xref: /freebsd/sys/dev/ae/if_ae.c (revision 3157ba21)
1 /*-
2  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
26  *
27  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 
69 #include "miibus_if.h"
70 
71 #include "if_aereg.h"
72 #include "if_aevar.h"
73 
74 /*
75  * Devices supported by this driver.
76  */
77 static struct ae_dev {
78 	uint16_t	vendorid;
79 	uint16_t	deviceid;
80 	const char	*name;
81 } ae_devs[] = {
82 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
83 		"Attansic Technology Corp, L2 FastEthernet" },
84 };
85 #define	AE_DEVS_COUNT (sizeof(ae_devs) / sizeof(*ae_devs))
86 
87 static struct resource_spec ae_res_spec_mem[] = {
88 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
89 	{ -1,			0,		0 }
90 };
91 static struct resource_spec ae_res_spec_irq[] = {
92 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
93 	{ -1,			0,		0 }
94 };
95 static struct resource_spec ae_res_spec_msi[] = {
96 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
97 	{ -1,			0,		0 }
98 };
99 
100 static int	ae_probe(device_t dev);
101 static int	ae_attach(device_t dev);
102 static void	ae_pcie_init(ae_softc_t *sc);
103 static void	ae_phy_reset(ae_softc_t *sc);
104 static void	ae_phy_init(ae_softc_t *sc);
105 static int	ae_reset(ae_softc_t *sc);
106 static void	ae_init(void *arg);
107 static int	ae_init_locked(ae_softc_t *sc);
108 static int	ae_detach(device_t dev);
109 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
110 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
111 static void	ae_miibus_statchg(device_t dev);
112 static void	ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
113 static int	ae_mediachange(struct ifnet *ifp);
114 static void	ae_retrieve_address(ae_softc_t *sc);
115 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
116     int error);
117 static int	ae_alloc_rings(ae_softc_t *sc);
118 static void	ae_dma_free(ae_softc_t *sc);
119 static int	ae_shutdown(device_t dev);
120 static int	ae_suspend(device_t dev);
121 static void	ae_powersave_disable(ae_softc_t *sc);
122 static void	ae_powersave_enable(ae_softc_t *sc);
123 static int	ae_resume(device_t dev);
124 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
125 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
126 static void	ae_start(struct ifnet *ifp);
127 static void	ae_link_task(void *arg, int pending);
128 static void	ae_stop_rxmac(ae_softc_t *sc);
129 static void	ae_stop_txmac(ae_softc_t *sc);
130 static void	ae_tx_task(void *arg, int pending);
131 static void	ae_mac_config(ae_softc_t *sc);
132 static int	ae_intr(void *arg);
133 static void	ae_int_task(void *arg, int pending);
134 static void	ae_tx_intr(ae_softc_t *sc);
135 static int	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
136 static void	ae_rx_intr(ae_softc_t *sc);
137 static void	ae_watchdog(ae_softc_t *sc);
138 static void	ae_tick(void *arg);
139 static void	ae_rxfilter(ae_softc_t *sc);
140 static void	ae_rxvlan(ae_softc_t *sc);
141 static int	ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
142 static void	ae_stop(ae_softc_t *sc);
143 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
144 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
145 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
146 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
147 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
148 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
149 static void	ae_init_tunables(ae_softc_t *sc);
150 
151 static device_method_t ae_methods[] = {
152 	/* Device interface. */
153 	DEVMETHOD(device_probe,		ae_probe),
154 	DEVMETHOD(device_attach,	ae_attach),
155 	DEVMETHOD(device_detach,	ae_detach),
156 	DEVMETHOD(device_shutdown,	ae_shutdown),
157 	DEVMETHOD(device_suspend,	ae_suspend),
158 	DEVMETHOD(device_resume,	ae_resume),
159 
160 	/* MII interface. */
161 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
162 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
163 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
164 
165 	{ NULL, NULL }
166 };
167 static driver_t ae_driver = {
168         "ae",
169         ae_methods,
170         sizeof(ae_softc_t)
171 };
172 static devclass_t ae_devclass;
173 
174 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
175 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
176 MODULE_DEPEND(ae, pci, 1, 1, 1);
177 MODULE_DEPEND(ae, ether, 1, 1, 1);
178 MODULE_DEPEND(ae, miibus, 1, 1, 1);
179 
180 /*
181  * Tunables.
182  */
183 static int msi_disable = 0;
184 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
185 
186 #define	AE_READ_4(sc, reg) \
187 	bus_read_4((sc)->mem[0], (reg))
188 #define	AE_READ_2(sc, reg) \
189 	bus_read_2((sc)->mem[0], (reg))
190 #define	AE_READ_1(sc, reg) \
191 	bus_read_1((sc)->mem[0], (reg))
192 #define	AE_WRITE_4(sc, reg, val) \
193 	bus_write_4((sc)->mem[0], (reg), (val))
194 #define	AE_WRITE_2(sc, reg, val) \
195 	bus_write_2((sc)->mem[0], (reg), (val))
196 #define	AE_WRITE_1(sc, reg, val) \
197 	bus_write_1((sc)->mem[0], (reg), (val))
198 #define	AE_PHY_READ(sc, reg) \
199 	ae_miibus_readreg(sc->dev, 0, reg)
200 #define	AE_PHY_WRITE(sc, reg, val) \
201 	ae_miibus_writereg(sc->dev, 0, reg, val)
202 #define	AE_CHECK_EADDR_VALID(eaddr) \
203 	((eaddr[0] == 0 && eaddr[1] == 0) || \
204 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
205 #define	AE_RXD_VLAN(vtag) \
206 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
207 #define	AE_TXD_VLAN(vtag) \
208 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
209 
210 /*
211  * ae statistics.
212  */
213 #define	STATS_ENTRY(node, desc, field) \
214     { node, desc, offsetof(struct ae_stats, field) }
215 struct {
216 	const char	*node;
217 	const char	*desc;
218 	intptr_t	offset;
219 } ae_stats_tx[] = {
220 	STATS_ENTRY("bcast", "broadcast frames", tx_bcast),
221 	STATS_ENTRY("mcast", "multicast frames", tx_mcast),
222 	STATS_ENTRY("pause", "PAUSE frames", tx_pause),
223 	STATS_ENTRY("control", "control frames", tx_ctrl),
224 	STATS_ENTRY("defers", "deferrals occuried", tx_defer),
225 	STATS_ENTRY("exc_defers", "excessive deferrals occuried", tx_excdefer),
226 	STATS_ENTRY("singlecols", "single collisions occuried", tx_singlecol),
227 	STATS_ENTRY("multicols", "multiple collisions occuried", tx_multicol),
228 	STATS_ENTRY("latecols", "late collisions occuried", tx_latecol),
229 	STATS_ENTRY("aborts", "transmit aborts due collisions", tx_abortcol),
230 	STATS_ENTRY("underruns", "Tx FIFO underruns", tx_underrun)
231 }, ae_stats_rx[] = {
232 	STATS_ENTRY("bcast", "broadcast frames", rx_bcast),
233 	STATS_ENTRY("mcast", "multicast frames", rx_mcast),
234 	STATS_ENTRY("pause", "PAUSE frames", rx_pause),
235 	STATS_ENTRY("control", "control frames", rx_ctrl),
236 	STATS_ENTRY("crc_errors", "frames with CRC errors", rx_crcerr),
237 	STATS_ENTRY("code_errors", "frames with invalid opcode", rx_codeerr),
238 	STATS_ENTRY("runt", "runt frames", rx_runt),
239 	STATS_ENTRY("frag", "fragmented frames", rx_frag),
240 	STATS_ENTRY("align_errors", "frames with alignment errors", rx_align),
241 	STATS_ENTRY("truncated", "frames truncated due to Rx FIFO inderrun",
242 	    rx_trunc)
243 };
244 #define	AE_STATS_RX_LEN	(sizeof(ae_stats_rx) / sizeof(*ae_stats_rx))
245 #define	AE_STATS_TX_LEN	(sizeof(ae_stats_tx) / sizeof(*ae_stats_tx))
246 
247 static int
248 ae_probe(device_t dev)
249 {
250 	uint16_t deviceid, vendorid;
251 	int i;
252 
253 	vendorid = pci_get_vendor(dev);
254 	deviceid = pci_get_device(dev);
255 
256 	/*
257 	 * Search through the list of supported devs for matching one.
