xref: /freebsd/sys/dev/ae/if_ae.c (revision fdafd315)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28  *
29  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/rman.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 
71 #include "miibus_if.h"
72 
73 #include "if_aereg.h"
74 #include "if_aevar.h"
75 
76 /*
77  * Devices supported by this driver.
78  */
79 static struct ae_dev {
80 	uint16_t	vendorid;
81 	uint16_t	deviceid;
82 	const char	*name;
83 } ae_devs[] = {
84 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
85 		"Attansic Technology Corp, L2 FastEthernet" },
86 };
87 #define	AE_DEVS_COUNT nitems(ae_devs)
88 
89 static struct resource_spec ae_res_spec_mem[] = {
90 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
91 	{ -1,			0,		0 }
92 };
93 static struct resource_spec ae_res_spec_irq[] = {
94 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
95 	{ -1,			0,		0 }
96 };
97 static struct resource_spec ae_res_spec_msi[] = {
98 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
99 	{ -1,			0,		0 }
100 };
101 
102 static int	ae_probe(device_t dev);
103 static int	ae_attach(device_t dev);
104 static void	ae_pcie_init(ae_softc_t *sc);
105 static void	ae_phy_reset(ae_softc_t *sc);
106 static void	ae_phy_init(ae_softc_t *sc);
107 static int	ae_reset(ae_softc_t *sc);
108 static void	ae_init(void *arg);
109 static int	ae_init_locked(ae_softc_t *sc);
110 static int	ae_detach(device_t dev);
111 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
112 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
113 static void	ae_miibus_statchg(device_t dev);
114 static void	ae_mediastatus(if_t ifp, struct ifmediareq *ifmr);
115 static int	ae_mediachange(if_t ifp);
116 static void	ae_retrieve_address(ae_softc_t *sc);
117 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
118     int error);
119 static int	ae_alloc_rings(ae_softc_t *sc);
120 static void	ae_dma_free(ae_softc_t *sc);
121 static int	ae_shutdown(device_t dev);
122 static int	ae_suspend(device_t dev);
123 static void	ae_powersave_disable(ae_softc_t *sc);
124 static void	ae_powersave_enable(ae_softc_t *sc);
125 static int	ae_resume(device_t dev);
126 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
127 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
128 static void	ae_start(if_t ifp);
129 static void	ae_start_locked(if_t ifp);
130 static void	ae_link_task(void *arg, int pending);
131 static void	ae_stop_rxmac(ae_softc_t *sc);
132 static void	ae_stop_txmac(ae_softc_t *sc);
133 static void	ae_mac_config(ae_softc_t *sc);
134 static int	ae_intr(void *arg);
135 static void	ae_int_task(void *arg, int pending);
136 static void	ae_tx_intr(ae_softc_t *sc);
137 static void	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
138 static void	ae_rx_intr(ae_softc_t *sc);
139 static void	ae_watchdog(ae_softc_t *sc);
140 static void	ae_tick(void *arg);
141 static void	ae_rxfilter(ae_softc_t *sc);
142 static void	ae_rxvlan(ae_softc_t *sc);
143 static int	ae_ioctl(if_t ifp, u_long cmd, caddr_t data);
144 static void	ae_stop(ae_softc_t *sc);
145 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
146 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
147 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
148 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
149 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
150 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
151 static void	ae_init_tunables(ae_softc_t *sc);
152 
153 static device_method_t ae_methods[] = {
154 	/* Device interface. */
155 	DEVMETHOD(device_probe,		ae_probe),
156 	DEVMETHOD(device_attach,	ae_attach),
157 	DEVMETHOD(device_detach,	ae_detach),
158 	DEVMETHOD(device_shutdown,	ae_shutdown),
159 	DEVMETHOD(device_suspend,	ae_suspend),
160 	DEVMETHOD(device_resume,	ae_resume),
161 
162 	/* MII interface. */
163 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
166 	{ NULL, NULL }
167 };
168 static driver_t ae_driver = {
169         "ae",
170         ae_methods,
171         sizeof(ae_softc_t)
172 };
173 
174 DRIVER_MODULE(ae, pci, ae_driver, 0, 0);
175 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
176     nitems(ae_devs));
177 DRIVER_MODULE(miibus, ae, miibus_driver, 0, 0);
178 MODULE_DEPEND(ae, pci, 1, 1, 1);
179 MODULE_DEPEND(ae, ether, 1, 1, 1);
180 MODULE_DEPEND(ae, miibus, 1, 1, 1);
181 
182 /*
183  * Tunables.
184  */
185 static int msi_disable = 0;
186 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
187 
188 #define	AE_READ_4(sc, reg) \
189 	bus_read_4((sc)->mem[0], (reg))
190 #define	AE_READ_2(sc, reg) \
191 	bus_read_2((sc)->mem[0], (reg))
192 #define	AE_READ_1(sc, reg) \
193 	bus_read_1((sc)->mem[0], (reg))
194 #define	AE_WRITE_4(sc, reg, val) \
195 	bus_write_4((sc)->mem[0], (reg), (val))
196 #define	AE_WRITE_2(sc, reg, val) \
197 	bus_write_2((sc)->mem[0], (reg), (val))
198 #define	AE_WRITE_1(sc, reg, val) \
199 	bus_write_1((sc)->mem[0], (reg), (val))
200 #define	AE_PHY_READ(sc, reg) \
201 	ae_miibus_readreg(sc->dev, 0, reg)
202 #define	AE_PHY_WRITE(sc, reg, val) \
203 	ae_miibus_writereg(sc->dev, 0, reg, val)
204 #define	AE_CHECK_EADDR_VALID(eaddr) \
205 	((eaddr[0] == 0 && eaddr[1] == 0) || \
206 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
207 #define	AE_RXD_VLAN(vtag) \
208 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
209 #define	AE_TXD_VLAN(vtag) \
210 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
211 
212 static int
ae_probe(device_t dev)213 ae_probe(device_t dev)
214 {
215 	uint16_t deviceid, vendorid;
216 	int i;
217 
218 	vendorid = pci_get_vendor(dev);
219 	deviceid = pci_get_device(dev);
220 
221 	/*
222 	 * Search through the list of supported devs for matching one.
223 	 */
224 	for (i = 0; i < AE_DEVS_COUNT; i++) {
225 		if (vendorid == ae_devs[i].vendorid &&
226 		    deviceid == ae_devs[i].deviceid) {
227 			device_set_desc(dev, ae_devs[i].name);
228 			return (BUS_PROBE_DEFAULT);
229 		}
230 	}
231 	return (ENXIO);
232 }
233 
234 static int
ae_attach(device_t dev)235 ae_attach(device_t dev)
236 {
237 	ae_softc_t *sc;
238 	if_t ifp;
239 	uint8_t chiprev;
240 	uint32_t pcirev;
241 	int nmsi, pmc;
242 	int error;
243 
244 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
245 				       on attach. */
246 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
247 	sc->dev = dev;
248 
249 	/*
250 	 * Initialize mutexes and tasks.
251 	 */
252 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
253 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
254 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
255 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
256 
257 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
258 
259 	sc->spec_mem = ae_res_spec_mem;
260 
261 	/*
262 	 * Allocate memory-mapped registers.
263 	 */
264 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
265 	if (error != 0) {
266 		device_printf(dev, "could not allocate memory resources.\n");
267 		sc->spec_mem = NULL;
268 		goto fail;
269 	}
270 
271 	/*
272 	 * Retrieve PCI and chip revisions.
273 	 */
274 	pcirev = pci_get_revid(dev);
275 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
276 	    AE_MASTER_REVNUM_MASK;
277 	if (bootverbose) {
278 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
279 		device_printf(dev, "chip id: %#02x\n", chiprev);
280 	}
281 	nmsi = pci_msi_count(dev);
282 	if (bootverbose)
283 		device_printf(dev, "MSI count: %d.\n", nmsi);
284 
285 	/*
286 	 * Allocate interrupt resources.
