xref: /freebsd/sys/dev/age/if_age.c (revision e28a4053)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int age_mediachange(struct ifnet *);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_tx_task(void *, int);
122 static void age_start(struct ifnet *);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146 static void age_rxvlan(struct age_softc *);
147 static void age_rxfilter(struct age_softc *);
148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152 
153 
154 static device_method_t age_methods[] = {
155 	/* Device interface. */
156 	DEVMETHOD(device_probe,		age_probe),
157 	DEVMETHOD(device_attach,	age_attach),
158 	DEVMETHOD(device_detach,	age_detach),
159 	DEVMETHOD(device_shutdown,	age_shutdown),
160 	DEVMETHOD(device_suspend,	age_suspend),
161 	DEVMETHOD(device_resume,	age_resume),
162 
163 	/* MII interface. */
164 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167 
168 	{ NULL, NULL }
169 };
170 
171 static driver_t age_driver = {
172 	"age",
173 	age_methods,
174 	sizeof(struct age_softc)
175 };
176 
177 static devclass_t age_devclass;
178 
179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181 
182 static struct resource_spec age_res_spec_mem[] = {
183 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184 	{ -1,			0,		0 }
185 };
186 
187 static struct resource_spec age_irq_spec_legacy[] = {
188 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189 	{ -1,			0,		0 }
190 };
191 
192 static struct resource_spec age_irq_spec_msi[] = {
193 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194 	{ -1,			0,		0 }
195 };
196 
197 static struct resource_spec age_irq_spec_msix[] = {
198 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199 	{ -1,			0,		0 }
200 };
201 
202 /*
203  *	Read a PHY register on the MII of the L1.
204  */
205 static int
206 age_miibus_readreg(device_t dev, int phy, int reg)
207 {
208 	struct age_softc *sc;
209 	uint32_t v;
210 	int i;
211 
212 	sc = device_get_softc(dev);
213 
214 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217 		DELAY(1);
218 		v = CSR_READ_4(sc, AGE_MDIO);
219 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220 			break;
221 	}
222 
223 	if (i == 0) {
224 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225 		return (0);
226 	}
227 
228 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229 }
230 
231 /*
232  *	Write a PHY register on the MII of the L1.
233  */
234 static int
235 age_miibus_writereg(device_t dev, int phy, int reg, int val)
236 {
237 	struct age_softc *sc;
238 	uint32_t v;
239 	int i;
240 
241 	sc = device_get_softc(dev);
242 
243 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247 		DELAY(1);
248 		v = CSR_READ_4(sc, AGE_MDIO);
249 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250 			break;
251 	}
252 
253 	if (i == 0)
254 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255 
256 	return (0);
257 }
258 
259 /*
260  *	Callback from MII layer when media changes.
261  */
262 static void
263 age_miibus_statchg(device_t dev)
264 {
265 	struct age_softc *sc;
266 
267 	sc = device_get_softc(dev);
268 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269 }
270 
271 /*
272  *	Get the current interface media status.
273  */
274 static void
275 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276 {
277 	struct age_softc *sc;
278 	struct mii_data *mii;
279 
280 	sc = ifp->if_softc;
281 	AGE_LOCK(sc);
282 	mii = device_get_softc(sc->age_miibus);
283 
284 	mii_pollstat(mii);
285 	AGE_UNLOCK(sc);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 }
289 
290 /*
291  *	Set hardware to newly-selected media.
292  */
293 static int
294 age_mediachange(struct ifnet *ifp)
295 {
296 	struct age_softc *sc;
297 	struct mii_data *mii;
298 	struct mii_softc *miisc;
299 	int error;
300 
301 	sc = ifp->if_softc;
302 	AGE_LOCK(sc);
303 	mii = device_get_softc(sc->age_miibus);
304 	if (mii->mii_instance != 0) {
305 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306 			mii_phy_reset(miisc);
307 	}
308 	error = mii_mediachg(mii);
309 	AGE_UNLOCK(sc);
310 
311 	return (error);
312 }
313 
314 static int
315 age_probe(device_t dev)
316 {
317 	struct age_dev *sp;
318 	int i;
319 	uint16_t vendor, devid;
320 
321 	vendor = pci_get_vendor(dev);
322 	devid = pci_get_device(dev);
323 	sp = age_devs;
324 	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
325 	    i++, sp++) {
326 		if (vendor == sp->age_vendorid &&
327 		    devid == sp->age_deviceid) {
328 			device_set_desc(dev, sp->age_name);
329 			return (BUS_PROBE_DEFAULT);
330 		}
331 	}
332 
333 	return (ENXIO);
334 }
335 
336 static void
337 age_get_macaddr(struct age_softc *sc)
338 {
339 	uint32_t ea[2], reg;
340 	int i, vpdc;
341 
342 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
343 	if ((reg & SPI_VPD_ENB) != 0) {
344 		/* Get VPD stored in TWSI EEPROM. */
345 		reg &= ~SPI_VPD_ENB;
346 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
347 	}
348 
349 	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
350 		/*
351 		 * PCI VPD capability found, let TWSI reload EEPROM.
352 		 * This will set ethernet address of controller.
353 		 */
354 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
355 		    TWSI_CTRL_SW_LD_START);
356 		for (i = 100; i > 0; i--) {
357 			DELAY(1000);
358 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
359 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
360 				break;
361 		}
362 		if (i == 0)
363 			device_printf(sc->age_dev,
364 			    "reloading EEPROM timeout!\n");
365 	} else {
366 		if (bootverbose)
367 			device_printf(sc->age_dev,
368 			    "PCI VPD capability not found!\n");
369 	}
370 
371 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
372 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
373 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
374 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
375 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
376 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
377 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
378 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
379 }
380 
381 static void
382 age_phy_reset(struct age_softc *sc)
383 {
384 	uint16_t reg, pn;
385 	int i, linkup;
386 
387 	/* Reset PHY. */
388 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
389 	DELAY(2000);
390 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
391 	DELAY(2000);
392 
393 #define	ATPHY_DBG_ADDR		0x1D
394 #define	ATPHY_DBG_DATA		0x1E
395 #define	ATPHY_CDTC		0x16
396 #define	PHY_CDTC_ENB		0x0001
397 #define	PHY_CDTC_POFF		8
398 #define	ATPHY_CDTS		0x1C
399 #define	PHY_CDTS_STAT_OK	0x0000
400 #define	PHY_CDTS_STAT_SHORT	0x0100
401 #define	PHY_CDTS_STAT_OPEN	0x0200
402 #define	PHY_CDTS_STAT_INVAL	0x0300
403 #define	PHY_CDTS_STAT_MASK	0x0300
404 
405 	/* Check power saving mode. Magic from Linux. */
406 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
407 	for (linkup = 0, pn = 0; pn < 4; pn++) {
408 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
409 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
410 		for (i = 200; i > 0; i--) {
411 			DELAY(1000);
412 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
413 			    ATPHY_CDTC);
414 			if ((reg & PHY_CDTC_ENB) == 0)
415 				break;
416 		}
417 		DELAY(1000);
418 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
419 		    ATPHY_CDTS);
420 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
421 			linkup++;
422 			break;
423 		}
424 	}
425 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
426 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
427 	if (linkup == 0) {
428 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429 		    ATPHY_DBG_ADDR, 0);
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_DATA, 0x124E);
432 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_ADDR, 1);
434 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA);
436 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437 		    ATPHY_DBG_DATA, reg | 0x03);
438 		/* XXX */
439 		DELAY(1500 * 1000);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_ADDR, 0);
442 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443 		    ATPHY_DBG_DATA, 0x024E);
444     }
445 
446 #undef	ATPHY_DBG_ADDR
447 #undef	ATPHY_DBG_DATA
448 #undef	ATPHY_CDTC
449 #undef	PHY_CDTC_ENB
450 #undef	PHY_CDTC_POFF
451 #undef	ATPHY_CDTS
452 #undef	PHY_CDTS_STAT_OK
453 #undef	PHY_CDTS_STAT_SHORT
454 #undef	PHY_CDTS_STAT_OPEN
455 #undef	PHY_CDTS_STAT_INVAL
456 #undef	PHY_CDTS_STAT_MASK
457 }
458 
459 static int
460 age_attach(device_t dev)
461 {
462 	struct age_softc *sc;
463 	struct ifnet *ifp;
464 	uint16_t burst;
465 	int error, i, msic, msixc, pmc;
466 
467 	error = 0;
468 	sc = device_get_softc(dev);
469 	sc->age_dev = dev;
470 
471 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
472 	    MTX_DEF);
473 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
474 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
475 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
476 
477 	/* Map the device. */
478 	pci_enable_busmaster(dev);
479 	sc->age_res_spec = age_res_spec_mem;
480 	sc->age_irq_spec = age_irq_spec_legacy;
481 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
482 	if (error != 0) {
483 		device_printf(dev, "cannot allocate memory resources.\n");
484 		goto fail;
485 	}
486 
487 	/* Set PHY address. */
488 	sc->age_phyaddr = AGE_PHY_ADDR;
489 
490 	/* Reset PHY. */
491 	age_phy_reset(sc);
492 
493 	/* Reset the ethernet controller. */
494 	age_reset(sc);
495 
496 	/* Get PCI and chip id/revision. */
497 	sc->age_rev = pci_get_revid(dev);
498 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
499 	    MASTER_CHIP_REV_SHIFT;
500 	if (bootverbose) {
501 		device_printf(dev, "PCI device revision : 0x%04x\n",
502 		    sc->age_rev);
503 		device_printf(dev, "Chip id/revision : 0x%04x\n",
504 		    sc->age_chip_rev);
505 	}
506 
507 	/*
508 	 * XXX
509 	 * Unintialized hardware returns an invalid chip id/revision
510 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
511 	 * unplugged cable results in putting hardware into automatic
512 	 * power down mode which in turn returns invalld chip revision.