258 	 */
259 	for (i = 0; i < AE_DEVS_COUNT; i++) {
260 		if (vendorid == ae_devs[i].vendorid &&
261 		    deviceid == ae_devs[i].deviceid) {
262 			device_set_desc(dev, ae_devs[i].name);
263 			return (BUS_PROBE_DEFAULT);
264 		}
265 	}
266 	return (ENXIO);
267 }
268 
269 static int
270 ae_attach(device_t dev)
271 {
272 	ae_softc_t *sc;
273 	struct ifnet *ifp;
274 	uint8_t chiprev;
275 	uint32_t pcirev;
276 	int nmsi, pmc;
277 	int error;
278 
279 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
280 				       on attach. */
281 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
282 	sc->dev = dev;
283 
284 	/*
285 	 * Initialize mutexes and tasks.
286 	 */
287 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
288 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
289 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
290 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
291 
292 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
293 
294 	sc->spec_mem = ae_res_spec_mem;
295 
296 	/*
297 	 * Allocate memory-mapped registers.
298 	 */
299 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
300 	if (error != 0) {
301 		device_printf(dev, "could not allocate memory resources.\n");
302 		sc->spec_mem = NULL;
303 		goto fail;
304 	}
305 
306 	/*
307 	 * Retrieve PCI and chip revisions.
308 	 */
309 	pcirev = pci_get_revid(dev);
310 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
311 	    AE_MASTER_REVNUM_MASK;
312 	if (bootverbose) {
313 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
314 		device_printf(dev, "chip id: %#02x\n", chiprev);
315 	}
316 	nmsi = pci_msi_count(dev);
317 	if (bootverbose)
318 		device_printf(dev, "MSI count: %d.\n", nmsi);
319 
320 	/*
321 	 * Allocate interrupt resources.
322 	 */
323 	if (msi_disable == 0 && nmsi == 1) {
324 		error = pci_alloc_msi(dev, &nmsi);
325 		if (error == 0) {
326 			device_printf(dev, "Using MSI messages.\n");
327 			sc->spec_irq = ae_res_spec_msi;
328 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
329 			if (error != 0) {
330 				device_printf(dev, "MSI allocation failed.\n");
331 				sc->spec_irq = NULL;
332 				pci_release_msi(dev);
333 			} else {
334 				sc->flags |= AE_FLAG_MSI;
335 			}
336 		}
337 	}
338 	if (sc->spec_irq == NULL) {
339 		sc->spec_irq = ae_res_spec_irq;
340 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
341 		if (error != 0) {
342 			device_printf(dev, "could not allocate IRQ resources.\n");
343 			sc->spec_irq = NULL;
344 			goto fail;
345 		}
346 	}
347 
348 	ae_init_tunables(sc);
349 
350 	ae_phy_reset(sc);		/* Reset PHY. */
351 	error = ae_reset(sc);		/* Reset the controller itself. */
352 	if (error != 0)
353 		goto fail;
354 
355 	ae_pcie_init(sc);
356 
357 	ae_retrieve_address(sc);	/* Load MAC address. */
358 
359 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
360 	if (error != 0)
361 		goto fail;
362 
363 	/* Set default PHY address. */
364 	sc->phyaddr = AE_PHYADDR_DEFAULT;
365 
366 	ifp = sc->ifp = if_alloc(IFT_ETHER);
367 	if (ifp == NULL) {
368 		device_printf(dev, "could not allocate ifnet structure.\n");
369 		error = ENXIO;
370 		goto fail;
371 	}
372 
373 	ifp->if_softc = sc;
374 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
375 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
376 	ifp->if_ioctl = ae_ioctl;
377 	ifp->if_start = ae_start;
378 	ifp->if_init = ae_init;
379 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
380 	ifp->if_hwassist = 0;
381 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
382 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
383 	IFQ_SET_READY(&ifp->if_snd);
384 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
385 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
386 		sc->flags |= AE_FLAG_PMG;
387 	}
388 	ifp->if_capenable = ifp->if_capabilities;
389 
390 	/*
391 	 * Configure and attach MII bus.
392 	 */
393 	error = mii_phy_probe(dev, &sc->miibus, ae_mediachange,
394 	    ae_mediastatus);
395 	if (error != 0) {
396 		device_printf(dev, "no PHY found.\n");
397 		goto fail;
398 	}
399 
400 	ether_ifattach(ifp, sc->eaddr);
401 	/* Tell the upper layer(s) we support long frames. */
402 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
403 
404 	/*
405 	 * Create and run all helper tasks.
406 	 */
407 	TASK_INIT(&sc->tx_task, 1, ae_tx_task, ifp);
408 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
409             taskqueue_thread_enqueue, &sc->tq);
410 	if (sc->tq == NULL) {
411 		device_printf(dev, "could not create taskqueue.\n");
412 		ether_ifdetach(ifp);
413 		error = ENXIO;
414 		goto fail;
415 	}
416 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
417 	    device_get_nameunit(sc->dev));
418 
419 	/*
420 	 * Configure interrupt handlers.
421 	 */
422 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
423 	    ae_intr, NULL, sc, &sc->intrhand);
424 	if (error != 0) {
425 		device_printf(dev, "could not set up interrupt handler.\n");
426 		taskqueue_free(sc->tq);
427 		sc->tq = NULL;
428 		ether_ifdetach(ifp);
429 		goto fail;
430 	}
431 
432 fail:
433 	if (error != 0)
434 		ae_detach(dev);
435 
436 	return (error);
437 }
438 
439 static void
440 ae_init_tunables(ae_softc_t *sc)
441 {
442 	struct sysctl_ctx_list *ctx;
443 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
444 	struct ae_stats *ae_stats;
445 	unsigned int i;
446 
447 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
448 	ae_stats = &sc->stats;
449 
450 	ctx = device_get_sysctl_ctx(sc->dev);
451 	root = device_get_sysctl_tree(sc->dev);
452 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
453 	    CTLFLAG_RD, NULL, "ae statistics");
454 
455 	/*
456 	 * Receiver statistcics.
457 	 */
458 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
459 	    CTLFLAG_RD, NULL, "Rx MAC statistics");
460 	for (i = 0; i < AE_STATS_RX_LEN; i++)
461 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_rx), OID_AUTO,
462 		    ae_stats_rx[i].node, CTLFLAG_RD, (char *)ae_stats +
463 		    ae_stats_rx[i].offset, 0, ae_stats_rx[i].desc);
464 
465 	/*
466 	 * Receiver statistcics.
467 	 */
468 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
469 	    CTLFLAG_RD, NULL, "Tx MAC statistics");
470 	for (i = 0; i < AE_STATS_TX_LEN; i++)
471 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_tx), OID_AUTO,
472 		    ae_stats_tx[i].node, CTLFLAG_RD, (char *)ae_stats +
473 		    ae_stats_tx[i].offset, 0, ae_stats_tx[i].desc);
474 }
475 
476 static void
477 ae_pcie_init(ae_softc_t *sc)
478 {
479 
480 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
481 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
482 }
483 
484 static void
485 ae_phy_reset(ae_softc_t *sc)
486 {
487 
488 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
489 	DELAY(1000);	/* XXX: pause(9) ? */
490 }
491 
492 static int
493 ae_reset(ae_softc_t *sc)
494 {
495 	int i;
496 
497 	/*
498 	 * Issue a soft reset.
499 	 */
500 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
501 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
502 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
503 
504 	/*
505 	 * Wait for reset to complete.
506 	 */
507 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
508 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
509 			break;
510 		DELAY(10);
511 	}
512 	if (i == AE_RESET_TIMEOUT) {
513 		device_printf(sc->dev, "reset timeout.\n");
514 		return (ENXIO);
515 	}
516 
517 	/*
518 	 * Wait for everything to enter idle state.
