xref: /freebsd/sys/dev/age/if_age.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73 
74 #include <dev/age/if_agereg.h>
75 #include <dev/age/if_agevar.h>
76 
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79 
80 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96 	uint16_t	age_vendorid;
97 	uint16_t	age_deviceid;
98 	const char	*age_name;
99 } age_devs[] = {
100 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103 
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_start(struct ifnet *);
125 static void age_start_locked(struct ifnet *);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 #ifndef __NO_STRICT_ALIGNMENT
149 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
150 #endif
151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152 static void age_rxvlan(struct age_softc *);
153 static void age_rxfilter(struct age_softc *);
154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158 
159 
160 static device_method_t age_methods[] = {
161 	/* Device interface. */
162 	DEVMETHOD(device_probe,		age_probe),
163 	DEVMETHOD(device_attach,	age_attach),
164 	DEVMETHOD(device_detach,	age_detach),
165 	DEVMETHOD(device_shutdown,	age_shutdown),
166 	DEVMETHOD(device_suspend,	age_suspend),
167 	DEVMETHOD(device_resume,	age_resume),
168 
169 	/* MII interface. */
170 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
171 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
172 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
173 
174 	{ NULL, NULL }
175 };
176 
177 static driver_t age_driver = {
178 	"age",
179 	age_methods,
180 	sizeof(struct age_softc)
181 };
182 
183 static devclass_t age_devclass;
184 
185 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
186 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
187     nitems(age_devs));
188 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
189 
190 static struct resource_spec age_res_spec_mem[] = {
191 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
192 	{ -1,			0,		0 }
193 };
194 
195 static struct resource_spec age_irq_spec_legacy[] = {
196 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
197 	{ -1,			0,		0 }
198 };
199 
200 static struct resource_spec age_irq_spec_msi[] = {
201 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202 	{ -1,			0,		0 }
203 };
204 
205 static struct resource_spec age_irq_spec_msix[] = {
206 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
207 	{ -1,			0,		0 }
208 };
209 
210 /*
211  *	Read a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_readreg(device_t dev, int phy, int reg)
215 {
216 	struct age_softc *sc;
217 	uint32_t v;
218 	int i;
219 
220 	sc = device_get_softc(dev);
221 
222 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
223 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
224 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
225 		DELAY(1);
226 		v = CSR_READ_4(sc, AGE_MDIO);
227 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
228 			break;
229 	}
230 
231 	if (i == 0) {
232 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
233 		return (0);
234 	}
235 
236 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
237 }
238 
239 /*
240  *	Write a PHY register on the MII of the L1.
241  */
242 static int
243 age_miibus_writereg(device_t dev, int phy, int reg, int val)
244 {
245 	struct age_softc *sc;
246 	uint32_t v;
247 	int i;
248 
249 	sc = device_get_softc(dev);
250 
251 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
252 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
253 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
254 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
255 		DELAY(1);
256 		v = CSR_READ_4(sc, AGE_MDIO);
257 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
258 			break;
259 	}
260 
261 	if (i == 0)
262 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
263 
264 	return (0);
265 }
266 
267 /*
268  *	Callback from MII layer when media changes.
269  */
270 static void
271 age_miibus_statchg(device_t dev)
272 {
273 	struct age_softc *sc;
274 
275 	sc = device_get_softc(dev);
276 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
277 }
278 
279 /*
280  *	Get the current interface media status.
281  */
282 static void
283 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
284 {
285 	struct age_softc *sc;
286 	struct mii_data *mii;
287 
288 	sc = ifp->if_softc;
289 	AGE_LOCK(sc);
290 	mii = device_get_softc(sc->age_miibus);
291 
292 	mii_pollstat(mii);
293 	ifmr->ifm_status = mii->mii_media_status;
294 	ifmr->ifm_active = mii->mii_media_active;
295 	AGE_UNLOCK(sc);
296 }
297 
298 /*
299  *	Set hardware to newly-selected media.
300  */
301 static int
302 age_mediachange(struct ifnet *ifp)
303 {
304 	struct age_softc *sc;
305 	struct mii_data *mii;
306 	struct mii_softc *miisc;
307 	int error;
308 
309 	sc = ifp->if_softc;
310 	AGE_LOCK(sc);
311 	mii = device_get_softc(sc->age_miibus);
312 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313 		PHY_RESET(miisc);
314 	error = mii_mediachg(mii);
315 	AGE_UNLOCK(sc);
316 
317 	return (error);
318 }
319 
320 static int
321 age_probe(device_t dev)
322 {
323 	struct age_dev *sp;
324 	int i;
325 	uint16_t vendor, devid;
326 
327 	vendor = pci_get_vendor(dev);
328 	devid = pci_get_device(dev);
329 	sp = age_devs;
330 	for (i = 0; i < nitems(age_devs); i++, sp++) {
331 		if (vendor == sp->age_vendorid &&
332 		    devid == sp->age_deviceid) {
333 			device_set_desc(dev, sp->age_name);
334 			return (BUS_PROBE_DEFAULT);
335 		}
336 	}
337 
338 	return (ENXIO);
339 }
340 
341 static void
342 age_get_macaddr(struct age_softc *sc)
343 {
344 	uint32_t ea[2], reg;
345 	int i, vpdc;
346 
347 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
348 	if ((reg & SPI_VPD_ENB) != 0) {
349 		/* Get VPD stored in TWSI EEPROM. */
350 		reg &= ~SPI_VPD_ENB;
351 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
352 	}
353 
354 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
355 		/*
356 		 * PCI VPD capability found, let TWSI reload EEPROM.
357 		 * This will set ethernet address of controller.
358 		 */
359 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
360 		    TWSI_CTRL_SW_LD_START);
361 		for (i = 100; i > 0; i--) {
362 			DELAY(1000);
363 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
364 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
365 				break;
366 		}
367 		if (i == 0)
368 			device_printf(sc->age_dev,
369 			    "reloading EEPROM timeout!\n");
370 	} else {
371 		if (bootverbose)
372 			device_printf(sc->age_dev,
373 			    "PCI VPD capability not found!\n");
374 	}
375 
376 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
377 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
378 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
379 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
380 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
381 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
382 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
383 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
384 }
385 
386 static void
387 age_phy_reset(struct age_softc *sc)
388 {
389 	uint16_t reg, pn;
390 	int i, linkup;
391 
392 	/* Reset PHY. */
393 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
394 	DELAY(2000);
395 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
396 	DELAY(2000);
397 
398 #define	ATPHY_DBG_ADDR		0x1D
399 #define	ATPHY_DBG_DATA		0x1E
400 #define	ATPHY_CDTC		0x16
401 #define	PHY_CDTC_ENB		0x0001
402 #define	PHY_CDTC_POFF		8
403 #define	ATPHY_CDTS		0x1C
404 #define	PHY_CDTS_STAT_OK	0x0000
405 #define	PHY_CDTS_STAT_SHORT	0x0100
406 #define	PHY_CDTS_STAT_OPEN	0x0200
407 #define	PHY_CDTS_STAT_INVAL	0x0300
408 #define	PHY_CDTS_STAT_MASK	0x0300
409 
410 	/* Check power saving mode. Magic from Linux. */
411 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
412 	for (linkup = 0, pn = 0; pn < 4; pn++) {
413 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
414 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
415 		for (i = 200; i > 0; i--) {
416 			DELAY(1000);
417 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
418 			    ATPHY_CDTC);
419 			if ((reg & PHY_CDTC_ENB) == 0)
420 				break;
421 		}
422 		DELAY(1000);
423 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
424 		    ATPHY_CDTS);
425 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
426 			linkup++;
427 			break;
428 		}
429 	}
430 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
431 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
432 	if (linkup == 0) {
433 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434 		    ATPHY_DBG_ADDR, 0);
435 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436 		    ATPHY_DBG_DATA, 0x124E);
437 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438 		    ATPHY_DBG_ADDR, 1);
439 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
440 		    ATPHY_DBG_DATA);
441 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442 		    ATPHY_DBG_DATA, reg | 0x03);
443 		/* XXX */
444 		DELAY(1500 * 1000);
445 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
446 		    ATPHY_DBG_ADDR, 0);
447 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448 		    ATPHY_DBG_DATA, 0x024E);
449     }
450 
451 #undef	ATPHY_DBG_ADDR
452 #undef	ATPHY_DBG_DATA
453 #undef	ATPHY_CDTC
454 #undef	PHY_CDTC_ENB
455 #undef	PHY_CDTC_POFF
456 #undef	ATPHY_CDTS
457 #undef	PHY_CDTS_STAT_OK
458 #undef	PHY_CDTS_STAT_SHORT
459 #undef	PHY_CDTS_STAT_OPEN
460 #undef	PHY_CDTS_STAT_INVAL
461 #undef	PHY_CDTS_STAT_MASK
462 }
463 
464 static int
465 age_attach(device_t dev)
466 {
467 	struct age_softc *sc;
468 	struct ifnet *ifp;
469 	uint16_t burst;
470 	int error, i, msic, msixc, pmc;
471 
472 	error = 0;
473 	sc = device_get_softc(dev);
474 	sc->age_dev = dev;
475 
476 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
477 	    MTX_DEF);
478 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
479 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
480 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
481 
482 	/* Map the device. */
483 	pci_enable_busmaster(dev);
484 	sc->age_res_spec = age_res_spec_mem;
485 	sc->age_irq_spec = age_irq_spec_legacy;
486 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
487 	if (error != 0) {
488 		device_printf(dev, "cannot allocate memory resources.\n");
489 		goto fail;
490 	}
491 
492 	/* Set PHY address. */
493 	sc->age_phyaddr = AGE_PHY_ADDR;
494 
495 	/* Reset PHY. */
496 	age_phy_reset(sc);
497 
498 	/* Reset the ethernet controller. */
499 	age_reset(sc);
500 
501 	/* Get PCI and chip id/revision. */
502 	sc->age_rev = pci_get_revid(dev);
503 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
504 	    MASTER_CHIP_REV_SHIFT;
505 	if (bootverbose) {
506 		device_printf(dev, "PCI device revision : 0x%04x\n",
507 		    sc->age_rev);
508 		device_printf(dev, "Chip id/revision : 0x%04x\n",
509 		    sc->age_chip_rev);
510 	}
511 
512 	/*
513 	 * XXX
514 	 * Unintialized hardware returns an invalid chip id/revision
515 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
516 	 * unplugged cable results in putting hardware into automatic
517 	 * power down mode which in turn returns invalld chip revision.