513 	 */
514 	if (sc->age_chip_rev == 0xFFFF) {
515 		device_printf(dev,"invalid chip revision : 0x%04x -- "
516 		    "not initialized?\n", sc->age_chip_rev);
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
522 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
523 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
524 
525 	/* Allocate IRQ resources. */
526 	msixc = pci_msix_count(dev);
527 	msic = pci_msi_count(dev);
528 	if (bootverbose) {
529 		device_printf(dev, "MSIX count : %d\n", msixc);
530 		device_printf(dev, "MSI count : %d\n", msic);
531 	}
532 
533 	/* Prefer MSIX over MSI. */
534 	if (msix_disable == 0 || msi_disable == 0) {
535 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
536 		    pci_alloc_msix(dev, &msixc) == 0) {
537 			if (msic == AGE_MSIX_MESSAGES) {
538 				device_printf(dev, "Using %d MSIX messages.\n",
539 				    msixc);
540 				sc->age_flags |= AGE_FLAG_MSIX;
541 				sc->age_irq_spec = age_irq_spec_msix;
542 			} else
543 				pci_release_msi(dev);
544 		}
545 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
546 		    msic == AGE_MSI_MESSAGES &&
547 		    pci_alloc_msi(dev, &msic) == 0) {
548 			if (msic == AGE_MSI_MESSAGES) {
549 				device_printf(dev, "Using %d MSI messages.\n",
550 				    msic);
551 				sc->age_flags |= AGE_FLAG_MSI;
552 				sc->age_irq_spec = age_irq_spec_msi;
553 			} else
554 				pci_release_msi(dev);
555 		}
556 	}
557 
558 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
559 	if (error != 0) {
560 		device_printf(dev, "cannot allocate IRQ resources.\n");
561 		goto fail;
562 	}
563 
564 
565 	/* Get DMA parameters from PCIe device control register. */
566 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
567 		sc->age_flags |= AGE_FLAG_PCIE;
568 		burst = pci_read_config(dev, i + 0x08, 2);
569 		/* Max read request size. */
570 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
571 		    DMA_CFG_RD_BURST_SHIFT;
572 		/* Max payload size. */
573 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
574 		    DMA_CFG_WR_BURST_SHIFT;
575 		if (bootverbose) {
576 			device_printf(dev, "Read request size : %d bytes.\n",
577 			    128 << ((burst >> 12) & 0x07));
578 			device_printf(dev, "TLP payload size : %d bytes.\n",
579 			    128 << ((burst >> 5) & 0x07));
580 		}
581 	} else {
582 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
583 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
584 	}
585 
586 	/* Create device sysctl node. */
587 	age_sysctl_node(sc);
588 
589 	if ((error = age_dma_alloc(sc) != 0))
590 		goto fail;
591 
592 	/* Load station address. */
593 	age_get_macaddr(sc);
594 
595 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
596 	if (ifp == NULL) {
597 		device_printf(dev, "cannot allocate ifnet structure.\n");
598 		error = ENXIO;
599 		goto fail;
600 	}
601 
602 	ifp->if_softc = sc;
603 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 	ifp->if_ioctl = age_ioctl;
606 	ifp->if_start = age_start;
607 	ifp->if_init = age_init;
608 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
609 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
610 	IFQ_SET_READY(&ifp->if_snd);
611 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
612 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
613 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
614 		sc->age_flags |= AGE_FLAG_PMCAP;
615 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
616 	}
617 	ifp->if_capenable = ifp->if_capabilities;
618 
619 	/* Set up MII bus. */
620 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
621 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
622 	    0);
623 	if (error != 0) {
624 		device_printf(dev, "attaching PHYs failed\n");
625 		goto fail;
626 	}
627 
628 	ether_ifattach(ifp, sc->age_eaddr);
629 
630 	/* VLAN capability setup. */
631 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
632 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
633 	ifp->if_capenable = ifp->if_capabilities;
634 
635 	/* Tell the upper layer(s) we support long frames. */
636 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
637 
638 	/* Create local taskq. */
639 	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
640 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
641 	    taskqueue_thread_enqueue, &sc->age_tq);
642 	if (sc->age_tq == NULL) {
643 		device_printf(dev, "could not create taskqueue.\n");
644 		ether_ifdetach(ifp);
645 		error = ENXIO;
646 		goto fail;
647 	}
648 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
649 	    device_get_nameunit(sc->age_dev));
650 
651 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
652 		msic = AGE_MSIX_MESSAGES;
653 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
654 		msic = AGE_MSI_MESSAGES;
655 	else
656 		msic = 1;
657 	for (i = 0; i < msic; i++) {
658 		error = bus_setup_intr(dev, sc->age_irq[i],
659 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
660 		    &sc->age_intrhand[i]);
661 		if (error != 0)
662 			break;
663 	}
664 	if (error != 0) {
665 		device_printf(dev, "could not set up interrupt handler.\n");
666 		taskqueue_free(sc->age_tq);
667 		sc->age_tq = NULL;
668 		ether_ifdetach(ifp);
669 		goto fail;
670 	}
671 
672 fail:
673 	if (error != 0)
674 		age_detach(dev);
675 
676 	return (error);
677 }
678 
679 static int
680 age_detach(device_t dev)
681 {
682 	struct age_softc *sc;
683 	struct ifnet *ifp;
684 	int i, msic;
685 
686 	sc = device_get_softc(dev);
687 
688 	ifp = sc->age_ifp;
689 	if (device_is_attached(dev)) {
690 		AGE_LOCK(sc);
691 		sc->age_flags |= AGE_FLAG_DETACH;
692 		age_stop(sc);
693 		AGE_UNLOCK(sc);
694 		callout_drain(&sc->age_tick_ch);
695 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
696 		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
697 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
698 		ether_ifdetach(ifp);
699 	}
700 
701 	if (sc->age_tq != NULL) {
702 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
703 		taskqueue_free(sc->age_tq);
704 		sc->age_tq = NULL;
705 	}
706 
707 	if (sc->age_miibus != NULL) {
708 		device_delete_child(dev, sc->age_miibus);
709 		sc->age_miibus = NULL;
710 	}
711 	bus_generic_detach(dev);
712 	age_dma_free(sc);
713 
714 	if (ifp != NULL) {
715 		if_free(ifp);
716 		sc->age_ifp = NULL;
717 	}
718 
719 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
720 		msic = AGE_MSIX_MESSAGES;
721 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
722 		msic = AGE_MSI_MESSAGES;
723 	else
724 		msic = 1;
725 	for (i = 0; i < msic; i++) {
726 		if (sc->age_intrhand[i] != NULL) {
727 			bus_teardown_intr(dev, sc->age_irq[i],
728 			    sc->age_intrhand[i]);
729 			sc->age_intrhand[i] = NULL;
730 		}
731 	}
732 
733 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
734 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
735 		pci_release_msi(dev);
736 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
737 	mtx_destroy(&sc->age_mtx);
738 
739 	return (0);
740 }
741 
742 static void
743 age_sysctl_node(struct age_softc *sc)
744 {
745 	int error;
746 
747 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
748 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
749 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
750 	    "I", "Statistics");
751 
752 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
755 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
756 
757 	/* Pull in device tunables. */
758 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
759 	error = resource_int_value(device_get_name(sc->age_dev),
760 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
761 	if (error == 0) {
762 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
763 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
764 			device_printf(sc->age_dev,
765 			    "int_mod value out of range; using default: %d\n",
766 			    AGE_IM_TIMER_DEFAULT);
767 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
768 		}
769 	}
770 
771 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
772 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
773 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
774 	    0, sysctl_hw_age_proc_limit, "I",
775 	    "max number of Rx events to process");
776 
777 	/* Pull in device tunables. */
778 	sc->age_process_limit = AGE_PROC_DEFAULT;
779 	error = resource_int_value(device_get_name(sc->age_dev),
780 	    device_get_unit(sc->age_dev), "process_limit",
781 	    &sc->age_process_limit);
782 	if (error == 0) {
783 		if (sc->age_process_limit < AGE_PROC_MIN ||
784 		    sc->age_process_limit > AGE_PROC_MAX) {
785 			device_printf(sc->age_dev,
786 			    "process_limit value out of range; "
787 			    "using default: %d\n", AGE_PROC_DEFAULT);
788 			sc->age_process_limit = AGE_PROC_DEFAULT;
789 		}
790 	}
791 }
792 
793 struct age_dmamap_arg {
794 	bus_addr_t	age_busaddr;
795 };
796 
797 static void
798 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
799 {
800 	struct age_dmamap_arg *ctx;
801 
802 	if (error != 0)
803 		return;
804 
805 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
806 
807 	ctx = (struct age_dmamap_arg *)arg;
808 	ctx->age_busaddr = segs[0].ds_addr;
809 }
810 
811 /*
812  * Attansic L1 controller have single register to specify high
813  * address part of DMA blocks. So all descriptor structures and
814  * DMA memory blocks should have the same high address of given
815  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
816  */
817 static int
818 age_check_boundary(struct age_softc *sc)
819 {
820 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
821 	bus_addr_t cmb_block_end, smb_block_end;
822 
823 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
824 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
825 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
826 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
827 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
828 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
829 
830 	if ((AGE_ADDR_HI(tx_ring_end) !=
831 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
832 	    (AGE_ADDR_HI(rx_ring_end) !=
833 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
834 	    (AGE_ADDR_HI(rr_ring_end) !=
835 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
836 	    (AGE_ADDR_HI(cmb_block_end) !=
837 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
838 	    (AGE_ADDR_HI(smb_block_end) !=
839 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
840 		return (EFBIG);
841 
842 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
843 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
844 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
845 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
846 		return (EFBIG);
847 
848 	return (0);
849 }
850 
851 static int
852 age_dma_alloc(struct age_softc *sc)
853 {
854 	struct age_txdesc *txd;
855 	struct age_rxdesc *rxd;
856 	bus_addr_t lowaddr;
857 	struct age_dmamap_arg ctx;
858 	int error, i;
859 
860 	lowaddr = BUS_SPACE_MAXADDR;
861 
862 again:
863 	/* Create parent ring/DMA block tag. */
864 	error = bus_dma_tag_create(
865 	    bus_get_dma_tag(sc->age_dev), /* parent */
866 	    1, 0,			/* alignment, boundary */
867 	    lowaddr,			/* lowaddr */
868 	    BUS_SPACE_MAXADDR,		/* highaddr */
869 	    NULL, NULL,			/* filter, filterarg */
870 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
871 	    0,				/* nsegments */
872 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
873 	    0,				/* flags */
874 	    NULL, NULL,			/* lockfunc, lockarg */
875 	    &sc->age_cdata.age_parent_tag);
876 	if (error != 0) {
877 		device_printf(sc->age_dev,
878 		    "could not create parent DMA tag.\n");
879 		goto fail;
880 	}
881 
882 	/* Create tag for Tx ring. */
883 	error = bus_dma_tag_create(
884 	    sc->age_cdata.age_parent_tag, /* parent */
885 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
886 	    BUS_SPACE_MAXADDR,		/* lowaddr */
887 	    BUS_SPACE_MAXADDR,		/* highaddr */
888 	    NULL, NULL,			/* filter, filterarg */
889 	    AGE_TX_RING_SZ,		/* maxsize */
890 	    1,				/* nsegments */
891 	    AGE_TX_RING_SZ,		/* maxsegsize */
892 	    0,				/* flags */
893 	    NULL, NULL,			/* lockfunc, lockarg */
894 	    &sc->age_cdata.age_tx_ring_tag);
895 	if (error != 0) {
896 		device_printf(sc->age_dev,
897 		    "could not create Tx ring DMA tag.\n");
898 		goto fail;
899 	}
900 
901 	/* Create tag for Rx ring. */
902 	error = bus_dma_tag_create(
903 	    sc->age_cdata.age_parent_tag, /* parent */
904 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
905 	    BUS_SPACE_MAXADDR,		/* lowaddr */
906 	    BUS_SPACE_MAXADDR,		/* highaddr */
907 	    NULL, NULL,			/* filter, filterarg */
908 	    AGE_RX_RING_SZ,		/* maxsize */
909 	    1,				/* nsegments */
910 	    AGE_RX_RING_SZ,		/* maxsegsize */
911 	    0,				/* flags */
912 	    NULL, NULL,			/* lockfunc, lockarg */
913 	    &sc->age_cdata.age_rx_ring_tag);
914 	if (error != 0) {
915 		device_printf(sc->age_dev,
916 		    "could not create Rx ring DMA tag.\n");
917 		goto fail;
918 	}
919 
920 	/* Create tag for Rx return ring. */
921 	error = bus_dma_tag_create(
922 	    sc->age_cdata.age_parent_tag, /* parent */
923 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
924 	    BUS_SPACE_MAXADDR,		/* lowaddr */
925 	    BUS_SPACE_MAXADDR,		/* highaddr */
926 	    NULL, NULL,			/* filter, filterarg */
927 	    AGE_RR_RING_SZ,		/* maxsize */
928 	    1,				/* nsegments */
929 	    AGE_RR_RING_SZ,		/* maxsegsize */
930 	    0,				/* flags */
931 	    NULL, NULL,			/* lockfunc, lockarg */
932 	    &sc->age_cdata.age_rr_ring_tag);
933 	if (error != 0) {
934 		device_printf(sc->age_dev,
935 		    "could not create Rx return ring DMA tag.\n");
936 		goto fail;
937 	}
938 
939 	/* Create tag for coalesing message block. */
940 	error = bus_dma_tag_create(
941 	    sc->age_cdata.age_parent_tag, /* parent */
942 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
943 	    BUS_SPACE_MAXADDR,		/* lowaddr */
944 	    BUS_SPACE_MAXADDR,		/* highaddr */
945 	    NULL, NULL,			/* filter, filterarg */
946 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