519 	 */
520 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
521 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
522 			break;
523 		DELAY(100);
524 	}
525 	if (i == AE_IDLE_TIMEOUT) {
526 		device_printf(sc->dev, "could not enter idle state.\n");
527 		return (ENXIO);
528 	}
529 	return (0);
530 }
531 
532 static void
533 ae_init(void *arg)
534 {
535 	ae_softc_t *sc;
536 
537 	sc = (ae_softc_t *)arg;
538 	AE_LOCK(sc);
539 	ae_init_locked(sc);
540 	AE_UNLOCK(sc);
541 }
542 
543 static void
544 ae_phy_init(ae_softc_t *sc)
545 {
546 
547 	/*
548 	 * Enable link status change interrupt.
549 	 * XXX magic numbers.
550 	 */
551 #ifdef notyet
552 	AE_PHY_WRITE(sc, 18, 0xc00);
553 #endif
554 }
555 
556 static int
557 ae_init_locked(ae_softc_t *sc)
558 {
559 	struct ifnet *ifp;
560 	struct mii_data *mii;
561 	uint8_t eaddr[ETHER_ADDR_LEN];
562 	uint32_t val;
563 	bus_addr_t addr;
564 
565 	AE_LOCK_ASSERT(sc);
566 
567 	ifp = sc->ifp;
568 	mii = device_get_softc(sc->miibus);
569 
570 	ae_stop(sc);
571 	ae_reset(sc);
572 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
573 	ae_phy_init(sc);
574 	ae_powersave_disable(sc);
575 
576 	/*
577 	 * Clear and disable interrupts.
578 	 */
579 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
580 
581 	/*
582 	 * Set the MAC address.
583 	 */
584 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
585 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
586 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
587 	val = eaddr[0] << 8 | eaddr[1];
588 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
589 
590 	/*
591 	 * Set ring buffers base addresses.
592 	 */
593 	addr = sc->dma_rxd_busaddr;
594 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
595 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
596 	addr = sc->dma_txd_busaddr;
597 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
598 	addr = sc->dma_txs_busaddr;
599 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
600 
601 	/*
602 	 * Configure ring buffers sizes.
603 	 */
604 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
605 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
606 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
607 
608 	/*
609 	 * Configure interframe gap parameters.
610 	 */
611 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
612 	    AE_IFG_TXIPG_MASK) |
613 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
614 	    AE_IFG_RXIPG_MASK) |
615 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
616 	    AE_IFG_IPGR1_MASK) |
617 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
618 	    AE_IFG_IPGR2_MASK);
619 	AE_WRITE_4(sc, AE_IFG_REG, val);
620 
621 	/*
622 	 * Configure half-duplex operation.
623 	 */
624 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
625 	    AE_HDPX_LCOL_MASK) |
626 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
627 	    AE_HDPX_RETRY_MASK) |
628 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
629 	    AE_HDPX_ABEBT_MASK) |
630 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
631 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
632 	AE_WRITE_4(sc, AE_HDPX_REG, val);
633 
634 	/*
635 	 * Configure interrupt moderate timer.
636 	 */
637 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
638 	val = AE_READ_4(sc, AE_MASTER_REG);
639 	val |= AE_MASTER_IMT_EN;
640 	AE_WRITE_4(sc, AE_MASTER_REG, val);
641 
642 	/*
643 	 * Configure interrupt clearing timer.
644 	 */
645 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
646 
647 	/*
648 	 * Configure MTU.
649 	 */
650 	val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
651 	    ETHER_CRC_LEN;
652 	AE_WRITE_2(sc, AE_MTU_REG, val);
653 
654 	/*
655 	 * Configure cut-through threshold.
656 	 */
657 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
658 
659 	/*
660 	 * Configure flow control.
661 	 */
662 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
663 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
664 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
665 	    (AE_RXD_COUNT_DEFAULT / 12));
666 
667 	/*
668 	 * Init mailboxes.
669 	 */
670 	sc->txd_cur = sc->rxd_cur = 0;
671 	sc->txs_ack = sc->txd_ack = 0;
672 	sc->rxd_cur = 0;
673 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
674 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
675 
676 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
677 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
678 
679 	/*
680 	 * Enable DMA.
681 	 */
682 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
683 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
684 
685 	/*
686 	 * Check if everything is OK.
687 	 */
688 	val = AE_READ_4(sc, AE_ISR_REG);
689 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
690 		device_printf(sc->dev, "Initialization failed.\n");
691 		return (ENXIO);
692 	}
693 
694 	/*
695 	 * Clear interrupt status.
696 	 */
697 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
698 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
699 
700 	/*
701 	 * Enable interrupts.
702 	 */
703 	val = AE_READ_4(sc, AE_MASTER_REG);
704 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
705 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
706 
707 	/*
708 	 * Disable WOL.
709 	 */
710 	AE_WRITE_4(sc, AE_WOL_REG, 0);
711 
712 	/*
713 	 * Configure MAC.
714 	 */
715 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
716 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
717 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
718 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
719 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
720 	    AE_MAC_PREAMBLE_MASK);
721 	AE_WRITE_4(sc, AE_MAC_REG, val);
722 
723 	/*
724 	 * Configure Rx MAC.
725 	 */
726 	ae_rxfilter(sc);
727 	ae_rxvlan(sc);
728 
729 	/*
730 	 * Enable Tx/Rx.
731 	 */
732 	val = AE_READ_4(sc, AE_MAC_REG);
733 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
734 
735 	sc->flags &= ~AE_FLAG_LINK;
736 	mii_mediachg(mii);	/* Switch to the current media. */
737 
738 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
739 
740 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
741 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
742 
743 #ifdef AE_DEBUG
744 	device_printf(sc->dev, "Initialization complete.\n");
745 #endif
746 
747 	return (0);
748 }
749 
750 static int
751 ae_detach(device_t dev)
752 {
753 	struct ae_softc *sc;
754 	struct ifnet *ifp;
755 
756 	sc = device_get_softc(dev);
757 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
758 	ifp = sc->ifp;
759 	if (device_is_attached(dev)) {
760 		AE_LOCK(sc);
761 		sc->flags |= AE_FLAG_DETACH;
762 		ae_stop(sc);
763 		AE_UNLOCK(sc);
764 		callout_drain(&sc->tick_ch);
765 		taskqueue_drain(sc->tq, &sc->int_task);
766 		taskqueue_drain(sc->tq, &sc->tx_task);
767 		taskqueue_drain(taskqueue_swi, &sc->link_task);
768 		ether_ifdetach(ifp);
769 	}
770 	if (sc->tq != NULL) {
771 		taskqueue_drain(sc->tq, &sc->int_task);
772 		taskqueue_free(sc->tq);
773 		sc->tq = NULL;
774 	}
775 	if (sc->miibus != NULL) {
776 		device_delete_child(dev, sc->miibus);
777 		sc->miibus = NULL;
778 	}
779 	bus_generic_detach(sc->dev);
780 	ae_dma_free(sc);
781 	if (sc->intrhand != NULL) {
782 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
783 		sc->intrhand = NULL;
784 	}
785 	if (ifp != NULL) {
786 		if_free(ifp);
787 		sc->ifp = NULL;
788 	}
789 	if (sc->spec_irq != NULL)
790 		bus_release_resources(dev, sc->spec_irq, sc->irq);
791 	if (sc->spec_mem != NULL)
792 		bus_release_resources(dev, sc->spec_mem, sc->mem);
793 	if ((sc->flags & AE_FLAG_MSI) != 0)
794 		pci_release_msi(dev);
795 	mtx_destroy(&sc->mtx);
796 
797 	return (0);
798 }
799 
800 static int
801 ae_miibus_readreg(device_t dev, int phy, int reg)
802 {
803 	ae_softc_t *sc;
804 	uint32_t val;
805 	int i;
806 
807 	sc = device_get_softc(dev);
808 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
809 
810 	/*
811 	 * Locking is done in upper layers.