518 	 */
519 	if (sc->age_chip_rev == 0xFFFF) {
520 		device_printf(dev,"invalid chip revision : 0x%04x -- "
521 		    "not initialized?\n", sc->age_chip_rev);
522 		error = ENXIO;
523 		goto fail;
524 	}
525 
526 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
527 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
528 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
529 
530 	/* Allocate IRQ resources. */
531 	msixc = pci_msix_count(dev);
532 	msic = pci_msi_count(dev);
533 	if (bootverbose) {
534 		device_printf(dev, "MSIX count : %d\n", msixc);
535 		device_printf(dev, "MSI count : %d\n", msic);
536 	}
537 
538 	/* Prefer MSIX over MSI. */
539 	if (msix_disable == 0 || msi_disable == 0) {
540 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
541 		    pci_alloc_msix(dev, &msixc) == 0) {
542 			if (msic == AGE_MSIX_MESSAGES) {
543 				device_printf(dev, "Using %d MSIX messages.\n",
544 				    msixc);
545 				sc->age_flags |= AGE_FLAG_MSIX;
546 				sc->age_irq_spec = age_irq_spec_msix;
547 			} else
548 				pci_release_msi(dev);
549 		}
550 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
551 		    msic == AGE_MSI_MESSAGES &&
552 		    pci_alloc_msi(dev, &msic) == 0) {
553 			if (msic == AGE_MSI_MESSAGES) {
554 				device_printf(dev, "Using %d MSI messages.\n",
555 				    msic);
556 				sc->age_flags |= AGE_FLAG_MSI;
557 				sc->age_irq_spec = age_irq_spec_msi;
558 			} else
559 				pci_release_msi(dev);
560 		}
561 	}
562 
563 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
564 	if (error != 0) {
565 		device_printf(dev, "cannot allocate IRQ resources.\n");
566 		goto fail;
567 	}
568 
569 
570 	/* Get DMA parameters from PCIe device control register. */
571 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
572 		sc->age_flags |= AGE_FLAG_PCIE;
573 		burst = pci_read_config(dev, i + 0x08, 2);
574 		/* Max read request size. */
575 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
576 		    DMA_CFG_RD_BURST_SHIFT;
577 		/* Max payload size. */
578 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
579 		    DMA_CFG_WR_BURST_SHIFT;
580 		if (bootverbose) {
581 			device_printf(dev, "Read request size : %d bytes.\n",
582 			    128 << ((burst >> 12) & 0x07));
583 			device_printf(dev, "TLP payload size : %d bytes.\n",
584 			    128 << ((burst >> 5) & 0x07));
585 		}
586 	} else {
587 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
588 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
589 	}
590 
591 	/* Create device sysctl node. */
592 	age_sysctl_node(sc);
593 
594 	if ((error = age_dma_alloc(sc)) != 0)
595 		goto fail;
596 
597 	/* Load station address. */
598 	age_get_macaddr(sc);
599 
600 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
601 	if (ifp == NULL) {
602 		device_printf(dev, "cannot allocate ifnet structure.\n");
603 		error = ENXIO;
604 		goto fail;
605 	}
606 
607 	ifp->if_softc = sc;
608 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
609 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
610 	ifp->if_ioctl = age_ioctl;
611 	ifp->if_start = age_start;
612 	ifp->if_init = age_init;
613 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
614 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
615 	IFQ_SET_READY(&ifp->if_snd);
616 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
617 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
618 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
619 		sc->age_flags |= AGE_FLAG_PMCAP;
620 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
621 	}
622 	ifp->if_capenable = ifp->if_capabilities;
623 
624 	/* Set up MII bus. */
625 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
626 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
627 	    0);
628 	if (error != 0) {
629 		device_printf(dev, "attaching PHYs failed\n");
630 		goto fail;
631 	}
632 
633 	ether_ifattach(ifp, sc->age_eaddr);
634 
635 	/* VLAN capability setup. */
636 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
637 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
638 	ifp->if_capenable = ifp->if_capabilities;
639 
640 	/* Tell the upper layer(s) we support long frames. */
641 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
642 
643 	/* Create local taskq. */
644 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
645 	    taskqueue_thread_enqueue, &sc->age_tq);
646 	if (sc->age_tq == NULL) {
647 		device_printf(dev, "could not create taskqueue.\n");
648 		ether_ifdetach(ifp);
649 		error = ENXIO;
650 		goto fail;
651 	}
652 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
653 	    device_get_nameunit(sc->age_dev));
654 
655 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
656 		msic = AGE_MSIX_MESSAGES;
657 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
658 		msic = AGE_MSI_MESSAGES;
659 	else
660 		msic = 1;
661 	for (i = 0; i < msic; i++) {
662 		error = bus_setup_intr(dev, sc->age_irq[i],
663 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
664 		    &sc->age_intrhand[i]);
665 		if (error != 0)
666 			break;
667 	}
668 	if (error != 0) {
669 		device_printf(dev, "could not set up interrupt handler.\n");
670 		taskqueue_free(sc->age_tq);
671 		sc->age_tq = NULL;
672 		ether_ifdetach(ifp);
673 		goto fail;
674 	}
675 
676 fail:
677 	if (error != 0)
678 		age_detach(dev);
679 
680 	return (error);
681 }
682 
683 static int
684 age_detach(device_t dev)
685 {
686 	struct age_softc *sc;
687 	struct ifnet *ifp;
688 	int i, msic;
689 
690 	sc = device_get_softc(dev);
691 
692 	ifp = sc->age_ifp;
693 	if (device_is_attached(dev)) {
694 		AGE_LOCK(sc);
695 		sc->age_flags |= AGE_FLAG_DETACH;
696 		age_stop(sc);
697 		AGE_UNLOCK(sc);
698 		callout_drain(&sc->age_tick_ch);
699 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
700 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
701 		ether_ifdetach(ifp);
702 	}
703 
704 	if (sc->age_tq != NULL) {
705 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
706 		taskqueue_free(sc->age_tq);
707 		sc->age_tq = NULL;
708 	}
709 
710 	if (sc->age_miibus != NULL) {
711 		device_delete_child(dev, sc->age_miibus);
712 		sc->age_miibus = NULL;
713 	}
714 	bus_generic_detach(dev);
715 	age_dma_free(sc);
716 
717 	if (ifp != NULL) {
718 		if_free(ifp);
719 		sc->age_ifp = NULL;
720 	}
721 
722 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
723 		msic = AGE_MSIX_MESSAGES;
724 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
725 		msic = AGE_MSI_MESSAGES;
726 	else
727 		msic = 1;
728 	for (i = 0; i < msic; i++) {
729 		if (sc->age_intrhand[i] != NULL) {
730 			bus_teardown_intr(dev, sc->age_irq[i],
731 			    sc->age_intrhand[i]);
732 			sc->age_intrhand[i] = NULL;
733 		}
734 	}
735 
736 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
737 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
738 		pci_release_msi(dev);
739 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
740 	mtx_destroy(&sc->age_mtx);
741 
742 	return (0);
743 }
744 
745 static void
746 age_sysctl_node(struct age_softc *sc)
747 {
748 	int error;
749 
750 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752 	    "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
753 	    sc, 0, sysctl_age_stats, "I", "Statistics");
754 
755 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
756 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
757 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
758 	    &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
759 	    "age interrupt moderation");
760 
761 	/* Pull in device tunables. */
762 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
763 	error = resource_int_value(device_get_name(sc->age_dev),
764 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
765 	if (error == 0) {
766 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
767 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
768 			device_printf(sc->age_dev,
769 			    "int_mod value out of range; using default: %d\n",
770 			    AGE_IM_TIMER_DEFAULT);
771 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
772 		}
773 	}
774 
775 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
776 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
777 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
778 	    &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
779 	    "max number of Rx events to process");
780 
781 	/* Pull in device tunables. */
782 	sc->age_process_limit = AGE_PROC_DEFAULT;
783 	error = resource_int_value(device_get_name(sc->age_dev),
784 	    device_get_unit(sc->age_dev), "process_limit",
785 	    &sc->age_process_limit);
786 	if (error == 0) {
787 		if (sc->age_process_limit < AGE_PROC_MIN ||
788 		    sc->age_process_limit > AGE_PROC_MAX) {
789 			device_printf(sc->age_dev,
790 			    "process_limit value out of range; "
791 			    "using default: %d\n", AGE_PROC_DEFAULT);
792 			sc->age_process_limit = AGE_PROC_DEFAULT;
793 		}
794 	}
795 }
796 
797 struct age_dmamap_arg {
798 	bus_addr_t	age_busaddr;
799 };
800 
801 static void
802 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
803 {
804 	struct age_dmamap_arg *ctx;
805 
806 	if (error != 0)
807 		return;
808 
809 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
810 
811 	ctx = (struct age_dmamap_arg *)arg;
812 	ctx->age_busaddr = segs[0].ds_addr;
813 }
814 
815 /*
816  * Attansic L1 controller have single register to specify high
817  * address part of DMA blocks. So all descriptor structures and
818  * DMA memory blocks should have the same high address of given
819  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
820  */
821 static int
822 age_check_boundary(struct age_softc *sc)
823 {
824 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
825 	bus_addr_t cmb_block_end, smb_block_end;
826 
827 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
828 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
829 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
830 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
831 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
832 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
833 
834 	if ((AGE_ADDR_HI(tx_ring_end) !=
835 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
836 	    (AGE_ADDR_HI(rx_ring_end) !=
837 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
838 	    (AGE_ADDR_HI(rr_ring_end) !=
839 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
840 	    (AGE_ADDR_HI(cmb_block_end) !=
841 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
842 	    (AGE_ADDR_HI(smb_block_end) !=
843 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
844 		return (EFBIG);
845 
846 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
847 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
848 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
849 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
850 		return (EFBIG);
851 
852 	return (0);
853 }
854 
855 static int
856 age_dma_alloc(struct age_softc *sc)
857 {
858 	struct age_txdesc *txd;
859 	struct age_rxdesc *rxd;
860 	bus_addr_t lowaddr;
861 	struct age_dmamap_arg ctx;
862 	int error, i;
863 
864 	lowaddr = BUS_SPACE_MAXADDR;
865 
866 again:
867 	/* Create parent ring/DMA block tag. */
868 	error = bus_dma_tag_create(
869 	    bus_get_dma_tag(sc->age_dev), /* parent */
870 	    1, 0,			/* alignment, boundary */
871 	    lowaddr,			/* lowaddr */
872 	    BUS_SPACE_MAXADDR,		/* highaddr */
873 	    NULL, NULL,			/* filter, filterarg */
874 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
875 	    0,				/* nsegments */
876 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
877 	    0,				/* flags */
878 	    NULL, NULL,			/* lockfunc, lockarg */
879 	    &sc->age_cdata.age_parent_tag);
880 	if (error != 0) {
881 		device_printf(sc->age_dev,
882 		    "could not create parent DMA tag.\n");
883 		goto fail;
884 	}
885 
886 	/* Create tag for Tx ring. */
887 	error = bus_dma_tag_create(
888 	    sc->age_cdata.age_parent_tag, /* parent */
889 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
890 	    BUS_SPACE_MAXADDR,		/* lowaddr */
891 	    BUS_SPACE_MAXADDR,		/* highaddr */
892 	    NULL, NULL,			/* filter, filterarg */
893 	    AGE_TX_RING_SZ,		/* maxsize */
894 	    1,				/* nsegments */
895 	    AGE_TX_RING_SZ,		/* maxsegsize */
896 	    0,				/* flags */
897 	    NULL, NULL,			/* lockfunc, lockarg */
898 	    &sc->age_cdata.age_tx_ring_tag);
899 	if (error != 0) {
900 		device_printf(sc->age_dev,
901 		    "could not create Tx ring DMA tag.\n");
902 		goto fail;
903 	}
904 
905 	/* Create tag for Rx ring. */
906 	error = bus_dma_tag_create(
907 	    sc->age_cdata.age_parent_tag, /* parent */
908 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
909 	    BUS_SPACE_MAXADDR,		/* lowaddr */
910 	    BUS_SPACE_MAXADDR,		/* highaddr */
911 	    NULL, NULL,			/* filter, filterarg */
912 	    AGE_RX_RING_SZ,		/* maxsize */
913 	    1,				/* nsegments */
914 	    AGE_RX_RING_SZ,		/* maxsegsize */
915 	    0,				/* flags */
916 	    NULL, NULL,			/* lockfunc, lockarg */
917 	    &sc->age_cdata.age_rx_ring_tag);
918 	if (error != 0) {
919 		device_printf(sc->age_dev,
920 		    "could not create Rx ring DMA tag.\n");
921 		goto fail;
922 	}
923 
924 	/* Create tag for Rx return ring. */
925 	error = bus_dma_tag_create(
926 	    sc->age_cdata.age_parent_tag, /* parent */
927 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
928 	    BUS_SPACE_MAXADDR,		/* lowaddr */
929 	    BUS_SPACE_MAXADDR,		/* highaddr */
930 	    NULL, NULL,			/* filter, filterarg */
931 	    AGE_RR_RING_SZ,		/* maxsize */
932 	    1,				/* nsegments */
933 	    AGE_RR_RING_SZ,		/* maxsegsize */
934 	    0,				/* flags */
935 	    NULL, NULL,			/* lockfunc, lockarg */
936 	    &sc->age_cdata.age_rr_ring_tag);
937 	if (error != 0) {
938 		device_printf(sc->age_dev,
939 		    "could not create Rx return ring DMA tag.\n");
940 		goto fail;
941 	}
942 
943 	/* Create tag for coalesing message block. */
944 	error = bus_dma_tag_create(
945 	    sc->age_cdata.age_parent_tag, /* parent */
946 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
947 	    BUS_SPACE_MAXADDR,		/* lowaddr */