287 	 */
288 	if (msi_disable == 0 && nmsi == 1) {
289 		error = pci_alloc_msi(dev, &nmsi);
290 		if (error == 0) {
291 			device_printf(dev, "Using MSI messages.\n");
292 			sc->spec_irq = ae_res_spec_msi;
293 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
294 			if (error != 0) {
295 				device_printf(dev, "MSI allocation failed.\n");
296 				sc->spec_irq = NULL;
297 				pci_release_msi(dev);
298 			} else {
299 				sc->flags |= AE_FLAG_MSI;
300 			}
301 		}
302 	}
303 	if (sc->spec_irq == NULL) {
304 		sc->spec_irq = ae_res_spec_irq;
305 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
306 		if (error != 0) {
307 			device_printf(dev, "could not allocate IRQ resources.\n");
308 			sc->spec_irq = NULL;
309 			goto fail;
310 		}
311 	}
312 
313 	ae_init_tunables(sc);
314 
315 	ae_phy_reset(sc);		/* Reset PHY. */
316 	error = ae_reset(sc);		/* Reset the controller itself. */
317 	if (error != 0)
318 		goto fail;
319 
320 	ae_pcie_init(sc);
321 
322 	ae_retrieve_address(sc);	/* Load MAC address. */
323 
324 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
325 	if (error != 0)
326 		goto fail;
327 
328 	ifp = sc->ifp = if_alloc(IFT_ETHER);
329 	if (ifp == NULL) {
330 		device_printf(dev, "could not allocate ifnet structure.\n");
331 		error = ENXIO;
332 		goto fail;
333 	}
334 
335 	if_setsoftc(ifp, sc);
336 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
337 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
338 	if_setioctlfn(ifp, ae_ioctl);
339 	if_setstartfn(ifp, ae_start);
340 	if_setinitfn(ifp, ae_init);
341 	if_setcapabilities(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING);
342 	if_sethwassist(ifp, 0);
343 	if_setsendqlen(ifp, ifqmaxlen);
344 	if_setsendqready(ifp);
345 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
346 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
347 		sc->flags |= AE_FLAG_PMG;
348 	}
349 	if_setcapenable(ifp, if_getcapabilities(ifp));
350 
351 	/*
352 	 * Configure and attach MII bus.
353 	 */
354 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
355 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
356 	    MII_OFFSET_ANY, 0);
357 	if (error != 0) {
358 		device_printf(dev, "attaching PHYs failed\n");
359 		goto fail;
360 	}
361 
362 	ether_ifattach(ifp, sc->eaddr);
363 	/* Tell the upper layer(s) we support long frames. */
364 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
365 
366 	/*
367 	 * Create and run all helper tasks.
368 	 */
369 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
370             taskqueue_thread_enqueue, &sc->tq);
371 	if (sc->tq == NULL) {
372 		device_printf(dev, "could not create taskqueue.\n");
373 		ether_ifdetach(ifp);
374 		error = ENXIO;
375 		goto fail;
376 	}
377 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
378 	    device_get_nameunit(sc->dev));
379 
380 	/*
381 	 * Configure interrupt handlers.
382 	 */
383 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
384 	    ae_intr, NULL, sc, &sc->intrhand);
385 	if (error != 0) {
386 		device_printf(dev, "could not set up interrupt handler.\n");
387 		taskqueue_free(sc->tq);
388 		sc->tq = NULL;
389 		ether_ifdetach(ifp);
390 		goto fail;
391 	}
392 
393 fail:
394 	if (error != 0)
395 		ae_detach(dev);
396 
397 	return (error);
398 }
399 
400 #define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
401 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
402 
403 static void
ae_init_tunables(ae_softc_t * sc)404 ae_init_tunables(ae_softc_t *sc)
405 {
406 	struct sysctl_ctx_list *ctx;
407 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
408 	struct ae_stats *ae_stats;
409 
410 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
411 	ae_stats = &sc->stats;
412 
413 	ctx = device_get_sysctl_ctx(sc->dev);
414 	root = device_get_sysctl_tree(sc->dev);
415 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
416 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics");
417 
418 	/*
419 	 * Receiver statistcics.
420 	 */
421 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
422 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
423 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
424 	    "broadcast frames", &ae_stats->rx_bcast);
425 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
426 	    "multicast frames", &ae_stats->rx_mcast);
427 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
428 	    "PAUSE frames", &ae_stats->rx_pause);
429 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
430 	    "control frames", &ae_stats->rx_ctrl);
431 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
432 	    "frames with CRC errors", &ae_stats->rx_crcerr);
433 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
434 	    "frames with invalid opcode", &ae_stats->rx_codeerr);
435 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
436 	    "runt frames", &ae_stats->rx_runt);
437 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
438 	    "fragmented frames", &ae_stats->rx_frag);
439 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
440 	    "frames with alignment errors", &ae_stats->rx_align);
441 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
442 	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
443 
444 	/*
445 	 * Receiver statistcics.
446 	 */
447 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
448 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
449 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
450 	    "broadcast frames", &ae_stats->tx_bcast);
451 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
452 	    "multicast frames", &ae_stats->tx_mcast);
453 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
454 	    "PAUSE frames", &ae_stats->tx_pause);
455 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
456 	    "control frames", &ae_stats->tx_ctrl);
457 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
458 	    "deferrals occuried", &ae_stats->tx_defer);
459 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
460 	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
461 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
462 	    "single collisions occuried", &ae_stats->tx_singlecol);
463 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
464 	    "multiple collisions occuried", &ae_stats->tx_multicol);
465 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
466 	    "late collisions occuried", &ae_stats->tx_latecol);
467 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
468 	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
469 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
470 	    "Tx FIFO underruns", &ae_stats->tx_underrun);
471 }
472 
473 static void
ae_pcie_init(ae_softc_t * sc)474 ae_pcie_init(ae_softc_t *sc)
475 {
476 
477 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
478 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
479 }
480 
481 static void
ae_phy_reset(ae_softc_t * sc)482 ae_phy_reset(ae_softc_t *sc)
483 {
484 
485 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
486 	DELAY(1000);	/* XXX: pause(9) ? */
487 }
488 
489 static int
ae_reset(ae_softc_t * sc)490 ae_reset(ae_softc_t *sc)
491 {
492 	int i;
493 
494 	/*
495 	 * Issue a soft reset.
496 	 */
497 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
498 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
499 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
500 
501 	/*
502 	 * Wait for reset to complete.
503 	 */
504 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
505 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
506 			break;
507 		DELAY(10);
508 	}
509 	if (i == AE_RESET_TIMEOUT) {
510 		device_printf(sc->dev, "reset timeout.\n");
511 		return (ENXIO);
512 	}
513 
514 	/*
515 	 * Wait for everything to enter idle state.
516 	 */
517 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
518 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
519 			break;
520 		DELAY(100);
521 	}
522 	if (i == AE_IDLE_TIMEOUT) {
523 		device_printf(sc->dev, "could not enter idle state.\n");
524 		return (ENXIO);
525 	}
526 	return (0);
527 }
528 
529 static void
ae_init(void * arg)530 ae_init(void *arg)
531 {
532 	ae_softc_t *sc;
533 
534 	sc = (ae_softc_t *)arg;
535 	AE_LOCK(sc);
536 	ae_init_locked(sc);
537 	AE_UNLOCK(sc);
538 }
539 
540 static void
ae_phy_init(ae_softc_t * sc)541 ae_phy_init(ae_softc_t *sc)
542 {
543 
544 	/*
545 	 * Enable link status change interrupt.
546 	 * XXX magic numbers.
