xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/t4.h (revision 95ee2897)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 #ifndef __T4_H__
34 #define __T4_H__
35 
36 #include "common/t4_regs_values.h"
37 #include "common/t4_regs.h"
38 /*
39  * Fixme: Adding missing defines
40  */
41 #define SGE_PF_KDOORBELL 0x0
42 #define  QID_MASK    0xffff8000U
43 #define  QID_SHIFT   15
44 #define  QID(x)      ((x) << QID_SHIFT)
45 #define  DBPRIO      0x00004000U
46 #define  PIDX_MASK   0x00003fffU
47 #define  PIDX_SHIFT  0
48 #define  PIDX(x)     ((x) << PIDX_SHIFT)
49 
50 #define SGE_PF_GTS 0x4
51 #define  INGRESSQID_MASK   0xffff0000U
52 #define  INGRESSQID_SHIFT  16
53 #define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
54 #define  TIMERREG_MASK     0x0000e000U
55 #define  TIMERREG_SHIFT    13
56 #define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
57 #define  SEINTARM_MASK     0x00001000U
58 #define  SEINTARM_SHIFT    12
59 #define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
60 #define  CIDXINC_MASK      0x00000fffU
61 #define  CIDXINC_SHIFT     0
62 #define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
63 
64 #define T4_MAX_NUM_PD 65536
65 #define T4_MAX_MR_SIZE (~0ULL)
66 #define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
67 #define T4_STAG_UNSET 0xffffffff
68 #define T4_FW_MAJ 0
69 #define A_PCIE_MA_SYNC 0x30b4
70 
71 struct t4_status_page {
72 	__be32 rsvd1;	/* flit 0 - hw owns */
73 	__be16 rsvd2;
74 	__be16 qid;
75 	__be16 cidx;
76 	__be16 pidx;
77 	u8 qp_err;	/* flit 1 - sw owns */
78 	u8 db_off;
79 	u8 pad;
80 	u16 host_wq_pidx;
81 	u16 host_cidx;
82 	u16 host_pidx;
83 };
84 
85 #define T4_EQ_ENTRY_SIZE 64
86 
87 #define T4_SQ_NUM_SLOTS 5
88 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
89 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
90 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
91 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
92 			sizeof(struct fw_ri_immd)))
93 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
94 			sizeof(struct fw_ri_rdma_write_wr) - \
95 			sizeof(struct fw_ri_immd)))
96 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
97 			sizeof(struct fw_ri_rdma_write_wr) - \
98 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
99 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
100 			sizeof(struct fw_ri_immd)) & ~31UL)
101 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
102 #define T4_MAX_FR_DSGL 1024
103 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
104 #define T4_MAX_FR_FW_DSGL 4096
105 #define T4_MAX_FR_FW_DSGL_DEPTH (T4_MAX_FR_FW_DSGL / sizeof(u64))
106 
107 #define T4_RQ_NUM_SLOTS 2
108 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
109 #define T4_MAX_RECV_SGE 4
110 
111 union t4_wr {
112 	struct fw_ri_res_wr res;
113 	struct fw_ri_wr ri;
114 	struct fw_ri_rdma_write_wr write;
115 	struct fw_ri_send_wr send;
116 	struct fw_ri_rdma_read_wr read;
117 	struct fw_ri_bind_mw_wr bind;
118 	struct fw_ri_fr_nsmr_wr fr;
119 	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
120 	struct fw_ri_inv_lstag_wr inv;
121 	struct t4_status_page status;
122 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
123 };
124 
125 union t4_recv_wr {
126 	struct fw_ri_recv_wr recv;
127 	struct t4_status_page status;
128 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
129 };
130 
init_wr_hdr(union t4_wr * wqe,u16 wrid,enum fw_wr_opcodes opcode,u8 flags,u8 len16)131 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
132 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
133 {
134 	wqe->send.opcode = (u8)opcode;
135 	wqe->send.flags = flags;
136 	wqe->send.wrid = wrid;
137 	wqe->send.r1[0] = 0;
138 	wqe->send.r1[1] = 0;
139 	wqe->send.r1[2] = 0;
140 	wqe->send.len16 = len16;
141 }
142 
143 /* CQE/AE status codes */
144 #define T4_ERR_SUCCESS                     0x0
145 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