948 	    BUS_SPACE_MAXADDR,		/* highaddr */
949 	    NULL, NULL,			/* filter, filterarg */
950 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
951 	    1,				/* nsegments */
952 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
953 	    0,				/* flags */
954 	    NULL, NULL,			/* lockfunc, lockarg */
955 	    &sc->age_cdata.age_cmb_block_tag);
956 	if (error != 0) {
957 		device_printf(sc->age_dev,
958 		    "could not create CMB DMA tag.\n");
959 		goto fail;
960 	}
961 
962 	/* Create tag for statistics message block. */
963 	error = bus_dma_tag_create(
964 	    sc->age_cdata.age_parent_tag, /* parent */
965 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
966 	    BUS_SPACE_MAXADDR,		/* lowaddr */
967 	    BUS_SPACE_MAXADDR,		/* highaddr */
968 	    NULL, NULL,			/* filter, filterarg */
969 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
970 	    1,				/* nsegments */
971 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
972 	    0,				/* flags */
973 	    NULL, NULL,			/* lockfunc, lockarg */
974 	    &sc->age_cdata.age_smb_block_tag);
975 	if (error != 0) {
976 		device_printf(sc->age_dev,
977 		    "could not create SMB DMA tag.\n");
978 		goto fail;
979 	}
980 
981 	/* Allocate DMA'able memory and load the DMA map. */
982 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
983 	    (void **)&sc->age_rdata.age_tx_ring,
984 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
985 	    &sc->age_cdata.age_tx_ring_map);
986 	if (error != 0) {
987 		device_printf(sc->age_dev,
988 		    "could not allocate DMA'able memory for Tx ring.\n");
989 		goto fail;
990 	}
991 	ctx.age_busaddr = 0;
992 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
993 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
994 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
995 	if (error != 0 || ctx.age_busaddr == 0) {
996 		device_printf(sc->age_dev,
997 		    "could not load DMA'able memory for Tx ring.\n");
998 		goto fail;
999 	}
1000 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1001 	/* Rx ring */
1002 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1003 	    (void **)&sc->age_rdata.age_rx_ring,
1004 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1005 	    &sc->age_cdata.age_rx_ring_map);
1006 	if (error != 0) {
1007 		device_printf(sc->age_dev,
1008 		    "could not allocate DMA'able memory for Rx ring.\n");
1009 		goto fail;
1010 	}
1011 	ctx.age_busaddr = 0;
1012 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1013 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1014 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1015 	if (error != 0 || ctx.age_busaddr == 0) {
1016 		device_printf(sc->age_dev,
1017 		    "could not load DMA'able memory for Rx ring.\n");
1018 		goto fail;
1019 	}
1020 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1021 	/* Rx return ring */
1022 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1023 	    (void **)&sc->age_rdata.age_rr_ring,
1024 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1025 	    &sc->age_cdata.age_rr_ring_map);
1026 	if (error != 0) {
1027 		device_printf(sc->age_dev,
1028 		    "could not allocate DMA'able memory for Rx return ring.\n");
1029 		goto fail;
1030 	}
1031 	ctx.age_busaddr = 0;
1032 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1033 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1034 	    AGE_RR_RING_SZ, age_dmamap_cb,
1035 	    &ctx, 0);
1036 	if (error != 0 || ctx.age_busaddr == 0) {
1037 		device_printf(sc->age_dev,
1038 		    "could not load DMA'able memory for Rx return ring.\n");
1039 		goto fail;
1040 	}
1041 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1042 	/* CMB block */
1043 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1044 	    (void **)&sc->age_rdata.age_cmb_block,
1045 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1046 	    &sc->age_cdata.age_cmb_block_map);
1047 	if (error != 0) {
1048 		device_printf(sc->age_dev,
1049 		    "could not allocate DMA'able memory for CMB block.\n");
1050 		goto fail;
1051 	}
1052 	ctx.age_busaddr = 0;
1053 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1054 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1055 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1056 	if (error != 0 || ctx.age_busaddr == 0) {
1057 		device_printf(sc->age_dev,
1058 		    "could not load DMA'able memory for CMB block.\n");
1059 		goto fail;
1060 	}
1061 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1062 	/* SMB block */
1063 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1064 	    (void **)&sc->age_rdata.age_smb_block,
1065 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1066 	    &sc->age_cdata.age_smb_block_map);
1067 	if (error != 0) {
1068 		device_printf(sc->age_dev,
1069 		    "could not allocate DMA'able memory for SMB block.\n");
1070 		goto fail;
1071 	}
1072 	ctx.age_busaddr = 0;
1073 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1074 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1075 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1076 	if (error != 0 || ctx.age_busaddr == 0) {
1077 		device_printf(sc->age_dev,
1078 		    "could not load DMA'able memory for SMB block.\n");
1079 		goto fail;
1080 	}
1081 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1082 
1083 	/*
1084 	 * All ring buffer and DMA blocks should have the same
1085 	 * high address part of 64bit DMA address space.
1086 	 */
1087 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1088 	    (error = age_check_boundary(sc)) != 0) {
1089 		device_printf(sc->age_dev, "4GB boundary crossed, "
1090 		    "switching to 32bit DMA addressing mode.\n");
1091 		age_dma_free(sc);
1092 		/* Limit DMA address space to 32bit and try again. */
1093 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1094 		goto again;
1095 	}
1096 
1097 	/*
1098 	 * Create Tx/Rx buffer parent tag.
1099 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1100 	 * so it needs separate parent DMA tag.
1101 	 * XXX
1102 	 * It seems enabling 64bit DMA causes data corruption. Limit
1103 	 * DMA address space to 32bit.
1104 	 */
1105 	error = bus_dma_tag_create(
1106 	    bus_get_dma_tag(sc->age_dev), /* parent */
1107 	    1, 0,			/* alignment, boundary */
1108 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1109 	    BUS_SPACE_MAXADDR,		/* highaddr */
1110 	    NULL, NULL,			/* filter, filterarg */
1111 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1112 	    0,				/* nsegments */
1113 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1114 	    0,				/* flags */
1115 	    NULL, NULL,			/* lockfunc, lockarg */
1116 	    &sc->age_cdata.age_buffer_tag);
1117 	if (error != 0) {
1118 		device_printf(sc->age_dev,
1119 		    "could not create parent buffer DMA tag.\n");
1120 		goto fail;
1121 	}
1122 
1123 	/* Create tag for Tx buffers. */
1124 	error = bus_dma_tag_create(
1125 	    sc->age_cdata.age_buffer_tag, /* parent */
1126 	    1, 0,			/* alignment, boundary */
1127 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1128 	    BUS_SPACE_MAXADDR,		/* highaddr */
1129 	    NULL, NULL,			/* filter, filterarg */
1130 	    AGE_TSO_MAXSIZE,		/* maxsize */
1131 	    AGE_MAXTXSEGS,		/* nsegments */
1132 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1133 	    0,				/* flags */
1134 	    NULL, NULL,			/* lockfunc, lockarg */
1135 	    &sc->age_cdata.age_tx_tag);
1136 	if (error != 0) {
1137 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1138 		goto fail;
1139 	}
1140 
1141 	/* Create tag for Rx buffers. */
1142 	error = bus_dma_tag_create(
1143 	    sc->age_cdata.age_buffer_tag, /* parent */
1144 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1145 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1146 	    BUS_SPACE_MAXADDR,		/* highaddr */
1147 	    NULL, NULL,			/* filter, filterarg */
1148 	    MCLBYTES,			/* maxsize */
1149 	    1,				/* nsegments */
1150 	    MCLBYTES,			/* maxsegsize */
1151 	    0,				/* flags */
1152 	    NULL, NULL,			/* lockfunc, lockarg */
1153 	    &sc->age_cdata.age_rx_tag);
1154 	if (error != 0) {
1155 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1156 		goto fail;
1157 	}
1158 
1159 	/* Create DMA maps for Tx buffers. */
1160 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1161 		txd = &sc->age_cdata.age_txdesc[i];
1162 		txd->tx_m = NULL;
1163 		txd->tx_dmamap = NULL;
1164 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1165 		    &txd->tx_dmamap);
1166 		if (error != 0) {
1167 			device_printf(sc->age_dev,
1168 			    "could not create Tx dmamap.\n");
1169 			goto fail;
1170 		}
1171 	}
1172 	/* Create DMA maps for Rx buffers. */
1173 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1174 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1175 		device_printf(sc->age_dev,
1176 		    "could not create spare Rx dmamap.\n");
1177 		goto fail;
1178 	}
1179 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1180 		rxd = &sc->age_cdata.age_rxdesc[i];
1181 		rxd->rx_m = NULL;
1182 		rxd->rx_dmamap = NULL;
1183 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1184 		    &rxd->rx_dmamap);
1185 		if (error != 0) {
1186 			device_printf(sc->age_dev,
1187 			    "could not create Rx dmamap.\n");
1188 			goto fail;
1189 		}
1190 	}
1191 
1192 fail:
1193 	return (error);
1194 }
1195 
1196 static void
1197 age_dma_free(struct age_softc *sc)
1198 {
1199 	struct age_txdesc *txd;
1200 	struct age_rxdesc *rxd;
1201 	int i;
1202 
1203 	/* Tx buffers */
1204 	if (sc->age_cdata.age_tx_tag != NULL) {
1205 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1206 			txd = &sc->age_cdata.age_txdesc[i];
1207 			if (txd->tx_dmamap != NULL) {
1208 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1209 				    txd->tx_dmamap);
1210 				txd->tx_dmamap = NULL;
1211 			}
1212 		}
1213 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1214 		sc->age_cdata.age_tx_tag = NULL;
1215 	}
1216 	/* Rx buffers */
1217 	if (sc->age_cdata.age_rx_tag != NULL) {
1218 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1219 			rxd = &sc->age_cdata.age_rxdesc[i];
1220 			if (rxd->rx_dmamap != NULL) {
1221 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1222 				    rxd->rx_dmamap);
1223 				rxd->rx_dmamap = NULL;
1224 			}
1225 		}
1226 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1227 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1228 			    sc->age_cdata.age_rx_sparemap);
1229 			sc->age_cdata.age_rx_sparemap = NULL;
1230 		}
1231 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1232 		sc->age_cdata.age_rx_tag = NULL;
1233 	}
1234 	/* Tx ring. */
1235 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1236 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1237 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1238 			    sc->age_cdata.age_tx_ring_map);
1239 		if (sc->age_rdata.age_tx_ring != NULL)
1240 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1241 			    sc->age_rdata.age_tx_ring,
1242 			    sc->age_cdata.age_tx_ring_map);
1243 		sc->age_rdata.age_tx_ring_paddr = 0;
1244 		sc->age_rdata.age_tx_ring = NULL;
1245 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1246 		sc->age_cdata.age_tx_ring_tag = NULL;
1247 	}
1248 	/* Rx ring. */
1249 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1250 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1251 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1252 			    sc->age_cdata.age_rx_ring_map);
1253 		if (sc->age_rdata.age_rx_ring != NULL)
1254 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1255 			    sc->age_rdata.age_rx_ring,
1256 			    sc->age_cdata.age_rx_ring_map);
1257 		sc->age_rdata.age_rx_ring_paddr = 0;
1258 		sc->age_rdata.age_rx_ring = NULL;
1259 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1260 		sc->age_cdata.age_rx_ring_tag = NULL;
1261 	}
1262 	/* Rx return ring. */
1263 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1264 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1265 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1266 			    sc->age_cdata.age_rr_ring_map);
1267 		if (sc->age_rdata.age_rr_ring != NULL)
1268 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1269 			    sc->age_rdata.age_rr_ring,
1270 			    sc->age_cdata.age_rr_ring_map);
1271 		sc->age_rdata.age_rr_ring_paddr = 0;
1272 		sc->age_rdata.age_rr_ring = NULL;
1273 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1274 		sc->age_cdata.age_rr_ring_tag = NULL;
1275 	}
1276 	/* CMB block */
1277 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1278 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1279 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1280 			    sc->age_cdata.age_cmb_block_map);
1281 		if (sc->age_rdata.age_cmb_block != NULL)
1282 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1283 			    sc->age_rdata.age_cmb_block,
1284 			    sc->age_cdata.age_cmb_block_map);
1285 		sc->age_rdata.age_cmb_block_paddr = 0;
1286 		sc->age_rdata.age_cmb_block = NULL;
1287 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1288 		sc->age_cdata.age_cmb_block_tag = NULL;
1289 	}
1290 	/* SMB block */
1291 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1292 		if (sc->age_rdata.age_smb_block_paddr != 0)
1293 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1294 			    sc->age_cdata.age_smb_block_map);
1295 		if (sc->age_rdata.age_smb_block != NULL)
1296 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297 			    sc->age_rdata.age_smb_block,
1298 			    sc->age_cdata.age_smb_block_map);
1299 		sc->age_rdata.age_smb_block_paddr = 0;
1300 		sc->age_rdata.age_smb_block = NULL;
1301 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302 		sc->age_cdata.age_smb_block_tag = NULL;
1303 	}
1304 
1305 	if (sc->age_cdata.age_buffer_tag != NULL) {
1306 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307 		sc->age_cdata.age_buffer_tag = NULL;
1308 	}
1309 	if (sc->age_cdata.age_parent_tag != NULL) {
1310 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311 		sc->age_cdata.age_parent_tag = NULL;
1312 	}
1313 }
1314 
1315 /*
1316  *	Make sure the interface is stopped at reboot time.