947 	    1,				/* nsegments */
948 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
949 	    0,				/* flags */
950 	    NULL, NULL,			/* lockfunc, lockarg */
951 	    &sc->age_cdata.age_cmb_block_tag);
952 	if (error != 0) {
953 		device_printf(sc->age_dev,
954 		    "could not create CMB DMA tag.\n");
955 		goto fail;
956 	}
957 
958 	/* Create tag for statistics message block. */
959 	error = bus_dma_tag_create(
960 	    sc->age_cdata.age_parent_tag, /* parent */
961 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
962 	    BUS_SPACE_MAXADDR,		/* lowaddr */
963 	    BUS_SPACE_MAXADDR,		/* highaddr */
964 	    NULL, NULL,			/* filter, filterarg */
965 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
966 	    1,				/* nsegments */
967 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
968 	    0,				/* flags */
969 	    NULL, NULL,			/* lockfunc, lockarg */
970 	    &sc->age_cdata.age_smb_block_tag);
971 	if (error != 0) {
972 		device_printf(sc->age_dev,
973 		    "could not create SMB DMA tag.\n");
974 		goto fail;
975 	}
976 
977 	/* Allocate DMA'able memory and load the DMA map. */
978 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
979 	    (void **)&sc->age_rdata.age_tx_ring,
980 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
981 	    &sc->age_cdata.age_tx_ring_map);
982 	if (error != 0) {
983 		device_printf(sc->age_dev,
984 		    "could not allocate DMA'able memory for Tx ring.\n");
985 		goto fail;
986 	}
987 	ctx.age_busaddr = 0;
988 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
989 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
990 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
991 	if (error != 0 || ctx.age_busaddr == 0) {
992 		device_printf(sc->age_dev,
993 		    "could not load DMA'able memory for Tx ring.\n");
994 		goto fail;
995 	}
996 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
997 	/* Rx ring */
998 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
999 	    (void **)&sc->age_rdata.age_rx_ring,
1000 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1001 	    &sc->age_cdata.age_rx_ring_map);
1002 	if (error != 0) {
1003 		device_printf(sc->age_dev,
1004 		    "could not allocate DMA'able memory for Rx ring.\n");
1005 		goto fail;
1006 	}
1007 	ctx.age_busaddr = 0;
1008 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1009 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1010 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1011 	if (error != 0 || ctx.age_busaddr == 0) {
1012 		device_printf(sc->age_dev,
1013 		    "could not load DMA'able memory for Rx ring.\n");
1014 		goto fail;
1015 	}
1016 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1017 	/* Rx return ring */
1018 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1019 	    (void **)&sc->age_rdata.age_rr_ring,
1020 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1021 	    &sc->age_cdata.age_rr_ring_map);
1022 	if (error != 0) {
1023 		device_printf(sc->age_dev,
1024 		    "could not allocate DMA'able memory for Rx return ring.\n");
1025 		goto fail;
1026 	}
1027 	ctx.age_busaddr = 0;
1028 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1029 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1030 	    AGE_RR_RING_SZ, age_dmamap_cb,
1031 	    &ctx, 0);
1032 	if (error != 0 || ctx.age_busaddr == 0) {
1033 		device_printf(sc->age_dev,
1034 		    "could not load DMA'able memory for Rx return ring.\n");
1035 		goto fail;
1036 	}
1037 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1038 	/* CMB block */
1039 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1040 	    (void **)&sc->age_rdata.age_cmb_block,
1041 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1042 	    &sc->age_cdata.age_cmb_block_map);
1043 	if (error != 0) {
1044 		device_printf(sc->age_dev,
1045 		    "could not allocate DMA'able memory for CMB block.\n");
1046 		goto fail;
1047 	}
1048 	ctx.age_busaddr = 0;
1049 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1050 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1051 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1052 	if (error != 0 || ctx.age_busaddr == 0) {
1053 		device_printf(sc->age_dev,
1054 		    "could not load DMA'able memory for CMB block.\n");
1055 		goto fail;
1056 	}
1057 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1058 	/* SMB block */
1059 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1060 	    (void **)&sc->age_rdata.age_smb_block,
1061 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1062 	    &sc->age_cdata.age_smb_block_map);
1063 	if (error != 0) {
1064 		device_printf(sc->age_dev,
1065 		    "could not allocate DMA'able memory for SMB block.\n");
1066 		goto fail;
1067 	}
1068 	ctx.age_busaddr = 0;
1069 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1070 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1071 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1072 	if (error != 0 || ctx.age_busaddr == 0) {
1073 		device_printf(sc->age_dev,
1074 		    "could not load DMA'able memory for SMB block.\n");
1075 		goto fail;
1076 	}
1077 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1078 
1079 	/*
1080 	 * All ring buffer and DMA blocks should have the same
1081 	 * high address part of 64bit DMA address space.
1082 	 */
1083 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1084 	    (error = age_check_boundary(sc)) != 0) {
1085 		device_printf(sc->age_dev, "4GB boundary crossed, "
1086 		    "switching to 32bit DMA addressing mode.\n");
1087 		age_dma_free(sc);
1088 		/* Limit DMA address space to 32bit and try again. */
1089 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1090 		goto again;
1091 	}
1092 
1093 	/*
1094 	 * Create Tx/Rx buffer parent tag.
1095 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1096 	 * so it needs separate parent DMA tag.
1097 	 */
1098 	error = bus_dma_tag_create(
1099 	    bus_get_dma_tag(sc->age_dev), /* parent */
1100 	    1, 0,			/* alignment, boundary */
1101 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1102 	    BUS_SPACE_MAXADDR,		/* highaddr */
1103 	    NULL, NULL,			/* filter, filterarg */
1104 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1105 	    0,				/* nsegments */
1106 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1107 	    0,				/* flags */
1108 	    NULL, NULL,			/* lockfunc, lockarg */
1109 	    &sc->age_cdata.age_buffer_tag);
1110 	if (error != 0) {
1111 		device_printf(sc->age_dev,
1112 		    "could not create parent buffer DMA tag.\n");
1113 		goto fail;
1114 	}
1115 
1116 	/* Create tag for Tx buffers. */
1117 	error = bus_dma_tag_create(
1118 	    sc->age_cdata.age_buffer_tag, /* parent */
1119 	    1, 0,			/* alignment, boundary */
1120 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1121 	    BUS_SPACE_MAXADDR,		/* highaddr */
1122 	    NULL, NULL,			/* filter, filterarg */
1123 	    AGE_TSO_MAXSIZE,		/* maxsize */
1124 	    AGE_MAXTXSEGS,		/* nsegments */
1125 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1126 	    0,				/* flags */
1127 	    NULL, NULL,			/* lockfunc, lockarg */
1128 	    &sc->age_cdata.age_tx_tag);
1129 	if (error != 0) {
1130 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1131 		goto fail;
1132 	}
1133 
1134 	/* Create tag for Rx buffers. */
1135 	error = bus_dma_tag_create(
1136 	    sc->age_cdata.age_buffer_tag, /* parent */
1137 	    1, 0,			/* alignment, boundary */
1138 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1139 	    BUS_SPACE_MAXADDR,		/* highaddr */
1140 	    NULL, NULL,			/* filter, filterarg */
1141 	    MCLBYTES,			/* maxsize */
1142 	    1,				/* nsegments */
1143 	    MCLBYTES,			/* maxsegsize */
1144 	    0,				/* flags */
1145 	    NULL, NULL,			/* lockfunc, lockarg */
1146 	    &sc->age_cdata.age_rx_tag);
1147 	if (error != 0) {
1148 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1149 		goto fail;
1150 	}
1151 
1152 	/* Create DMA maps for Tx buffers. */
1153 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1154 		txd = &sc->age_cdata.age_txdesc[i];
1155 		txd->tx_m = NULL;
1156 		txd->tx_dmamap = NULL;
1157 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1158 		    &txd->tx_dmamap);
1159 		if (error != 0) {
1160 			device_printf(sc->age_dev,
1161 			    "could not create Tx dmamap.\n");
1162 			goto fail;
1163 		}
1164 	}
1165 	/* Create DMA maps for Rx buffers. */
1166 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1167 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1168 		device_printf(sc->age_dev,
1169 		    "could not create spare Rx dmamap.\n");
1170 		goto fail;
1171 	}
1172 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1173 		rxd = &sc->age_cdata.age_rxdesc[i];
1174 		rxd->rx_m = NULL;
1175 		rxd->rx_dmamap = NULL;
1176 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1177 		    &rxd->rx_dmamap);
1178 		if (error != 0) {
1179 			device_printf(sc->age_dev,
1180 			    "could not create Rx dmamap.\n");
1181 			goto fail;
1182 		}
1183 	}
1184 
1185 fail:
1186 	return (error);
1187 }
1188 
1189 static void
1190 age_dma_free(struct age_softc *sc)
1191 {
1192 	struct age_txdesc *txd;
1193 	struct age_rxdesc *rxd;
1194 	int i;
1195 
1196 	/* Tx buffers */
1197 	if (sc->age_cdata.age_tx_tag != NULL) {
1198 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1199 			txd = &sc->age_cdata.age_txdesc[i];
1200 			if (txd->tx_dmamap != NULL) {
1201 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1202 				    txd->tx_dmamap);
1203 				txd->tx_dmamap = NULL;
1204 			}
1205 		}
1206 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1207 		sc->age_cdata.age_tx_tag = NULL;
1208 	}
1209 	/* Rx buffers */
1210 	if (sc->age_cdata.age_rx_tag != NULL) {
1211 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1212 			rxd = &sc->age_cdata.age_rxdesc[i];
1213 			if (rxd->rx_dmamap != NULL) {
1214 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1215 				    rxd->rx_dmamap);
1216 				rxd->rx_dmamap = NULL;
1217 			}
1218 		}
1219 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1220 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1221 			    sc->age_cdata.age_rx_sparemap);
1222 			sc->age_cdata.age_rx_sparemap = NULL;
1223 		}
1224 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1225 		sc->age_cdata.age_rx_tag = NULL;
1226 	}
1227 	/* Tx ring. */
1228 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1229 		if (sc->age_cdata.age_tx_ring_map != NULL)
1230 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1231 			    sc->age_cdata.age_tx_ring_map);
1232 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1233 		    sc->age_rdata.age_tx_ring != NULL)
1234 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1235 			    sc->age_rdata.age_tx_ring,
1236 			    sc->age_cdata.age_tx_ring_map);
1237 		sc->age_rdata.age_tx_ring = NULL;
1238 		sc->age_cdata.age_tx_ring_map = NULL;
1239 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1240 		sc->age_cdata.age_tx_ring_tag = NULL;
1241 	}
1242 	/* Rx ring. */
1243 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1244 		if (sc->age_cdata.age_rx_ring_map != NULL)
1245 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1246 			    sc->age_cdata.age_rx_ring_map);
1247 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1248 		    sc->age_rdata.age_rx_ring != NULL)
1249 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1250 			    sc->age_rdata.age_rx_ring,
1251 			    sc->age_cdata.age_rx_ring_map);
1252 		sc->age_rdata.age_rx_ring = NULL;
1253 		sc->age_cdata.age_rx_ring_map = NULL;
1254 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1255 		sc->age_cdata.age_rx_ring_tag = NULL;
1256 	}
1257 	/* Rx return ring. */
1258 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1259 		if (sc->age_cdata.age_rr_ring_map != NULL)
1260 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1261 			    sc->age_cdata.age_rr_ring_map);
1262 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1263 		    sc->age_rdata.age_rr_ring != NULL)
1264 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1265 			    sc->age_rdata.age_rr_ring,
1266 			    sc->age_cdata.age_rr_ring_map);
1267 		sc->age_rdata.age_rr_ring = NULL;
1268 		sc->age_cdata.age_rr_ring_map = NULL;
1269 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1270 		sc->age_cdata.age_rr_ring_tag = NULL;
1271 	}
1272 	/* CMB block */
1273 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1274 		if (sc->age_cdata.age_cmb_block_map != NULL)
1275 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1276 			    sc->age_cdata.age_cmb_block_map);
1277 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1278 		    sc->age_rdata.age_cmb_block != NULL)
1279 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1280 			    sc->age_rdata.age_cmb_block,
1281 			    sc->age_cdata.age_cmb_block_map);
1282 		sc->age_rdata.age_cmb_block = NULL;
1283 		sc->age_cdata.age_cmb_block_map = NULL;
1284 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1285 		sc->age_cdata.age_cmb_block_tag = NULL;
1286 	}
1287 	/* SMB block */
1288 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1289 		if (sc->age_cdata.age_smb_block_map != NULL)
1290 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1291 			    sc->age_cdata.age_smb_block_map);
1292 		if (sc->age_cdata.age_smb_block_map != NULL &&
1293 		    sc->age_rdata.age_smb_block != NULL)
1294 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1295 			    sc->age_rdata.age_smb_block,
1296 			    sc->age_cdata.age_smb_block_map);
1297 		sc->age_rdata.age_smb_block = NULL;
1298 		sc->age_cdata.age_smb_block_map = NULL;
1299 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1300 		sc->age_cdata.age_smb_block_tag = NULL;
1301 	}
1302 
1303 	if (sc->age_cdata.age_buffer_tag != NULL) {
1304 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1305 		sc->age_cdata.age_buffer_tag = NULL;
1306 	}
1307 	if (sc->age_cdata.age_parent_tag != NULL) {
1308 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1309 		sc->age_cdata.age_parent_tag = NULL;
1310 	}
1311 }
1312 
1313 /*
1314  *	Make sure the interface is stopped at reboot time.