146 						/* STAG is offlimt, being 0, */
147 						/* or STAG_key mismatch */
148 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
149 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
150 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
151 #define T4_ERR_WRAP                        0x5	/* Wrap error */
152 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
153 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
154 						/* shared memory region */
155 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
156 						/* shared memory region */
157 #define T4_ERR_ECC                         0x9	/* ECC error detected */
158 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
159 						/* reading PSTAG for a MW  */
160 						/* Invalidate */
161 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
162 						/* software error */
163 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
164 #define T4_ERR_CRC                         0x10 /* CRC error */
165 #define T4_ERR_MARKER                      0x11 /* Marker error */
166 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
167 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
168 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
169 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
170 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
171 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
172 #define T4_ERR_MSN                         0x18 /* MSN error */
173 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
174 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
175 						/* or READ_REQ */
176 #define T4_ERR_MSN_GAP                     0x1B
177 #define T4_ERR_MSN_RANGE                   0x1C
178 #define T4_ERR_IRD_OVERFLOW                0x1D
179 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
180 						/* software error */
181 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
182 						/* mismatch) */
183 /*
184  * CQE defs
185  */
186 struct t4_cqe {
187 	__be32 header;
188 	__be32 len;
189 	union {
190 		struct {
191 			__be32 stag;
192 			__be32 msn;
193 		} rcqe;
194 		struct {
195 			u32 stag;
196 			u16 nada2;
197 			u16 cidx;
198 		} scqe;
199 		struct {
200 			__be32 wrid_hi;
201 			__be32 wrid_low;
202 		} gen;
203 		u64 drain_cookie;
204 	} u;
205 	__be64 reserved;
206 	__be64 bits_type_ts;
207 };
208 
209 /* macros for flit 0 of the cqe */
210 
211 #define S_CQE_QPID        12
212 #define M_CQE_QPID        0xFFFFF
213 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
214 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
215 
216 #define S_CQE_SWCQE       11
217 #define M_CQE_SWCQE       0x1
218 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
219 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
220 
221 #define S_CQE_STATUS      5
222 #define M_CQE_STATUS      0x1F
223 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
224 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
225 
226 #define S_CQE_TYPE        4
227 #define M_CQE_TYPE        0x1
228 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
229 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
230 
231 #define S_CQE_OPCODE      0
232 #define M_CQE_OPCODE      0xF
233 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
234 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
235 
236 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
237 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
238 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
239 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
240 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
241 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
242 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
243 
244 #define CQE_SEND_OPCODE(x)(\
245 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