547 	 */
548 #ifdef notyet
549 	AE_PHY_WRITE(sc, 18, 0xc00);
550 #endif
551 }
552 
553 static int
ae_init_locked(ae_softc_t * sc)554 ae_init_locked(ae_softc_t *sc)
555 {
556 	if_t ifp;
557 	struct mii_data *mii;
558 	uint8_t eaddr[ETHER_ADDR_LEN];
559 	uint32_t val;
560 	bus_addr_t addr;
561 
562 	AE_LOCK_ASSERT(sc);
563 
564 	ifp = sc->ifp;
565 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
566 		return (0);
567 	mii = device_get_softc(sc->miibus);
568 
569 	ae_stop(sc);
570 	ae_reset(sc);
571 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
572 	ae_phy_init(sc);
573 	ae_powersave_disable(sc);
574 
575 	/*
576 	 * Clear and disable interrupts.
577 	 */
578 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
579 
580 	/*
581 	 * Set the MAC address.
582 	 */
583 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
584 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
585 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
586 	val = eaddr[0] << 8 | eaddr[1];
587 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
588 
589 	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
590 	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
591 	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
592 	/*
593 	 * Set ring buffers base addresses.
594 	 */
595 	addr = sc->dma_rxd_busaddr;
596 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
597 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
598 	addr = sc->dma_txd_busaddr;
599 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
600 	addr = sc->dma_txs_busaddr;
601 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
602 
603 	/*
604 	 * Configure ring buffers sizes.
605 	 */
606 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
607 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
608 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
609 
610 	/*
611 	 * Configure interframe gap parameters.
612 	 */
613 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
614 	    AE_IFG_TXIPG_MASK) |
615 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
616 	    AE_IFG_RXIPG_MASK) |
617 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
618 	    AE_IFG_IPGR1_MASK) |
619 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
620 	    AE_IFG_IPGR2_MASK);
621 	AE_WRITE_4(sc, AE_IFG_REG, val);
622 
623 	/*
624 	 * Configure half-duplex operation.
625 	 */
626 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
627 	    AE_HDPX_LCOL_MASK) |
628 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
629 	    AE_HDPX_RETRY_MASK) |
630 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
631 	    AE_HDPX_ABEBT_MASK) |
632 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
633 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
634 	AE_WRITE_4(sc, AE_HDPX_REG, val);
635 
636 	/*
637 	 * Configure interrupt moderate timer.
638 	 */
639 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
640 	val = AE_READ_4(sc, AE_MASTER_REG);
641 	val |= AE_MASTER_IMT_EN;
642 	AE_WRITE_4(sc, AE_MASTER_REG, val);
643 
644 	/*
645 	 * Configure interrupt clearing timer.
646 	 */
647 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
648 
649 	/*
650 	 * Configure MTU.
651 	 */
652 	val = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
653 	    ETHER_CRC_LEN;
654 	AE_WRITE_2(sc, AE_MTU_REG, val);
655 
656 	/*
657 	 * Configure cut-through threshold.
658 	 */
659 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
660 
661 	/*
662 	 * Configure flow control.
663 	 */
664 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
665 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
666 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
667 	    (AE_RXD_COUNT_DEFAULT / 12));
668 
669 	/*
670 	 * Init mailboxes.
671 	 */
672 	sc->txd_cur = sc->rxd_cur = 0;
673 	sc->txs_ack = sc->txd_ack = 0;
674 	sc->rxd_cur = 0;
675 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
676 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
677 
678 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
679 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
680 
681 	/*
682 	 * Enable DMA.
683 	 */
684 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
685 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
686 
687 	/*
688 	 * Check if everything is OK.
689 	 */
690 	val = AE_READ_4(sc, AE_ISR_REG);
691 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
692 		device_printf(sc->dev, "Initialization failed.\n");
693 		return (ENXIO);
694 	}
695 
696 	/*
697 	 * Clear interrupt status.
698 	 */
699 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
700 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
701 
702 	/*
703 	 * Enable interrupts.
704 	 */
705 	val = AE_READ_4(sc, AE_MASTER_REG);
706 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
707 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
708 
709 	/*
710 	 * Disable WOL.
711 	 */
712 	AE_WRITE_4(sc, AE_WOL_REG, 0);
713 
714 	/*
715 	 * Configure MAC.
716 	 */
717 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
718 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
719 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
720 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
721 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
722 	    AE_MAC_PREAMBLE_MASK);
723 	AE_WRITE_4(sc, AE_MAC_REG, val);
724 
725 	/*
726 	 * Configure Rx MAC.
727 	 */
728 	ae_rxfilter(sc);
729 	ae_rxvlan(sc);
730 
731 	/*
732 	 * Enable Tx/Rx.
733 	 */
734 	val = AE_READ_4(sc, AE_MAC_REG);
735 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
736 
737 	sc->flags &= ~AE_FLAG_LINK;
738 	mii_mediachg(mii);	/* Switch to the current media. */
739 
740 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
741 
742 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
743 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
744 
745 #ifdef AE_DEBUG
746 	device_printf(sc->dev, "Initialization complete.\n");
747 #endif
748 
749 	return (0);
750 }
751 
752 static int
ae_detach(device_t dev)753 ae_detach(device_t dev)
754 {
755 	struct ae_softc *sc;
756 	if_t ifp;
757 
758 	sc = device_get_softc(dev);
759 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
760 	ifp = sc->ifp;
761 	if (device_is_attached(dev)) {
762 		AE_LOCK(sc);
763 		sc->flags |= AE_FLAG_DETACH;
764 		ae_stop(sc);
765 		AE_UNLOCK(sc);
766 		callout_drain(&sc->tick_ch);
767 		taskqueue_drain(sc->tq, &sc->int_task);
768 		taskqueue_drain(taskqueue_swi, &sc->link_task);
769 		ether_ifdetach(ifp);
770 	}
771 	if (sc->tq != NULL) {
772 		taskqueue_drain(sc->tq, &sc->int_task);
773 		taskqueue_free(sc->tq);
774 		sc->tq = NULL;
775 	}
776 	if (sc->miibus != NULL) {
777 		device_delete_child(dev, sc->miibus);
778 		sc->miibus = NULL;
779 	}
780 	bus_generic_detach(sc->dev);
781 	ae_dma_free(sc);
782 	if (sc->intrhand != NULL) {
783 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
784 		sc->intrhand = NULL;
785 	}
786 	if (ifp != NULL) {
787 		if_free(ifp);
788 		sc->ifp = NULL;
789 	}
790 	if (sc->spec_irq != NULL)
791 		bus_release_resources(dev, sc->spec_irq, sc->irq);
792 	if (sc->spec_mem != NULL)
793 		bus_release_resources(dev, sc->spec_mem, sc->mem);
794 	if ((sc->flags & AE_FLAG_MSI) != 0)
795 		pci_release_msi(dev);
796 	mtx_destroy(&sc->mtx);
797 
798 	return (0);
799 }
800 
801 static int
ae_miibus_readreg(device_t dev,int phy,int reg)802 ae_miibus_readreg(device_t dev, int phy, int reg)
803 {
804 	ae_softc_t *sc;
805 	uint32_t val;
806 	int i;
807 
808 	sc = device_get_softc(dev);
809 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
810 
811 	/*
812 	 * Locking is done in upper layers.
813 	 */
814 
815 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
816 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
817 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
818 	AE_WRITE_4(sc, AE_MDIO_REG, val);
819 
820 	/*
821 	 * Wait for operation to complete.
822 	 */
823 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
824 		DELAY(2);
825 		val = AE_READ_4(sc, AE_MDIO_REG);
826 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
827 			break;
828 	}
829 	if (i == AE_MDIO_TIMEOUT) {
830 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
831 		return (0);
832 	}
833 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
834 }
835 
836 static int
ae_miibus_writereg(device_t dev,int phy,int reg,int val)837 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
838 {
839 	ae_softc_t *sc;
840 	uint32_t aereg;
841 	int i;
842 
843 	sc = device_get_softc(dev);
844 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
845 
846 	/*
847 	 * Locking is done in upper layers.
848 	 */
849 
850 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
851 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
852 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
853 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
854 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
855 
856 	/*
857 	 * Wait for operation to complete.
