1 /*-
2  * Copyright (c) 2011-2012 Robert N. M. Watson
3  * All rights reserved.
4  *
5  * This software was developed by SRI International and the University of
6  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
7  * ("CTSRD"), as part of the DARPA CRASH research programme.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/cons.h>
37 #include <sys/endian.h>
38 #include <sys/kdb.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/reboot.h>
43 #include <sys/systm.h>
44 #include <sys/tty.h>
45 
46 #include <ddb/ddb.h>
47 
48 #include <dev/altera/jtag_uart/altera_jtag_uart.h>
49 
50 devclass_t	altera_jtag_uart_devclass;
51 
52 /*
53  * One-byte buffer as we can't check whether the UART is readable without
54  * actually reading from it, synchronised by a spinlock; this lock also
55  * synchronises access to the I/O ports for non-atomic sequences.  These
56  * symbols are public so that the TTY layer can use them when working on an
57  * instance of the UART that is also a low-level console.
58  */
59 char		aju_cons_buffer_data;
60 int		aju_cons_buffer_valid;
61 int		aju_cons_jtag_present;
62 u_int		aju_cons_jtag_missed;
63 struct mtx	aju_cons_lock;
64 
65 /*
66  * Low-level console driver functions.
67  */
68 static cn_probe_t	aju_cnprobe;
69 static cn_init_t	aju_cninit;
70 static cn_term_t	aju_cnterm;
71 static cn_getc_t	aju_cngetc;
72 static cn_putc_t	aju_cnputc;
73 static cn_grab_t	aju_cngrab;
74 static cn_ungrab_t	aju_cnungrab;
75 
76 /*
77  * JTAG sets the ALTERA_JTAG_UART_CONTROL_AC bit whenever it accesses the
78  * FIFO.  This allows us to (sort of) tell when JTAG is present, so that we
79  * can adopt lossy, rather than blocking, behaviour when JTAG isn't there.
80  * When it is present, we do full flow control.  This delay is how long we
81  * wait to see if JTAG has really disappeared when finding a full buffer and
82  * no AC bit set.
83  */
84 #define	ALTERA_JTAG_UART_AC_POLL_DELAY	10000
85 
86 /*
87  * I/O routines lifted from Deimos.  This is not only MIPS-specific, but also
88  * BERI-specific, as we're hard coding the address at which we expect to
89  * find the Altera JTAG UART and using it unconditionally.  We use these
90  * low-level routines so that we can perform console I/O long before newbus
91  * has initialised and devices have attached.  The TTY layer of the driver
92  * knows about this, and uses the console-layer spinlock instead of the
93  * TTY-layer lock to avoid confusion between layers for the console UART.
94  *
95  * XXXRW: The only place this inter-layer behaviour breaks down is if the
96  * low-level console is used for polled read while the TTY driver is also
97  * looking for input.  Probably we should also share buffers between layers.
98  */
99 #define	MIPS_XKPHYS_UNCACHED_BASE	0x9000000000000000
100 
101 typedef	uint64_t	paddr_t;
102 typedef	uint64_t	vaddr_t;
103 
104 static inline vaddr_t
105 mips_phys_to_uncached(paddr_t phys)
106 {
107 
108 	return (phys | MIPS_XKPHYS_UNCACHED_BASE);
109 }
110 
111 static inline uint32_t
112 mips_ioread_uint32(vaddr_t vaddr)
113 {
114 	uint32_t v;
115 
116 	__asm__ __volatile__ ("lw %0, 0(%1)" : "=r" (v) : "r" (vaddr));
117 	return (v);
118 }
119 
120 static inline void
121 mips_iowrite_uint32(vaddr_t vaddr, uint32_t v)
122 {
123 
124 	__asm__ __volatile__ ("sw %0, 0(%1)" : : "r" (v), "r" (vaddr));
125 }
126 
127 /*
128  * Little-endian versions of 32-bit I/O routines.
129  */
130 static inline uint32_t
131 mips_ioread_uint32le(vaddr_t vaddr)
132 {
133 
134 	return (le32toh(mips_ioread_uint32(vaddr)));
135 }
136 
137 static inline void
138 mips_iowrite_uint32le(vaddr_t vaddr, uint32_t v)
139 {
140 
141 	mips_iowrite_uint32(vaddr, htole32(v));
142 }
143 
144 /*
145  * Low-level read and write register routines; the Altera UART is little
146  * endian, so we byte swap 32-bit reads and writes.
147  */
148 static inline uint32_t
149 aju_cons_data_read(void)
150 {
151 
152 	return (mips_ioread_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
153 	    ALTERA_JTAG_UART_DATA_OFF)));
154 }
155 
156 static inline void
157 aju_cons_data_write(uint32_t v)
158 {
159 
160 	mips_iowrite_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
161 	    ALTERA_JTAG_UART_DATA_OFF), v);
162 }
163 
164 static inline uint32_t
165 aju_cons_control_read(void)
166 {
167 
168 	return (mips_ioread_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
169 	    ALTERA_JTAG_UART_CONTROL_OFF)));
170 }
171 
172 static inline void
173 aju_cons_control_write(uint32_t v)
174 {
175 
176 	mips_iowrite_uint32le(mips_phys_to_uncached(BERI_UART_BASE +
177 	    ALTERA_JTAG_UART_CONTROL_OFF), v);
178 }
179 
180 /*
181  * Slightly higher-level routines aware of buffering and flow control.