812 	 */
813 
814 	if (phy != sc->phyaddr)
815 		return (0);
816 
817 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
818 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
819 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
820 	AE_WRITE_4(sc, AE_MDIO_REG, val);
821 
822 	/*
823 	 * Wait for operation to complete.
824 	 */
825 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
826 		DELAY(2);
827 		val = AE_READ_4(sc, AE_MDIO_REG);
828 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
829 			break;
830 	}
831 	if (i == AE_MDIO_TIMEOUT) {
832 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
833 		return (0);
834 	}
835 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
836 }
837 
838 static int
839 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
840 {
841 	ae_softc_t *sc;
842 	uint32_t aereg;
843 	int i;
844 
845 	sc = device_get_softc(dev);
846 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
847 
848 	/*
849 	 * Locking is done in upper layers.
850 	 */
851 
852 	if (phy != sc->phyaddr)
853 		return (0);
854 
855 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
856 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
857 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
858 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
859 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
860 
861 	/*
862 	 * Wait for operation to complete.
863 	 */
864 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
865 		DELAY(2);
866 		aereg = AE_READ_4(sc, AE_MDIO_REG);
867 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
868 			break;
869 	}
870 	if (i == AE_MDIO_TIMEOUT) {
871 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
872 	}
873 	return (0);
874 }
875 
876 static void
877 ae_miibus_statchg(device_t dev)
878 {
879 	ae_softc_t *sc;
880 
881 	sc = device_get_softc(dev);
882 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
883 }
884 
885 static void
886 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
887 {
888 	ae_softc_t *sc;
889 	struct mii_data *mii;
890 
891 	sc = ifp->if_softc;
892 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
893 
894 	AE_LOCK(sc);
895 	mii = device_get_softc(sc->miibus);
896 	mii_pollstat(mii);
897 	ifmr->ifm_status = mii->mii_media_status;
898 	ifmr->ifm_active = mii->mii_media_active;
899 	AE_UNLOCK(sc);
900 }
901 
902 static int
903 ae_mediachange(struct ifnet *ifp)
904 {
905 	ae_softc_t *sc;
906 	struct mii_data *mii;
907 	struct mii_softc *mii_sc;
908 	int error;
909 
910 	/* XXX: check IFF_UP ?? */
911 	sc = ifp->if_softc;
912 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
913 	AE_LOCK(sc);
914 	mii = device_get_softc(sc->miibus);
915 	if (mii->mii_instance != 0) {
916 		LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
917 			mii_phy_reset(mii_sc);
918 	}
919 	error = mii_mediachg(mii);
920 	AE_UNLOCK(sc);
921 
922 	return (error);
923 }
924 
925 static int
926 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
927 {
928 	int error;
929 	uint32_t val;
930 
931 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
932 
933 	/*
934 	 * Not sure why, but Linux does this.
935 	 */
936 	val = AE_READ_4(sc, AE_SPICTL_REG);
937 	if ((val & AE_SPICTL_VPD_EN) != 0) {
938 		val &= ~AE_SPICTL_VPD_EN;
939 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
940 	}
941 	error = pci_find_extcap(sc->dev, PCIY_VPD, vpdc);
942 	return (error);
943 }
944 
945 static int
946 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
947 {
948 	uint32_t val;
949 	int i;
950 
951 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
952 
953 	/*
954 	 * VPD registers start at offset 0x100. Read them.
955 	 */
956 	val = 0x100 + reg * 4;
957 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
958 	    AE_VPD_CAP_ADDR_MASK);
959 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
960 		DELAY(2000);
961 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
962 		if ((val & AE_VPD_CAP_DONE) != 0)
963 			break;
964 	}
965 	if (i == AE_VPD_TIMEOUT) {
966 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
967 		    reg);
968 		return (ETIMEDOUT);
969 	}
970 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
971 	return (0);
972 }
973 
974 static int
975 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
976 {
977 	uint32_t word, reg, val;
978 	int error;
979 	int found;
980 	int vpdc;
981 	int i;
982 
983 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
984 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
985 
986 	/*
987 	 * Check for EEPROM.
988 	 */
989 	error = ae_check_eeprom_present(sc, &vpdc);
990 	if (error != 0)
991 		return (error);
992 
993 	/*
994 	 * Read the VPD configuration space.
995 	 * Each register is prefixed with signature,
996 	 * so we can check if it is valid.
997 	 */
998 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
999 		error = ae_vpd_read_word(sc, i, &word);
1000 		if (error != 0)
1001 			break;
1002 
1003 		/*
1004 		 * Check signature.
1005 		 */
1006 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1007 			break;
1008 		reg = word >> AE_VPD_REG_SHIFT;
1009 		i++;	/* Move to the next word. */
1010 
1011 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1012 			continue;
1013 
1014 		error = ae_vpd_read_word(sc, i, &val);
1015 		if (error != 0)
1016 			break;
1017 		if (reg == AE_EADDR0_REG)
1018 			eaddr[0] = val;
1019 		else
1020 			eaddr[1] = val;
1021 		found++;
1022 	}
1023 
1024 	if (found < 2)
1025 		return (ENOENT);
1026 
1027 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1028 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1029 		if (bootverbose)
1030 			device_printf(sc->dev,
1031 			    "VPD ethernet address registers are invalid.\n");
1032 		return (EINVAL);
1033 	}
1034 	return (0);
1035 }
1036 
1037 static int
1038 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1039 {
1040 
1041 	/*
1042 	 * BIOS is supposed to set this.
1043 	 */
1044 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1045 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1046 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1047 
1048 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1049 		if (bootverbose)
1050 			device_printf(sc->dev,
1051 			    "Ethernet address registers are invalid.\n");
1052 		return (EINVAL);
1053 	}
1054 	return (0);
1055 }
1056 
1057 static void
1058 ae_retrieve_address(ae_softc_t *sc)
1059 {
1060 	uint32_t eaddr[2] = {0, 0};
1061 	int error;
1062 
1063 	/*
1064 	 *Check for EEPROM.
1065 	 */
1066 	error = ae_get_vpd_eaddr(sc, eaddr);
1067 	if (error != 0)
1068 		error = ae_get_reg_eaddr(sc, eaddr);
1069 	if (error != 0) {
1070 		if (bootverbose)
1071 			device_printf(sc->dev,
1072 			    "Generating random ethernet address.\n");
1073 		eaddr[0] = arc4random();
1074 
1075 		/*
1076 		 * Set OUI to ASUSTek COMPUTER INC.
1077 		 */
1078 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1079 		sc->eaddr[1] = 0x1f;
1080 		sc->eaddr[2] = 0xc6;
1081 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1082 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1083 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1084 	} else {
1085 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1086 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1087 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1088 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1089 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1090 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1091 	}
1092 }
1093 
1094 static void
1095 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1096 {
1097 	bus_addr_t *addr = arg;
1098 
1099 	if (error != 0)
1100 		return;
1101 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1102 	    nsegs));
1103 	*addr = segs[0].ds_addr;
1104 }
1105 
1106 static int
1107 ae_alloc_rings(ae_softc_t *sc)
1108 {
1109 	bus_addr_t busaddr;
1110 	int error;
1111 
1112 	/*
1113 	 * Create parent DMA tag.
1114 	 */
1115 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1116 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1117 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1118 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1119 	    &sc->dma_parent_tag);
1120 	if (error != 0) {
1121 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1122 		return (error);
1123 	}
1124 
1125 	/*
1126 	 * Create DMA tag for TxD.
1127 	 */
1128 	error = bus_dma_tag_create(sc->dma_parent_tag,
1129 	    4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1130 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1131 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1132 	    &sc->dma_txd_tag);
1133 	if (error != 0) {
1134 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1135 		return (error);
1136 	}
1137 
1138 	/*
1139 	 * Create DMA tag for TxS.
1140 	 */
1141 	error = bus_dma_tag_create(sc->dma_parent_tag,
1142 	    4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1143 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1144 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1145 	    &sc->dma_txs_tag);
1146 	if (error != 0) {
1147 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1148 		return (error);
1149 	}
1150 
1151 	/*
1152 	 * Create DMA tag for RxD.