1315  */
1316 static int
1317 age_shutdown(device_t dev)
1318 {
1319 
1320 	return (age_suspend(dev));
1321 }
1322 
1323 static void
1324 age_setwol(struct age_softc *sc)
1325 {
1326 	struct ifnet *ifp;
1327 	struct mii_data *mii;
1328 	uint32_t reg, pmcs;
1329 	uint16_t pmstat;
1330 	int aneg, i, pmc;
1331 
1332 	AGE_LOCK_ASSERT(sc);
1333 
1334 	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1335 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1336 		/*
1337 		 * No PME capability, PHY power down.
1338 		 * XXX
1339 		 * Due to an unknown reason powering down PHY resulted
1340 		 * in unexpected results such as inaccessbility of
1341 		 * hardware of freshly rebooted system. Disable
1342 		 * powering down PHY until I got more information for
1343 		 * Attansic/Atheros PHY hardwares.
1344 		 */
1345 #ifdef notyet
1346 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1347 		    MII_BMCR, BMCR_PDOWN);
1348 #endif
1349 		return;
1350 	}
1351 
1352 	ifp = sc->age_ifp;
1353 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1354 		/*
1355 		 * Note, this driver resets the link speed to 10/100Mbps with
1356 		 * auto-negotiation but we don't know whether that operation
1357 		 * would succeed or not as it have no control after powering
1358 		 * off. If the renegotiation fail WOL may not work. Running
1359 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1360 		 * specified in PCI specification and that would result in
1361 		 * complete shutdowning power to ethernet controller.
1362 		 *
1363 		 * TODO
1364 		 *  Save current negotiated media speed/duplex/flow-control
1365 		 *  to softc and restore the same link again after resuming.
1366 		 *  PHY handling such as power down/resetting to 100Mbps
1367 		 *  may be better handled in suspend method in phy driver.
1368 		 */
1369 		mii = device_get_softc(sc->age_miibus);
1370 		mii_pollstat(mii);
1371 		aneg = 0;
1372 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1373 			switch IFM_SUBTYPE(mii->mii_media_active) {
1374 			case IFM_10_T:
1375 			case IFM_100_TX:
1376 				goto got_link;
1377 			case IFM_1000_T:
1378 				aneg++;
1379 			default:
1380 				break;
1381 			}
1382 		}
1383 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1384 		    MII_100T2CR, 0);
1385 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1387 		    ANAR_10 | ANAR_CSMA);
1388 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1389 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1390 		DELAY(1000);
1391 		if (aneg != 0) {
1392 			/* Poll link state until age(4) get a 10/100 link. */
1393 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1394 				mii_pollstat(mii);
1395 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1396 					switch (IFM_SUBTYPE(
1397 					    mii->mii_media_active)) {
1398 					case IFM_10_T:
1399 					case IFM_100_TX:
1400 						age_mac_config(sc);
1401 						goto got_link;
1402 					default:
1403 						break;
1404 					}
1405 				}
1406 				AGE_UNLOCK(sc);
1407 				pause("agelnk", hz);
1408 				AGE_LOCK(sc);
1409 			}
1410 			if (i == MII_ANEGTICKS_GIGE)
1411 				device_printf(sc->age_dev,
1412 				    "establishing link failed, "
1413 				    "WOL may not work!");
1414 		}
1415 		/*
1416 		 * No link, force MAC to have 100Mbps, full-duplex link.
1417 		 * This is the last resort and may/may not work.
1418 		 */
1419 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1420 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1421 		age_mac_config(sc);
1422 	}
1423 
1424 got_link:
1425 	pmcs = 0;
1426 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1427 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1428 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1429 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1430 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1431 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1432 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1433 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1434 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1435 		reg |= MAC_CFG_RX_ENB;
1436 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1437 	}
1438 
1439 	/* Request PME. */
1440 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1441 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1442 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1443 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1444 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1445 #ifdef notyet
1446 	/* See above for powering down PHY issues. */
1447 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1448 		/* No WOL, PHY power down. */
1449 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1450 		    MII_BMCR, BMCR_PDOWN);
1451 	}
1452 #endif
1453 }
1454 
1455 static int
1456 age_suspend(device_t dev)
1457 {
1458 	struct age_softc *sc;
1459 
1460 	sc = device_get_softc(dev);
1461 
1462 	AGE_LOCK(sc);
1463 	age_stop(sc);
1464 	age_setwol(sc);
1465 	AGE_UNLOCK(sc);
1466 
1467 	return (0);
1468 }
1469 
1470 static int
1471 age_resume(device_t dev)
1472 {
1473 	struct age_softc *sc;
1474 	struct ifnet *ifp;
1475 
1476 	sc = device_get_softc(dev);
1477 
1478 	AGE_LOCK(sc);
1479 	age_phy_reset(sc);
1480 	ifp = sc->age_ifp;
1481 	if ((ifp->if_flags & IFF_UP) != 0)
1482 		age_init_locked(sc);
1483 
1484 	AGE_UNLOCK(sc);
1485 
1486 	return (0);
1487 }
1488 
1489 static int
1490 age_encap(struct age_softc *sc, struct mbuf **m_head)
1491 {
1492 	struct age_txdesc *txd, *txd_last;
1493 	struct tx_desc *desc;
1494 	struct mbuf *m;
1495 	struct ip *ip;
1496 	struct tcphdr *tcp;
1497 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1498 	bus_dmamap_t map;
1499 	uint32_t cflags, ip_off, poff, vtag;
1500 	int error, i, nsegs, prod, si;
1501 
1502 	AGE_LOCK_ASSERT(sc);
1503 
1504 	M_ASSERTPKTHDR((*m_head));
1505 
1506 	m = *m_head;
1507 	ip = NULL;
1508 	tcp = NULL;
1509 	cflags = vtag = 0;
1510 	ip_off = poff = 0;
1511 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1512 		/*
1513 		 * L1 requires offset of TCP/UDP payload in its Tx
1514 		 * descriptor to perform hardware Tx checksum offload.
1515 		 * Additionally, TSO requires IP/TCP header size and
1516 		 * modification of IP/TCP header in order to make TSO
1517 		 * engine work. This kind of operation takes many CPU
1518 		 * cycles on FreeBSD so fast host CPU is needed to get
1519 		 * smooth TSO performance.
1520 		 */
1521 		struct ether_header *eh;
1522 
1523 		if (M_WRITABLE(m) == 0) {
1524 			/* Get a writable copy. */
1525 			m = m_dup(*m_head, M_DONTWAIT);
1526 			/* Release original mbufs. */
1527 			m_freem(*m_head);
1528 			if (m == NULL) {
1529 				*m_head = NULL;
1530 				return (ENOBUFS);
1531 			}
1532 			*m_head = m;
1533 		}
1534 		ip_off = sizeof(struct ether_header);
1535 		m = m_pullup(m, ip_off);
1536 		if (m == NULL) {
1537 			*m_head = NULL;
1538 			return (ENOBUFS);
1539 		}
1540 		eh = mtod(m, struct ether_header *);
1541 		/*
1542 		 * Check if hardware VLAN insertion is off.
1543 		 * Additional check for LLC/SNAP frame?
1544 		 */
1545 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1546 			ip_off = sizeof(struct ether_vlan_header);
1547 			m = m_pullup(m, ip_off);
1548 			if (m == NULL) {
1549 				*m_head = NULL;
1550 				return (ENOBUFS);
1551 			}
1552 		}
1553 		m = m_pullup(m, ip_off + sizeof(struct ip));
1554 		if (m == NULL) {
1555 			*m_head = NULL;
1556 			return (ENOBUFS);
1557 		}
1558 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1559 		poff = ip_off + (ip->ip_hl << 2);
1560 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1561 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1562 			if (m == NULL) {
1563 				*m_head = NULL;
1564 				return (ENOBUFS);
1565 			}
1566 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1567 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1568 			/*
1569 			 * L1 requires IP/TCP header size and offset as
1570 			 * well as TCP pseudo checksum which complicates
1571 			 * TSO configuration. I guess this comes from the
1572 			 * adherence to Microsoft NDIS Large Send
1573 			 * specification which requires insertion of
1574 			 * pseudo checksum by upper stack. The pseudo
1575 			 * checksum that NDIS refers to doesn't include
1576 			 * TCP payload length so age(4) should recompute
1577 			 * the pseudo checksum here. Hopefully this wouldn't
1578 			 * be much burden on modern CPUs.
1579 			 * Reset IP checksum and recompute TCP pseudo
1580 			 * checksum as NDIS specification said.
1581 			 */
1582 			ip->ip_sum = 0;
1583 			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1584 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1585 				    ip->ip_dst.s_addr,
1586 				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1587 			else
1588 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1589 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1590 		}
1591 		*m_head = m;
1592 	}
1593 
1594 	si = prod = sc->age_cdata.age_tx_prod;
1595 	txd = &sc->age_cdata.age_txdesc[prod];
1596 	txd_last = txd;
1597 	map = txd->tx_dmamap;
1598 
1599 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1600 	    *m_head, txsegs, &nsegs, 0);
1601 	if (error == EFBIG) {
1602 		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1603 		if (m == NULL) {
1604 			m_freem(*m_head);
1605 			*m_head = NULL;
1606 			return (ENOMEM);
1607 		}
1608 		*m_head = m;
1609 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1610 		    *m_head, txsegs, &nsegs, 0);
1611 		if (error != 0) {
1612 			m_freem(*m_head);
1613 			*m_head = NULL;
1614 			return (error);
1615 		}
1616 	} else if (error != 0)
1617 		return (error);
1618 	if (nsegs == 0) {
1619 		m_freem(*m_head);
1620 		*m_head = NULL;
1621 		return (EIO);
1622 	}
1623 
1624 	/* Check descriptor overrun. */
1625 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1626 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1627 		return (ENOBUFS);
1628 	}
1629 
1630 	m = *m_head;
1631 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1632 		/* Configure TSO. */
1633 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1634 			/* Not TSO but IP/TCP checksum offload. */
1635 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1636 			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1637 			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1638 		} else {
1639 			/* Request TSO and set MSS. */
1640 			cflags |= AGE_TD_TSO_IPV4;
1641 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1642 			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1643 			    AGE_TD_TSO_MSS_SHIFT);
1644 		}
1645 		/* Set IP/TCP header size. */
1646 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1647 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1648 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1649 		/* Configure Tx IP/TCP/UDP checksum offload. */
1650 		cflags |= AGE_TD_CSUM;
1651 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1652 			cflags |= AGE_TD_TCPCSUM;
1653 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1654 			cflags |= AGE_TD_UDPCSUM;
1655 		/* Set checksum start offset. */
1656 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1657 		/* Set checksum insertion position of TCP/UDP. */
1658 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1659 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1660 	}
1661 
1662 	/* Configure VLAN hardware tag insertion. */
1663 	if ((m->m_flags & M_VLANTAG) != 0) {
1664 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1665 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1666 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1667 	}
1668 
1669 	desc = NULL;
1670 	for (i = 0; i < nsegs; i++) {
1671 		desc = &sc->age_rdata.age_tx_ring[prod];
1672 		desc->addr = htole64(txsegs[i].ds_addr);
1673 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1674 		desc->flags = htole32(cflags);
1675 		sc->age_cdata.age_tx_cnt++;
1676 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1677 	}
1678 	/* Update producer index. */
1679 	sc->age_cdata.age_tx_prod = prod;
1680 
1681 	/* Set EOP on the last descriptor. */
1682 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1683 	desc = &sc->age_rdata.age_tx_ring[prod];
1684 	desc->flags |= htole32(AGE_TD_EOP);
1685 
1686 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1687 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1688 		desc = &sc->age_rdata.age_tx_ring[si];
1689 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1690 	}
1691 
1692 	/* Swap dmamap of the first and the last. */
1693 	txd = &sc->age_cdata.age_txdesc[prod];
1694 	map = txd_last->tx_dmamap;
1695 	txd_last->tx_dmamap = txd->tx_dmamap;
1696 	txd->tx_dmamap = map;
1697 	txd->tx_m = m;
1698 
1699 	/* Sync descriptors. */
1700 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1701 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1702 	    sc->age_cdata.age_tx_ring_map,
1703 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1704 
1705 	return (0);
1706 }
1707 
1708 static void
1709 age_tx_task(void *arg, int pending)
1710 {
1711 	struct ifnet *ifp;
1712 
1713 	ifp = (struct ifnet *)arg;
1714 	age_start(ifp);
1715 }
1716 
1717 static void
1718 age_start(struct ifnet *ifp)
1719 {
1720         struct age_softc *sc;
1721         struct mbuf *m_head;
1722 	int enq;
1723 
1724 	sc = ifp->if_softc;
1725 
1726 	AGE_LOCK(sc);
1727 
1728 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1729 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1730 		AGE_UNLOCK(sc);
1731 		return;
1732 	}
1733 
1734 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1735 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1736 		if (m_head == NULL)
1737 			break;
1738 		/*
1739 		 * Pack the data into the transmit ring. If we
1740 		 * don't have room, set the OACTIVE flag and wait
1741 		 * for the NIC to drain the ring.