858 	 */
859 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
860 		DELAY(2);
861 		aereg = AE_READ_4(sc, AE_MDIO_REG);
862 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
863 			break;
864 	}
865 	if (i == AE_MDIO_TIMEOUT) {
866 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
867 	}
868 	return (0);
869 }
870 
871 static void
ae_miibus_statchg(device_t dev)872 ae_miibus_statchg(device_t dev)
873 {
874 	ae_softc_t *sc;
875 
876 	sc = device_get_softc(dev);
877 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
878 }
879 
880 static void
ae_mediastatus(if_t ifp,struct ifmediareq * ifmr)881 ae_mediastatus(if_t ifp, struct ifmediareq *ifmr)
882 {
883 	ae_softc_t *sc;
884 	struct mii_data *mii;
885 
886 	sc = if_getsoftc(ifp);
887 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
888 
889 	AE_LOCK(sc);
890 	mii = device_get_softc(sc->miibus);
891 	mii_pollstat(mii);
892 	ifmr->ifm_status = mii->mii_media_status;
893 	ifmr->ifm_active = mii->mii_media_active;
894 	AE_UNLOCK(sc);
895 }
896 
897 static int
ae_mediachange(if_t ifp)898 ae_mediachange(if_t ifp)
899 {
900 	ae_softc_t *sc;
901 	struct mii_data *mii;
902 	struct mii_softc *mii_sc;
903 	int error;
904 
905 	/* XXX: check IFF_UP ?? */
906 	sc = if_getsoftc(ifp);
907 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
908 	AE_LOCK(sc);
909 	mii = device_get_softc(sc->miibus);
910 	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
911 		PHY_RESET(mii_sc);
912 	error = mii_mediachg(mii);
913 	AE_UNLOCK(sc);
914 
915 	return (error);
916 }
917 
918 static int
ae_check_eeprom_present(ae_softc_t * sc,int * vpdc)919 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
920 {
921 	int error;
922 	uint32_t val;
923 
924 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
925 
926 	/*
927 	 * Not sure why, but Linux does this.
928 	 */
929 	val = AE_READ_4(sc, AE_SPICTL_REG);
930 	if ((val & AE_SPICTL_VPD_EN) != 0) {
931 		val &= ~AE_SPICTL_VPD_EN;
932 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
933 	}
934 	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
935 	return (error);
936 }
937 
938 static int
ae_vpd_read_word(ae_softc_t * sc,int reg,uint32_t * word)939 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
940 {
941 	uint32_t val;
942 	int i;
943 
944 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
945 
946 	/*
947 	 * VPD registers start at offset 0x100. Read them.
948 	 */
949 	val = 0x100 + reg * 4;
950 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
951 	    AE_VPD_CAP_ADDR_MASK);
952 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
953 		DELAY(2000);
954 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
955 		if ((val & AE_VPD_CAP_DONE) != 0)
956 			break;
957 	}
958 	if (i == AE_VPD_TIMEOUT) {
959 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
960 		    reg);
961 		return (ETIMEDOUT);
962 	}
963 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
964 	return (0);
965 }
966 
967 static int
ae_get_vpd_eaddr(ae_softc_t * sc,uint32_t * eaddr)968 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
969 {
970 	uint32_t word, reg, val;
971 	int error;
972 	int found;
973 	int vpdc;
974 	int i;
975 
976 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
977 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
978 
979 	/*
980 	 * Check for EEPROM.
981 	 */
982 	error = ae_check_eeprom_present(sc, &vpdc);
983 	if (error != 0)
984 		return (error);
985 
986 	/*
987 	 * Read the VPD configuration space.
988 	 * Each register is prefixed with signature,
989 	 * so we can check if it is valid.
990 	 */
991 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
992 		error = ae_vpd_read_word(sc, i, &word);
993 		if (error != 0)
994 			break;
995 
996 		/*
997 		 * Check signature.
998 		 */
999 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1000 			break;
1001 		reg = word >> AE_VPD_REG_SHIFT;
1002 		i++;	/* Move to the next word. */
1003 
1004 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1005 			continue;
1006 
1007 		error = ae_vpd_read_word(sc, i, &val);
1008 		if (error != 0)
1009 			break;
1010 		if (reg == AE_EADDR0_REG)
1011 			eaddr[0] = val;
1012 		else
1013 			eaddr[1] = val;
1014 		found++;
1015 	}
1016 
1017 	if (found < 2)
1018 		return (ENOENT);
1019 
1020 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1021 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1022 		if (bootverbose)
1023 			device_printf(sc->dev,
1024 			    "VPD ethernet address registers are invalid.\n");
1025 		return (EINVAL);
1026 	}
1027 	return (0);
1028 }
1029 
1030 static int
ae_get_reg_eaddr(ae_softc_t * sc,uint32_t * eaddr)1031 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1032 {
1033 
1034 	/*
1035 	 * BIOS is supposed to set this.
1036 	 */
1037 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1038 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1039 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1040 
1041 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1042 		if (bootverbose)
1043 			device_printf(sc->dev,
1044 			    "Ethernet address registers are invalid.\n");
1045 		return (EINVAL);
1046 	}
1047 	return (0);
1048 }
1049 
1050 static void
ae_retrieve_address(ae_softc_t * sc)1051 ae_retrieve_address(ae_softc_t *sc)
1052 {
1053 	uint32_t eaddr[2] = {0, 0};
1054 	int error;
1055 
1056 	/*
1057 	 *Check for EEPROM.
1058 	 */
1059 	error = ae_get_vpd_eaddr(sc, eaddr);
1060 	if (error != 0)
1061 		error = ae_get_reg_eaddr(sc, eaddr);
1062 	if (error != 0) {
1063 		if (bootverbose)
1064 			device_printf(sc->dev,
1065 			    "Generating random ethernet address.\n");
1066 		eaddr[0] = arc4random();
1067 
1068 		/*
1069 		 * Set OUI to ASUSTek COMPUTER INC.
1070 		 */
1071 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1072 		sc->eaddr[1] = 0x1f;
1073 		sc->eaddr[2] = 0xc6;
1074 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1075 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1076 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1077 	} else {
1078 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1079 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1080 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1081 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1082 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1083 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1084 	}
1085 }
1086 
1087 static void
ae_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1088 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1089 {
1090 	bus_addr_t *addr = arg;
1091 
1092 	if (error != 0)
1093 		return;
1094 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1095 	    nsegs));
1096 	*addr = segs[0].ds_addr;
1097 }
1098 
1099 static int
ae_alloc_rings(ae_softc_t * sc)1100 ae_alloc_rings(ae_softc_t *sc)
1101 {
1102 	bus_addr_t busaddr;
1103 	int error;
1104 
1105 	/*
1106 	 * Create parent DMA tag.
1107 	 */
1108 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1109 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1110 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1111 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1112 	    &sc->dma_parent_tag);
1113 	if (error != 0) {
1114 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1115 		return (error);
1116 	}
1117 
1118 	/*
1119 	 * Create DMA tag for TxD.
1120 	 */
1121 	error = bus_dma_tag_create(sc->dma_parent_tag,
1122 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1123 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1124 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1125 	    &sc->dma_txd_tag);
1126 	if (error != 0) {
1127 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1128 		return (error);
1129 	}
1130 
1131 	/*
1132 	 * Create DMA tag for TxS.
1133 	 */
1134 	error = bus_dma_tag_create(sc->dma_parent_tag,
1135 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1136 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1137 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1138 	    &sc->dma_txs_tag);
1139 	if (error != 0) {
1140 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1141 		return (error);
1142 	}
1143 
1144 	/*
1145 	 * Create DMA tag for RxD.
1146 	 */
1147 	error = bus_dma_tag_create(sc->dma_parent_tag,
1148 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1149 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1150 	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1151 	    &sc->dma_rxd_tag);
1152 	if (error != 0) {
1153 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1154 		return (error);
1155 	}
1156 
1157 	/*
1158 	 * Allocate TxD DMA memory.
