1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011-2012 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * This software was developed by SRI International and the University of
8  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
9  * ("CTSRD"), as part of the DARPA CRASH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cons.h>
37 #include <sys/endian.h>
38 #include <sys/kdb.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/reboot.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/tty.h>
46 
47 #include <ddb/ddb.h>
48 
49 #include <dev/altera/jtag_uart/altera_jtag_uart.h>
50 
51 static SYSCTL_NODE(_hw, OID_AUTO, altera_jtag_uart,
52     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
53     "Altera JTAG UART configuration knobs");
54 
55 /*
56  * One-byte buffer as we can't check whether the UART is readable without
57  * actually reading from it, synchronised by a spinlock; this lock also
58  * synchronises access to the I/O ports for non-atomic sequences.  These
59  * symbols are public so that the TTY layer can use them when working on an
60  * instance of the UART that is also a low-level console.
61  */
62 char		aju_cons_buffer_data;
63 int		aju_cons_buffer_valid;
64 int		aju_cons_jtag_present;
65 u_int		aju_cons_jtag_missed;
66 struct mtx	aju_cons_lock;
67 
68 /*
69  * Low-level console driver functions.
70  */
71 static cn_probe_t	aju_cnprobe;
72 static cn_init_t	aju_cninit;
73 static cn_term_t	aju_cnterm;
74 static cn_getc_t	aju_cngetc;
75 static cn_putc_t	aju_cnputc;
76 static cn_grab_t	aju_cngrab;
77 static cn_ungrab_t	aju_cnungrab;
78 
79 /*
80  * JTAG sets the ALTERA_JTAG_UART_CONTROL_AC bit whenever it accesses the
81  * FIFO.  This allows us to (sort of) tell when JTAG is present, so that we
82  * can adopt lossy, rather than blocking, behaviour when JTAG isn't there.
83  * When it is present, we do full flow control.  This delay is how long we
84  * wait to see if JTAG has really disappeared when finding a full buffer and
85  * no AC bit set.
86  */
87 #define	ALTERA_JTAG_UART_AC_POLL_DELAY	10000
88 static u_int	altera_jtag_uart_ac_poll_delay =
89 		    ALTERA_JTAG_UART_AC_POLL_DELAY;
90 SYSCTL_UINT(_hw_altera_jtag_uart, OID_AUTO, ac_poll_delay,
91     CTLFLAG_RW, &altera_jtag_uart_ac_poll_delay, 0,
92     "Maximum delay waiting for JTAG present flag when buffer is full");
93 
94 /*
95  * I/O routines lifted from Deimos.  This is not only MIPS-specific, but also
96  * BERI-specific, as we're hard coding the address at which we expect to
97  * find the Altera JTAG UART and using it unconditionally.  We use these
98  * low-level routines so that we can perform console I/O long before newbus
99  * has initialised and devices have attached.  The TTY layer of the driver
100  * knows about this, and uses the console-layer spinlock instead of the
101  * TTY-layer lock to avoid confusion between layers for the console UART.
102  *
103  * XXXRW: The only place this inter-layer behaviour breaks down is if the
104  * low-level console is used for polled read while the TTY driver is also
105  * looking for input.  Probably we should also share buffers between layers.
106  */
107 #define	MIPS_XKPHYS_UNCACHED_BASE	0x9000000000000000
108 
109 typedef	uint64_t	paddr_t;
110 typedef	uint64_t	vaddr_t;
111 
112 static inline vaddr_t
113 mips_phys_to_uncached(paddr_t phys)
114 {
115 
116 	return (phys | MIPS_XKPHYS_UNCACHED_BASE);
117 }
118 
119 static inline uint32_t
120 mips_ioread_uint32(vaddr_t vaddr)
121 {
122 	uint32_t v;
123 
124 	__asm__ __volatile__ ("lw %0, 0(%1)" : "=r" (v) : "r" (vaddr));
125 	return (v);
126 }
127 
128 static inline void
129 mips_iowrite_uint32(vaddr_t vaddr, uint32_t v)
130 {
131 
132 	__asm__ __volatile__ ("sw %0, 0(%1)" : : "r" (v), "r" (vaddr));
133 }
134 
135 /*
136  * Little-endian versions of 32-bit I/O routines.
137  */
138 static inline uint32_t
139 mips_ioread_uint32le(vaddr_t vaddr)
140 {
141 
142 	return (le32toh(mips_ioread_uint32(vaddr)));
143 }
144 
145 static inline void
146 mips_iowrite_uint32le(vaddr_t vaddr, uint32_t v)
147 {
148 
149 	mips_iowrite_uint32(vaddr, htole32(v));
150 }
151 
152 /*
153  * Low-level read and write register routines; the Altera UART is little
154  * endian, so we byte swap 32-bit reads and writes.
155  */
156 static inline uint32_t
157 aju_cons_data_read(void)
158 {
159 
160 	return (mips_ioread_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
161 	    ALTERA_JTAG_UART_DATA_OFF)));
162 }
163 
164 static inline void
165 aju_cons_data_write(uint32_t v)
166 {
167 
168 	mips_iowrite_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
169 	    ALTERA_JTAG_UART_DATA_OFF), v);
170 }
171 
172 static inline uint32_t
173 aju_cons_control_read(void)
174 {
175 
176 	return (mips_ioread_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
177 	    ALTERA_JTAG_UART_CONTROL_OFF)));
178 }
179 
180 static inline void
181 aju_cons_control_write(uint32_t v)
182 {
183 
184 	mips_iowrite_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
185 	    ALTERA_JTAG_UART_CONTROL_OFF), v);
186 }
187 
188 /*
189  * Slightly higher-level routines aware of buffering and flow control.