1153 	 */
1154 	error = bus_dma_tag_create(sc->dma_parent_tag,
1155 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1156 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + 120, 1,
1157 	    AE_RXD_COUNT_DEFAULT * 1536 + 120, 0, NULL, NULL,
1158 	    &sc->dma_rxd_tag);
1159 	if (error != 0) {
1160 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1161 		return (error);
1162 	}
1163 
1164 	/*
1165 	 * Allocate TxD DMA memory.
1166 	 */
1167 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1168 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1169 	    &sc->dma_txd_map);
1170 	if (error != 0) {
1171 		device_printf(sc->dev,
1172 		    "could not allocate DMA memory for TxD ring.\n");
1173 		return (error);
1174 	}
1175 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1176 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1177 	if (error != 0 || busaddr == 0) {
1178 		device_printf(sc->dev,
1179 		    "could not load DMA map for TxD ring.\n");
1180 		return (error);
1181 	}
1182 	sc->dma_txd_busaddr = busaddr;
1183 
1184 	/*
1185 	 * Allocate TxS DMA memory.
1186 	 */
1187 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1188 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1189 	    &sc->dma_txs_map);
1190 	if (error != 0) {
1191 		device_printf(sc->dev,
1192 		    "could not allocate DMA memory for TxS ring.\n");
1193 		return (error);
1194 	}
1195 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1196 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1197 	if (error != 0 || busaddr == 0) {
1198 		device_printf(sc->dev,
1199 		    "could not load DMA map for TxS ring.\n");
1200 		return (error);
1201 	}
1202 	sc->dma_txs_busaddr = busaddr;
1203 
1204 	/*
1205 	 * Allocate RxD DMA memory.
1206 	 */
1207 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1208 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1209 	    &sc->dma_rxd_map);
1210 	if (error != 0) {
1211 		device_printf(sc->dev,
1212 		    "could not allocate DMA memory for RxD ring.\n");
1213 		return (error);
1214 	}
1215 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1216 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + 120, ae_dmamap_cb,
1217 	    &busaddr, BUS_DMA_NOWAIT);
1218 	if (error != 0 || busaddr == 0) {
1219 		device_printf(sc->dev,
1220 		    "could not load DMA map for RxD ring.\n");
1221 		return (error);
1222 	}
1223 	sc->dma_rxd_busaddr = busaddr + 120;
1224 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + 120);
1225 
1226 	return (0);
1227 }
1228 
1229 static void
1230 ae_dma_free(ae_softc_t *sc)
1231 {
1232 
1233 	if (sc->dma_txd_tag != NULL) {
1234 		if (sc->dma_txd_map != NULL) {
1235 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1236 			if (sc->txd_base != NULL)
1237 				bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1238 				    sc->dma_txd_map);
1239 
1240 		}
1241 		bus_dma_tag_destroy(sc->dma_txd_tag);
1242 		sc->dma_txd_map = NULL;
1243 		sc->dma_txd_tag = NULL;
1244 		sc->txd_base = NULL;
1245 	}
1246 	if (sc->dma_txs_tag != NULL) {
1247 		if (sc->dma_txs_map != NULL) {
1248 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1249 			if (sc->txs_base != NULL)
1250 				bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1251 				    sc->dma_txs_map);
1252 
1253 		}
1254 		bus_dma_tag_destroy(sc->dma_txs_tag);
1255 		sc->dma_txs_map = NULL;
1256 		sc->dma_txs_tag = NULL;
1257 		sc->txs_base = NULL;
1258 	}
1259 	if (sc->dma_rxd_tag != NULL) {
1260 		if (sc->dma_rxd_map != NULL) {
1261 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1262 			if (sc->rxd_base_dma != NULL)
1263 				bus_dmamem_free(sc->dma_rxd_tag,
1264 				    sc->rxd_base_dma, sc->dma_rxd_map);
1265 
1266 		}
1267 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1268 		sc->dma_rxd_map = NULL;
1269 		sc->dma_rxd_tag = NULL;
1270 		sc->rxd_base_dma = NULL;
1271 	}
1272 	if (sc->dma_parent_tag != NULL) {
1273 		bus_dma_tag_destroy(sc->dma_parent_tag);
1274 		sc->dma_parent_tag = NULL;
1275 	}
1276 }
1277 
1278 static int
1279 ae_shutdown(device_t dev)
1280 {
1281 	ae_softc_t *sc;
1282 	int error;
1283 
1284 	sc = device_get_softc(dev);
1285 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1286 
1287 	error = ae_suspend(dev);
1288 	AE_LOCK(sc);
1289 	ae_powersave_enable(sc);
1290 	AE_UNLOCK(sc);
1291 	return (error);
1292 }
1293 
1294 static void
1295 ae_powersave_disable(ae_softc_t *sc)
1296 {
1297 	uint32_t val;
1298 
1299 	AE_LOCK_ASSERT(sc);
1300 
1301 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1302 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1303 	if (val & AE_PHY_DBG_POWERSAVE) {
1304 		val &= ~AE_PHY_DBG_POWERSAVE;
1305 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1306 		DELAY(1000);
1307 	}
1308 }
1309 
1310 static void
1311 ae_powersave_enable(ae_softc_t *sc)
1312 {
1313 	uint32_t val;
1314 
1315 	AE_LOCK_ASSERT(sc);
1316 
1317 	/*
1318 	 * XXX magic numbers.
1319 	 */
1320 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1321 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1322 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1323 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1324 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1325 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1326 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1327 }
1328 
1329 static void
1330 ae_pm_init(ae_softc_t *sc)
1331 {
1332 	struct ifnet *ifp;
1333 	uint32_t val;
1334 	uint16_t pmstat;
1335 	struct mii_data *mii;
1336 	int pmc;
1337 
1338 	AE_LOCK_ASSERT(sc);
1339 
1340 	ifp = sc->ifp;
1341 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1342 		/* Disable WOL entirely. */
1343 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1344 		return;
1345 	}
1346 
1347 	/*
1348 	 * Configure WOL if enabled.
1349 	 */
1350 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1351 		mii = device_get_softc(sc->miibus);
1352 		mii_pollstat(mii);
1353 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1354 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1355 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1356 			    AE_WOL_MAGIC_PME);
1357 
1358 			/*
1359 			 * Configure MAC.
1360 			 */
1361 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1362 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1363 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1364 			    AE_HALFBUF_MASK) | \
1365 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1366 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1367 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1368 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1369 			    IFM_FDX) != 0)
1370 				val |= AE_MAC_FULL_DUPLEX;
1371 			AE_WRITE_4(sc, AE_MAC_REG, val);
1372 
1373 		} else {	/* No link. */
1374 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1375 			    AE_WOL_LNKCHG_PME);
1376 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1377 		}
1378 	} else {
1379 		ae_powersave_enable(sc);
1380 	}
1381 
1382 	/*
1383 	 * PCIE hacks. Magic numbers.
1384 	 */
1385 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1386 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1387 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1388 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1389 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1390 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1391 
1392 	/*
1393 	 * Configure PME.