1317  */
1318 static int
1319 age_shutdown(device_t dev)
1320 {
1321 
1322 	return (age_suspend(dev));
1323 }
1324 
1325 static void
1326 age_setwol(struct age_softc *sc)
1327 {
1328 	struct ifnet *ifp;
1329 	struct mii_data *mii;
1330 	uint32_t reg, pmcs;
1331 	uint16_t pmstat;
1332 	int aneg, i, pmc;
1333 
1334 	AGE_LOCK_ASSERT(sc);
1335 
1336 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338 		/*
1339 		 * No PME capability, PHY power down.
1340 		 * XXX
1341 		 * Due to an unknown reason powering down PHY resulted
1342 		 * in unexpected results such as inaccessbility of
1343 		 * hardware of freshly rebooted system. Disable
1344 		 * powering down PHY until I got more information for
1345 		 * Attansic/Atheros PHY hardwares.
1346 		 */
1347 #ifdef notyet
1348 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349 		    MII_BMCR, BMCR_PDOWN);
1350 #endif
1351 		return;
1352 	}
1353 
1354 	ifp = sc->age_ifp;
1355 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356 		/*
1357 		 * Note, this driver resets the link speed to 10/100Mbps with
1358 		 * auto-negotiation but we don't know whether that operation
1359 		 * would succeed or not as it have no control after powering
1360 		 * off. If the renegotiation fail WOL may not work. Running
1361 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1362 		 * specified in PCI specification and that would result in
1363 		 * complete shutdowning power to ethernet controller.
1364 		 *
1365 		 * TODO
1366 		 *  Save current negotiated media speed/duplex/flow-control
1367 		 *  to softc and restore the same link again after resuming.
1368 		 *  PHY handling such as power down/resetting to 100Mbps
1369 		 *  may be better handled in suspend method in phy driver.
1370 		 */
1371 		mii = device_get_softc(sc->age_miibus);
1372 		mii_pollstat(mii);
1373 		aneg = 0;
1374 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375 			switch IFM_SUBTYPE(mii->mii_media_active) {
1376 			case IFM_10_T:
1377 			case IFM_100_TX:
1378 				goto got_link;
1379 			case IFM_1000_T:
1380 				aneg++;
1381 			default:
1382 				break;
1383 			}
1384 		}
1385 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386 		    MII_100T2CR, 0);
1387 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389 		    ANAR_10 | ANAR_CSMA);
1390 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392 		DELAY(1000);
1393 		if (aneg != 0) {
1394 			/* Poll link state until age(4) get a 10/100 link. */
1395 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396 				mii_pollstat(mii);
1397 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398 					switch (IFM_SUBTYPE(
1399 					    mii->mii_media_active)) {
1400 					case IFM_10_T:
1401 					case IFM_100_TX:
1402 						age_mac_config(sc);
1403 						goto got_link;
1404 					default:
1405 						break;
1406 					}
1407 				}
1408 				AGE_UNLOCK(sc);
1409 				pause("agelnk", hz);
1410 				AGE_LOCK(sc);
1411 			}
1412 			if (i == MII_ANEGTICKS_GIGE)
1413 				device_printf(sc->age_dev,
1414 				    "establishing link failed, "
1415 				    "WOL may not work!");
1416 		}
1417 		/*
1418 		 * No link, force MAC to have 100Mbps, full-duplex link.
1419 		 * This is the last resort and may/may not work.
1420 		 */
1421 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423 		age_mac_config(sc);
1424 	}
1425 
1426 got_link:
1427 	pmcs = 0;
1428 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437 		reg |= MAC_CFG_RX_ENB;
1438 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439 	}
1440 
1441 	/* Request PME. */
1442 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447 #ifdef notyet
1448 	/* See above for powering down PHY issues. */
1449 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450 		/* No WOL, PHY power down. */
1451 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452 		    MII_BMCR, BMCR_PDOWN);
1453 	}
1454 #endif
1455 }
1456 
1457 static int
1458 age_suspend(device_t dev)
1459 {
1460 	struct age_softc *sc;
1461 
1462 	sc = device_get_softc(dev);
1463 
1464 	AGE_LOCK(sc);
1465 	age_stop(sc);
1466 	age_setwol(sc);
1467 	AGE_UNLOCK(sc);
1468 
1469 	return (0);
1470 }
1471 
1472 static int
1473 age_resume(device_t dev)
1474 {
1475 	struct age_softc *sc;
1476 	struct ifnet *ifp;
1477 
1478 	sc = device_get_softc(dev);
1479 
1480 	AGE_LOCK(sc);
1481 	age_phy_reset(sc);
1482 	ifp = sc->age_ifp;
1483 	if ((ifp->if_flags & IFF_UP) != 0)
1484 		age_init_locked(sc);
1485 
1486 	AGE_UNLOCK(sc);
1487 
1488 	return (0);
1489 }
1490 
1491 static int
1492 age_encap(struct age_softc *sc, struct mbuf **m_head)
1493 {
1494 	struct age_txdesc *txd, *txd_last;
1495 	struct tx_desc *desc;
1496 	struct mbuf *m;
1497 	struct ip *ip;
1498 	struct tcphdr *tcp;
1499 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500 	bus_dmamap_t map;
1501 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1502 	int error, i, nsegs, prod, si;
1503 
1504 	AGE_LOCK_ASSERT(sc);
1505 
1506 	M_ASSERTPKTHDR((*m_head));
1507 
1508 	m = *m_head;
1509 	ip = NULL;
1510 	tcp = NULL;
1511 	cflags = vtag = 0;
1512 	ip_off = poff = 0;
1513 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514 		/*
1515 		 * L1 requires offset of TCP/UDP payload in its Tx
1516 		 * descriptor to perform hardware Tx checksum offload.
1517 		 * Additionally, TSO requires IP/TCP header size and
1518 		 * modification of IP/TCP header in order to make TSO
1519 		 * engine work. This kind of operation takes many CPU
1520 		 * cycles on FreeBSD so fast host CPU is needed to get
1521 		 * smooth TSO performance.
1522 		 */
1523 		struct ether_header *eh;
1524 
1525 		if (M_WRITABLE(m) == 0) {
1526 			/* Get a writable copy. */
1527 			m = m_dup(*m_head, M_NOWAIT);
1528 			/* Release original mbufs. */
1529 			m_freem(*m_head);
1530 			if (m == NULL) {
1531 				*m_head = NULL;
1532 				return (ENOBUFS);
1533 			}
1534 			*m_head = m;
1535 		}
1536 		ip_off = sizeof(struct ether_header);
1537 		m = m_pullup(m, ip_off);
1538 		if (m == NULL) {
1539 			*m_head = NULL;
1540 			return (ENOBUFS);
1541 		}
1542 		eh = mtod(m, struct ether_header *);
1543 		/*
1544 		 * Check if hardware VLAN insertion is off.
1545 		 * Additional check for LLC/SNAP frame?
1546 		 */
1547 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548 			ip_off = sizeof(struct ether_vlan_header);
1549 			m = m_pullup(m, ip_off);
1550 			if (m == NULL) {
1551 				*m_head = NULL;
1552 				return (ENOBUFS);
1553 			}
1554 		}
1555 		m = m_pullup(m, ip_off + sizeof(struct ip));
1556 		if (m == NULL) {
1557 			*m_head = NULL;
1558 			return (ENOBUFS);
1559 		}
1560 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1561 		poff = ip_off + (ip->ip_hl << 2);
1562 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1564 			if (m == NULL) {
1565 				*m_head = NULL;
1566 				return (ENOBUFS);
1567 			}
1568 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569 			m = m_pullup(m, poff + (tcp->th_off << 2));
1570 			if (m == NULL) {
1571 				*m_head = NULL;
1572 				return (ENOBUFS);
1573 			}
1574 			/*
1575 			 * L1 requires IP/TCP header size and offset as
1576 			 * well as TCP pseudo checksum which complicates
1577 			 * TSO configuration. I guess this comes from the
1578 			 * adherence to Microsoft NDIS Large Send
1579 			 * specification which requires insertion of
1580 			 * pseudo checksum by upper stack. The pseudo
1581 			 * checksum that NDIS refers to doesn't include
1582 			 * TCP payload length so age(4) should recompute
1583 			 * the pseudo checksum here. Hopefully this wouldn't
1584 			 * be much burden on modern CPUs.
1585 			 * Reset IP checksum and recompute TCP pseudo
1586 			 * checksum as NDIS specification said.
1587 			 */
1588 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1589 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1590 			ip->ip_sum = 0;
1591 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1592 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1593 		}
1594 		*m_head = m;
1595 	}
1596 
1597 	si = prod = sc->age_cdata.age_tx_prod;
1598 	txd = &sc->age_cdata.age_txdesc[prod];
1599 	txd_last = txd;
1600 	map = txd->tx_dmamap;
1601 
1602 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1603 	    *m_head, txsegs, &nsegs, 0);
1604 	if (error == EFBIG) {
1605 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1606 		if (m == NULL) {
1607 			m_freem(*m_head);
1608 			*m_head = NULL;
1609 			return (ENOMEM);
1610 		}
1611 		*m_head = m;
1612 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1613 		    *m_head, txsegs, &nsegs, 0);
1614 		if (error != 0) {
1615 			m_freem(*m_head);
1616 			*m_head = NULL;
1617 			return (error);
1618 		}
1619 	} else if (error != 0)
1620 		return (error);
1621 	if (nsegs == 0) {
1622 		m_freem(*m_head);
1623 		*m_head = NULL;
1624 		return (EIO);
1625 	}
1626 
1627 	/* Check descriptor overrun. */
1628 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1629 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1630 		return (ENOBUFS);
1631 	}
1632 
1633 	m = *m_head;
1634 	/* Configure VLAN hardware tag insertion. */
1635 	if ((m->m_flags & M_VLANTAG) != 0) {
1636 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1637 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1638 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1639 	}
1640 
1641 	desc = NULL;
1642 	i = 0;
1643 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1644 		/* Request TSO and set MSS. */
1645 		cflags |= AGE_TD_TSO_IPV4;
1646 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1647 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1648 		    AGE_TD_TSO_MSS_SHIFT);
1649 		/* Set IP/TCP header size. */
1650 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1651 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1652 		/*
1653 		 * L1 requires the first buffer should only hold IP/TCP
1654 		 * header data. TCP payload should be handled in other
1655 		 * descriptors.
1656 		 */
1657 		hdrlen = poff + (tcp->th_off << 2);
1658 		desc = &sc->age_rdata.age_tx_ring[prod];
1659 		desc->addr = htole64(txsegs[0].ds_addr);
1660 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1661 		desc->flags = htole32(cflags);
1662 		sc->age_cdata.age_tx_cnt++;
1663 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1664 		if (m->m_len - hdrlen > 0) {
1665 			/* Handle remaining payload of the 1st fragment. */
1666 			desc = &sc->age_rdata.age_tx_ring[prod];
1667 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1668 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1669 			    vtag);
1670 			desc->flags = htole32(cflags);
1671 			sc->age_cdata.age_tx_cnt++;
1672 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1673 		}
1674 		/* Handle remaining fragments. */
1675 		i = 1;
1676 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1677 		/* Configure Tx IP/TCP/UDP checksum offload. */
1678 		cflags |= AGE_TD_CSUM;
1679 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1680 			cflags |= AGE_TD_TCPCSUM;
1681 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1682 			cflags |= AGE_TD_UDPCSUM;
1683 		/* Set checksum start offset. */
1684 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1685 		/* Set checksum insertion position of TCP/UDP. */
1686 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1687 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1688 	}
1689 	for (; i < nsegs; i++) {
1690 		desc = &sc->age_rdata.age_tx_ring[prod];
1691 		desc->addr = htole64(txsegs[i].ds_addr);
1692 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1693 		desc->flags = htole32(cflags);
1694 		sc->age_cdata.age_tx_cnt++;
1695 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1696 	}
1697 	/* Update producer index. */
1698 	sc->age_cdata.age_tx_prod = prod;
1699 
1700 	/* Set EOP on the last descriptor. */
1701 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1702 	desc = &sc->age_rdata.age_tx_ring[prod];
1703 	desc->flags |= htole32(AGE_TD_EOP);
1704 
1705 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1706 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1707 		desc = &sc->age_rdata.age_tx_ring[si];
1708 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1709 	}
1710 
1711 	/* Swap dmamap of the first and the last. */
1712 	txd = &sc->age_cdata.age_txdesc[prod];
1713 	map = txd_last->tx_dmamap;
1714 	txd_last->tx_dmamap = txd->tx_dmamap;
1715 	txd->tx_dmamap = map;
1716 	txd->tx_m = m;
1717 
1718 	/* Sync descriptors. */
1719 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1720 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1721 	    sc->age_cdata.age_tx_ring_map,
1722 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1723 
1724 	return (0);
1725 }
1726 
1727 static void
1728 age_start(struct ifnet *ifp)
1729 {
1730         struct age_softc *sc;
1731 
1732 	sc = ifp->if_softc;
1733 	AGE_LOCK(sc);
1734 	age_start_locked(ifp);
1735 	AGE_UNLOCK(sc);
1736 }
1737 
1738 static void
1739 age_start_locked(struct ifnet *ifp)
1740 {
1741         struct age_softc *sc;
1742         struct mbuf *m_head;
1743 	int enq;
1744 
1745 	sc = ifp->if_softc;
1746 
1747 	AGE_LOCK_ASSERT(sc);
1748 
1749 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1750 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1751 		return;
1752 
1753 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1754 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1755 		if (m_head == NULL)
1756 			break;
1757 		/*
1758 		 * Pack the data into the transmit ring. If we
1759 		 * don't have room, set the OACTIVE flag and wait
1760 		 * for the NIC to drain the ring.