1159 	 */
1160 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1161 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1162 	    &sc->dma_txd_map);
1163 	if (error != 0) {
1164 		device_printf(sc->dev,
1165 		    "could not allocate DMA memory for TxD ring.\n");
1166 		return (error);
1167 	}
1168 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1169 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1170 	if (error != 0 || busaddr == 0) {
1171 		device_printf(sc->dev,
1172 		    "could not load DMA map for TxD ring.\n");
1173 		return (error);
1174 	}
1175 	sc->dma_txd_busaddr = busaddr;
1176 
1177 	/*
1178 	 * Allocate TxS DMA memory.
1179 	 */
1180 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1181 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1182 	    &sc->dma_txs_map);
1183 	if (error != 0) {
1184 		device_printf(sc->dev,
1185 		    "could not allocate DMA memory for TxS ring.\n");
1186 		return (error);
1187 	}
1188 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1189 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1190 	if (error != 0 || busaddr == 0) {
1191 		device_printf(sc->dev,
1192 		    "could not load DMA map for TxS ring.\n");
1193 		return (error);
1194 	}
1195 	sc->dma_txs_busaddr = busaddr;
1196 
1197 	/*
1198 	 * Allocate RxD DMA memory.
1199 	 */
1200 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1201 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1202 	    &sc->dma_rxd_map);
1203 	if (error != 0) {
1204 		device_printf(sc->dev,
1205 		    "could not allocate DMA memory for RxD ring.\n");
1206 		return (error);
1207 	}
1208 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1209 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1210 	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1211 	if (error != 0 || busaddr == 0) {
1212 		device_printf(sc->dev,
1213 		    "could not load DMA map for RxD ring.\n");
1214 		return (error);
1215 	}
1216 	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1217 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1218 
1219 	return (0);
1220 }
1221 
1222 static void
ae_dma_free(ae_softc_t * sc)1223 ae_dma_free(ae_softc_t *sc)
1224 {
1225 
1226 	if (sc->dma_txd_tag != NULL) {
1227 		if (sc->dma_txd_busaddr != 0)
1228 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1229 		if (sc->txd_base != NULL)
1230 			bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1231 			    sc->dma_txd_map);
1232 		bus_dma_tag_destroy(sc->dma_txd_tag);
1233 		sc->dma_txd_tag = NULL;
1234 		sc->txd_base = NULL;
1235 		sc->dma_txd_busaddr = 0;
1236 	}
1237 	if (sc->dma_txs_tag != NULL) {
1238 		if (sc->dma_txs_busaddr != 0)
1239 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1240 		if (sc->txs_base != NULL)
1241 			bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1242 			    sc->dma_txs_map);
1243 		bus_dma_tag_destroy(sc->dma_txs_tag);
1244 		sc->dma_txs_tag = NULL;
1245 		sc->txs_base = NULL;
1246 		sc->dma_txs_busaddr = 0;
1247 	}
1248 	if (sc->dma_rxd_tag != NULL) {
1249 		if (sc->dma_rxd_busaddr != 0)
1250 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1251 		if (sc->rxd_base_dma != NULL)
1252 			bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1253 			    sc->dma_rxd_map);
1254 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1255 		sc->dma_rxd_tag = NULL;
1256 		sc->rxd_base_dma = NULL;
1257 		sc->dma_rxd_busaddr = 0;
1258 	}
1259 	if (sc->dma_parent_tag != NULL) {
1260 		bus_dma_tag_destroy(sc->dma_parent_tag);
1261 		sc->dma_parent_tag = NULL;
1262 	}
1263 }
1264 
1265 static int
ae_shutdown(device_t dev)1266 ae_shutdown(device_t dev)
1267 {
1268 	ae_softc_t *sc;
1269 	int error;
1270 
1271 	sc = device_get_softc(dev);
1272 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1273 
1274 	error = ae_suspend(dev);
1275 	AE_LOCK(sc);
1276 	ae_powersave_enable(sc);
1277 	AE_UNLOCK(sc);
1278 	return (error);
1279 }
1280 
1281 static void
ae_powersave_disable(ae_softc_t * sc)1282 ae_powersave_disable(ae_softc_t *sc)
1283 {
1284 	uint32_t val;
1285 
1286 	AE_LOCK_ASSERT(sc);
1287 
1288 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1289 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1290 	if (val & AE_PHY_DBG_POWERSAVE) {
1291 		val &= ~AE_PHY_DBG_POWERSAVE;
1292 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1293 		DELAY(1000);
1294 	}
1295 }
1296 
1297 static void
ae_powersave_enable(ae_softc_t * sc)1298 ae_powersave_enable(ae_softc_t *sc)
1299 {
1300 	uint32_t val;
1301 
1302 	AE_LOCK_ASSERT(sc);
1303 
1304 	/*
1305 	 * XXX magic numbers.
1306 	 */
1307 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1308 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1309 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1310 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1311 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1312 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1313 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1314 }
1315 
1316 static void
ae_pm_init(ae_softc_t * sc)1317 ae_pm_init(ae_softc_t *sc)
1318 {
1319 	if_t ifp;
1320 	uint32_t val;
1321 	uint16_t pmstat;
1322 	struct mii_data *mii;
1323 	int pmc;
1324 
1325 	AE_LOCK_ASSERT(sc);
1326 
1327 	ifp = sc->ifp;
1328 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1329 		/* Disable WOL entirely. */
1330 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1331 		return;
1332 	}
1333 
1334 	/*
1335 	 * Configure WOL if enabled.
1336 	 */
1337 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1338 		mii = device_get_softc(sc->miibus);
1339 		mii_pollstat(mii);
1340 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1341 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1342 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1343 			    AE_WOL_MAGIC_PME);
1344 
1345 			/*
1346 			 * Configure MAC.
1347 			 */
1348 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1349 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1350 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1351 			    AE_HALFBUF_MASK) | \
1352 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1353 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1354 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1355 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1356 			    IFM_FDX) != 0)
1357 				val |= AE_MAC_FULL_DUPLEX;
1358 			AE_WRITE_4(sc, AE_MAC_REG, val);
1359 
1360 		} else {	/* No link. */
1361 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1362 			    AE_WOL_LNKCHG_PME);
1363 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1364 		}
1365 	} else {
1366 		ae_powersave_enable(sc);
1367 	}
1368 
1369 	/*
1370 	 * PCIE hacks. Magic numbers.
1371 	 */
1372 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1373 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1374 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1375 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1376 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1377 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1378 
1379 	/*
1380 	 * Configure PME.
1381 	 */
1382 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1383 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1384 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1385 		if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1386 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1387 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1388 	}
1389 }
1390 
1391 static int
ae_suspend(device_t dev)1392 ae_suspend(device_t dev)
1393 {
1394 	ae_softc_t *sc;
1395 
1396 	sc = device_get_softc(dev);
1397 
1398 	AE_LOCK(sc);
1399 	ae_stop(sc);
1400 	ae_pm_init(sc);
1401 	AE_UNLOCK(sc);
1402 
1403 	return (0);
1404 }
1405 
1406 static int
ae_resume(device_t dev)1407 ae_resume(device_t dev)
1408 {
1409 	ae_softc_t *sc;
1410 
1411 	sc = device_get_softc(dev);
1412 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1413 
1414 	AE_LOCK(sc);
1415 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1416 	if ((if_getflags(sc->ifp) & IFF_UP) != 0)
1417 		ae_init_locked(sc);
1418 	AE_UNLOCK(sc);
1419 
1420 	return (0);
1421 }
1422 
1423 static unsigned int
ae_tx_avail_size(ae_softc_t * sc)1424 ae_tx_avail_size(ae_softc_t *sc)
1425 {
1426 	unsigned int avail;
1427 
1428 	if (sc->txd_cur >= sc->txd_ack)
1429 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1430 	else
1431 		avail = sc->txd_ack - sc->txd_cur;
1432 
1433 	return (avail);
1434 }
1435 
1436 static int
ae_encap(ae_softc_t * sc,struct mbuf ** m_head)1437 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1438 {
1439 	struct mbuf *m0;
1440 	ae_txd_t *hdr;
1441 	unsigned int to_end;
1442 	uint16_t len;
1443 
1444 	AE_LOCK_ASSERT(sc);
1445 
1446 	m0 = *m_head;
1447 	len = m0->m_pkthdr.len;
1448 
1449 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1450 	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1451 #ifdef AE_DEBUG
1452 		if_printf(sc->ifp, "No free Tx available.\n");
1453 #endif
1454 		return ENOBUFS;
1455 	}
1456 
1457 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1458 	bzero(hdr, sizeof(*hdr));
1459 	/* Skip header size. */
1460 	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1461 	/* Space available to the end of the ring */
1462 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1463 	if (to_end >= len) {
1464 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1465 	} else {
1466 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1467 		    sc->txd_cur));
1468 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1469 	}
1470 
1471 	/*
1472 	 * Set TxD flags and parameters.