1742 		 */
1743 		if (age_encap(sc, &m_head)) {
1744 			if (m_head == NULL)
1745 				break;
1746 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1747 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1748 			break;
1749 		}
1750 
1751 		enq++;
1752 		/*
1753 		 * If there's a BPF listener, bounce a copy of this frame
1754 		 * to him.
1755 		 */
1756 		ETHER_BPF_MTAP(ifp, m_head);
1757 	}
1758 
1759 	if (enq > 0) {
1760 		/* Update mbox. */
1761 		AGE_COMMIT_MBOX(sc);
1762 		/* Set a timeout in case the chip goes out to lunch. */
1763 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1764 	}
1765 
1766 	AGE_UNLOCK(sc);
1767 }
1768 
1769 static void
1770 age_watchdog(struct age_softc *sc)
1771 {
1772 	struct ifnet *ifp;
1773 
1774 	AGE_LOCK_ASSERT(sc);
1775 
1776 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1777 		return;
1778 
1779 	ifp = sc->age_ifp;
1780 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1781 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1782 		ifp->if_oerrors++;
1783 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1784 		age_init_locked(sc);
1785 		return;
1786 	}
1787 	if (sc->age_cdata.age_tx_cnt == 0) {
1788 		if_printf(sc->age_ifp,
1789 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1790 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1791 			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1792 		return;
1793 	}
1794 	if_printf(sc->age_ifp, "watchdog timeout\n");
1795 	ifp->if_oerrors++;
1796 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1797 	age_init_locked(sc);
1798 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1799 		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1800 }
1801 
1802 static int
1803 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1804 {
1805 	struct age_softc *sc;
1806 	struct ifreq *ifr;
1807 	struct mii_data *mii;
1808 	uint32_t reg;
1809 	int error, mask;
1810 
1811 	sc = ifp->if_softc;
1812 	ifr = (struct ifreq *)data;
1813 	error = 0;
1814 	switch (cmd) {
1815 	case SIOCSIFMTU:
1816 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1817 			error = EINVAL;
1818 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1819 			AGE_LOCK(sc);
1820 			ifp->if_mtu = ifr->ifr_mtu;
1821 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1822 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1823 				age_init_locked(sc);
1824 			}
1825 			AGE_UNLOCK(sc);
1826 		}
1827 		break;
1828 	case SIOCSIFFLAGS:
1829 		AGE_LOCK(sc);
1830 		if ((ifp->if_flags & IFF_UP) != 0) {
1831 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1832 				if (((ifp->if_flags ^ sc->age_if_flags)
1833 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1834 					age_rxfilter(sc);
1835 			} else {
1836 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1837 					age_init_locked(sc);
1838 			}
1839 		} else {
1840 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1841 				age_stop(sc);
1842 		}
1843 		sc->age_if_flags = ifp->if_flags;
1844 		AGE_UNLOCK(sc);
1845 		break;
1846 	case SIOCADDMULTI:
1847 	case SIOCDELMULTI:
1848 		AGE_LOCK(sc);
1849 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1850 			age_rxfilter(sc);
1851 		AGE_UNLOCK(sc);
1852 		break;
1853 	case SIOCSIFMEDIA:
1854 	case SIOCGIFMEDIA:
1855 		mii = device_get_softc(sc->age_miibus);
1856 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1857 		break;
1858 	case SIOCSIFCAP:
1859 		AGE_LOCK(sc);
1860 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1861 		if ((mask & IFCAP_TXCSUM) != 0 &&
1862 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1863 			ifp->if_capenable ^= IFCAP_TXCSUM;
1864 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1865 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1866 			else
1867 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1868 		}
1869 		if ((mask & IFCAP_RXCSUM) != 0 &&
1870 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1871 			ifp->if_capenable ^= IFCAP_RXCSUM;
1872 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1873 			reg &= ~MAC_CFG_RXCSUM_ENB;
1874 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1875 				reg |= MAC_CFG_RXCSUM_ENB;
1876 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1877 		}
1878 		if ((mask & IFCAP_TSO4) != 0 &&
1879 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1880 			ifp->if_capenable ^= IFCAP_TSO4;
1881 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1882 				ifp->if_hwassist |= CSUM_TSO;
1883 			else
1884 				ifp->if_hwassist &= ~CSUM_TSO;
1885 		}
1886 
1887 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1888 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1889 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1890 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1891 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1892 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1893 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1894 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1895 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1896 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1897 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1898 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1899 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1900 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1901 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1902 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1903 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1904 			age_rxvlan(sc);
1905 		}
1906 		AGE_UNLOCK(sc);
1907 		VLAN_CAPABILITIES(ifp);
1908 		break;
1909 	default:
1910 		error = ether_ioctl(ifp, cmd, data);
1911 		break;
1912 	}
1913 
1914 	return (error);
1915 }
1916 
1917 static void
1918 age_mac_config(struct age_softc *sc)
1919 {
1920 	struct mii_data *mii;
1921 	uint32_t reg;
1922 
1923 	AGE_LOCK_ASSERT(sc);
1924 
1925 	mii = device_get_softc(sc->age_miibus);
1926 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1927 	reg &= ~MAC_CFG_FULL_DUPLEX;
1928 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1929 	reg &= ~MAC_CFG_SPEED_MASK;
1930 	/* Reprogram MAC with resolved speed/duplex. */
1931 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1932 	case IFM_10_T:
1933 	case IFM_100_TX:
1934 		reg |= MAC_CFG_SPEED_10_100;
1935 		break;
1936 	case IFM_1000_T:
1937 		reg |= MAC_CFG_SPEED_1000;
1938 		break;
1939 	}
1940 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1941 		reg |= MAC_CFG_FULL_DUPLEX;
1942 #ifdef notyet
1943 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1944 			reg |= MAC_CFG_TX_FC;
1945 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1946 			reg |= MAC_CFG_RX_FC;
1947 #endif
1948 	}
1949 
1950 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1951 }
1952 
1953 static void
1954 age_link_task(void *arg, int pending)
1955 {
1956 	struct age_softc *sc;
1957 	struct mii_data *mii;
1958 	struct ifnet *ifp;
1959 	uint32_t reg;
1960 
1961 	sc = (struct age_softc *)arg;
1962 
1963 	AGE_LOCK(sc);
1964 	mii = device_get_softc(sc->age_miibus);
1965 	ifp = sc->age_ifp;
1966 	if (mii == NULL || ifp == NULL ||
1967 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1968 		AGE_UNLOCK(sc);
1969 		return;
1970 	}
1971 
1972 	sc->age_flags &= ~AGE_FLAG_LINK;
1973 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1974 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1975 		case IFM_10_T:
1976 		case IFM_100_TX:
1977 		case IFM_1000_T:
1978 			sc->age_flags |= AGE_FLAG_LINK;
1979 			break;
1980 		default:
1981 			break;
1982 		}
1983 	}
1984 
1985 	/* Stop Rx/Tx MACs. */
1986 	age_stop_rxmac(sc);
1987 	age_stop_txmac(sc);
1988 
1989 	/* Program MACs with resolved speed/duplex/flow-control. */
1990 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1991 		age_mac_config(sc);
1992 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1993 		/* Restart DMA engine and Tx/Rx MAC. */
1994 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1995 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1996 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1997 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1998 	}
1999 
2000 	AGE_UNLOCK(sc);
2001 }
2002 
2003 static void
2004 age_stats_update(struct age_softc *sc)
2005 {
2006 	struct age_stats *stat;
2007 	struct smb *smb;
2008 	struct ifnet *ifp;
2009 
2010 	AGE_LOCK_ASSERT(sc);
2011 
2012 	stat = &sc->age_stat;
2013 
2014 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2015 	    sc->age_cdata.age_smb_block_map,
2016 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2017 
2018 	smb = sc->age_rdata.age_smb_block;
2019 	if (smb->updated == 0)
2020 		return;
2021 
2022 	ifp = sc->age_ifp;
2023 	/* Rx stats. */
2024 	stat->rx_frames += smb->rx_frames;
2025 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2026 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2027 	stat->rx_pause_frames += smb->rx_pause_frames;
2028 	stat->rx_control_frames += smb->rx_control_frames;
2029 	stat->rx_crcerrs += smb->rx_crcerrs;
2030 	stat->rx_lenerrs += smb->rx_lenerrs;
2031 	stat->rx_bytes += smb->rx_bytes;
2032 	stat->rx_runts += smb->rx_runts;
2033 	stat->rx_fragments += smb->rx_fragments;
2034 	stat->rx_pkts_64 += smb->rx_pkts_64;
2035 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2036 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2037 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2038 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2039 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2040 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2041 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2042 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2043 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2044 	stat->rx_alignerrs += smb->rx_alignerrs;
2045 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2046 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2047 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2048 
2049 	/* Tx stats. */
2050 	stat->tx_frames += smb->tx_frames;
2051 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2052 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2053 	stat->tx_pause_frames += smb->tx_pause_frames;
2054 	stat->tx_excess_defer += smb->tx_excess_defer;
2055 	stat->tx_control_frames += smb->tx_control_frames;
2056 	stat->tx_deferred += smb->tx_deferred;
2057 	stat->tx_bytes += smb->tx_bytes;
2058 	stat->tx_pkts_64 += smb->tx_pkts_64;
2059 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2060 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2061 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2062 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2063 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2064 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2065 	stat->tx_single_colls += smb->tx_single_colls;
2066 	stat->tx_multi_colls += smb->tx_multi_colls;
2067 	stat->tx_late_colls += smb->tx_late_colls;
2068 	stat->tx_excess_colls += smb->tx_excess_colls;
2069 	stat->tx_underrun += smb->tx_underrun;
2070 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2071 	stat->tx_lenerrs += smb->tx_lenerrs;
2072 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2073 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2074 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2075 
2076 	/* Update counters in ifnet. */
2077 	ifp->if_opackets += smb->tx_frames;
2078 
2079 	ifp->if_collisions += smb->tx_single_colls +
2080 	    smb->tx_multi_colls + smb->tx_late_colls +
2081 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2082 
2083 	ifp->if_oerrors += smb->tx_excess_colls +
2084 	    smb->tx_late_colls + smb->tx_underrun +
2085 	    smb->tx_pkts_truncated;
2086 
2087 	ifp->if_ipackets += smb->rx_frames;
2088 
2089 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2090 	    smb->rx_runts + smb->rx_pkts_truncated +
2091 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2092 	    smb->rx_alignerrs;
2093 
2094 	/* Update done, clear. */
2095 	smb->updated = 0;
2096 
2097 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2098 	    sc->age_cdata.age_smb_block_map,
2099 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2100 }
2101 
2102 static int
2103 age_intr(void *arg)
2104 {
2105 	struct age_softc *sc;
2106 	uint32_t status;
2107 
2108 	sc = (struct age_softc *)arg;
2109 
2110 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2111 	if (status == 0 || (status & AGE_INTRS) == 0)
2112 		return (FILTER_STRAY);
2113 	/* Disable interrupts. */
2114 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2115 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2116 
2117 	return (FILTER_HANDLED);
2118 }
2119 
2120 static void
2121 age_int_task(void *arg, int pending)
2122 {
2123 	struct age_softc *sc;
2124 	struct ifnet *ifp;
2125 	struct cmb *cmb;
2126 	uint32_t status;
2127 
2128 	sc = (struct age_softc *)arg;
2129 
2130 	AGE_LOCK(sc);
2131 
2132 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2133 	    sc->age_cdata.age_cmb_block_map,
2134 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2135 	cmb = sc->age_rdata.age_cmb_block;
2136 	status = le32toh(cmb->intr_status);
2137 	if (sc->age_morework != 0)
2138 		status |= INTR_CMB_RX;
2139 	if ((status & AGE_INTRS) == 0)
2140 		goto done;
2141 
2142 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2143 	    TPD_CONS_SHIFT;
2144 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2145 	    RRD_PROD_SHIFT;
2146 	/* Let hardware know CMB was served. */
2147 	cmb->intr_status = 0;
2148 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2149 	    sc->age_cdata.age_cmb_block_map,
2150 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2151 
2152 #if 0
2153 	printf("INTR: 0x%08x\n", status);
2154 	status &= ~INTR_DIS_DMA;
2155 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2156 #endif
2157 	ifp = sc->age_ifp;
2158 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2159 		if ((status & INTR_CMB_RX) != 0)
2160 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2161 			    sc->age_process_limit);
2162 		if ((status & INTR_CMB_TX) != 0)
2163 			age_txintr(sc, sc->age_tpd_cons);
2164 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2165 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2166 				device_printf(sc->age_dev,
2167 				    "DMA read error! -- resetting\n");
2168 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2169 				device_printf(sc->age_dev,
2170 				    "DMA write error! -- resetting\n");
2171 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2172 			age_init_locked(sc);
2173 		}
2174 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2175 			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2176 		if ((status & INTR_SMB) != 0)
2177 			age_stats_update(sc);
2178 	}
2179 
2180 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2181 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2182 	    sc->age_cdata.age_cmb_block_map,
2183 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2184 	status = le32toh(cmb->intr_status);
2185 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2186 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2187 		AGE_UNLOCK(sc);
2188 		return;
2189 	}
2190 
2191 done:
2192 	/* Re-enable interrupts. */
2193 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2194 	AGE_UNLOCK(sc);
2195 }
2196 
2197 static void
2198 age_txintr(struct age_softc *sc, int tpd_cons)
2199 {
2200 	struct ifnet *ifp;
2201 	struct age_txdesc *txd;
2202 	int cons, prog;
2203 
2204 	AGE_LOCK_ASSERT(sc);
2205 
2206 	ifp = sc->age_ifp;
2207 
2208 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2209 	    sc->age_cdata.age_tx_ring_map,
2210 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2211 
2212 	/*
2213 	 * Go through our Tx list and free mbufs for those
2214 	 * frames which have been transmitted.
