1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011-2012 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * This software was developed by SRI International and the University of
8  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
9  * ("CTSRD"), as part of the DARPA CRASH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/cons.h>
36 #include <sys/endian.h>
37 #include <sys/kdb.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/reboot.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/tty.h>
45 
46 #include <ddb/ddb.h>
47 
48 #include <dev/altera/jtag_uart/altera_jtag_uart.h>
49 
50 static SYSCTL_NODE(_hw, OID_AUTO, altera_jtag_uart,
51     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
52     "Altera JTAG UART configuration knobs");
53 
54 /*
55  * One-byte buffer as we can't check whether the UART is readable without
56  * actually reading from it, synchronised by a spinlock; this lock also
57  * synchronises access to the I/O ports for non-atomic sequences.  These
58  * symbols are public so that the TTY layer can use them when working on an
59  * instance of the UART that is also a low-level console.
60  */
61 char		aju_cons_buffer_data;
62 int		aju_cons_buffer_valid;
63 int		aju_cons_jtag_present;
64 u_int		aju_cons_jtag_missed;
65 struct mtx	aju_cons_lock;
66 
67 /*
68  * Low-level console driver functions.
69  */
70 static cn_probe_t	aju_cnprobe;
71 static cn_init_t	aju_cninit;
72 static cn_term_t	aju_cnterm;
73 static cn_getc_t	aju_cngetc;
74 static cn_putc_t	aju_cnputc;
75 static cn_grab_t	aju_cngrab;
76 static cn_ungrab_t	aju_cnungrab;
77 
78 /*
79  * JTAG sets the ALTERA_JTAG_UART_CONTROL_AC bit whenever it accesses the
80  * FIFO.  This allows us to (sort of) tell when JTAG is present, so that we
81  * can adopt lossy, rather than blocking, behaviour when JTAG isn't there.
82  * When it is present, we do full flow control.  This delay is how long we
83  * wait to see if JTAG has really disappeared when finding a full buffer and
84  * no AC bit set.
85  */
86 #define	ALTERA_JTAG_UART_AC_POLL_DELAY	10000
87 static u_int	altera_jtag_uart_ac_poll_delay =
88 		    ALTERA_JTAG_UART_AC_POLL_DELAY;
89 SYSCTL_UINT(_hw_altera_jtag_uart, OID_AUTO, ac_poll_delay,
90     CTLFLAG_RW, &altera_jtag_uart_ac_poll_delay, 0,
91     "Maximum delay waiting for JTAG present flag when buffer is full");
92 
93 /*
94  * I/O routines lifted from Deimos.  This is not only MIPS-specific, but also
95  * BERI-specific, as we're hard coding the address at which we expect to
96  * find the Altera JTAG UART and using it unconditionally.  We use these
97  * low-level routines so that we can perform console I/O long before newbus
98  * has initialised and devices have attached.  The TTY layer of the driver
99  * knows about this, and uses the console-layer spinlock instead of the
100  * TTY-layer lock to avoid confusion between layers for the console UART.
101  *
102  * XXXRW: The only place this inter-layer behaviour breaks down is if the
103  * low-level console is used for polled read while the TTY driver is also
104  * looking for input.  Probably we should also share buffers between layers.
105  */
106 #define	MIPS_XKPHYS_UNCACHED_BASE	0x9000000000000000
107 
108 typedef	uint64_t	paddr_t;
109 typedef	uint64_t	vaddr_t;
110 
111 static inline vaddr_t
mips_phys_to_uncached(paddr_t phys)112 mips_phys_to_uncached(paddr_t phys)
113 {
114 
115 	return (phys | MIPS_XKPHYS_UNCACHED_BASE);
116 }
117 
118 static inline uint32_t
mips_ioread_uint32(vaddr_t vaddr)119 mips_ioread_uint32(vaddr_t vaddr)
120 {
121 	uint32_t v;
122 
123 	__asm__ __volatile__ ("lw %0, 0(%1)" : "=r" (v) : "r" (vaddr));
124 	return (v);
125 }
126 
127 static inline void
mips_iowrite_uint32(vaddr_t vaddr,uint32_t v)128 mips_iowrite_uint32(vaddr_t vaddr, uint32_t v)
129 {
130 
131 	__asm__ __volatile__ ("sw %0, 0(%1)" : : "r" (v), "r" (vaddr));
132 }
133 
134 /*
135  * Little-endian versions of 32-bit I/O routines.
136  */
137 static inline uint32_t
mips_ioread_uint32le(vaddr_t vaddr)138 mips_ioread_uint32le(vaddr_t vaddr)
139 {
140 
141 	return (le32toh(mips_ioread_uint32(vaddr)));
142 }
143 
144 static inline void
mips_iowrite_uint32le(vaddr_t vaddr,uint32_t v)145 mips_iowrite_uint32le(vaddr_t vaddr, uint32_t v)
146 {
147 
148 	mips_iowrite_uint32(vaddr, htole32(v));
149 }
150 
151 /*
152  * Low-level read and write register routines; the Altera UART is little
153  * endian, so we byte swap 32-bit reads and writes.
154  */
155 static inline uint32_t
aju_cons_data_read(void)156 aju_cons_data_read(void)
157 {
158 
159 	return (mips_ioread_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
160 	    ALTERA_JTAG_UART_DATA_OFF)));
161 }
162 
163 static inline void
aju_cons_data_write(uint32_t v)164 aju_cons_data_write(uint32_t v)
165 {
166 
167 	mips_iowrite_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
168 	    ALTERA_JTAG_UART_DATA_OFF), v);
169 }
170 
171 static inline uint32_t
aju_cons_control_read(void)172 aju_cons_control_read(void)
173 {
174 
175 	return (mips_ioread_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
176 	    ALTERA_JTAG_UART_CONTROL_OFF)));
177 }
178 
179 static inline void
aju_cons_control_write(uint32_t v)180 aju_cons_control_write(uint32_t v)
181 {
182 
183 	mips_iowrite_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
184 	    ALTERA_JTAG_UART_CONTROL_OFF), v);
185 }
186 
187 /*
188  * Slightly higher-level routines aware of buffering and flow control.