1761 		 */
1762 		if (age_encap(sc, &m_head)) {
1763 			if (m_head == NULL)
1764 				break;
1765 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1766 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1767 			break;
1768 		}
1769 
1770 		enq++;
1771 		/*
1772 		 * If there's a BPF listener, bounce a copy of this frame
1773 		 * to him.
1774 		 */
1775 		ETHER_BPF_MTAP(ifp, m_head);
1776 	}
1777 
1778 	if (enq > 0) {
1779 		/* Update mbox. */
1780 		AGE_COMMIT_MBOX(sc);
1781 		/* Set a timeout in case the chip goes out to lunch. */
1782 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1783 	}
1784 }
1785 
1786 static void
1787 age_watchdog(struct age_softc *sc)
1788 {
1789 	struct ifnet *ifp;
1790 
1791 	AGE_LOCK_ASSERT(sc);
1792 
1793 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1794 		return;
1795 
1796 	ifp = sc->age_ifp;
1797 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1798 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1799 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1800 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1801 		age_init_locked(sc);
1802 		return;
1803 	}
1804 	if (sc->age_cdata.age_tx_cnt == 0) {
1805 		if_printf(sc->age_ifp,
1806 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1807 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1808 			age_start_locked(ifp);
1809 		return;
1810 	}
1811 	if_printf(sc->age_ifp, "watchdog timeout\n");
1812 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1813 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1814 	age_init_locked(sc);
1815 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1816 		age_start_locked(ifp);
1817 }
1818 
1819 static int
1820 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1821 {
1822 	struct age_softc *sc;
1823 	struct ifreq *ifr;
1824 	struct mii_data *mii;
1825 	uint32_t reg;
1826 	int error, mask;
1827 
1828 	sc = ifp->if_softc;
1829 	ifr = (struct ifreq *)data;
1830 	error = 0;
1831 	switch (cmd) {
1832 	case SIOCSIFMTU:
1833 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1834 			error = EINVAL;
1835 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1836 			AGE_LOCK(sc);
1837 			ifp->if_mtu = ifr->ifr_mtu;
1838 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1839 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1840 				age_init_locked(sc);
1841 			}
1842 			AGE_UNLOCK(sc);
1843 		}
1844 		break;
1845 	case SIOCSIFFLAGS:
1846 		AGE_LOCK(sc);
1847 		if ((ifp->if_flags & IFF_UP) != 0) {
1848 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1849 				if (((ifp->if_flags ^ sc->age_if_flags)
1850 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1851 					age_rxfilter(sc);
1852 			} else {
1853 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1854 					age_init_locked(sc);
1855 			}
1856 		} else {
1857 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1858 				age_stop(sc);
1859 		}
1860 		sc->age_if_flags = ifp->if_flags;
1861 		AGE_UNLOCK(sc);
1862 		break;
1863 	case SIOCADDMULTI:
1864 	case SIOCDELMULTI:
1865 		AGE_LOCK(sc);
1866 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1867 			age_rxfilter(sc);
1868 		AGE_UNLOCK(sc);
1869 		break;
1870 	case SIOCSIFMEDIA:
1871 	case SIOCGIFMEDIA:
1872 		mii = device_get_softc(sc->age_miibus);
1873 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1874 		break;
1875 	case SIOCSIFCAP:
1876 		AGE_LOCK(sc);
1877 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1878 		if ((mask & IFCAP_TXCSUM) != 0 &&
1879 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1880 			ifp->if_capenable ^= IFCAP_TXCSUM;
1881 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1882 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1883 			else
1884 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1885 		}
1886 		if ((mask & IFCAP_RXCSUM) != 0 &&
1887 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1888 			ifp->if_capenable ^= IFCAP_RXCSUM;
1889 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1890 			reg &= ~MAC_CFG_RXCSUM_ENB;
1891 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1892 				reg |= MAC_CFG_RXCSUM_ENB;
1893 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1894 		}
1895 		if ((mask & IFCAP_TSO4) != 0 &&
1896 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1897 			ifp->if_capenable ^= IFCAP_TSO4;
1898 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1899 				ifp->if_hwassist |= CSUM_TSO;
1900 			else
1901 				ifp->if_hwassist &= ~CSUM_TSO;
1902 		}
1903 
1904 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1905 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1906 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1907 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1908 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1909 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1910 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1911 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1912 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1913 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1914 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1915 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1916 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1917 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1918 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1919 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1920 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1921 			age_rxvlan(sc);
1922 		}
1923 		AGE_UNLOCK(sc);
1924 		VLAN_CAPABILITIES(ifp);
1925 		break;
1926 	default:
1927 		error = ether_ioctl(ifp, cmd, data);
1928 		break;
1929 	}
1930 
1931 	return (error);
1932 }
1933 
1934 static void
1935 age_mac_config(struct age_softc *sc)
1936 {
1937 	struct mii_data *mii;
1938 	uint32_t reg;
1939 
1940 	AGE_LOCK_ASSERT(sc);
1941 
1942 	mii = device_get_softc(sc->age_miibus);
1943 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1944 	reg &= ~MAC_CFG_FULL_DUPLEX;
1945 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1946 	reg &= ~MAC_CFG_SPEED_MASK;
1947 	/* Reprogram MAC with resolved speed/duplex. */
1948 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1949 	case IFM_10_T:
1950 	case IFM_100_TX:
1951 		reg |= MAC_CFG_SPEED_10_100;
1952 		break;
1953 	case IFM_1000_T:
1954 		reg |= MAC_CFG_SPEED_1000;
1955 		break;
1956 	}
1957 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1958 		reg |= MAC_CFG_FULL_DUPLEX;
1959 #ifdef notyet
1960 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1961 			reg |= MAC_CFG_TX_FC;
1962 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1963 			reg |= MAC_CFG_RX_FC;
1964 #endif
1965 	}
1966 
1967 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1968 }
1969 
1970 static void
1971 age_link_task(void *arg, int pending)
1972 {
1973 	struct age_softc *sc;
1974 	struct mii_data *mii;
1975 	struct ifnet *ifp;
1976 	uint32_t reg;
1977 
1978 	sc = (struct age_softc *)arg;
1979 
1980 	AGE_LOCK(sc);
1981 	mii = device_get_softc(sc->age_miibus);
1982 	ifp = sc->age_ifp;
1983 	if (mii == NULL || ifp == NULL ||
1984 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1985 		AGE_UNLOCK(sc);
1986 		return;
1987 	}
1988 
1989 	sc->age_flags &= ~AGE_FLAG_LINK;
1990 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1991 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1992 		case IFM_10_T:
1993 		case IFM_100_TX:
1994 		case IFM_1000_T:
1995 			sc->age_flags |= AGE_FLAG_LINK;
1996 			break;
1997 		default:
1998 			break;
1999 		}
2000 	}
2001 
2002 	/* Stop Rx/Tx MACs. */
2003 	age_stop_rxmac(sc);
2004 	age_stop_txmac(sc);
2005 
2006 	/* Program MACs with resolved speed/duplex/flow-control. */
2007 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2008 		age_mac_config(sc);
2009 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2010 		/* Restart DMA engine and Tx/Rx MAC. */
2011 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2012 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2013 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2014 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2015 	}
2016 
2017 	AGE_UNLOCK(sc);
2018 }
2019 
2020 static void
2021 age_stats_update(struct age_softc *sc)
2022 {
2023 	struct age_stats *stat;
2024 	struct smb *smb;
2025 	struct ifnet *ifp;
2026 
2027 	AGE_LOCK_ASSERT(sc);
2028 
2029 	stat = &sc->age_stat;
2030 
2031 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2032 	    sc->age_cdata.age_smb_block_map,
2033 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2034 
2035 	smb = sc->age_rdata.age_smb_block;
2036 	if (smb->updated == 0)
2037 		return;
2038 
2039 	ifp = sc->age_ifp;
2040 	/* Rx stats. */
2041 	stat->rx_frames += smb->rx_frames;
2042 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2043 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2044 	stat->rx_pause_frames += smb->rx_pause_frames;
2045 	stat->rx_control_frames += smb->rx_control_frames;
2046 	stat->rx_crcerrs += smb->rx_crcerrs;
2047 	stat->rx_lenerrs += smb->rx_lenerrs;
2048 	stat->rx_bytes += smb->rx_bytes;
2049 	stat->rx_runts += smb->rx_runts;
2050 	stat->rx_fragments += smb->rx_fragments;
2051 	stat->rx_pkts_64 += smb->rx_pkts_64;
2052 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2053 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2054 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2055 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2056 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2057 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2058 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2059 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2060 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2061 	stat->rx_alignerrs += smb->rx_alignerrs;
2062 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2063 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2064 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2065 
2066 	/* Tx stats. */
2067 	stat->tx_frames += smb->tx_frames;
2068 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2069 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2070 	stat->tx_pause_frames += smb->tx_pause_frames;
2071 	stat->tx_excess_defer += smb->tx_excess_defer;
2072 	stat->tx_control_frames += smb->tx_control_frames;
2073 	stat->tx_deferred += smb->tx_deferred;
2074 	stat->tx_bytes += smb->tx_bytes;
2075 	stat->tx_pkts_64 += smb->tx_pkts_64;
2076 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2077 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2078 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2079 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2080 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2081 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2082 	stat->tx_single_colls += smb->tx_single_colls;
2083 	stat->tx_multi_colls += smb->tx_multi_colls;
2084 	stat->tx_late_colls += smb->tx_late_colls;
2085 	stat->tx_excess_colls += smb->tx_excess_colls;
2086 	stat->tx_underrun += smb->tx_underrun;
2087 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2088 	stat->tx_lenerrs += smb->tx_lenerrs;
2089 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2090 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2091 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2092 
2093 	/* Update counters in ifnet. */
2094 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2095 
2096 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2097 	    smb->tx_multi_colls + smb->tx_late_colls +
2098 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2099 
2100 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2101 	    smb->tx_late_colls + smb->tx_underrun +
2102 	    smb->tx_pkts_truncated);
2103 
2104 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2105 
2106 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2107 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2108 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2109 	    smb->rx_alignerrs);
2110 
2111 	/* Update done, clear. */
2112 	smb->updated = 0;
2113 
2114 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2115 	    sc->age_cdata.age_smb_block_map,
2116 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2117 }
2118 
2119 static int
2120 age_intr(void *arg)
2121 {
2122 	struct age_softc *sc;
2123 	uint32_t status;
2124 
2125 	sc = (struct age_softc *)arg;
2126 
2127 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2128 	if (status == 0 || (status & AGE_INTRS) == 0)
2129 		return (FILTER_STRAY);
2130 	/* Disable interrupts. */
2131 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2132 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2133 
2134 	return (FILTER_HANDLED);
2135 }
2136 
2137 static void
2138 age_int_task(void *arg, int pending)
2139 {
2140 	struct age_softc *sc;
2141 	struct ifnet *ifp;
2142 	struct cmb *cmb;
2143 	uint32_t status;
2144 
2145 	sc = (struct age_softc *)arg;
2146 
2147 	AGE_LOCK(sc);
2148 
2149 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2150 	    sc->age_cdata.age_cmb_block_map,
2151 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2152 	cmb = sc->age_rdata.age_cmb_block;
2153 	status = le32toh(cmb->intr_status);
2154 	if (sc->age_morework != 0)
2155 		status |= INTR_CMB_RX;
2156 	if ((status & AGE_INTRS) == 0)
2157 		goto done;
2158 
2159 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2160 	    TPD_CONS_SHIFT;
2161 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2162 	    RRD_PROD_SHIFT;
2163 	/* Let hardware know CMB was served. */
2164 	cmb->intr_status = 0;
2165 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2166 	    sc->age_cdata.age_cmb_block_map,
2167 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2168 
2169 	ifp = sc->age_ifp;
2170 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2171 		if ((status & INTR_CMB_RX) != 0)
2172 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2173 			    sc->age_process_limit);
2174 		if ((status & INTR_CMB_TX) != 0)
2175 			age_txintr(sc, sc->age_tpd_cons);
2176 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2177 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2178 				device_printf(sc->age_dev,
2179 				    "DMA read error! -- resetting\n");
2180 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2181 				device_printf(sc->age_dev,
2182 				    "DMA write error! -- resetting\n");
2183 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2184 			age_init_locked(sc);
2185 		}
2186 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2187 			age_start_locked(ifp);
2188 		if ((status & INTR_SMB) != 0)
2189 			age_stats_update(sc);
2190 	}
2191 
2192 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2193 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2194 	    sc->age_cdata.age_cmb_block_map,
2195 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2196 	status = le32toh(cmb->intr_status);
2197 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2198 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2199 		AGE_UNLOCK(sc);
2200 		return;
2201 	}
2202 
2203 done:
2204 	/* Re-enable interrupts. */
2205 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2206 	AGE_UNLOCK(sc);
2207 }
2208 
2209 static void
2210 age_txintr(struct age_softc *sc, int tpd_cons)
2211 {
2212 	struct ifnet *ifp;
2213 	struct age_txdesc *txd;
2214 	int cons, prog;
2215 
2216 	AGE_LOCK_ASSERT(sc);
2217 
2218 	ifp = sc->age_ifp;
2219 
2220 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2221 	    sc->age_cdata.age_tx_ring_map,
2222 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2223 
2224 	/*
2225 	 * Go through our Tx list and free mbufs for those
2226 	 * frames which have been transmitted.