2215 	 */
2216 	cons = sc->age_cdata.age_tx_cons;
2217 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2218 		if (sc->age_cdata.age_tx_cnt <= 0)
2219 			break;
2220 		prog++;
2221 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2222 		sc->age_cdata.age_tx_cnt--;
2223 		txd = &sc->age_cdata.age_txdesc[cons];
2224 		/*
2225 		 * Clear Tx descriptors, it's not required but would
2226 		 * help debugging in case of Tx issues.
2227 		 */
2228 		txd->tx_desc->addr = 0;
2229 		txd->tx_desc->len = 0;
2230 		txd->tx_desc->flags = 0;
2231 
2232 		if (txd->tx_m == NULL)
2233 			continue;
2234 		/* Reclaim transmitted mbufs. */
2235 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2236 		    BUS_DMASYNC_POSTWRITE);
2237 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2238 		m_freem(txd->tx_m);
2239 		txd->tx_m = NULL;
2240 	}
2241 
2242 	if (prog > 0) {
2243 		sc->age_cdata.age_tx_cons = cons;
2244 
2245 		/*
2246 		 * Unarm watchdog timer only when there are no pending
2247 		 * Tx descriptors in queue.
2248 		 */
2249 		if (sc->age_cdata.age_tx_cnt == 0)
2250 			sc->age_watchdog_timer = 0;
2251 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2252 		    sc->age_cdata.age_tx_ring_map,
2253 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2254 	}
2255 }
2256 
2257 /* Receive a frame. */
2258 static void
2259 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2260 {
2261 	struct age_rxdesc *rxd;
2262 	struct rx_desc *desc;
2263 	struct ifnet *ifp;
2264 	struct mbuf *mp, *m;
2265 	uint32_t status, index, vtag;
2266 	int count, nsegs, pktlen;
2267 	int rx_cons;
2268 
2269 	AGE_LOCK_ASSERT(sc);
2270 
2271 	ifp = sc->age_ifp;
2272 	status = le32toh(rxrd->flags);
2273 	index = le32toh(rxrd->index);
2274 	rx_cons = AGE_RX_CONS(index);
2275 	nsegs = AGE_RX_NSEGS(index);
2276 
2277 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2278 	if ((status & AGE_RRD_ERROR) != 0 &&
2279 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2280 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2281 		/*
2282 		 * We want to pass the following frames to upper
2283 		 * layer regardless of error status of Rx return
2284 		 * ring.
2285 		 *
2286 		 *  o IP/TCP/UDP checksum is bad.
2287 		 *  o frame length and protocol specific length
2288 		 *     does not match.
2289 		 */
2290 		sc->age_cdata.age_rx_cons += nsegs;
2291 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2292 		return;
2293 	}
2294 
2295 	pktlen = 0;
2296 	for (count = 0; count < nsegs; count++,
2297 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2298 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2299 		mp = rxd->rx_m;
2300 		desc = rxd->rx_desc;
2301 		/* Add a new receive buffer to the ring. */
2302 		if (age_newbuf(sc, rxd) != 0) {
2303 			ifp->if_iqdrops++;
2304 			/* Reuse Rx buffers. */
2305 			if (sc->age_cdata.age_rxhead != NULL) {
2306 				m_freem(sc->age_cdata.age_rxhead);
2307 				AGE_RXCHAIN_RESET(sc);
2308 			}
2309 			break;
2310 		}
2311 
2312 		/* The length of the first mbuf is computed last. */
2313 		if (count != 0) {
2314 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2315 			pktlen += mp->m_len;
2316 		}
2317 
2318 		/* Chain received mbufs. */
2319 		if (sc->age_cdata.age_rxhead == NULL) {
2320 			sc->age_cdata.age_rxhead = mp;
2321 			sc->age_cdata.age_rxtail = mp;
2322 		} else {
2323 			mp->m_flags &= ~M_PKTHDR;
2324 			sc->age_cdata.age_rxprev_tail =
2325 			    sc->age_cdata.age_rxtail;
2326 			sc->age_cdata.age_rxtail->m_next = mp;
2327 			sc->age_cdata.age_rxtail = mp;
2328 		}
2329 
2330 		if (count == nsegs - 1) {
2331 			/*
2332 			 * It seems that L1 controller has no way
2333 			 * to tell hardware to strip CRC bytes.
2334 			 */
2335 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2336 			if (nsegs > 1) {
2337 				/* Remove the CRC bytes in chained mbufs. */
2338 				pktlen -= ETHER_CRC_LEN;
2339 				if (mp->m_len <= ETHER_CRC_LEN) {
2340 					sc->age_cdata.age_rxtail =
2341 					    sc->age_cdata.age_rxprev_tail;
2342 					sc->age_cdata.age_rxtail->m_len -=
2343 					    (ETHER_CRC_LEN - mp->m_len);
2344 					sc->age_cdata.age_rxtail->m_next = NULL;
2345 					m_freem(mp);
2346 				} else {
2347 					mp->m_len -= ETHER_CRC_LEN;
2348 				}
2349 			}
2350 
2351 			m = sc->age_cdata.age_rxhead;
2352 			m->m_flags |= M_PKTHDR;
2353 			m->m_pkthdr.rcvif = ifp;
2354 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2355 			/* Set the first mbuf length. */
2356 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2357 
2358 			/*
2359 			 * Set checksum information.
2360 			 * It seems that L1 controller can compute partial
2361 			 * checksum. The partial checksum value can be used
2362 			 * to accelerate checksum computation for fragmented
2363 			 * TCP/UDP packets. Upper network stack already
2364 			 * takes advantage of the partial checksum value in
2365 			 * IP reassembly stage. But I'm not sure the
2366 			 * correctness of the partial hardware checksum
2367 			 * assistance due to lack of data sheet. If it is
2368 			 * proven to work on L1 I'll enable it.
2369 			 */
2370 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2371 			    (status & AGE_RRD_IPV4) != 0) {
2372 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2373 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2374 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2375 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2376 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2377 					m->m_pkthdr.csum_flags |=
2378 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2379 					m->m_pkthdr.csum_data = 0xffff;
2380 				}
2381 				/*
2382 				 * Don't mark bad checksum for TCP/UDP frames
2383 				 * as fragmented frames may always have set
2384 				 * bad checksummed bit of descriptor status.
2385 				 */
2386 			}
2387 
2388 			/* Check for VLAN tagged frames. */
2389 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2390 			    (status & AGE_RRD_VLAN) != 0) {
2391 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2392 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2393 				m->m_flags |= M_VLANTAG;
2394 			}
2395 
2396 			/* Pass it on. */
2397 			AGE_UNLOCK(sc);
2398 			(*ifp->if_input)(ifp, m);
2399 			AGE_LOCK(sc);
2400 
2401 			/* Reset mbuf chains. */
2402 			AGE_RXCHAIN_RESET(sc);
2403 		}
2404 	}
2405 
2406 	if (count != nsegs) {
2407 		sc->age_cdata.age_rx_cons += nsegs;
2408 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2409 	} else
2410 		sc->age_cdata.age_rx_cons = rx_cons;
2411 }
2412 
2413 static int
2414 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2415 {
2416 	struct rx_rdesc *rxrd;
2417 	int rr_cons, nsegs, pktlen, prog;
2418 
2419 	AGE_LOCK_ASSERT(sc);
2420 
2421 	rr_cons = sc->age_cdata.age_rr_cons;
2422 	if (rr_cons == rr_prod)
2423 		return (0);
2424 
2425 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2426 	    sc->age_cdata.age_rr_ring_map,
2427 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2428 
2429 	for (prog = 0; rr_cons != rr_prod; prog++) {
2430 		if (count <= 0)
2431 			break;
2432 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2433 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2434 		if (nsegs == 0)
2435 			break;
2436 		/*
2437 		 * Check number of segments against received bytes.
2438 		 * Non-matching value would indicate that hardware
2439 		 * is still trying to update Rx return descriptors.
2440 		 * I'm not sure whether this check is really needed.
2441 		 */
2442 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2443 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2444 		    (MCLBYTES - ETHER_ALIGN)))
2445 			break;
2446 
2447 		prog++;
2448 		/* Received a frame. */
2449 		age_rxeof(sc, rxrd);
2450 		/* Clear return ring. */
2451 		rxrd->index = 0;
2452 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2453 	}
2454 
2455 	if (prog > 0) {
2456 		/* Update the consumer index. */
2457 		sc->age_cdata.age_rr_cons = rr_cons;
2458 
2459 		/* Sync descriptors. */
2460 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2461 		    sc->age_cdata.age_rr_ring_map,
2462 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2463 
2464 		/* Notify hardware availability of new Rx buffers. */
2465 		AGE_COMMIT_MBOX(sc);
2466 	}
2467 
2468 	return (count > 0 ? 0 : EAGAIN);
2469 }
2470 
2471 static void
2472 age_tick(void *arg)
2473 {
2474 	struct age_softc *sc;
2475 	struct mii_data *mii;
2476 
2477 	sc = (struct age_softc *)arg;
2478 
2479 	AGE_LOCK_ASSERT(sc);
2480 
2481 	mii = device_get_softc(sc->age_miibus);
2482 	mii_tick(mii);
2483 	age_watchdog(sc);
2484 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2485 }
2486 
2487 static void
2488 age_reset(struct age_softc *sc)
2489 {
2490 	uint32_t reg;
2491 	int i;
2492 
2493 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2494 	CSR_READ_4(sc, AGE_MASTER_CFG);
2495 	DELAY(1000);
2496 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2497 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2498 			break;
2499 		DELAY(10);
2500 	}
2501 
2502 	if (i == 0)
2503 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2504 	/* Initialize PCIe module. From Linux. */
2505 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2506 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2507 }
2508 
2509 static void
2510 age_init(void *xsc)
2511 {
2512 	struct age_softc *sc;
2513 
2514 	sc = (struct age_softc *)xsc;
2515 	AGE_LOCK(sc);
2516 	age_init_locked(sc);
2517 	AGE_UNLOCK(sc);
2518 }
2519 
2520 static void
2521 age_init_locked(struct age_softc *sc)
2522 {
2523 	struct ifnet *ifp;
2524 	struct mii_data *mii;
2525 	uint8_t eaddr[ETHER_ADDR_LEN];
2526 	bus_addr_t paddr;
2527 	uint32_t reg, fsize;
2528 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2529 	int error;
2530 
2531 	AGE_LOCK_ASSERT(sc);
2532 
2533 	ifp = sc->age_ifp;
2534 	mii = device_get_softc(sc->age_miibus);
2535 
2536 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2537 		return;
2538 
2539 	/*
2540 	 * Cancel any pending I/O.