182  */
183 static int
184 aju_cons_readable(void)
185 {
186 	uint32_t v;
187 
188 	AJU_CONSOLE_LOCK_ASSERT();
189 
190 	if (aju_cons_buffer_valid)
191 		return (1);
192 	v = aju_cons_data_read();
193 	if ((v & ALTERA_JTAG_UART_DATA_RVALID) != 0) {
194 		aju_cons_buffer_valid = 1;
195 		aju_cons_buffer_data = (v & ALTERA_JTAG_UART_DATA_DATA);
196 		return (1);
197 	}
198 	return (0);
199 }
200 
201 static void
202 aju_cons_write(char ch)
203 {
204 	uint32_t v;
205 
206 	AJU_CONSOLE_LOCK_ASSERT();
207 
208 	/*
209 	 * The flow control logic here is somewhat subtle: we want to wait for
210 	 * write buffer space only while JTAG is present.  However, we can't
211 	 * directly ask if JTAG is present -- just whether it's been seen
212 	 * since we last cleared the ALTERA_JTAG_UART_CONTROL_AC bit.  As
213 	 * such, implement a polling loop in which we both wait for space and
214 	 * try to decide whether JTAG has disappeared on us.  We will have to
215 	 * wait one complete polling delay to detect that JTAG has gone away,
216 	 * but otherwise shouldn't wait any further once it has gone.  And we
217 	 * had to wait for buffer space anyway, if it was there.
218 	 *
219 	 * If JTAG is spotted, reset the TTY-layer miss counter so console-
220 	 * layer clearing of the bit doesn't trigger a TTY-layer
221 	 * disconnection.
222 	 *
223 	 * XXXRW: The polling delay may require tuning.
224 	 *
225 	 * XXXRW: Notice the inherent race with hardware: in clearing the
226 	 * bit, we may race with hardware setting the same bit.
227 	 */
228 	v = aju_cons_control_read();
229 	if (v & ALTERA_JTAG_UART_CONTROL_AC) {
230 		aju_cons_jtag_present = 1;
231 		aju_cons_jtag_missed = 0;
232 		v &= ~ALTERA_JTAG_UART_CONTROL_AC;
233 		aju_cons_control_write(v);
234 	}
235 	while ((v & ALTERA_JTAG_UART_CONTROL_WSPACE) == 0) {
236 		if (!aju_cons_jtag_present)
237 			return;
238 		DELAY(ALTERA_JTAG_UART_AC_POLL_DELAY);
239 		v = aju_cons_control_read();
240 		if (v & ALTERA_JTAG_UART_CONTROL_AC) {
241 			aju_cons_jtag_present = 1;
242 			v &= ~ALTERA_JTAG_UART_CONTROL_AC;
243 			aju_cons_control_write(v);
244 		} else
245 			aju_cons_jtag_present = 0;
246 	}
247 	aju_cons_data_write(ch);
248 }
249 
250 static char
251 aju_cons_read(void)
252 {
253 
254 	AJU_CONSOLE_LOCK_ASSERT();
255 
256 	while (!aju_cons_readable());
257 	aju_cons_buffer_valid = 0;
258 	return (aju_cons_buffer_data);
259 }
260 
261 /*
262  * Implementation of a FreeBSD low-level, polled console driver.
263  */
264 static void
265 aju_cnprobe(struct consdev *cp)
266 {
267 
268 	sprintf(cp->cn_name, "%s%d", AJU_TTYNAME, 0);
269 	cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL;
270 }
271 
272 static void
273 aju_cninit(struct consdev *cp)
274 {
275 	uint32_t v;
276 
277 	AJU_CONSOLE_LOCK_INIT();
278 
279 	AJU_CONSOLE_LOCK();
280 	v = aju_cons_control_read();
281 	v &= ~ALTERA_JTAG_UART_CONTROL_AC;
282 	aju_cons_control_write(v);
283 	AJU_CONSOLE_UNLOCK();
284 }
285 
286 static void
287 aju_cnterm(struct consdev *cp)
288 {
289 
290 }
291 
292 static int
293 aju_cngetc(struct consdev *cp)
294 {
295 	int ret;
296 
297 	AJU_CONSOLE_LOCK();
298 	ret = aju_cons_read();
299 	AJU_CONSOLE_UNLOCK();
300 	return (ret);
301 }
302 
303 static void
304 aju_cnputc(struct consdev *cp, int c)
305 {
306 
307 	AJU_CONSOLE_LOCK();
308 	aju_cons_write(c);
309 	AJU_CONSOLE_UNLOCK();
310 }
311 
312 static void
313 aju_cngrab(struct consdev *cp)
314 {
315 
316 }
317 
318 static void
319 aju_cnungrab(struct consdev *cp)
320 {
321 
322 }
323 
324 CONSOLE_DRIVER(aju);
325