2227 	 */
2228 	cons = sc->age_cdata.age_tx_cons;
2229 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2230 		if (sc->age_cdata.age_tx_cnt <= 0)
2231 			break;
2232 		prog++;
2233 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2234 		sc->age_cdata.age_tx_cnt--;
2235 		txd = &sc->age_cdata.age_txdesc[cons];
2236 		/*
2237 		 * Clear Tx descriptors, it's not required but would
2238 		 * help debugging in case of Tx issues.
2239 		 */
2240 		txd->tx_desc->addr = 0;
2241 		txd->tx_desc->len = 0;
2242 		txd->tx_desc->flags = 0;
2243 
2244 		if (txd->tx_m == NULL)
2245 			continue;
2246 		/* Reclaim transmitted mbufs. */
2247 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2248 		    BUS_DMASYNC_POSTWRITE);
2249 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2250 		m_freem(txd->tx_m);
2251 		txd->tx_m = NULL;
2252 	}
2253 
2254 	if (prog > 0) {
2255 		sc->age_cdata.age_tx_cons = cons;
2256 
2257 		/*
2258 		 * Unarm watchdog timer only when there are no pending
2259 		 * Tx descriptors in queue.
2260 		 */
2261 		if (sc->age_cdata.age_tx_cnt == 0)
2262 			sc->age_watchdog_timer = 0;
2263 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2264 		    sc->age_cdata.age_tx_ring_map,
2265 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2266 	}
2267 }
2268 
2269 #ifndef __NO_STRICT_ALIGNMENT
2270 static struct mbuf *
2271 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2272 {
2273 	struct mbuf *n;
2274         int i;
2275         uint16_t *src, *dst;
2276 
2277 	src = mtod(m, uint16_t *);
2278 	dst = src - 3;
2279 
2280 	if (m->m_next == NULL) {
2281 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2282 			*dst++ = *src++;
2283 		m->m_data -= 6;
2284 		return (m);
2285 	}
2286 	/*
2287 	 * Append a new mbuf to received mbuf chain and copy ethernet
2288 	 * header from the mbuf chain. This can save lots of CPU
2289 	 * cycles for jumbo frame.
2290 	 */
2291 	MGETHDR(n, M_NOWAIT, MT_DATA);
2292 	if (n == NULL) {
2293 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2294 		m_freem(m);
2295 		return (NULL);
2296 	}
2297 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2298 	m->m_data += ETHER_HDR_LEN;
2299 	m->m_len -= ETHER_HDR_LEN;
2300 	n->m_len = ETHER_HDR_LEN;
2301 	M_MOVE_PKTHDR(n, m);
2302 	n->m_next = m;
2303 	return (n);
2304 }
2305 #endif
2306 
2307 /* Receive a frame. */
2308 static void
2309 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2310 {
2311 	struct age_rxdesc *rxd;
2312 	struct ifnet *ifp;
2313 	struct mbuf *mp, *m;
2314 	uint32_t status, index, vtag;
2315 	int count, nsegs;
2316 	int rx_cons;
2317 
2318 	AGE_LOCK_ASSERT(sc);
2319 
2320 	ifp = sc->age_ifp;
2321 	status = le32toh(rxrd->flags);
2322 	index = le32toh(rxrd->index);
2323 	rx_cons = AGE_RX_CONS(index);
2324 	nsegs = AGE_RX_NSEGS(index);
2325 
2326 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2327 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2328 		/*
2329 		 * We want to pass the following frames to upper
2330 		 * layer regardless of error status of Rx return
2331 		 * ring.
2332 		 *
2333 		 *  o IP/TCP/UDP checksum is bad.
2334 		 *  o frame length and protocol specific length
2335 		 *     does not match.
2336 		 */
2337 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2338 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2339 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2340 			return;
2341 	}
2342 
2343 	for (count = 0; count < nsegs; count++,
2344 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2345 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2346 		mp = rxd->rx_m;
2347 		/* Add a new receive buffer to the ring. */
2348 		if (age_newbuf(sc, rxd) != 0) {
2349 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2350 			/* Reuse Rx buffers. */
2351 			if (sc->age_cdata.age_rxhead != NULL)
2352 				m_freem(sc->age_cdata.age_rxhead);
2353 			break;
2354 		}
2355 
2356 		/*
2357 		 * Assume we've received a full sized frame.
2358 		 * Actual size is fixed when we encounter the end of
2359 		 * multi-segmented frame.
2360 		 */
2361 		mp->m_len = AGE_RX_BUF_SIZE;
2362 
2363 		/* Chain received mbufs. */
2364 		if (sc->age_cdata.age_rxhead == NULL) {
2365 			sc->age_cdata.age_rxhead = mp;
2366 			sc->age_cdata.age_rxtail = mp;
2367 		} else {
2368 			mp->m_flags &= ~M_PKTHDR;
2369 			sc->age_cdata.age_rxprev_tail =
2370 			    sc->age_cdata.age_rxtail;
2371 			sc->age_cdata.age_rxtail->m_next = mp;
2372 			sc->age_cdata.age_rxtail = mp;
2373 		}
2374 
2375 		if (count == nsegs - 1) {
2376 			/* Last desc. for this frame. */
2377 			m = sc->age_cdata.age_rxhead;
2378 			m->m_flags |= M_PKTHDR;
2379 			/*
2380 			 * It seems that L1 controller has no way
2381 			 * to tell hardware to strip CRC bytes.
2382 			 */
2383 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2384 			    ETHER_CRC_LEN;
2385 			if (nsegs > 1) {
2386 				/* Set last mbuf size. */
2387 				mp->m_len = sc->age_cdata.age_rxlen -
2388 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2389 				/* Remove the CRC bytes in chained mbufs. */
2390 				if (mp->m_len <= ETHER_CRC_LEN) {
2391 					sc->age_cdata.age_rxtail =
2392 					    sc->age_cdata.age_rxprev_tail;
2393 					sc->age_cdata.age_rxtail->m_len -=
2394 					    (ETHER_CRC_LEN - mp->m_len);
2395 					sc->age_cdata.age_rxtail->m_next = NULL;
2396 					m_freem(mp);
2397 				} else {
2398 					mp->m_len -= ETHER_CRC_LEN;
2399 				}
2400 			} else
2401 				m->m_len = m->m_pkthdr.len;
2402 			m->m_pkthdr.rcvif = ifp;
2403 			/*
2404 			 * Set checksum information.
2405 			 * It seems that L1 controller can compute partial
2406 			 * checksum. The partial checksum value can be used
2407 			 * to accelerate checksum computation for fragmented
2408 			 * TCP/UDP packets. Upper network stack already
2409 			 * takes advantage of the partial checksum value in
2410 			 * IP reassembly stage. But I'm not sure the
2411 			 * correctness of the partial hardware checksum
2412 			 * assistance due to lack of data sheet. If it is
2413 			 * proven to work on L1 I'll enable it.
2414 			 */
2415 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2416 			    (status & AGE_RRD_IPV4) != 0) {
2417 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2418 					m->m_pkthdr.csum_flags |=
2419 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2420 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2421 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2422 					m->m_pkthdr.csum_flags |=
2423 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2424 					m->m_pkthdr.csum_data = 0xffff;
2425 				}
2426 				/*
2427 				 * Don't mark bad checksum for TCP/UDP frames
2428 				 * as fragmented frames may always have set
2429 				 * bad checksummed bit of descriptor status.
2430 				 */
2431 			}
2432 
2433 			/* Check for VLAN tagged frames. */
2434 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2435 			    (status & AGE_RRD_VLAN) != 0) {
2436 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2437 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2438 				m->m_flags |= M_VLANTAG;
2439 			}
2440 #ifndef __NO_STRICT_ALIGNMENT
2441 			m = age_fixup_rx(ifp, m);
2442 			if (m != NULL)
2443 #endif
2444 			{
2445 			/* Pass it on. */
2446 			AGE_UNLOCK(sc);
2447 			(*ifp->if_input)(ifp, m);
2448 			AGE_LOCK(sc);
2449 			}
2450 		}
2451 	}
2452 
2453 	/* Reset mbuf chains. */
2454 	AGE_RXCHAIN_RESET(sc);
2455 }
2456 
2457 static int
2458 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2459 {
2460 	struct rx_rdesc *rxrd;
2461 	int rr_cons, nsegs, pktlen, prog;
2462 
2463 	AGE_LOCK_ASSERT(sc);
2464 
2465 	rr_cons = sc->age_cdata.age_rr_cons;
2466 	if (rr_cons == rr_prod)
2467 		return (0);
2468 
2469 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2470 	    sc->age_cdata.age_rr_ring_map,
2471 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2472 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2473 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2474 
2475 	for (prog = 0; rr_cons != rr_prod; prog++) {
2476 		if (count-- <= 0)
2477 			break;
2478 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2479 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2480 		if (nsegs == 0)
2481 			break;
2482 		/*
2483 		 * Check number of segments against received bytes.
2484 		 * Non-matching value would indicate that hardware
2485 		 * is still trying to update Rx return descriptors.
2486 		 * I'm not sure whether this check is really needed.