2541 	 */
2542 	age_stop(sc);
2543 
2544 	/*
2545 	 * Reset the chip to a known state.
2546 	 */
2547 	age_reset(sc);
2548 
2549 	/* Initialize descriptors. */
2550 	error = age_init_rx_ring(sc);
2551         if (error != 0) {
2552                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2553                 age_stop(sc);
2554 		return;
2555         }
2556 	age_init_rr_ring(sc);
2557 	age_init_tx_ring(sc);
2558 	age_init_cmb_block(sc);
2559 	age_init_smb_block(sc);
2560 
2561 	/* Reprogram the station address. */
2562 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2563 	CSR_WRITE_4(sc, AGE_PAR0,
2564 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2565 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2566 
2567 	/* Set descriptor base addresses. */
2568 	paddr = sc->age_rdata.age_tx_ring_paddr;
2569 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2570 	paddr = sc->age_rdata.age_rx_ring_paddr;
2571 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2572 	paddr = sc->age_rdata.age_rr_ring_paddr;
2573 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2574 	paddr = sc->age_rdata.age_tx_ring_paddr;
2575 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2576 	paddr = sc->age_rdata.age_cmb_block_paddr;
2577 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2578 	paddr = sc->age_rdata.age_smb_block_paddr;
2579 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2580 	/* Set Rx/Rx return descriptor counter. */
2581 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2582 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2583 	    DESC_RRD_CNT_MASK) |
2584 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2585 	/* Set Tx descriptor counter. */
2586 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2587 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2588 
2589 	/* Tell hardware that we're ready to load descriptors. */
2590 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2591 
2592 	/*
2593 	 * Initialize mailbox register.
2594 	 * Updated producer/consumer index information is exchanged
2595 	 * through this mailbox register. However Tx producer and
2596 	 * Rx return consumer/Rx producer are all shared such that
2597 	 * it's hard to separate code path between Tx and Rx without
2598 	 * locking. If L1 hardware have a separate mail box register
2599 	 * for Tx and Rx consumer/producer management we could have
2600 	 * indepent Tx/Rx handler which in turn Rx handler could have
2601 	 * been run without any locking.
2602 	 */
2603 	AGE_COMMIT_MBOX(sc);
2604 
2605 	/* Configure IPG/IFG parameters. */
2606 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2607 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2608 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2609 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2610 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2611 
2612 	/* Set parameters for half-duplex media. */
2613 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2614 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2615 	    HDPX_CFG_LCOL_MASK) |
2616 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2617 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2618 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2619 	    HDPX_CFG_ABEBT_MASK) |
2620 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2621 	    HDPX_CFG_JAMIPG_MASK));
2622 
2623 	/* Configure interrupt moderation timer. */
2624 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2625 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2626 	reg &= ~MASTER_MTIMER_ENB;
2627 	if (AGE_USECS(sc->age_int_mod) == 0)
2628 		reg &= ~MASTER_ITIMER_ENB;
2629 	else
2630 		reg |= MASTER_ITIMER_ENB;
2631 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2632 	if (bootverbose)
2633 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2634 		    sc->age_int_mod);
2635 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2636 
2637 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2638 	if (ifp->if_mtu < ETHERMTU)
2639 		sc->age_max_frame_size = ETHERMTU;
2640 	else
2641 		sc->age_max_frame_size = ifp->if_mtu;
2642 	sc->age_max_frame_size += ETHER_HDR_LEN +
2643 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2644 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2645 	/* Configure jumbo frame. */
2646 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2647 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2648 	    (((fsize / sizeof(uint64_t)) <<
2649 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2650 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2651 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2652 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2653 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2654 
2655 	/* Configure flow-control parameters. From Linux. */
2656 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2657 		/*
2658 		 * Magic workaround for old-L1.
2659 		 * Don't know which hw revision requires this magic.
2660 		 */
2661 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2662 		/*
2663 		 * Another magic workaround for flow-control mode
2664 		 * change. From Linux.
2665 		 */
2666 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2667 	}
2668 	/*
2669 	 * TODO
2670 	 *  Should understand pause parameter relationships between FIFO
2671 	 *  size and number of Rx descriptors and Rx return descriptors.
2672 	 *
2673 	 *  Magic parameters came from Linux.
2674 	 */
2675 	switch (sc->age_chip_rev) {
2676 	case 0x8001:
2677 	case 0x9001:
2678 	case 0x9002:
2679 	case 0x9003:
2680 		rxf_hi = AGE_RX_RING_CNT / 16;
2681 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2682 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2683 		rrd_lo = AGE_RR_RING_CNT / 16;
2684 		break;
2685 	default:
2686 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2687 		rxf_lo = reg / 16;
2688 		if (rxf_lo < 192)
2689 			rxf_lo = 192;
2690 		rxf_hi = (reg * 7) / 8;
2691 		if (rxf_hi < rxf_lo)
2692 			rxf_hi = rxf_lo + 16;
2693 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2694 		rrd_lo = reg / 8;
2695 		rrd_hi = (reg * 7) / 8;
2696 		if (rrd_lo < 2)
2697 			rrd_lo = 2;
2698 		if (rrd_hi < rrd_lo)
2699 			rrd_hi = rrd_lo + 3;
2700 		break;
2701 	}
2702 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2703 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2704 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2705 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2706 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2707 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2708 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2709 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2710 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2711 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2712 
2713 	/* Configure RxQ. */
2714 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2715 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2716 	    RXQ_CFG_RD_BURST_MASK) |
2717 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2718 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2719 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2720 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2721 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2722 
2723 	/* Configure TxQ. */
2724 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2725 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2726 	    TXQ_CFG_TPD_BURST_MASK) |
2727 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2728 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2729 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2730 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2731 	    TXQ_CFG_ENB);
2732 
2733 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2734 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2735 	    TX_JUMBO_TPD_TH_MASK) |
2736 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2737 	    TX_JUMBO_TPD_IPG_MASK));
2738 	/* Configure DMA parameters. */
2739 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2740 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2741 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2742 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2743 
2744 	/* Configure CMB DMA write threshold. */
2745 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2746 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2747 	    CMB_WR_THRESH_RRD_MASK) |
2748 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2749 	    CMB_WR_THRESH_TPD_MASK));
2750 
2751 	/* Set CMB/SMB timer and enable them. */
2752 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2753 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2754 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2755 	/* Request SMB updates for every seconds. */
2756 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2757 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2758 
2759 	/*
2760 	 * Disable all WOL bits as WOL can interfere normal Rx
2761 	 * operation.
2762 	 */
2763 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2764 
2765 	/*
2766 	 * Configure Tx/Rx MACs.
2767 	 *  - Auto-padding for short frames.
2768 	 *  - Enable CRC generation.
2769 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2770 	 *  of MAC is followed after link establishment.
2771 	 */
2772 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2773 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2774 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2775 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2776 	    MAC_CFG_PREAMBLE_MASK));
2777 	/* Set up the receive filter. */
2778 	age_rxfilter(sc);
2779 	age_rxvlan(sc);
2780 
2781 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2782 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2783 		reg |= MAC_CFG_RXCSUM_ENB;
2784 
2785 	/* Ack all pending interrupts and clear it. */
2786 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2787 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2788 
2789 	/* Finally enable Tx/Rx MAC. */
2790 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2791 
2792 	sc->age_flags &= ~AGE_FLAG_LINK;
2793 	/* Switch to the current media. */
2794 	mii_mediachg(mii);
2795 
2796 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2797 
2798 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2799 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2800 }
2801 
2802 static void
2803 age_stop(struct age_softc *sc)
2804 {
2805 	struct ifnet *ifp;
2806 	struct age_txdesc *txd;
2807 	struct age_rxdesc *rxd;
2808 	uint32_t reg;
2809 	int i;
2810 
2811 	AGE_LOCK_ASSERT(sc);
2812 	/*
2813 	 * Mark the interface down and cancel the watchdog timer.
2814 	 */
2815 	ifp = sc->age_ifp;
2816 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2817 	sc->age_flags &= ~AGE_FLAG_LINK;
2818 	callout_stop(&sc->age_tick_ch);
2819 	sc->age_watchdog_timer = 0;
2820 
2821 	/*
2822 	 * Disable interrupts.
2823 	 */
2824 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2825 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2826 	/* Stop CMB/SMB updates. */
2827 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2828 	/* Stop Rx/Tx MAC. */
2829 	age_stop_rxmac(sc);
2830 	age_stop_txmac(sc);
2831 	/* Stop DMA. */
2832 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2833 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2834 	/* Stop TxQ/RxQ. */
2835 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2836 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2837 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2838 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2839 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2840 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2841 			break;
2842 		DELAY(10);
2843 	}
2844 	if (i == 0)
2845 		device_printf(sc->age_dev,
2846 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2847 
2848 	 /* Reclaim Rx buffers that have been processed. */
2849 	if (sc->age_cdata.age_rxhead != NULL)
2850 		m_freem(sc->age_cdata.age_rxhead);
2851 	AGE_RXCHAIN_RESET(sc);
2852 	/*
2853 	 * Free RX and TX mbufs still in the queues.