190  */
191 static int
192 aju_cons_readable(void)
193 {
194 	uint32_t v;
195 
196 	AJU_CONSOLE_LOCK_ASSERT();
197 
198 	if (aju_cons_buffer_valid)
199 		return (1);
200 	v = aju_cons_data_read();
201 	if ((v & ALTERA_JTAG_UART_DATA_RVALID) != 0) {
202 		aju_cons_buffer_valid = 1;
203 		aju_cons_buffer_data = (v & ALTERA_JTAG_UART_DATA_DATA);
204 		return (1);
205 	}
206 	return (0);
207 }
208 
209 static void
210 aju_cons_write(char ch)
211 {
212 	uint32_t v;
213 
214 	AJU_CONSOLE_LOCK_ASSERT();
215 
216 	/*
217 	 * The flow control logic here is somewhat subtle: we want to wait for
218 	 * write buffer space only while JTAG is present.  However, we can't
219 	 * directly ask if JTAG is present -- just whether it's been seen
220 	 * since we last cleared the ALTERA_JTAG_UART_CONTROL_AC bit.  As
221 	 * such, implement a polling loop in which we both wait for space and
222 	 * try to decide whether JTAG has disappeared on us.  We will have to
223 	 * wait one complete polling delay to detect that JTAG has gone away,
224 	 * but otherwise shouldn't wait any further once it has gone.  And we
225 	 * had to wait for buffer space anyway, if it was there.
226 	 *
227 	 * If JTAG is spotted, reset the TTY-layer miss counter so console-
228 	 * layer clearing of the bit doesn't trigger a TTY-layer
229 	 * disconnection.
230 	 *
231 	 * XXXRW: Notice the inherent race with hardware: in clearing the
232 	 * bit, we may race with hardware setting the same bit.  This can
233 	 * cause real-world reliability problems due to lost output on the
234 	 * console.
235 	 */
236 	v = aju_cons_control_read();
237 	if (v & ALTERA_JTAG_UART_CONTROL_AC) {
238 		aju_cons_jtag_present = 1;
239 		aju_cons_jtag_missed = 0;
240 		v &= ~ALTERA_JTAG_UART_CONTROL_AC;
241 		aju_cons_control_write(v);
242 	}
243 	while ((v & ALTERA_JTAG_UART_CONTROL_WSPACE) == 0) {
244 		if (!aju_cons_jtag_present)
245 			return;
246 		DELAY(altera_jtag_uart_ac_poll_delay);
247 		v = aju_cons_control_read();
248 		if (v & ALTERA_JTAG_UART_CONTROL_AC) {
249 			aju_cons_jtag_present = 1;
250 			v &= ~ALTERA_JTAG_UART_CONTROL_AC;
251 			aju_cons_control_write(v);
252 		} else
253 			aju_cons_jtag_present = 0;
254 	}
255 	aju_cons_data_write(ch);
256 }
257 
258 static char
259 aju_cons_read(void)
260 {
261 
262 	AJU_CONSOLE_LOCK_ASSERT();
263 
264 	while (!aju_cons_readable());
265 	aju_cons_buffer_valid = 0;
266 	return (aju_cons_buffer_data);
267 }
268 
269 /*
270  * Implementation of a FreeBSD low-level, polled console driver.
271  */
272 static void
273 aju_cnprobe(struct consdev *cp)
274 {
275 
276 	sprintf(cp->cn_name, "%s%d", AJU_TTYNAME, 0);
277 	cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL;
278 }
279 
280 static void
281 aju_cninit(struct consdev *cp)
282 {
283 	uint32_t v;
284 
285 	AJU_CONSOLE_LOCK_INIT();
286 
287 	AJU_CONSOLE_LOCK();
288 	v = aju_cons_control_read();
289 	v &= ~ALTERA_JTAG_UART_CONTROL_AC;
290 	aju_cons_control_write(v);
291 	AJU_CONSOLE_UNLOCK();
292 }
293 
294 static void
295 aju_cnterm(struct consdev *cp)
296 {
297 
298 }
299 
300 static int
301 aju_cngetc(struct consdev *cp)
302 {
303 	int ret;
304 
305 	AJU_CONSOLE_LOCK();
306 	ret = aju_cons_read();
307 	AJU_CONSOLE_UNLOCK();
308 	return (ret);
309 }
310 
311 static void
312 aju_cnputc(struct consdev *cp, int c)
313 {
314 
315 	AJU_CONSOLE_LOCK();
316 	aju_cons_write(c);
317 	AJU_CONSOLE_UNLOCK();
318 }
319 
320 static void
321 aju_cngrab(struct consdev *cp)
322 {
323 
324 }
325 
326 static void
327 aju_cnungrab(struct consdev *cp)
328 {
329 
330 }
331 
332 CONSOLE_DRIVER(aju);
333