2487 		 */
2488 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2489 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2490 			break;
2491 
2492 		/* Received a frame. */
2493 		age_rxeof(sc, rxrd);
2494 		/* Clear return ring. */
2495 		rxrd->index = 0;
2496 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2497 		sc->age_cdata.age_rx_cons += nsegs;
2498 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2499 	}
2500 
2501 	if (prog > 0) {
2502 		/* Update the consumer index. */
2503 		sc->age_cdata.age_rr_cons = rr_cons;
2504 
2505 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2506 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2507 		/* Sync descriptors. */
2508 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2509 		    sc->age_cdata.age_rr_ring_map,
2510 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2511 
2512 		/* Notify hardware availability of new Rx buffers. */
2513 		AGE_COMMIT_MBOX(sc);
2514 	}
2515 
2516 	return (count > 0 ? 0 : EAGAIN);
2517 }
2518 
2519 static void
2520 age_tick(void *arg)
2521 {
2522 	struct age_softc *sc;
2523 	struct mii_data *mii;
2524 
2525 	sc = (struct age_softc *)arg;
2526 
2527 	AGE_LOCK_ASSERT(sc);
2528 
2529 	mii = device_get_softc(sc->age_miibus);
2530 	mii_tick(mii);
2531 	age_watchdog(sc);
2532 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2533 }
2534 
2535 static void
2536 age_reset(struct age_softc *sc)
2537 {
2538 	uint32_t reg;
2539 	int i;
2540 
2541 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2542 	CSR_READ_4(sc, AGE_MASTER_CFG);
2543 	DELAY(1000);
2544 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2545 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2546 			break;
2547 		DELAY(10);
2548 	}
2549 
2550 	if (i == 0)
2551 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2552 	/* Initialize PCIe module. From Linux. */
2553 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2554 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2555 }
2556 
2557 static void
2558 age_init(void *xsc)
2559 {
2560 	struct age_softc *sc;
2561 
2562 	sc = (struct age_softc *)xsc;
2563 	AGE_LOCK(sc);
2564 	age_init_locked(sc);
2565 	AGE_UNLOCK(sc);
2566 }
2567 
2568 static void
2569 age_init_locked(struct age_softc *sc)
2570 {
2571 	struct ifnet *ifp;
2572 	struct mii_data *mii;
2573 	uint8_t eaddr[ETHER_ADDR_LEN];
2574 	bus_addr_t paddr;
2575 	uint32_t reg, fsize;
2576 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2577 	int error;
2578 
2579 	AGE_LOCK_ASSERT(sc);
2580 
2581 	ifp = sc->age_ifp;
2582 	mii = device_get_softc(sc->age_miibus);
2583 
2584 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2585 		return;
2586 
2587 	/*
2588 	 * Cancel any pending I/O.
2589 	 */
2590 	age_stop(sc);
2591 
2592 	/*
2593 	 * Reset the chip to a known state.
2594 	 */
2595 	age_reset(sc);
2596 
2597 	/* Initialize descriptors. */
2598 	error = age_init_rx_ring(sc);
2599         if (error != 0) {
2600                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2601                 age_stop(sc);
2602 		return;
2603         }
2604 	age_init_rr_ring(sc);
2605 	age_init_tx_ring(sc);
2606 	age_init_cmb_block(sc);
2607 	age_init_smb_block(sc);
2608 
2609 	/* Reprogram the station address. */
2610 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2611 	CSR_WRITE_4(sc, AGE_PAR0,
2612 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2613 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2614 
2615 	/* Set descriptor base addresses. */
2616 	paddr = sc->age_rdata.age_tx_ring_paddr;
2617 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2618 	paddr = sc->age_rdata.age_rx_ring_paddr;
2619 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2620 	paddr = sc->age_rdata.age_rr_ring_paddr;
2621 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2622 	paddr = sc->age_rdata.age_tx_ring_paddr;
2623 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2624 	paddr = sc->age_rdata.age_cmb_block_paddr;
2625 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2626 	paddr = sc->age_rdata.age_smb_block_paddr;
2627 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2628 	/* Set Rx/Rx return descriptor counter. */
2629 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2630 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2631 	    DESC_RRD_CNT_MASK) |
2632 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2633 	/* Set Tx descriptor counter. */
2634 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2635 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2636 
2637 	/* Tell hardware that we're ready to load descriptors. */
2638 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2639 
2640 	/*
2641 	 * Initialize mailbox register.
2642 	 * Updated producer/consumer index information is exchanged
2643 	 * through this mailbox register. However Tx producer and
2644 	 * Rx return consumer/Rx producer are all shared such that
2645 	 * it's hard to separate code path between Tx and Rx without
2646 	 * locking. If L1 hardware have a separate mail box register
2647 	 * for Tx and Rx consumer/producer management we could have
2648 	 * indepent Tx/Rx handler which in turn Rx handler could have
2649 	 * been run without any locking.
2650 	 */
2651 	AGE_COMMIT_MBOX(sc);
2652 
2653 	/* Configure IPG/IFG parameters. */
2654 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2655 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2656 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2657 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2658 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2659 
2660 	/* Set parameters for half-duplex media. */
2661 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2662 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2663 	    HDPX_CFG_LCOL_MASK) |
2664 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2665 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2666 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2667 	    HDPX_CFG_ABEBT_MASK) |
2668 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2669 	    HDPX_CFG_JAMIPG_MASK));
2670 
2671 	/* Configure interrupt moderation timer. */
2672 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2673 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2674 	reg &= ~MASTER_MTIMER_ENB;
2675 	if (AGE_USECS(sc->age_int_mod) == 0)
2676 		reg &= ~MASTER_ITIMER_ENB;
2677 	else
2678 		reg |= MASTER_ITIMER_ENB;
2679 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2680 	if (bootverbose)
2681 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2682 		    sc->age_int_mod);
2683 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2684 
2685 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2686 	if (ifp->if_mtu < ETHERMTU)
2687 		sc->age_max_frame_size = ETHERMTU;
2688 	else
2689 		sc->age_max_frame_size = ifp->if_mtu;
2690 	sc->age_max_frame_size += ETHER_HDR_LEN +
2691 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2692 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2693 	/* Configure jumbo frame. */
2694 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2695 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2696 	    (((fsize / sizeof(uint64_t)) <<
2697 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2698 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2699 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2700 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2701 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2702 
2703 	/* Configure flow-control parameters. From Linux. */
2704 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2705 		/*
2706 		 * Magic workaround for old-L1.
2707 		 * Don't know which hw revision requires this magic.
2708 		 */
2709 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2710 		/*
2711 		 * Another magic workaround for flow-control mode
2712 		 * change. From Linux.
2713 		 */
2714 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2715 	}
2716 	/*
2717 	 * TODO
2718 	 *  Should understand pause parameter relationships between FIFO
2719 	 *  size and number of Rx descriptors and Rx return descriptors.
2720 	 *
2721 	 *  Magic parameters came from Linux.
2722 	 */
2723 	switch (sc->age_chip_rev) {
2724 	case 0x8001:
2725 	case 0x9001:
2726 	case 0x9002:
2727 	case 0x9003:
2728 		rxf_hi = AGE_RX_RING_CNT / 16;
2729 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2730 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2731 		rrd_lo = AGE_RR_RING_CNT / 16;
2732 		break;
2733 	default:
2734 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2735 		rxf_lo = reg / 16;
2736 		if (rxf_lo < 192)
2737 			rxf_lo = 192;
2738 		rxf_hi = (reg * 7) / 8;
2739 		if (rxf_hi < rxf_lo)
2740 			rxf_hi = rxf_lo + 16;
2741 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2742 		rrd_lo = reg / 8;
2743 		rrd_hi = (reg * 7) / 8;
2744 		if (rrd_lo < 2)
2745 			rrd_lo = 2;
2746 		if (rrd_hi < rrd_lo)
2747 			rrd_hi = rrd_lo + 3;
2748 		break;
2749 	}
2750 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2751 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2752 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2753 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2754 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2755 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2756 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2757 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2758 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2759 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2760 
2761 	/* Configure RxQ. */
2762 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2763 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2764 	    RXQ_CFG_RD_BURST_MASK) |
2765 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2766 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2767 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2768 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2769 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2770 
2771 	/* Configure TxQ. */
2772 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2773 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2774 	    TXQ_CFG_TPD_BURST_MASK) |
2775 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2776 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2777 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2778 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2779 	    TXQ_CFG_ENB);
2780 
2781 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2782 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2783 	    TX_JUMBO_TPD_TH_MASK) |
2784 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2785 	    TX_JUMBO_TPD_IPG_MASK));
2786 	/* Configure DMA parameters. */
2787 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2788 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2789 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2790 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2791 
2792 	/* Configure CMB DMA write threshold. */
2793 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2794 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2795 	    CMB_WR_THRESH_RRD_MASK) |
2796 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2797 	    CMB_WR_THRESH_TPD_MASK));
2798 
2799 	/* Set CMB/SMB timer and enable them. */
2800 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2801 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2802 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2803 	/* Request SMB updates for every seconds. */
2804 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2805 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2806 
2807 	/*
2808 	 * Disable all WOL bits as WOL can interfere normal Rx
2809 	 * operation.
2810 	 */
2811 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2812 
2813 	/*
2814 	 * Configure Tx/Rx MACs.
2815 	 *  - Auto-padding for short frames.
2816 	 *  - Enable CRC generation.
2817 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2818 	 *  of MAC is followed after link establishment.
2819 	 */
2820 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2821 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2822 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2823 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2824 	    MAC_CFG_PREAMBLE_MASK));
2825 	/* Set up the receive filter. */
2826 	age_rxfilter(sc);
2827 	age_rxvlan(sc);
2828 
2829 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2830 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2831 		reg |= MAC_CFG_RXCSUM_ENB;
2832 
2833 	/* Ack all pending interrupts and clear it. */
2834 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2835 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2836 
2837 	/* Finally enable Tx/Rx MAC. */
2838 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2839 
2840 	sc->age_flags &= ~AGE_FLAG_LINK;
2841 	/* Switch to the current media. */
2842 	mii_mediachg(mii);
2843 
2844 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2845 
2846 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2847 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2848 }
2849 
2850 static void
2851 age_stop(struct age_softc *sc)
2852 {
2853 	struct ifnet *ifp;
2854 	struct age_txdesc *txd;
2855 	struct age_rxdesc *rxd;
2856 	uint32_t reg;
2857 	int i;
2858 
2859 	AGE_LOCK_ASSERT(sc);
2860 	/*
2861 	 * Mark the interface down and cancel the watchdog timer.
2862 	 */
2863 	ifp = sc->age_ifp;
2864 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2865 	sc->age_flags &= ~AGE_FLAG_LINK;
2866 	callout_stop(&sc->age_tick_ch);
2867 	sc->age_watchdog_timer = 0;
2868 
2869 	/*
2870 	 * Disable interrupts.
2871 	 */
2872 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2873 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2874 	/* Stop CMB/SMB updates. */
2875 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2876 	/* Stop Rx/Tx MAC. */
2877 	age_stop_rxmac(sc);
2878 	age_stop_txmac(sc);
2879 	/* Stop DMA. */
2880 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2881 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2882 	/* Stop TxQ/RxQ. */
2883 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2884 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2885 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2886 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2887 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2888 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2889 			break;
2890 		DELAY(10);
2891 	}
2892 	if (i == 0)
2893 		device_printf(sc->age_dev,
2894 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2895 
2896 	 /* Reclaim Rx buffers that have been processed. */
2897 	if (sc->age_cdata.age_rxhead != NULL)
2898 		m_freem(sc->age_cdata.age_rxhead);
2899 	AGE_RXCHAIN_RESET(sc);
2900 	/*
2901 	 * Free RX and TX mbufs still in the queues.