2854 	 */
2855 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2856 		rxd = &sc->age_cdata.age_rxdesc[i];
2857 		if (rxd->rx_m != NULL) {
2858 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2859 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2860 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2861 			    rxd->rx_dmamap);
2862 			m_freem(rxd->rx_m);
2863 			rxd->rx_m = NULL;
2864 		}
2865         }
2866 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2867 		txd = &sc->age_cdata.age_txdesc[i];
2868 		if (txd->tx_m != NULL) {
2869 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2870 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2871 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2872 			    txd->tx_dmamap);
2873 			m_freem(txd->tx_m);
2874 			txd->tx_m = NULL;
2875 		}
2876         }
2877 }
2878 
2879 static void
2880 age_stop_txmac(struct age_softc *sc)
2881 {
2882 	uint32_t reg;
2883 	int i;
2884 
2885 	AGE_LOCK_ASSERT(sc);
2886 
2887 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2888 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2889 		reg &= ~MAC_CFG_TX_ENB;
2890 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2891 	}
2892 	/* Stop Tx DMA engine. */
2893 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2894 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2895 		reg &= ~DMA_CFG_RD_ENB;
2896 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2897 	}
2898 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2899 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2900 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2901 			break;
2902 		DELAY(10);
2903 	}
2904 	if (i == 0)
2905 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2906 }
2907 
2908 static void
2909 age_stop_rxmac(struct age_softc *sc)
2910 {
2911 	uint32_t reg;
2912 	int i;
2913 
2914 	AGE_LOCK_ASSERT(sc);
2915 
2916 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2917 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2918 		reg &= ~MAC_CFG_RX_ENB;
2919 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2920 	}
2921 	/* Stop Rx DMA engine. */
2922 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2923 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2924 		reg &= ~DMA_CFG_WR_ENB;
2925 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2926 	}
2927 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2928 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2929 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2930 			break;
2931 		DELAY(10);
2932 	}
2933 	if (i == 0)
2934 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2935 }
2936 
2937 static void
2938 age_init_tx_ring(struct age_softc *sc)
2939 {
2940 	struct age_ring_data *rd;
2941 	struct age_txdesc *txd;
2942 	int i;
2943 
2944 	AGE_LOCK_ASSERT(sc);
2945 
2946 	sc->age_cdata.age_tx_prod = 0;
2947 	sc->age_cdata.age_tx_cons = 0;
2948 	sc->age_cdata.age_tx_cnt = 0;
2949 
2950 	rd = &sc->age_rdata;
2951 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2952 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2953 		txd = &sc->age_cdata.age_txdesc[i];
2954 		txd->tx_desc = &rd->age_tx_ring[i];
2955 		txd->tx_m = NULL;
2956 	}
2957 
2958 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2959 	    sc->age_cdata.age_tx_ring_map,
2960 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2961 }
2962 
2963 static int
2964 age_init_rx_ring(struct age_softc *sc)
2965 {
2966 	struct age_ring_data *rd;
2967 	struct age_rxdesc *rxd;
2968 	int i;
2969 
2970 	AGE_LOCK_ASSERT(sc);
2971 
2972 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2973 	sc->age_morework = 0;
2974 	rd = &sc->age_rdata;
2975 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2976 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2977 		rxd = &sc->age_cdata.age_rxdesc[i];
2978 		rxd->rx_m = NULL;
2979 		rxd->rx_desc = &rd->age_rx_ring[i];
2980 		if (age_newbuf(sc, rxd) != 0)
2981 			return (ENOBUFS);
2982 	}
2983 
2984 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2985 	    sc->age_cdata.age_rx_ring_map,
2986 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2987 
2988 	return (0);
2989 }
2990 
2991 static void
2992 age_init_rr_ring(struct age_softc *sc)
2993 {
2994 	struct age_ring_data *rd;
2995 
2996 	AGE_LOCK_ASSERT(sc);
2997 
2998 	sc->age_cdata.age_rr_cons = 0;
2999 	AGE_RXCHAIN_RESET(sc);
3000 
3001 	rd = &sc->age_rdata;
3002 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3003 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3004 	    sc->age_cdata.age_rr_ring_map,
3005 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3006 }
3007 
3008 static void
3009 age_init_cmb_block(struct age_softc *sc)
3010 {
3011 	struct age_ring_data *rd;
3012 
3013 	AGE_LOCK_ASSERT(sc);
3014 
3015 	rd = &sc->age_rdata;
3016 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3017 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3018 	    sc->age_cdata.age_cmb_block_map,
3019 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3020 }
3021 
3022 static void
3023 age_init_smb_block(struct age_softc *sc)
3024 {
3025 	struct age_ring_data *rd;
3026 
3027 	AGE_LOCK_ASSERT(sc);
3028 
3029 	rd = &sc->age_rdata;
3030 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3031 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3032 	    sc->age_cdata.age_smb_block_map,
3033 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3034 }
3035 
3036 static int
3037 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3038 {
3039 	struct rx_desc *desc;
3040 	struct mbuf *m;
3041 	bus_dma_segment_t segs[1];
3042 	bus_dmamap_t map;
3043 	int nsegs;
3044 
3045 	AGE_LOCK_ASSERT(sc);
3046 
3047 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3048 	if (m == NULL)
3049 		return (ENOBUFS);
3050 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3051 	m_adj(m, ETHER_ALIGN);
3052 
3053 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3054 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3055 		m_freem(m);
3056 		return (ENOBUFS);
3057 	}
3058 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3059 
3060 	if (rxd->rx_m != NULL) {
3061 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3062 		    BUS_DMASYNC_POSTREAD);
3063 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3064 	}
3065 	map = rxd->rx_dmamap;
3066 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3067 	sc->age_cdata.age_rx_sparemap = map;
3068 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3069 	    BUS_DMASYNC_PREREAD);
3070 	rxd->rx_m = m;
3071 
3072 	desc = rxd->rx_desc;
3073 	desc->addr = htole64(segs[0].ds_addr);
3074 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3075 	    AGE_RD_LEN_SHIFT);
3076 	return (0);
3077 }
3078 
3079 static void
3080 age_rxvlan(struct age_softc *sc)
3081 {
3082 	struct ifnet *ifp;
3083 	uint32_t reg;
3084 
3085 	AGE_LOCK_ASSERT(sc);
3086 
3087 	ifp = sc->age_ifp;
3088 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3089 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3090 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3091 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3092 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3093 }
3094 
3095 static void
3096 age_rxfilter(struct age_softc *sc)
3097 {
3098 	struct ifnet *ifp;
3099 	struct ifmultiaddr *ifma;
3100 	uint32_t crc;
3101 	uint32_t mchash[2];
3102 	uint32_t rxcfg;
3103 
3104 	AGE_LOCK_ASSERT(sc);
3105 
3106 	ifp = sc->age_ifp;
3107 
3108 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3109 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3110 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3111 		rxcfg |= MAC_CFG_BCAST;
3112 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3113 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3114 			rxcfg |= MAC_CFG_PROMISC;
3115 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3116 			rxcfg |= MAC_CFG_ALLMULTI;
3117 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3118 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3119 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3120 		return;
3121 	}
3122 
3123 	/* Program new filter. */
3124 	bzero(mchash, sizeof(mchash));
3125 
3126 	if_maddr_rlock(ifp);
3127 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3128 		if (ifma->ifma_addr->sa_family != AF_LINK)
3129 			continue;
3130 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3131 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3132 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3133 	}
3134 	if_maddr_runlock(ifp);
3135 
3136 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3137 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3138 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3139 }
3140 
3141 static int
3142 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3143 {
3144 	struct age_softc *sc;
3145 	struct age_stats *stats;
3146 	int error, result;
3147 
3148 	result = -1;
3149 	error = sysctl_handle_int(oidp, &result, 0, req);
3150 
3151 	if (error != 0 || req->newptr == NULL)
3152 		return (error);
3153 
3154 	if (result != 1)
3155 		return (error);
3156 
3157 	sc = (struct age_softc *)arg1;
3158 	stats = &sc->age_stat;
3159 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3160 	printf("Transmit good frames : %ju\n",
3161 	    (uintmax_t)stats->tx_frames);
3162 	printf("Transmit good broadcast frames : %ju\n",
3163 	    (uintmax_t)stats->tx_bcast_frames);
3164 	printf("Transmit good multicast frames : %ju\n",
3165 	    (uintmax_t)stats->tx_mcast_frames);
3166 	printf("Transmit pause control frames : %u\n",
3167 	    stats->tx_pause_frames);
3168 	printf("Transmit control frames : %u\n",
3169 	    stats->tx_control_frames);
3170 	printf("Transmit frames with excessive deferrals : %u\n",
3171 	    stats->tx_excess_defer);
3172 	printf("Transmit deferrals : %u\n",
3173 	    stats->tx_deferred);
3174 	printf("Transmit good octets : %ju\n",
3175 	    (uintmax_t)stats->tx_bytes);
3176 	printf("Transmit good broadcast octets : %ju\n",
3177 	    (uintmax_t)stats->tx_bcast_bytes);
3178 	printf("Transmit good multicast octets : %ju\n",
3179 	    (uintmax_t)stats->tx_mcast_bytes);
3180 	printf("Transmit frames 64 bytes : %ju\n",
3181 	    (uintmax_t)stats->tx_pkts_64);
3182 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3183 	    (uintmax_t)stats->tx_pkts_65_127);
3184 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3185 	    (uintmax_t)stats->tx_pkts_128_255);
3186 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3187 	    (uintmax_t)stats->tx_pkts_256_511);
3188 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3189 	    (uintmax_t)stats->tx_pkts_512_1023);
3190 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3191 	    (uintmax_t)stats->tx_pkts_1024_1518);
3192 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3193 	    (uintmax_t)stats->tx_pkts_1519_max);
3194 	printf("Transmit single collisions : %u\n",
3195 	    stats->tx_single_colls);
3196 	printf("Transmit multiple collisions : %u\n",
3197 	    stats->tx_multi_colls);
3198 	printf("Transmit late collisions : %u\n",
3199 	    stats->tx_late_colls);
3200 	printf("Transmit abort due to excessive collisions : %u\n",
3201 	    stats->tx_excess_colls);
3202 	printf("Transmit underruns due to FIFO underruns : %u\n",
3203 	    stats->tx_underrun);
3204 	printf("Transmit descriptor write-back errors : %u\n",
3205 	    stats->tx_desc_underrun);
3206 	printf("Transmit frames with length mismatched frame size : %u\n",
3207 	    stats->tx_lenerrs);
3208 	printf("Transmit frames with truncated due to MTU size : %u\n",
3209 	    stats->tx_lenerrs);
3210 
3211 	printf("Receive good frames : %ju\n",
3212 	    (uintmax_t)stats->rx_frames);
3213 	printf("Receive good broadcast frames : %ju\n",
3214 	    (uintmax_t)stats->rx_bcast_frames);
3215 	printf("Receive good multicast frames : %ju\n",
3216 	    (uintmax_t)stats->rx_mcast_frames);
3217 	printf("Receive pause control frames : %u\n",
3218 	    stats->rx_pause_frames);
3219 	printf("Receive control frames : %u\n",
3220 	    stats->rx_control_frames);
3221 	printf("Receive CRC errors : %u\n",
3222 	    stats->rx_crcerrs);
3223 	printf("Receive frames with length errors : %u\n",
3224 	    stats->rx_lenerrs);
3225 	printf("Receive good octets : %ju\n",
3226 	    (uintmax_t)stats->rx_bytes);
3227 	printf("Receive good broadcast octets : %ju\n",
3228 	    (uintmax_t)stats->rx_bcast_bytes);
3229 	printf("Receive good multicast octets : %ju\n",
3230 	    (uintmax_t)stats->rx_mcast_bytes);
3231 	printf("Receive frames too short : %u\n",
3232 	    stats->rx_runts);
3233 	printf("Receive fragmented frames : %ju\n",
3234 	    (uintmax_t)stats->rx_fragments);
3235 	printf("Receive frames 64 bytes : %ju\n",
3236 	    (uintmax_t)stats->rx_pkts_64);
3237 	printf("Receive frames 65 to 127 bytes : %ju\n",
3238 	    (uintmax_t)stats->rx_pkts_65_127);
3239 	printf("Receive frames 128 to 255 bytes : %ju\n",
3240 	    (uintmax_t)stats->rx_pkts_128_255);
3241 	printf("Receive frames 256 to 511 bytes : %ju\n",
3242 	    (uintmax_t)stats->rx_pkts_256_511);
3243 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3244 	    (uintmax_t)stats->rx_pkts_512_1023);
3245 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3246 	    (uintmax_t)stats->rx_pkts_1024_1518);
3247 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3248 	    (uintmax_t)stats->rx_pkts_1519_max);
3249 	printf("Receive frames too long : %ju\n",
3250 	    (uint64_t)stats->rx_pkts_truncated);
3251 	printf("Receive frames with FIFO overflow : %u\n",
3252 	    stats->rx_fifo_oflows);
3253 	printf("Receive frames with return descriptor overflow : %u\n",
3254 	    stats->rx_desc_oflows);
3255 	printf("Receive frames with alignment errors : %u\n",
3256 	    stats->rx_alignerrs);
3257 	printf("Receive frames dropped due to address filtering : %ju\n",
3258 	    (uint64_t)stats->rx_pkts_filtered);
3259 
3260 	return (error);
3261 }
3262 
3263 static int
3264 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3265 {
3266 	int error, value;
3267 
3268 	if (arg1 == NULL)
3269 		return (EINVAL);
3270 	value = *(int *)arg1;
3271 	error = sysctl_handle_int(oidp, &value, 0, req);
3272 	if (error || req->newptr == NULL)
3273 		return (error);
3274 	if (value < low || value > high)
3275 		return (EINVAL);
3276         *(int *)arg1 = value;
3277 
3278         return (0);
3279 }
3280 
3281 static int
3282 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3283 {
3284 	return (sysctl_int_range(oidp, arg1, arg2, req,
3285 	    AGE_PROC_MIN, AGE_PROC_MAX));
3286 }
3287 
3288 static int
3289 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3290 {
3291 
3292 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3293 	    AGE_IM_TIMER_MAX));
3294 }
3295