338 
2339 /*
2340  * Determine if any portion of the provided block resides on a child vdev
2341  * with a dirty DTL and therefore needs to be resilvered.  The function
2342  * assumes that at least one DTL is dirty which implies that full stripe
2343  * width blocks must be resilvered.
2344  */
2345 static boolean_t
2346 vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2347 {
2348 	uint64_t dcols = vd->vdev_children;
2349 	uint64_t nparity = vd->vdev_nparity;
2350 	uint64_t ashift = vd->vdev_top->vdev_ashift;
2351 	/* The starting RAIDZ (parent) vdev sector of the block. */
2352 	uint64_t b = offset >> ashift;
2353 	/* The zio's size in units of the vdev's minimum sector size. */
2354 	uint64_t s = ((psize - 1) >> ashift) + 1;
2355 	/* The first column for this stripe. */
2356 	uint64_t f = b % dcols;
2357 
2358 	if (s + nparity >= dcols)
2359 		return (B_TRUE);
2360 
2361 	for (uint64_t c = 0; c < s + nparity; c++) {
2362 		uint64_t devidx = (f + c) % dcols;
2363 		vdev_t *cvd = vd->vdev_child[devidx];
2364 
2365 		/*
2366 		 * dsl_scan_need_resilver() already checked vd with
2367 		 * vdev_dtl_contains(). So here just check cvd with
2368 		 * vdev_dtl_empty(), cheaper and a good approximation.
2369 		 */
2370 		if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
2371 			return (B_TRUE);
2372 	}
2373 
2374 	return (B_FALSE);
2375 }
2376 
2377 static void
2378 vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *in, range_seg64_t *res)
2379 {
2380 	vdev_t *raidvd = cvd->vdev_parent;
2381 	ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
2382 
2383 	uint64_t width = raidvd->vdev_children;
2384 	uint64_t tgt_col = cvd->vdev_id;
2385 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2386 
2387 	/* make sure the offsets are block-aligned */
2388 	ASSERT0(in->rs_start % (1 << ashift));
2389 	ASSERT0(in->rs_end % (1 << ashift));
2390 	uint64_t b_start = in->rs_start >> ashift;
2391 	uint64_t b_end = in->rs_end >> ashift;
2392 
2393 	uint64_t start_row = 0;
2394 	if (b_start > tgt_col) /* avoid underflow */
2395 		start_row = ((b_start - tgt_col - 1) / width) + 1;
2396 
2397 	uint64_t end_row = 0;
2398 	if (b_end > tgt_col)
2399 		end_row = ((b_end - tgt_col - 1) / width) + 1;
2400 
2401 	res->rs_start = start_row << ashift;
2402 	res->rs_end = end_row << ashift;
2403 
2404 	ASSERT3U(res->rs_start, <=, in->rs_start);
2405 	ASSERT3U(res->rs_end - res->rs_start, <=, in->rs_end - in->rs_start);
2406 }
2407 
2408 vdev_ops_t vdev_raidz_ops = {
2409 	.vdev_op_open = vdev_raidz_open,
2410 	.vdev_op_close = vdev_raidz_close,
2411 	.vdev_op_asize = vdev_raidz_asize,
2412 	.vdev_op_io_start = vdev_raidz_io_start,
2413 	.vdev_op_io_done = vdev_raidz_io_done,
2414 	.vdev_op_state_change = vdev_raidz_state_change,
2415 	.vdev_op_need_resilver = vdev_raidz_need_resilver,
2416 	.vdev_op_hold = NULL,
2417 	.vdev_op_rele = NULL,
2418 	.vdev_op_remap = NULL,
2419 	.vdev_op_xlate = vdev_raidz_xlate,
2420 	.vdev_op_type = VDEV_TYPE_RAIDZ,	/* name of this vdev type */
2421 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
2422 };
2423