2902 	 */
2903 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2904 		rxd = &sc->age_cdata.age_rxdesc[i];
2905 		if (rxd->rx_m != NULL) {
2906 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2907 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2908 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2909 			    rxd->rx_dmamap);
2910 			m_freem(rxd->rx_m);
2911 			rxd->rx_m = NULL;
2912 		}
2913         }
2914 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2915 		txd = &sc->age_cdata.age_txdesc[i];
2916 		if (txd->tx_m != NULL) {
2917 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2918 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2919 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2920 			    txd->tx_dmamap);
2921 			m_freem(txd->tx_m);
2922 			txd->tx_m = NULL;
2923 		}
2924         }
2925 }
2926 
2927 static void
2928 age_stop_txmac(struct age_softc *sc)
2929 {
2930 	uint32_t reg;
2931 	int i;
2932 
2933 	AGE_LOCK_ASSERT(sc);
2934 
2935 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2936 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2937 		reg &= ~MAC_CFG_TX_ENB;
2938 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2939 	}
2940 	/* Stop Tx DMA engine. */
2941 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2942 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2943 		reg &= ~DMA_CFG_RD_ENB;
2944 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2945 	}
2946 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2947 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2948 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2949 			break;
2950 		DELAY(10);
2951 	}
2952 	if (i == 0)
2953 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2954 }
2955 
2956 static void
2957 age_stop_rxmac(struct age_softc *sc)
2958 {
2959 	uint32_t reg;
2960 	int i;
2961 
2962 	AGE_LOCK_ASSERT(sc);
2963 
2964 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2965 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2966 		reg &= ~MAC_CFG_RX_ENB;
2967 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2968 	}
2969 	/* Stop Rx DMA engine. */
2970 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2971 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2972 		reg &= ~DMA_CFG_WR_ENB;
2973 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2974 	}
2975 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2976 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2977 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2978 			break;
2979 		DELAY(10);
2980 	}
2981 	if (i == 0)
2982 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2983 }
2984 
2985 static void
2986 age_init_tx_ring(struct age_softc *sc)
2987 {
2988 	struct age_ring_data *rd;
2989 	struct age_txdesc *txd;
2990 	int i;
2991 
2992 	AGE_LOCK_ASSERT(sc);
2993 
2994 	sc->age_cdata.age_tx_prod = 0;
2995 	sc->age_cdata.age_tx_cons = 0;
2996 	sc->age_cdata.age_tx_cnt = 0;
2997 
2998 	rd = &sc->age_rdata;
2999 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3000 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3001 		txd = &sc->age_cdata.age_txdesc[i];
3002 		txd->tx_desc = &rd->age_tx_ring[i];
3003 		txd->tx_m = NULL;
3004 	}
3005 
3006 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3007 	    sc->age_cdata.age_tx_ring_map,
3008 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3009 }
3010 
3011 static int
3012 age_init_rx_ring(struct age_softc *sc)
3013 {
3014 	struct age_ring_data *rd;
3015 	struct age_rxdesc *rxd;
3016 	int i;
3017 
3018 	AGE_LOCK_ASSERT(sc);
3019 
3020 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3021 	sc->age_morework = 0;
3022 	rd = &sc->age_rdata;
3023 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3024 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3025 		rxd = &sc->age_cdata.age_rxdesc[i];
3026 		rxd->rx_m = NULL;
3027 		rxd->rx_desc = &rd->age_rx_ring[i];
3028 		if (age_newbuf(sc, rxd) != 0)
3029 			return (ENOBUFS);
3030 	}
3031 
3032 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3033 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3034 
3035 	return (0);
3036 }
3037 
3038 static void
3039 age_init_rr_ring(struct age_softc *sc)
3040 {
3041 	struct age_ring_data *rd;
3042 
3043 	AGE_LOCK_ASSERT(sc);
3044 
3045 	sc->age_cdata.age_rr_cons = 0;
3046 	AGE_RXCHAIN_RESET(sc);
3047 
3048 	rd = &sc->age_rdata;
3049 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3050 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3051 	    sc->age_cdata.age_rr_ring_map,
3052 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3053 }
3054 
3055 static void
3056 age_init_cmb_block(struct age_softc *sc)
3057 {
3058 	struct age_ring_data *rd;
3059 
3060 	AGE_LOCK_ASSERT(sc);
3061 
3062 	rd = &sc->age_rdata;
3063 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3064 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3065 	    sc->age_cdata.age_cmb_block_map,
3066 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3067 }
3068 
3069 static void
3070 age_init_smb_block(struct age_softc *sc)
3071 {
3072 	struct age_ring_data *rd;
3073 
3074 	AGE_LOCK_ASSERT(sc);
3075 
3076 	rd = &sc->age_rdata;
3077 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3078 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3079 	    sc->age_cdata.age_smb_block_map,
3080 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3081 }
3082 
3083 static int
3084 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3085 {
3086 	struct rx_desc *desc;
3087 	struct mbuf *m;
3088 	bus_dma_segment_t segs[1];
3089 	bus_dmamap_t map;
3090 	int nsegs;
3091 
3092 	AGE_LOCK_ASSERT(sc);
3093 
3094 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3095 	if (m == NULL)
3096 		return (ENOBUFS);
3097 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3098 #ifndef __NO_STRICT_ALIGNMENT
3099 	m_adj(m, AGE_RX_BUF_ALIGN);
3100 #endif
3101 
3102 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3103 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3104 		m_freem(m);
3105 		return (ENOBUFS);
3106 	}
3107 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3108 
3109 	if (rxd->rx_m != NULL) {
3110 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3111 		    BUS_DMASYNC_POSTREAD);
3112 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3113 	}
3114 	map = rxd->rx_dmamap;
3115 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3116 	sc->age_cdata.age_rx_sparemap = map;
3117 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3118 	    BUS_DMASYNC_PREREAD);
3119 	rxd->rx_m = m;
3120 
3121 	desc = rxd->rx_desc;
3122 	desc->addr = htole64(segs[0].ds_addr);
3123 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3124 	    AGE_RD_LEN_SHIFT);
3125 	return (0);
3126 }
3127 
3128 static void
3129 age_rxvlan(struct age_softc *sc)
3130 {
3131 	struct ifnet *ifp;
3132 	uint32_t reg;
3133 
3134 	AGE_LOCK_ASSERT(sc);
3135 
3136 	ifp = sc->age_ifp;
3137 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3138 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3139 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3140 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3141 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3142 }
3143 
3144 static u_int
3145 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3146 {
3147 	uint32_t *mchash = arg;
3148 	uint32_t crc;
3149 
3150 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3151 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3152 
3153 	return (1);
3154 }
3155 
3156 static void
3157 age_rxfilter(struct age_softc *sc)
3158 {
3159 	struct ifnet *ifp;
3160 	uint32_t mchash[2];
3161 	uint32_t rxcfg;
3162 
3163 	AGE_LOCK_ASSERT(sc);
3164 
3165 	ifp = sc->age_ifp;
3166 
3167 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3168 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3169 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3170 		rxcfg |= MAC_CFG_BCAST;
3171 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3172 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3173 			rxcfg |= MAC_CFG_PROMISC;
3174 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3175 			rxcfg |= MAC_CFG_ALLMULTI;
3176 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3177 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3178 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3179 		return;
3180 	}
3181 
3182 	/* Program new filter. */
3183 	bzero(mchash, sizeof(mchash));
3184 	if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3185 
3186 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3187 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3188 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3189 }
3190 
3191 static int
3192 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3193 {
3194 	struct age_softc *sc;
3195 	struct age_stats *stats;
3196 	int error, result;
3197 
3198 	result = -1;
3199 	error = sysctl_handle_int(oidp, &result, 0, req);
3200 
3201 	if (error != 0 || req->newptr == NULL)
3202 		return (error);
3203 
3204 	if (result != 1)
3205 		return (error);
3206 
3207 	sc = (struct age_softc *)arg1;
3208 	stats = &sc->age_stat;
3209 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3210 	printf("Transmit good frames : %ju\n",
3211 	    (uintmax_t)stats->tx_frames);
3212 	printf("Transmit good broadcast frames : %ju\n",
3213 	    (uintmax_t)stats->tx_bcast_frames);
3214 	printf("Transmit good multicast frames : %ju\n",
3215 	    (uintmax_t)stats->tx_mcast_frames);
3216 	printf("Transmit pause control frames : %u\n",
3217 	    stats->tx_pause_frames);
3218 	printf("Transmit control frames : %u\n",
3219 	    stats->tx_control_frames);
3220 	printf("Transmit frames with excessive deferrals : %u\n",
3221 	    stats->tx_excess_defer);
3222 	printf("Transmit deferrals : %u\n",
3223 	    stats->tx_deferred);
3224 	printf("Transmit good octets : %ju\n",
3225 	    (uintmax_t)stats->tx_bytes);
3226 	printf("Transmit good broadcast octets : %ju\n",
3227 	    (uintmax_t)stats->tx_bcast_bytes);
3228 	printf("Transmit good multicast octets : %ju\n",
3229 	    (uintmax_t)stats->tx_mcast_bytes);
3230 	printf("Transmit frames 64 bytes : %ju\n",
3231 	    (uintmax_t)stats->tx_pkts_64);
3232 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3233 	    (uintmax_t)stats->tx_pkts_65_127);
3234 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3235 	    (uintmax_t)stats->tx_pkts_128_255);
3236 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3237 	    (uintmax_t)stats->tx_pkts_256_511);
3238 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3239 	    (uintmax_t)stats->tx_pkts_512_1023);
3240 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3241 	    (uintmax_t)stats->tx_pkts_1024_1518);
3242 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3243 	    (uintmax_t)stats->tx_pkts_1519_max);
3244 	printf("Transmit single collisions : %u\n",
3245 	    stats->tx_single_colls);
3246 	printf("Transmit multiple collisions : %u\n",
3247 	    stats->tx_multi_colls);
3248 	printf("Transmit late collisions : %u\n",
3249 	    stats->tx_late_colls);
3250 	printf("Transmit abort due to excessive collisions : %u\n",
3251 	    stats->tx_excess_colls);
3252 	printf("Transmit underruns due to FIFO underruns : %u\n",
3253 	    stats->tx_underrun);
3254 	printf("Transmit descriptor write-back errors : %u\n",
3255 	    stats->tx_desc_underrun);
3256 	printf("Transmit frames with length mismatched frame size : %u\n",
3257 	    stats->tx_lenerrs);
3258 	printf("Transmit frames with truncated due to MTU size : %u\n",
3259 	    stats->tx_lenerrs);
3260 
3261 	printf("Receive good frames : %ju\n",
3262 	    (uintmax_t)stats->rx_frames);
3263 	printf("Receive good broadcast frames : %ju\n",
3264 	    (uintmax_t)stats->rx_bcast_frames);
3265 	printf("Receive good multicast frames : %ju\n",
3266 	    (uintmax_t)stats->rx_mcast_frames);
3267 	printf("Receive pause control frames : %u\n",
3268 	    stats->rx_pause_frames);
3269 	printf("Receive control frames : %u\n",
3270 	    stats->rx_control_frames);
3271 	printf("Receive CRC errors : %u\n",
3272 	    stats->rx_crcerrs);
3273 	printf("Receive frames with length errors : %u\n",
3274 	    stats->rx_lenerrs);
3275 	printf("Receive good octets : %ju\n",
3276 	    (uintmax_t)stats->rx_bytes);
3277 	printf("Receive good broadcast octets : %ju\n",
3278 	    (uintmax_t)stats->rx_bcast_bytes);
3279 	printf("Receive good multicast octets : %ju\n",
3280 	    (uintmax_t)stats->rx_mcast_bytes);
3281 	printf("Receive frames too short : %u\n",
3282 	    stats->rx_runts);
3283 	printf("Receive fragmented frames : %ju\n",
3284 	    (uintmax_t)stats->rx_fragments);
3285 	printf("Receive frames 64 bytes : %ju\n",
3286 	    (uintmax_t)stats->rx_pkts_64);
3287 	printf("Receive frames 65 to 127 bytes : %ju\n",
3288 	    (uintmax_t)stats->rx_pkts_65_127);
3289 	printf("Receive frames 128 to 255 bytes : %ju\n",
3290 	    (uintmax_t)stats->rx_pkts_128_255);
3291 	printf("Receive frames 256 to 511 bytes : %ju\n",
3292 	    (uintmax_t)stats->rx_pkts_256_511);
3293 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3294 	    (uintmax_t)stats->rx_pkts_512_1023);
3295 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3296 	    (uintmax_t)stats->rx_pkts_1024_1518);
3297 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3298 	    (uintmax_t)stats->rx_pkts_1519_max);
3299 	printf("Receive frames too long : %ju\n",
3300 	    (uint64_t)stats->rx_pkts_truncated);
3301 	printf("Receive frames with FIFO overflow : %u\n",
3302 	    stats->rx_fifo_oflows);
3303 	printf("Receive frames with return descriptor overflow : %u\n",
3304 	    stats->rx_desc_oflows);
3305 	printf("Receive frames with alignment errors : %u\n",
3306 	    stats->rx_alignerrs);
3307 	printf("Receive frames dropped due to address filtering : %ju\n",
3308 	    (uint64_t)stats->rx_pkts_filtered);
3309 
3310 	return (error);
3311 }
3312 
3313 static int
3314 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3315 {
3316 	int error, value;
3317 
3318 	if (arg1 == NULL)
3319 		return (EINVAL);
3320 	value = *(int *)arg1;
3321 	error = sysctl_handle_int(oidp, &value, 0, req);
3322 	if (error || req->newptr == NULL)
3323 		return (error);
3324 	if (value < low || value > high)
3325 		return (EINVAL);
3326         *(int *)arg1 = value;
3327 
3328         return (0);
3329 }
3330 
3331 static int
3332 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3333 {
3334 	return (sysctl_int_range(oidp, arg1, arg2, req,
3335 	    AGE_PROC_MIN, AGE_PROC_MAX));
3336 }
3337 
3338 static int
3339 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3340 {
3341 
3342 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3343 	    AGE_IM_TIMER_MAX));
3344 }
3345