1394 	 */
1395 	pci_find_extcap(sc->dev, PCIY_PMG, &pmc);
1396 	pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1397 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1398 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1399 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1400 	pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1401 }
1402 
1403 static int
1404 ae_suspend(device_t dev)
1405 {
1406 	ae_softc_t *sc;
1407 
1408 	sc = device_get_softc(dev);
1409 
1410 	AE_LOCK(sc);
1411 	ae_stop(sc);
1412 	ae_pm_init(sc);
1413 	AE_UNLOCK(sc);
1414 
1415 	return (0);
1416 }
1417 
1418 static int
1419 ae_resume(device_t dev)
1420 {
1421 	ae_softc_t *sc;
1422 
1423 	sc = device_get_softc(dev);
1424 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1425 
1426 	AE_LOCK(sc);
1427 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1428 	if ((sc->ifp->if_flags & IFF_UP) != 0)
1429 		ae_init_locked(sc);
1430 	AE_UNLOCK(sc);
1431 
1432 	return (0);
1433 }
1434 
1435 static unsigned int
1436 ae_tx_avail_size(ae_softc_t *sc)
1437 {
1438 	unsigned int avail;
1439 
1440 	if (sc->txd_cur >= sc->txd_ack)
1441 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1442 	else
1443 		avail = sc->txd_ack - sc->txd_cur;
1444 
1445 	return (avail - 4);	/* 4-byte header. */
1446 }
1447 
1448 static int
1449 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1450 {
1451 	struct mbuf *m0;
1452 	ae_txd_t *hdr;
1453 	unsigned int to_end;
1454 	uint16_t len;
1455 
1456 	AE_LOCK_ASSERT(sc);
1457 
1458 	m0 = *m_head;
1459 	len = m0->m_pkthdr.len;
1460 
1461 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1462 	    ae_tx_avail_size(sc) < len) {
1463 #ifdef AE_DEBUG
1464 		if_printf(sc->ifp, "No free Tx available.\n");
1465 #endif
1466 		return ENOBUFS;
1467 	}
1468 
1469 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1470 	bzero(hdr, sizeof(*hdr));
1471 	sc->txd_cur = (sc->txd_cur + 4) % AE_TXD_BUFSIZE_DEFAULT; /* Header
1472 								     size. */
1473 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur; /* Space available to
1474 							* the end of the ring
1475 							*/
1476 	if (to_end >= len) {
1477 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1478 	} else {
1479 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1480 		    sc->txd_cur));
1481 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1482 	}
1483 
1484 	/*
1485 	 * Set TxD flags and parameters.
1486 	 */
1487 	if ((m0->m_flags & M_VLANTAG) != 0) {
1488 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1489 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1490 	} else {
1491 		hdr->len = htole16(len);
1492 	}
1493 
1494 	/*
1495 	 * Set current TxD position and round up to a 4-byte boundary.
1496 	 */
1497 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1498 	if (sc->txd_cur == sc->txd_ack)
1499 		sc->flags &= ~AE_FLAG_TXAVAIL;
1500 #ifdef AE_DEBUG
1501 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1502 #endif
1503 
1504 	/*
1505 	 * Update TxS position and check if there are empty TxS available.
1506 	 */
1507 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1508 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1509 	if (sc->txs_cur == sc->txs_ack)
1510 		sc->flags &= ~AE_FLAG_TXAVAIL;
1511 
1512 	/*
1513 	 * Synchronize DMA memory.
1514 	 */
1515 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1516 	    BUS_DMASYNC_PREWRITE);
1517 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1518 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1519 
1520 	return (0);
1521 }
1522 
1523 static void
1524 ae_start(struct ifnet *ifp)
1525 {
1526 	ae_softc_t *sc;
1527 	unsigned int count;
1528 	struct mbuf *m0;
1529 	int error;
1530 
1531 	sc = ifp->if_softc;
1532 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1533 	AE_LOCK(sc);
1534 
1535 #ifdef AE_DEBUG
1536 	if_printf(ifp, "Start called.\n");
1537 #endif
1538 
1539 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1540 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0) {
1541 		AE_UNLOCK(sc);
1542 		return;
1543 	}
1544 
1545 	count = 0;
1546 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1547 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1548 		if (m0 == NULL)
1549 			break;	/* Nothing to do. */
1550 
1551 		error = ae_encap(sc, &m0);
1552 		if (error != 0) {
1553 			if (m0 != NULL) {
1554 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1555 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1556 #ifdef AE_DEBUG
1557 				if_printf(ifp, "Setting OACTIVE.\n");
1558 #endif
1559 			}
1560 			break;
1561 		}
1562 		count++;
1563 		sc->tx_inproc++;
1564 
1565 		/* Bounce a copy of the frame to BPF. */
1566 		ETHER_BPF_MTAP(ifp, m0);
1567 
1568 		m_freem(m0);
1569 	}
1570 
1571 	if (count > 0) {	/* Something was dequeued. */
1572 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1573 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1574 #ifdef AE_DEBUG
1575 		if_printf(ifp, "%d packets dequeued.\n", count);
1576 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1577 #endif
1578 	}
1579 	AE_UNLOCK(sc);
1580 }
1581 
1582 static void
1583 ae_link_task(void *arg, int pending)
1584 {
1585 	ae_softc_t *sc;
1586 	struct mii_data *mii;
1587 	struct ifnet *ifp;
1588 	uint32_t val;
1589 
1590 	sc = (ae_softc_t *)arg;
1591 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1592 	AE_LOCK(sc);
1593 
1594 	ifp = sc->ifp;
1595 	mii = device_get_softc(sc->miibus);
1596 	if (mii == NULL || ifp == NULL ||
1597 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1598 		AE_UNLOCK(sc);	/* XXX: could happen? */
1599 		return;
1600 	}
1601 
1602 	sc->flags &= ~AE_FLAG_LINK;
1603 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1604 	    (IFM_AVALID | IFM_ACTIVE)) {
1605 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1606 		case IFM_10_T:
1607 		case IFM_100_TX:
1608 			sc->flags |= AE_FLAG_LINK;
1609 			break;
1610 		default:
1611 			break;
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * Stop Rx/Tx MACs.
1617 	 */
1618 	ae_stop_rxmac(sc);
1619 	ae_stop_txmac(sc);
1620 
1621 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1622 		ae_mac_config(sc);
1623 
1624 		/*
1625 		 * Restart DMA engines.
1626 		 */
1627 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1628 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1629 
1630 		/*
1631 		 * Enable Rx and Tx MACs.
1632 		 */
1633 		val = AE_READ_4(sc, AE_MAC_REG);
1634 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1635 		AE_WRITE_4(sc, AE_MAC_REG, val);
1636 	}
1637 	AE_UNLOCK(sc);
1638 }
1639 
1640 static void
1641 ae_stop_rxmac(ae_softc_t *sc)
1642 {
1643 	uint32_t val;
1644 	int i;
1645 
1646 	AE_LOCK_ASSERT(sc);
1647 
1648 	/*
1649 	 * Stop Rx MAC engine.
1650 	 */
1651 	val = AE_READ_4(sc, AE_MAC_REG);
1652 	if ((val & AE_MAC_RX_EN) != 0) {
1653 		val &= ~AE_MAC_RX_EN;
1654 		AE_WRITE_4(sc, AE_MAC_REG, val);
1655 	}
1656 
1657 	/*
1658 	 * Stop Rx DMA engine.
1659 	 */
1660 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1661 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1662 
1663 	/*
1664 	 * Wait for IDLE state.
1665 	 */
1666 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
1667 		val = AE_READ_4(sc, AE_IDLE_REG);
1668 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1669 			break;
1670 		DELAY(100);
1671 	}
1672 	if (i == AE_IDLE_TIMEOUT)
1673 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1674 }
1675 
1676 static void
1677 ae_stop_txmac(ae_softc_t *sc)
1678 {
1679 	uint32_t val;
1680 	int i;
1681 
1682 	AE_LOCK_ASSERT(sc);
1683 
1684 	/*
1685 	 * Stop Tx MAC engine.
1686 	 */
1687 	val = AE_READ_4(sc, AE_MAC_REG);
1688 	if ((val & AE_MAC_TX_EN) != 0) {
1689 		val &= ~AE_MAC_TX_EN;
1690 		AE_WRITE_4(sc, AE_MAC_REG, val);
1691 	}
1692 
1693 	/*
1694 	 * Stop Tx DMA engine.
1695 	 */
1696 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1697 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1698 
1699 	/*
1700 	 * Wait for IDLE state.