1473 	 */
1474 	if ((m0->m_flags & M_VLANTAG) != 0) {
1475 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1476 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1477 	} else {
1478 		hdr->len = htole16(len);
1479 	}
1480 
1481 	/*
1482 	 * Set current TxD position and round up to a 4-byte boundary.
1483 	 */
1484 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1485 	if (sc->txd_cur == sc->txd_ack)
1486 		sc->flags &= ~AE_FLAG_TXAVAIL;
1487 #ifdef AE_DEBUG
1488 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1489 #endif
1490 
1491 	/*
1492 	 * Update TxS position and check if there are empty TxS available.
1493 	 */
1494 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1495 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1496 	if (sc->txs_cur == sc->txs_ack)
1497 		sc->flags &= ~AE_FLAG_TXAVAIL;
1498 
1499 	/*
1500 	 * Synchronize DMA memory.
1501 	 */
1502 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1503 	    BUS_DMASYNC_PREWRITE);
1504 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1505 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1506 
1507 	return (0);
1508 }
1509 
1510 static void
ae_start(if_t ifp)1511 ae_start(if_t ifp)
1512 {
1513 	ae_softc_t *sc;
1514 
1515 	sc = if_getsoftc(ifp);
1516 	AE_LOCK(sc);
1517 	ae_start_locked(ifp);
1518 	AE_UNLOCK(sc);
1519 }
1520 
1521 static void
ae_start_locked(if_t ifp)1522 ae_start_locked(if_t ifp)
1523 {
1524 	ae_softc_t *sc;
1525 	unsigned int count;
1526 	struct mbuf *m0;
1527 	int error;
1528 
1529 	sc = if_getsoftc(ifp);
1530 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1531 	AE_LOCK_ASSERT(sc);
1532 
1533 #ifdef AE_DEBUG
1534 	if_printf(ifp, "Start called.\n");
1535 #endif
1536 
1537 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1538 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1539 		return;
1540 
1541 	count = 0;
1542 	while (!if_sendq_empty(ifp)) {
1543 		m0 = if_dequeue(ifp);
1544 		if (m0 == NULL)
1545 			break;	/* Nothing to do. */
1546 
1547 		error = ae_encap(sc, &m0);
1548 		if (error != 0) {
1549 			if (m0 != NULL) {
1550 				if_sendq_prepend(ifp, m0);
1551 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1552 #ifdef AE_DEBUG
1553 				if_printf(ifp, "Setting OACTIVE.\n");
1554 #endif
1555 			}
1556 			break;
1557 		}
1558 		count++;
1559 		sc->tx_inproc++;
1560 
1561 		/* Bounce a copy of the frame to BPF. */
1562 		ETHER_BPF_MTAP(ifp, m0);
1563 
1564 		m_freem(m0);
1565 	}
1566 
1567 	if (count > 0) {	/* Something was dequeued. */
1568 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1569 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1570 #ifdef AE_DEBUG
1571 		if_printf(ifp, "%d packets dequeued.\n", count);
1572 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1573 #endif
1574 	}
1575 }
1576 
1577 static void
ae_link_task(void * arg,int pending)1578 ae_link_task(void *arg, int pending)
1579 {
1580 	ae_softc_t *sc;
1581 	struct mii_data *mii;
1582 	if_t ifp;
1583 	uint32_t val;
1584 
1585 	sc = (ae_softc_t *)arg;
1586 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1587 	AE_LOCK(sc);
1588 
1589 	ifp = sc->ifp;
1590 	mii = device_get_softc(sc->miibus);
1591 	if (mii == NULL || ifp == NULL ||
1592 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1593 		AE_UNLOCK(sc);	/* XXX: could happen? */
1594 		return;
1595 	}
1596 
1597 	sc->flags &= ~AE_FLAG_LINK;
1598 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1599 	    (IFM_AVALID | IFM_ACTIVE)) {
1600 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1601 		case IFM_10_T:
1602 		case IFM_100_TX:
1603 			sc->flags |= AE_FLAG_LINK;
1604 			break;
1605 		default:
1606 			break;
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Stop Rx/Tx MACs.
1612 	 */
1613 	ae_stop_rxmac(sc);
1614 	ae_stop_txmac(sc);
1615 
1616 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1617 		ae_mac_config(sc);
1618 
1619 		/*
1620 		 * Restart DMA engines.
1621 		 */
1622 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1623 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1624 
1625 		/*
1626 		 * Enable Rx and Tx MACs.
1627 		 */
1628 		val = AE_READ_4(sc, AE_MAC_REG);
1629 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1630 		AE_WRITE_4(sc, AE_MAC_REG, val);
1631 	}
1632 	AE_UNLOCK(sc);
1633 }
1634 
1635 static void
ae_stop_rxmac(ae_softc_t * sc)1636 ae_stop_rxmac(ae_softc_t *sc)
1637 {
1638 	uint32_t val;
1639 	int i;
1640 
1641 	AE_LOCK_ASSERT(sc);
1642 
1643 	/*
1644 	 * Stop Rx MAC engine.
1645 	 */
1646 	val = AE_READ_4(sc, AE_MAC_REG);
1647 	if ((val & AE_MAC_RX_EN) != 0) {
1648 		val &= ~AE_MAC_RX_EN;
1649 		AE_WRITE_4(sc, AE_MAC_REG, val);
1650 	}
1651 
1652 	/*
1653 	 * Stop Rx DMA engine.
1654 	 */
1655 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1656 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1657 
1658 	/*
1659 	 * Wait for IDLE state.
1660 	 */
1661 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1662 		val = AE_READ_4(sc, AE_IDLE_REG);
1663 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1664 			break;
1665 		DELAY(100);
1666 	}
1667 	if (i == AE_IDLE_TIMEOUT)
1668 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1669 }
1670 
1671 static void
ae_stop_txmac(ae_softc_t * sc)1672 ae_stop_txmac(ae_softc_t *sc)
1673 {
1674 	uint32_t val;
1675 	int i;
1676 
1677 	AE_LOCK_ASSERT(sc);
1678 
1679 	/*
1680 	 * Stop Tx MAC engine.
1681 	 */
1682 	val = AE_READ_4(sc, AE_MAC_REG);
1683 	if ((val & AE_MAC_TX_EN) != 0) {
1684 		val &= ~AE_MAC_TX_EN;
1685 		AE_WRITE_4(sc, AE_MAC_REG, val);
1686 	}
1687 
1688 	/*
1689 	 * Stop Tx DMA engine.
1690 	 */
1691 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1692 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1693 
1694 	/*
1695 	 * Wait for IDLE state.