246 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
247 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
248 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
249 
250 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
251 
252 /* used for RQ completion processing */
253 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
254 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
255 
256 /* used for SQ completion processing */
257 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
258 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
259 
260 /* generic accessor macros */
261 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
262 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
263 #define CQE_DRAIN_COOKIE(x)	(x)->u.drain_cookie;
264 
265 /* macros for flit 3 of the cqe */
266 #define S_CQE_GENBIT	63
267 #define M_CQE_GENBIT	0x1
268 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
269 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
270 
271 #define S_CQE_OVFBIT	62
272 #define M_CQE_OVFBIT	0x1
273 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
274 
275 #define S_CQE_IQTYPE	60
276 #define M_CQE_IQTYPE	0x3
277 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
278 
279 #define M_CQE_TS	0x0fffffffffffffffULL
280 #define G_CQE_TS(x)	((x) & M_CQE_TS)
281 
282 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
283 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
284 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
285 
286 struct t4_swsqe {
287 	u64			wr_id;
288 	struct t4_cqe		cqe;
289 	int			read_len;
290 	int			opcode;
291 	int			complete;
292 	int			signaled;
293 	u16			idx;
294 	int                     flushed;
295 	struct timespec         host_ts;
296 	u64                     sge_ts;
297 };
298 
t4_pgprot_wc(pgprot_t prot)299 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
300 {
301 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
302 	return pgprot_writecombine(prot);
303 #else
304 	return pgprot_noncached(prot);
305 #endif
306 }
307 
308 enum {
309 	T4_SQ_ONCHIP = (1<<0),
310 };
311 
312 struct t4_sq {
313 	union t4_wr *queue;
314 	bus_addr_t dma_addr;
315 	DEFINE_DMA_UNMAP_ADDR(mapping);
316 	unsigned long phys_addr;
317 	struct t4_swsqe *sw_sq;
318 	struct t4_swsqe *oldest_read;
319 	void __iomem *bar2_va;
320 	u64 bar2_pa;
321 	size_t memsize;
322 	u32 bar2_qid;
323 	u32 qid;
324 	u16 in_use;
325 	u16 size;
326 	u16 cidx;
327 	u16 pidx;
328 	u16 wq_pidx;
329 	u16 wq_pidx_inc;
330 	u16 flags;
331 	short flush_cidx;
332 };
333 
334 struct t4_swrqe {
335 	u64 wr_id;
336 };
337 
338 struct t4_rq {
339 	union  t4_recv_wr *queue;
340 	bus_addr_t dma_addr;
341 	DEFINE_DMA_UNMAP_ADDR(mapping);
342 	unsigned long phys_addr;
343 	struct t4_swrqe *sw_rq;
344 	void __iomem *bar2_va;
345 	u64 bar2_pa;
346 	size_t memsize;
347 	u32 bar2_qid;
348 	u32 qid;
349 	u32 msn;
350 	u32 rqt_hwaddr;
351 	u16 rqt_size;
352 	u16 in_use;
353 	u16 size;
354 	u16 cidx;
355 	u16 pidx;
356 	u16 wq_pidx;
357 	u16 wq_pidx_inc;
358 };
359 
360 struct t4_wq {
361 	struct t4_sq sq;
362 	struct t4_rq rq;
363 	struct c4iw_rdev *rdev;
364 	int flushed;
365 };
366 
t4_rqes_posted(struct t4_wq * wq)367 static inline int t4_rqes_posted(struct t4_wq *wq)
368 {
369 	return wq->rq.in_use;
370 }
371 
t4_rq_empty(struct t4_wq * wq)372 static inline int t4_rq_empty(struct t4_wq *wq)
373 {
374 	return wq->rq.in_use == 0;
375 }
376 
t4_rq_full(struct t4_wq * wq)377 static inline int t4_rq_full(struct t4_wq *wq)
378 {
379 	return wq->rq.in_use == (wq->rq.size - 1);
380 }
381 
t4_rq_avail(struct t4_wq * wq)382 static inline u32 t4_rq_avail(struct t4_wq *wq)
383 {
384 	return wq->rq.size - 1 - wq->rq.in_use;
385 }
386 
t4_rq_produce(struct t4_wq * wq,u8 len16)387 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
388 {
389 	wq->rq.in_use++;
390 	if (++wq->rq.pidx == wq->rq.size)
391 		wq->rq.pidx = 0;