189  */
190 static int
aju_cons_readable(void)191 aju_cons_readable(void)
192 {
193 	uint32_t v;
194 
195 	AJU_CONSOLE_LOCK_ASSERT();
196 
197 	if (aju_cons_buffer_valid)
198 		return (1);
199 	v = aju_cons_data_read();
200 	if ((v & ALTERA_JTAG_UART_DATA_RVALID) != 0) {
201 		aju_cons_buffer_valid = 1;
202 		aju_cons_buffer_data = (v & ALTERA_JTAG_UART_DATA_DATA);
203 		return (1);
204 	}
205 	return (0);
206 }
207 
208 static void
aju_cons_write(char ch)209 aju_cons_write(char ch)
210 {
211 	uint32_t v;
212 
213 	AJU_CONSOLE_LOCK_ASSERT();
214 
215 	/*
216 	 * The flow control logic here is somewhat subtle: we want to wait for
217 	 * write buffer space only while JTAG is present.  However, we can't
218 	 * directly ask if JTAG is present -- just whether it's been seen
219 	 * since we last cleared the ALTERA_JTAG_UART_CONTROL_AC bit.  As
220 	 * such, implement a polling loop in which we both wait for space and
221 	 * try to decide whether JTAG has disappeared on us.  We will have to
222 	 * wait one complete polling delay to detect that JTAG has gone away,
223 	 * but otherwise shouldn't wait any further once it has gone.  And we
224 	 * had to wait for buffer space anyway, if it was there.
225 	 *
226 	 * If JTAG is spotted, reset the TTY-layer miss counter so console-
227 	 * layer clearing of the bit doesn't trigger a TTY-layer
228 	 * disconnection.
229 	 *
230 	 * XXXRW: Notice the inherent race with hardware: in clearing the
231 	 * bit, we may race with hardware setting the same bit.  This can
232 	 * cause real-world reliability problems due to lost output on the
233 	 * console.
234 	 */
235 	v = aju_cons_control_read();
236 	if (v & ALTERA_JTAG_UART_CONTROL_AC) {
237 		aju_cons_jtag_present = 1;
238 		aju_cons_jtag_missed = 0;
239 		v &= ~ALTERA_JTAG_UART_CONTROL_AC;
240 		aju_cons_control_write(v);
241 	}
242 	while ((v & ALTERA_JTAG_UART_CONTROL_WSPACE) == 0) {
243 		if (!aju_cons_jtag_present)
244 			return;
245 		DELAY(altera_jtag_uart_ac_poll_delay);
246 		v = aju_cons_control_read();
247 		if (v & ALTERA_JTAG_UART_CONTROL_AC) {
248 			aju_cons_jtag_present = 1;
249 			v &= ~ALTERA_JTAG_UART_CONTROL_AC;
250 			aju_cons_control_write(v);
251 		} else
252 			aju_cons_jtag_present = 0;
253 	}
254 	aju_cons_data_write(ch);
255 }
256 
257 static char
aju_cons_read(void)258 aju_cons_read(void)
259 {
260 
261 	AJU_CONSOLE_LOCK_ASSERT();
262 
263 	while (!aju_cons_readable());
264 	aju_cons_buffer_valid = 0;
265 	return (aju_cons_buffer_data);
266 }
267 
268 /*
269  * Implementation of a FreeBSD low-level, polled console driver.
270  */
271 static void
aju_cnprobe(struct consdev * cp)272 aju_cnprobe(struct consdev *cp)
273 {
274 
275 	sprintf(cp->cn_name, "%s%d", AJU_TTYNAME, 0);
276 	cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL;
277 }
278 
279 static void
aju_cninit(struct consdev * cp)280 aju_cninit(struct consdev *cp)
281 {
282 	uint32_t v;
283 
284 	AJU_CONSOLE_LOCK_INIT();
285 
286 	AJU_CONSOLE_LOCK();
287 	v = aju_cons_control_read();
288 	v &= ~ALTERA_JTAG_UART_CONTROL_AC;
289 	aju_cons_control_write(v);
290 	AJU_CONSOLE_UNLOCK();
291 }
292 
293 static void
aju_cnterm(struct consdev * cp)294 aju_cnterm(struct consdev *cp)
295 {
296 
297 }
298 
299 static int
aju_cngetc(struct consdev * cp)300 aju_cngetc(struct consdev *cp)
301 {
302 	int ret;
303 
304 	AJU_CONSOLE_LOCK();
305 	ret = aju_cons_read();
306 	AJU_CONSOLE_UNLOCK();
307 	return (ret);
308 }
309 
310 static void
aju_cnputc(struct consdev * cp,int c)311 aju_cnputc(struct consdev *cp, int c)
312 {
313 
314 	AJU_CONSOLE_LOCK();
315 	aju_cons_write(c);
316 	AJU_CONSOLE_UNLOCK();
317 }
318 
319 static void
aju_cngrab(struct consdev * cp)320 aju_cngrab(struct consdev *cp)
321 {
322 
323 }
324 
325 static void
aju_cnungrab(struct consdev * cp)326 aju_cnungrab(struct consdev *cp)
327 {
328 
329 }
330 
331 CONSOLE_DRIVER(aju);
332