1696 	 */
1697 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1698 		val = AE_READ_4(sc, AE_IDLE_REG);
1699 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1700 			break;
1701 		DELAY(100);
1702 	}
1703 	if (i == AE_IDLE_TIMEOUT)
1704 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1705 }
1706 
1707 static void
ae_mac_config(ae_softc_t * sc)1708 ae_mac_config(ae_softc_t *sc)
1709 {
1710 	struct mii_data *mii;
1711 	uint32_t val;
1712 
1713 	AE_LOCK_ASSERT(sc);
1714 
1715 	mii = device_get_softc(sc->miibus);
1716 	val = AE_READ_4(sc, AE_MAC_REG);
1717 	val &= ~AE_MAC_FULL_DUPLEX;
1718 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1719 
1720 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1721 		val |= AE_MAC_FULL_DUPLEX;
1722 
1723 	AE_WRITE_4(sc, AE_MAC_REG, val);
1724 }
1725 
1726 static int
ae_intr(void * arg)1727 ae_intr(void *arg)
1728 {
1729 	ae_softc_t *sc;
1730 	uint32_t val;
1731 
1732 	sc = (ae_softc_t *)arg;
1733 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1734 
1735 	val = AE_READ_4(sc, AE_ISR_REG);
1736 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1737 		return (FILTER_STRAY);
1738 
1739 	/* Disable interrupts. */
1740 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1741 
1742 	/* Schedule interrupt processing. */
1743 	taskqueue_enqueue(sc->tq, &sc->int_task);
1744 
1745 	return (FILTER_HANDLED);
1746 }
1747 
1748 static void
ae_int_task(void * arg,int pending)1749 ae_int_task(void *arg, int pending)
1750 {
1751 	ae_softc_t *sc;
1752 	if_t ifp;
1753 	uint32_t val;
1754 
1755 	sc = (ae_softc_t *)arg;
1756 
1757 	AE_LOCK(sc);
1758 
1759 	ifp = sc->ifp;
1760 
1761 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1762 	if (val == 0) {
1763 		AE_UNLOCK(sc);
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Clear interrupts and disable them.
1769 	 */
1770 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1771 
1772 #ifdef AE_DEBUG
1773 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1774 #endif
1775 
1776 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1777 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1778 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1779 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1780 			ae_init_locked(sc);
1781 			AE_UNLOCK(sc);
1782 			return;
1783 		}
1784 		if ((val & AE_ISR_TX_EVENT) != 0)
1785 			ae_tx_intr(sc);
1786 		if ((val & AE_ISR_RX_EVENT) != 0)
1787 			ae_rx_intr(sc);
1788 		/*
1789 		 * Re-enable interrupts.
1790 		 */
1791 		AE_WRITE_4(sc, AE_ISR_REG, 0);
1792 
1793 		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1794 			if (!if_sendq_empty(ifp))
1795 				ae_start_locked(ifp);
1796 		}
1797 	}
1798 
1799 	AE_UNLOCK(sc);
1800 }
1801 
1802 static void
ae_tx_intr(ae_softc_t * sc)1803 ae_tx_intr(ae_softc_t *sc)
1804 {
1805 	if_t ifp;
1806 	ae_txd_t *txd;
1807 	ae_txs_t *txs;
1808 	uint16_t flags;
1809 
1810 	AE_LOCK_ASSERT(sc);
1811 
1812 	ifp = sc->ifp;
1813 
1814 #ifdef AE_DEBUG
1815 	if_printf(ifp, "Tx interrupt occuried.\n");
1816 #endif
1817 
1818 	/*
1819 	 * Syncronize DMA buffers.
1820 	 */
1821 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1822 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1823 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1824 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1825 
1826 	for (;;) {
1827 		txs = sc->txs_base + sc->txs_ack;
1828 		flags = le16toh(txs->flags);
1829 		if ((flags & AE_TXS_UPDATE) == 0)
1830 			break;
1831 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1832 		/* Update stats. */
1833 		ae_update_stats_tx(flags, &sc->stats);
1834 
1835 		/*
1836 		 * Update TxS position.
1837 		 */
1838 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1839 		sc->flags |= AE_FLAG_TXAVAIL;
1840 
1841 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1842 		if (txs->len != txd->len)
1843 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1844 			    le16toh(txs->len), le16toh(txd->len));
1845 
1846 		/*
1847 		 * Move txd ack and align on 4-byte boundary.
1848 		 */
1849 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1850 		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1851 
1852 		if ((flags & AE_TXS_SUCCESS) != 0)
1853 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1854 		else
1855 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1856 
1857 		sc->tx_inproc--;
1858 	}
1859 
1860 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1861 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1862 	if (sc->tx_inproc < 0) {
1863 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1864 		sc->tx_inproc = 0;
1865 	}
1866 
1867 	if (sc->tx_inproc == 0)
1868 		sc->wd_timer = 0;	/* Unarm watchdog. */
1869 
1870 	/*
1871 	 * Syncronize DMA buffers.
1872 	 */
1873 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1874 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1875 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1876 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1877 }
1878 
1879 static void
ae_rxeof(ae_softc_t * sc,ae_rxd_t * rxd)1880 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1881 {
1882 	if_t ifp;
1883 	struct mbuf *m;
1884 	unsigned int size;
1885 	uint16_t flags;
1886 
1887 	AE_LOCK_ASSERT(sc);
1888 
1889 	ifp = sc->ifp;
1890 	flags = le16toh(rxd->flags);
1891 
1892 #ifdef AE_DEBUG
1893 	if_printf(ifp, "Rx interrupt occuried.\n");
1894 #endif
1895 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1896 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1897 		if_printf(ifp, "Runt frame received.");
1898 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1899 		return;
1900 	}
1901 
1902 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1903 	if (m == NULL) {
1904 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1905 		return;
1906 	}
1907 
1908 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1909 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1910 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1911 		m->m_flags |= M_VLANTAG;
1912 	}
1913 
1914 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1915 	/*
1916 	 * Pass it through.
1917 	 */
1918 	AE_UNLOCK(sc);
1919 	if_input(ifp, m);
1920 	AE_LOCK(sc);
1921 }
1922 
1923 static void
ae_rx_intr(ae_softc_t * sc)1924 ae_rx_intr(ae_softc_t *sc)
1925 {
1926 	ae_rxd_t *rxd;
1927 	if_t ifp;
1928 	uint16_t flags;
1929 	int count;
1930 
1931 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1932 
1933 	AE_LOCK_ASSERT(sc);
1934 
1935 	ifp = sc->ifp;
1936 
1937 	/*
1938 	 * Syncronize DMA buffers.
1939 	 */
1940 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1941 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1942 
1943 	for (count = 0;; count++) {
1944 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1945 		flags = le16toh(rxd->flags);
1946 		if ((flags & AE_RXD_UPDATE) == 0)
1947 			break;
1948 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1949 		/* Update stats. */
1950 		ae_update_stats_rx(flags, &sc->stats);
1951 
1952 		/*
1953 		 * Update position index.
1954 		 */
1955 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1956 
1957 		if ((flags & AE_RXD_SUCCESS) != 0)
1958 			ae_rxeof(sc, rxd);
1959 		else
1960 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1961 	}
1962 
1963 	if (count > 0) {
1964 		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1965 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1966 		/*
1967 		 * Update Rx index.