392 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
393 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
394 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
395 }
396 
t4_rq_consume(struct t4_wq * wq)397 static inline void t4_rq_consume(struct t4_wq *wq)
398 {
399 	wq->rq.in_use--;
400 	wq->rq.msn++;
401 	if (++wq->rq.cidx == wq->rq.size)
402 		wq->rq.cidx = 0;
403 }
404 
t4_rq_host_wq_pidx(struct t4_wq * wq)405 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
406 {
407 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
408 }
409 
t4_rq_wq_size(struct t4_wq * wq)410 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
411 {
412 	return wq->rq.size * T4_RQ_NUM_SLOTS;
413 }
414 
t4_sq_onchip(struct t4_sq * sq)415 static inline int t4_sq_onchip(struct t4_sq *sq)
416 {
417 	return sq->flags & T4_SQ_ONCHIP;
418 }
419 
t4_sq_empty(struct t4_wq * wq)420 static inline int t4_sq_empty(struct t4_wq *wq)
421 {
422 	return wq->sq.in_use == 0;
423 }
424 
t4_sq_full(struct t4_wq * wq)425 static inline int t4_sq_full(struct t4_wq *wq)
426 {
427 	return wq->sq.in_use == (wq->sq.size - 1);
428 }
429 
t4_sq_avail(struct t4_wq * wq)430 static inline u32 t4_sq_avail(struct t4_wq *wq)
431 {
432 	return wq->sq.size - 1 - wq->sq.in_use;
433 }
434 
t4_sq_produce(struct t4_wq * wq,u8 len16)435 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
436 {
437 	wq->sq.in_use++;
438 	if (++wq->sq.pidx == wq->sq.size)
439 		wq->sq.pidx = 0;
440 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
441 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
442 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
443 }
444 
t4_sq_consume(struct t4_wq * wq)445 static inline void t4_sq_consume(struct t4_wq *wq)
446 {
447 	BUG_ON(wq->sq.in_use < 1);
448 	if (wq->sq.cidx == wq->sq.flush_cidx)
449 		wq->sq.flush_cidx = -1;
450 	wq->sq.in_use--;
451 	if (++wq->sq.cidx == wq->sq.size)
452 		wq->sq.cidx = 0;
453 }
454 
t4_sq_host_wq_pidx(struct t4_wq * wq)455 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
456 {
457 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
458 }
459 
t4_sq_wq_size(struct t4_wq * wq)460 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
461 {
462 		return wq->sq.size * T4_SQ_NUM_SLOTS;
463 }
464 
465 /* This function copies 64 byte coalesced work request to memory
466  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
467  * from the FIFO instead of from Host.
468  */
pio_copy(u64 __iomem * dst,u64 * src)469 static inline void pio_copy(u64 __iomem *dst, u64 *src)
470 {
471 	int count = 8;
472 
473 	while (count) {
474 		writeq(*src, dst);
475 		src++;
476 		dst++;
477 		count--;
478 	}
479 }
480 
481 static inline void
t4_ring_sq_db(struct t4_wq * wq,u16 inc,union t4_wr * wqe,u8 wc)482 t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
483 {
484 
485 	/* Flush host queue memory writes. */
486 	wmb();
487 	if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
488 		CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d",
489 				__func__, wq->sq.pidx);
490 		pio_copy((u64 __iomem *)
491 				((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
492 				(u64 *)wqe);
493 	} else {
494 		CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d",
495 				__func__, wq->sq.pidx);
496 		writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
497 				(void __iomem *)((u64)wq->sq.bar2_va +
498 					SGE_UDB_KDOORBELL));
499 	}
500 
501 	/* Flush user doorbell area writes. */
502 	wmb();
503 	return;
504 }
505 
506 static inline void
t4_ring_rq_db(struct t4_wq * wq,u16 inc,union t4_recv_wr * wqe,u8 wc)507 t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
508 {
509 
510 	/* Flush host queue memory writes. */
511 	wmb();
512 	if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
513 		CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d",
514 				__func__, wq->rq.pidx);
515 		pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