1701 	 */
1702 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
1703 		val = AE_READ_4(sc, AE_IDLE_REG);
1704 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1705 			break;
1706 		DELAY(100);
1707 	}
1708 	if (i == AE_IDLE_TIMEOUT)
1709 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1710 }
1711 
1712 static void
1713 ae_tx_task(void *arg, int pending)
1714 {
1715 	struct ifnet *ifp;
1716 
1717 	ifp = (struct ifnet *)arg;
1718 	ae_start(ifp);
1719 }
1720 
1721 static void
1722 ae_mac_config(ae_softc_t *sc)
1723 {
1724 	struct mii_data *mii;
1725 	uint32_t val;
1726 
1727 	AE_LOCK_ASSERT(sc);
1728 
1729 	mii = device_get_softc(sc->miibus);
1730 	val = AE_READ_4(sc, AE_MAC_REG);
1731 	val &= ~AE_MAC_FULL_DUPLEX;
1732 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1733 
1734 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1735 		val |= AE_MAC_FULL_DUPLEX;
1736 
1737 	AE_WRITE_4(sc, AE_MAC_REG, val);
1738 }
1739 
1740 static int
1741 ae_intr(void *arg)
1742 {
1743 	ae_softc_t *sc;
1744 	uint32_t val;
1745 
1746 	sc = (ae_softc_t *)arg;
1747 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1748 
1749 	val = AE_READ_4(sc, AE_ISR_REG);
1750 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1751 		return (FILTER_STRAY);
1752 
1753 	/* Disable interrupts. */
1754 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1755 
1756 	/* Schedule interrupt processing. */
1757 	taskqueue_enqueue(sc->tq, &sc->int_task);
1758 
1759 	return (FILTER_HANDLED);
1760 }
1761 
1762 static void
1763 ae_int_task(void *arg, int pending)
1764 {
1765 	ae_softc_t *sc;
1766 	struct ifnet *ifp;
1767 	uint32_t val;
1768 
1769 	sc = (ae_softc_t *)arg;
1770 
1771 	AE_LOCK(sc);
1772 
1773 	ifp = sc->ifp;
1774 
1775 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1776 
1777 	/*
1778 	 * Clear interrupts and disable them.
1779 	 */
1780 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1781 
1782 #ifdef AE_DEBUG
1783 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1784 #endif
1785 
1786 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1787 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1788 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1789 			ae_init_locked(sc);
1790 		}
1791 		if ((val & AE_ISR_TX_EVENT) != 0)
1792 			ae_tx_intr(sc);
1793 		if ((val & AE_ISR_RX_EVENT) != 0)
1794 			ae_rx_intr(sc);
1795 	}
1796 
1797 	/*
1798 	 * Re-enable interrupts.
1799 	 */
1800 	AE_WRITE_4(sc, AE_ISR_REG, 0);
1801 
1802 	AE_UNLOCK(sc);
1803 }
1804 
1805 static void
1806 ae_tx_intr(ae_softc_t *sc)
1807 {
1808 	struct ifnet *ifp;
1809 	ae_txd_t *txd;
1810 	ae_txs_t *txs;
1811 	uint16_t flags;
1812 
1813 	AE_LOCK_ASSERT(sc);
1814 
1815 	ifp = sc->ifp;
1816 
1817 #ifdef AE_DEBUG
1818 	if_printf(ifp, "Tx interrupt occuried.\n");
1819 #endif
1820 
1821 	/*
1822 	 * Syncronize DMA buffers.
1823 	 */
1824 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1825 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1826 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1827 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1828 
1829 	for (;;) {
1830 		txs = sc->txs_base + sc->txs_ack;
1831 		flags = le16toh(txs->flags);
1832 		if ((flags & AE_TXS_UPDATE) == 0)
1833 			break;
1834 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1835 		/* Update stats. */
1836 		ae_update_stats_tx(flags, &sc->stats);
1837 
1838 		/*
1839 		 * Update TxS position.
1840 		 */
1841 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1842 		sc->flags |= AE_FLAG_TXAVAIL;
1843 
1844 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1845 		if (txs->len != txd->len)
1846 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1847 			    le16toh(txs->len), le16toh(txd->len));
1848 
1849 		/*
1850 		 * Move txd ack and align on 4-byte boundary.
1851 		 */
1852 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 4 + 3) & ~3) %
1853 		    AE_TXD_BUFSIZE_DEFAULT;
1854 
1855 		if ((flags & AE_TXS_SUCCESS) != 0)
1856 			ifp->if_opackets++;
1857 		else
1858 			ifp->if_oerrors++;
1859 
1860 		sc->tx_inproc--;
1861 
1862 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1863 	}
1864 
1865 	if (sc->tx_inproc < 0) {
1866 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1867 		sc->tx_inproc = 0;
1868 	}
1869 
1870 	if (sc->tx_inproc == 0)
1871 		sc->wd_timer = 0;	/* Unarm watchdog. */
1872 
1873 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1874 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1875 			taskqueue_enqueue(sc->tq, &sc->tx_task);
1876 	}
1877 
1878 	/*
1879 	 * Syncronize DMA buffers.
1880 	 */
1881 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1882 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1883 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1884 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1885 }
1886 
1887 static int
1888 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1889 {
1890 	struct ifnet *ifp;
1891 	struct mbuf *m;
1892 	unsigned int size;
1893 	uint16_t flags;
1894 
1895 	AE_LOCK_ASSERT(sc);
1896 
1897 	ifp = sc->ifp;
1898 	flags = le16toh(rxd->flags);
1899 
1900 #ifdef AE_DEBUG
1901 	if_printf(ifp, "Rx interrupt occuried.\n");
1902 #endif
1903 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1904 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1905 		if_printf(ifp, "Runt frame received.");
1906 		return (EIO);
1907 	}
1908 
1909 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1910 	if (m == NULL)
1911 		return (ENOBUFS);
1912 
1913 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1914 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1915 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1916 		m->m_flags |= M_VLANTAG;
1917 	}
1918 
1919 	/*
1920 	 * Pass it through.
1921 	 */
1922 	AE_UNLOCK(sc);
1923 	(*ifp->if_input)(ifp, m);
1924 	AE_LOCK(sc);
1925 
1926 	return (0);
1927 }
1928 
1929 static void
1930 ae_rx_intr(ae_softc_t *sc)
1931 {
1932 	ae_rxd_t *rxd;
1933 	struct ifnet *ifp;
1934 	uint16_t flags;
1935 	int error;
1936 
1937 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1938 
1939 	AE_LOCK_ASSERT(sc);
1940 
1941 	ifp = sc->ifp;
1942 
1943 	/*
1944 	 * Syncronize DMA buffers.
1945 	 */
1946 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1947 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1948 
1949 	for (;;) {
1950 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1951 		flags = le16toh(rxd->flags);
1952 		if ((flags & AE_RXD_UPDATE) == 0)
1953 			break;
1954 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1955 		/* Update stats. */
1956 		ae_update_stats_rx(flags, &sc->stats);
1957 
1958 		/*
1959 		 * Update position index.
1960 		 */
1961 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1962 
1963 		if ((flags & AE_RXD_SUCCESS) == 0) {
1964 			ifp->if_ierrors++;
1965 			continue;
1966 		}
1967 		error = ae_rxeof(sc, rxd);
1968 		if (error != 0) {
1969 			ifp->if_ierrors++;
1970 			continue;
1971 		} else {
1972 			ifp->if_ipackets++;
1973 		}
1974 	}
1975 
1976 	/*
1977 	 * Update Rx index.