1968 		 */
1969 		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1970 	}
1971 }
1972 
1973 static void
ae_watchdog(ae_softc_t * sc)1974 ae_watchdog(ae_softc_t *sc)
1975 {
1976 	if_t ifp;
1977 
1978 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1979 	AE_LOCK_ASSERT(sc);
1980 	ifp = sc->ifp;
1981 
1982 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1983 		return;		/* Noting to do. */
1984 
1985 	if ((sc->flags & AE_FLAG_LINK) == 0)
1986 		if_printf(ifp, "watchdog timeout (missed link).\n");
1987 	else
1988 		if_printf(ifp, "watchdog timeout - resetting.\n");
1989 
1990 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1991 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1992 	ae_init_locked(sc);
1993 	if (!if_sendq_empty(ifp))
1994 		ae_start_locked(ifp);
1995 }
1996 
1997 static void
ae_tick(void * arg)1998 ae_tick(void *arg)
1999 {
2000 	ae_softc_t *sc;
2001 	struct mii_data *mii;
2002 
2003 	sc = (ae_softc_t *)arg;
2004 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2005 	AE_LOCK_ASSERT(sc);
2006 
2007 	mii = device_get_softc(sc->miibus);
2008 	mii_tick(mii);
2009 	ae_watchdog(sc);	/* Watchdog check. */
2010 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2011 }
2012 
2013 static void
ae_rxvlan(ae_softc_t * sc)2014 ae_rxvlan(ae_softc_t *sc)
2015 {
2016 	if_t ifp;
2017 	uint32_t val;
2018 
2019 	AE_LOCK_ASSERT(sc);
2020 	ifp = sc->ifp;
2021 	val = AE_READ_4(sc, AE_MAC_REG);
2022 	val &= ~AE_MAC_RMVLAN_EN;
2023 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2024 		val |= AE_MAC_RMVLAN_EN;
2025 	AE_WRITE_4(sc, AE_MAC_REG, val);
2026 }
2027 
2028 static u_int
ae_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2029 ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2030 {
2031 	uint32_t crc, *mchash = arg;
2032 
2033 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2034 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2035 
2036 	return (1);
2037 }
2038 
2039 static void
ae_rxfilter(ae_softc_t * sc)2040 ae_rxfilter(ae_softc_t *sc)
2041 {
2042 	if_t ifp;
2043 	uint32_t mchash[2];
2044 	uint32_t rxcfg;
2045 
2046 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2047 
2048 	AE_LOCK_ASSERT(sc);
2049 
2050 	ifp = sc->ifp;
2051 
2052 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2053 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2054 
2055 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2056 		rxcfg |= AE_MAC_BCAST_EN;
2057 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2058 		rxcfg |= AE_MAC_PROMISC_EN;
2059 	if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2060 		rxcfg |= AE_MAC_MCAST_EN;
2061 
2062 	/*
2063 	 * Wipe old settings.
2064 	 */
2065 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2066 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2067 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2068 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2069 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2070 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2071 		return;
2072 	}
2073 
2074 	/*
2075 	 * Load multicast tables.
2076 	 */
2077 	bzero(mchash, sizeof(mchash));
2078 	if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash);
2079 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2080 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2081 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2082 }
2083 
2084 static int
ae_ioctl(if_t ifp,u_long cmd,caddr_t data)2085 ae_ioctl(if_t ifp, u_long cmd, caddr_t data)
2086 {
2087 	struct ae_softc *sc;
2088 	struct ifreq *ifr;
2089 	struct mii_data *mii;
2090 	int error, mask;
2091 
2092 	sc = if_getsoftc(ifp);
2093 	ifr = (struct ifreq *)data;
2094 	error = 0;
2095 
2096 	switch (cmd) {
2097 	case SIOCSIFMTU:
2098 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2099 			error = EINVAL;
2100 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2101 			AE_LOCK(sc);
2102 			if_setmtu(ifp, ifr->ifr_mtu);
2103 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2104 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2105 				ae_init_locked(sc);
2106 			}
2107 			AE_UNLOCK(sc);
2108 		}
2109 		break;
2110 	case SIOCSIFFLAGS:
2111 		AE_LOCK(sc);
2112 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2113 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2114 				if (((if_getflags(ifp) ^ sc->if_flags)
2115 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2116 					ae_rxfilter(sc);
2117 			} else {
2118 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2119 					ae_init_locked(sc);
2120 			}
2121 		} else {
2122 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2123 				ae_stop(sc);
2124 		}
2125 		sc->if_flags = if_getflags(ifp);
2126 		AE_UNLOCK(sc);
2127 		break;
2128 	case SIOCADDMULTI:
2129 	case SIOCDELMULTI:
2130 		AE_LOCK(sc);
2131 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2132 			ae_rxfilter(sc);
2133 		AE_UNLOCK(sc);
2134 		break;
2135 	case SIOCSIFMEDIA:
2136 	case SIOCGIFMEDIA:
2137 		mii = device_get_softc(sc->miibus);
2138 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2139 		break;
2140 	case SIOCSIFCAP:
2141 		AE_LOCK(sc);
2142 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2143 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2144 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2145 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2146 			ae_rxvlan(sc);
2147 		}
2148 		VLAN_CAPABILITIES(ifp);
2149 		AE_UNLOCK(sc);
2150 		break;
2151 	default:
2152 		error = ether_ioctl(ifp, cmd, data);
2153 		break;
2154 	}
2155 	return (error);
2156 }
2157 
2158 static void
ae_stop(ae_softc_t * sc)2159 ae_stop(ae_softc_t *sc)
2160 {
2161 	if_t ifp;
2162 	int i;
2163 
2164 	AE_LOCK_ASSERT(sc);
2165 
2166 	ifp = sc->ifp;
2167 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2168 	sc->flags &= ~AE_FLAG_LINK;
2169 	sc->wd_timer = 0;	/* Cancel watchdog. */
2170 	callout_stop(&sc->tick_ch);
2171 
2172 	/*
2173 	 * Clear and disable interrupts.
2174 	 */
2175 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2176 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2177 
2178 	/*
2179 	 * Stop Rx/Tx MACs.
2180 	 */
2181 	ae_stop_txmac(sc);
2182 	ae_stop_rxmac(sc);
2183 
2184 	/*
2185 	 * Stop DMA engines.
2186 	 */
2187 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2188 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2189 
2190 	/*
2191 	 * Wait for everything to enter idle state.
2192 	 */
2193 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2194 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2195 			break;
2196 		DELAY(100);
2197 	}
2198 	if (i == AE_IDLE_TIMEOUT)
2199 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2200 }
2201 
2202 static void
ae_update_stats_tx(uint16_t flags,ae_stats_t * stats)2203 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2204 {
2205 
2206 	if ((flags & AE_TXS_BCAST) != 0)
2207 		stats->tx_bcast++;
2208 	if ((flags & AE_TXS_MCAST) != 0)
2209 		stats->tx_mcast++;
2210 	if ((flags & AE_TXS_PAUSE) != 0)
2211 		stats->tx_pause++;
2212 	if ((flags & AE_TXS_CTRL) != 0)
2213 		stats->tx_ctrl++;
2214 	if ((flags & AE_TXS_DEFER) != 0)
2215 		stats->tx_defer++;
2216 	if ((flags & AE_TXS_EXCDEFER) != 0)
2217 		stats->tx_excdefer++;
2218 	if ((flags & AE_TXS_SINGLECOL) != 0)
2219 		stats->tx_singlecol++;
2220 	if ((flags & AE_TXS_MULTICOL) != 0)
2221 		stats->tx_multicol++;
2222 	if ((flags & AE_TXS_LATECOL) != 0)
2223 		stats->tx_latecol++;
2224 	if ((flags & AE_TXS_ABORTCOL) != 0)
2225 		stats->tx_abortcol++;
2226 	if ((flags & AE_TXS_UNDERRUN) != 0)
2227 		stats->tx_underrun++;
2228 }
2229 
2230 static void
ae_update_stats_rx(uint16_t flags,ae_stats_t * stats)2231 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2232 {
2233 
2234 	if ((flags & AE_RXD_BCAST) != 0)
2235 		stats->rx_bcast++;
2236 	if ((flags & AE_RXD_MCAST) != 0)
2237 		stats->rx_mcast++;
2238 	if ((flags & AE_RXD_PAUSE) != 0)
2239 		stats->rx_pause++;
2240 	if ((flags & AE_RXD_CTRL) != 0)
2241 		stats->rx_ctrl++;
2242 	if ((flags & AE_RXD_CRCERR) != 0)
2243 		stats->rx_crcerr++;
2244 	if ((flags & AE_RXD_CODEERR) != 0)
2245 		stats->rx_codeerr++;
2246 	if ((flags & AE_RXD_RUNT) != 0)
2247 		stats->rx_runt++;
2248 	if ((flags & AE_RXD_FRAG) != 0)
2249 		stats->rx_frag++;
2250 	if ((flags & AE_RXD_TRUNC) != 0)
2251 		stats->rx_trunc++;
2252 	if ((flags & AE_RXD_ALIGN) != 0)
2253 		stats->rx_align++;
2254 }
2255