1978 	 */
1979 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1980 }
1981 
1982 static void
1983 ae_watchdog(ae_softc_t *sc)
1984 {
1985 	struct ifnet *ifp;
1986 
1987 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1988 	AE_LOCK_ASSERT(sc);
1989 	ifp = sc->ifp;
1990 
1991 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1992 		return;		/* Noting to do. */
1993 
1994 	if ((sc->flags & AE_FLAG_LINK) == 0)
1995 		if_printf(ifp, "watchdog timeout (missed link).\n");
1996 	else
1997 		if_printf(ifp, "watchdog timeout - resetting.\n");
1998 
1999 	ifp->if_oerrors++;
2000 	ae_init_locked(sc);
2001 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2002 		taskqueue_enqueue(sc->tq, &sc->tx_task);
2003 }
2004 
2005 static void
2006 ae_tick(void *arg)
2007 {
2008 	ae_softc_t *sc;
2009 	struct mii_data *mii;
2010 
2011 	sc = (ae_softc_t *)arg;
2012 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2013 	AE_LOCK_ASSERT(sc);
2014 
2015 	mii = device_get_softc(sc->miibus);
2016 	mii_tick(mii);
2017 	ae_watchdog(sc);	/* Watchdog check. */
2018 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2019 }
2020 
2021 static void
2022 ae_rxvlan(ae_softc_t *sc)
2023 {
2024 	struct ifnet *ifp;
2025 	uint32_t val;
2026 
2027 	AE_LOCK_ASSERT(sc);
2028 	ifp = sc->ifp;
2029 	val = AE_READ_4(sc, AE_MAC_REG);
2030 	val &= ~AE_MAC_RMVLAN_EN;
2031 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2032 		val |= AE_MAC_RMVLAN_EN;
2033 	AE_WRITE_4(sc, AE_MAC_REG, val);
2034 }
2035 
2036 static void
2037 ae_rxfilter(ae_softc_t *sc)
2038 {
2039 	struct ifnet *ifp;
2040 	struct ifmultiaddr *ifma;
2041 	uint32_t crc;
2042 	uint32_t mchash[2];
2043 	uint32_t rxcfg;
2044 
2045 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2046 
2047 	AE_LOCK_ASSERT(sc);
2048 
2049 	ifp = sc->ifp;
2050 
2051 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2052 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2053 
2054 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2055 		rxcfg |= AE_MAC_BCAST_EN;
2056 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2057 		rxcfg |= AE_MAC_PROMISC_EN;
2058 	if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2059 		rxcfg |= AE_MAC_MCAST_EN;
2060 
2061 	/*
2062 	 * Wipe old settings.
2063 	 */
2064 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2065 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2066 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2067 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2068 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2069 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * Load multicast tables.
2075 	 */
2076 	bzero(mchash, sizeof(mchash));
2077 	if_maddr_rlock(ifp);
2078 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2079 		if (ifma->ifma_addr->sa_family != AF_LINK)
2080 			continue;
2081 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2082 			ifma->ifma_addr), ETHER_ADDR_LEN);
2083 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2084 	}
2085 	if_maddr_runlock(ifp);
2086 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2087 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2088 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2089 }
2090 
2091 static int
2092 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2093 {
2094 	struct ae_softc *sc;
2095 	struct ifreq *ifr;
2096 	struct mii_data *mii;
2097 	int error, mask;
2098 
2099 	sc = ifp->if_softc;
2100 	ifr = (struct ifreq *)data;
2101 	error = 0;
2102 
2103 	switch (cmd) {
2104 	case SIOCSIFMTU:
2105 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2106 			error = EINVAL;
2107 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2108 			AE_LOCK(sc);
2109 			ifp->if_mtu = ifr->ifr_mtu;
2110 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2111 				ae_init_locked(sc);
2112 			AE_UNLOCK(sc);
2113 		}
2114 		break;
2115 	case SIOCSIFFLAGS:
2116 		AE_LOCK(sc);
2117 		if ((ifp->if_flags & IFF_UP) != 0) {
2118 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2119 				if (((ifp->if_flags ^ sc->if_flags)
2120 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2121 					ae_rxfilter(sc);
2122 			} else {
2123 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2124 					ae_init_locked(sc);
2125 			}
2126 		} else {
2127 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2128 				ae_stop(sc);
2129 		}
2130 		sc->if_flags = ifp->if_flags;
2131 		AE_UNLOCK(sc);
2132 		break;
2133 	case SIOCADDMULTI:
2134 	case SIOCDELMULTI:
2135 		AE_LOCK(sc);
2136 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2137 			ae_rxfilter(sc);
2138 		AE_UNLOCK(sc);
2139 		break;
2140 	case SIOCSIFMEDIA:
2141 	case SIOCGIFMEDIA:
2142 		mii = device_get_softc(sc->miibus);
2143 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2144 		break;
2145 	case SIOCSIFCAP:
2146 		AE_LOCK(sc);
2147 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2148 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2149 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2150 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2151 			ae_rxvlan(sc);
2152 		}
2153 		VLAN_CAPABILITIES(ifp);
2154 		AE_UNLOCK(sc);
2155 		break;
2156 	default:
2157 		error = ether_ioctl(ifp, cmd, data);
2158 		break;
2159 	}
2160 	return (error);
2161 }
2162 
2163 static void
2164 ae_stop(ae_softc_t *sc)
2165 {
2166 	struct ifnet *ifp;
2167 	int i;
2168 
2169 	AE_LOCK_ASSERT(sc);
2170 
2171 	ifp = sc->ifp;
2172 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2173 	sc->flags &= ~AE_FLAG_LINK;
2174 	sc->wd_timer = 0;	/* Cancel watchdog. */
2175 	callout_stop(&sc->tick_ch);
2176 
2177 	/*
2178 	 * Clear and disable interrupts.
2179 	 */
2180 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2181 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2182 
2183 	/*
2184 	 * Stop Rx/Tx MACs.
2185 	 */
2186 	ae_stop_txmac(sc);
2187 	ae_stop_rxmac(sc);
2188 
2189 	/*
2190 	 * Stop DMA engines.
2191 	 */
2192 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2193 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2194 
2195 	/*
2196 	 * Wait for everything to enter idle state.
2197 	 */
2198 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2199 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2200 			break;
2201 		DELAY(100);
2202 	}
2203 	if (i == AE_IDLE_TIMEOUT)
2204 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2205 }
2206 
2207 static void
2208 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2209 {
2210 
2211 	if ((flags & AE_TXS_BCAST) != 0)
2212 		stats->tx_bcast++;
2213 	if ((flags & AE_TXS_MCAST) != 0)
2214 		stats->tx_mcast++;
2215 	if ((flags & AE_TXS_PAUSE) != 0)
2216 		stats->tx_pause++;
2217 	if ((flags & AE_TXS_CTRL) != 0)
2218 		stats->tx_ctrl++;
2219 	if ((flags & AE_TXS_DEFER) != 0)
2220 		stats->tx_defer++;
2221 	if ((flags & AE_TXS_EXCDEFER) != 0)
2222 		stats->tx_excdefer++;
2223 	if ((flags & AE_TXS_SINGLECOL) != 0)
2224 		stats->tx_singlecol++;
2225 	if ((flags & AE_TXS_MULTICOL) != 0)
2226 		stats->tx_multicol++;
2227 	if ((flags & AE_TXS_LATECOL) != 0)
2228 		stats->tx_latecol++;
2229 	if ((flags & AE_TXS_ABORTCOL) != 0)
2230 		stats->tx_abortcol++;
2231 	if ((flags & AE_TXS_UNDERRUN) != 0)
2232 		stats->tx_underrun++;
2233 }
2234 
2235 static void
2236 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2237 {
2238 
2239 	if ((flags & AE_RXD_BCAST) != 0)
2240 		stats->rx_bcast++;
2241 	if ((flags & AE_RXD_MCAST) != 0)
2242 		stats->rx_mcast++;
2243 	if ((flags & AE_RXD_PAUSE) != 0)
2244 		stats->rx_pause++;
2245 	if ((flags & AE_RXD_CTRL) != 0)
2246 		stats->rx_ctrl++;
2247 	if ((flags & AE_RXD_CRCERR) != 0)
2248 		stats->rx_crcerr++;
2249 	if ((flags & AE_RXD_CODEERR) != 0)
2250 		stats->rx_codeerr++;
2251 	if ((flags & AE_RXD_RUNT) != 0)
2252 		stats->rx_runt++;
2253 	if ((flags & AE_RXD_FRAG) != 0)
2254 		stats->rx_frag++;
2255 	if ((flags & AE_RXD_TRUNC) != 0)
2256 		stats->rx_trunc++;
2257 	if ((flags & AE_RXD_ALIGN) != 0)
2258 		stats->rx_align++;
2259 }
2260