516 					SGE_UDB_WCDOORBELL), (u64 *)wqe);
517 	} else {
518 		CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d",
519 				__func__, wq->rq.pidx);
520 		writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
521 				(void __iomem *)((u64)wq->rq.bar2_va +
522 					SGE_UDB_KDOORBELL));
523 	}
524 
525 	/* Flush user doorbell area writes. */
526 	wmb();
527 	return;
528 }
529 
t4_wq_in_error(struct t4_wq * wq)530 static inline int t4_wq_in_error(struct t4_wq *wq)
531 {
532 	return wq->rq.queue[wq->rq.size].status.qp_err;
533 }
534 
t4_set_wq_in_error(struct t4_wq * wq)535 static inline void t4_set_wq_in_error(struct t4_wq *wq)
536 {
537 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
538 }
539 
540 enum t4_cq_flags {
541 	CQ_ARMED	= 1,
542 };
543 
544 struct t4_cq {
545 	struct t4_cqe *queue;
546 	bus_addr_t dma_addr;
547 	DEFINE_DMA_UNMAP_ADDR(mapping);
548 	struct t4_cqe *sw_queue;
549 	void __iomem *bar2_va;
550 	u64 bar2_pa;
551 	u32 bar2_qid;
552 	struct c4iw_rdev *rdev;
553 	size_t memsize;
554 	__be64 bits_type_ts;
555 	u32 cqid;
556 	u32 qid_mask;
557 	int vector;
558 	u16 size; /* including status page */
559 	u16 cidx;
560 	u16 sw_pidx;
561 	u16 sw_cidx;
562 	u16 sw_in_use;
563 	u16 cidx_inc;
564 	u8 gen;
565 	u8 error;
566 	unsigned long flags;
567 };
568 
write_gts(struct t4_cq * cq,u32 val)569 static inline void write_gts(struct t4_cq *cq, u32 val)
570 {
571 	writel(val | V_INGRESSQID(cq->bar2_qid),
572 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
573 }
574 
t4_clear_cq_armed(struct t4_cq * cq)575 static inline int t4_clear_cq_armed(struct t4_cq *cq)
576 {
577 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
578 }
579 
t4_arm_cq(struct t4_cq * cq,int se)580 static inline int t4_arm_cq(struct t4_cq *cq, int se)
581 {
582 	u32 val;
583 
584 	set_bit(CQ_ARMED, &cq->flags);
585 	while (cq->cidx_inc > CIDXINC_MASK) {
586 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
587 		writel(val | V_INGRESSQID(cq->bar2_qid),
588 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
589 		cq->cidx_inc -= CIDXINC_MASK;
590 	}
591 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
592 	writel(val | V_INGRESSQID(cq->bar2_qid),
593 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
594 	cq->cidx_inc = 0;
595 	return 0;
596 }
597 
t4_swcq_produce(struct t4_cq * cq)598 static inline void t4_swcq_produce(struct t4_cq *cq)
599 {
600 	cq->sw_in_use++;
601 	if (cq->sw_in_use == cq->size) {
602 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
603 			 __func__, cq->cqid);
604 		cq->error = 1;
605 		BUG_ON(1);
606 	}
607 	if (++cq->sw_pidx == cq->size)
608 		cq->sw_pidx = 0;
609 }
610 
t4_swcq_consume(struct t4_cq * cq)611 static inline void t4_swcq_consume(struct t4_cq *cq)
612 {
613 	BUG_ON(cq->sw_in_use < 1);
614 	cq->sw_in_use--;
615 	if (++cq->sw_cidx == cq->size)
616 		cq->sw_cidx = 0;
617 }
618 
t4_hwcq_consume(struct t4_cq * cq)619 static inline void t4_hwcq_consume(struct t4_cq *cq)
620 {
621 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
622 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
623 		u32 val;
624 
625 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
626 		write_gts(cq, val);
627 		cq->cidx_inc = 0;
628 	}
629 	if (++cq->cidx == cq->size) {
630 		cq->cidx = 0;
631 		cq->gen ^= 1;
632 	}
633 }
634 
t4_valid_cqe(struct t4_cq * cq,struct t4_cqe * cqe)635 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
636 {
637 	return (CQE_GENBIT(cqe) == cq->gen);
638 }
639 
t4_cq_notempty(struct t4_cq * cq)640 static inline int t4_cq_notempty(struct t4_cq *cq)
641 {
642 	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
643 }
644 
t4_next_hw_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)645 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
646 {
647 	int ret;
648 	u16 prev_cidx;
649 
650 	if (cq->cidx == 0)
651 		prev_cidx = cq->size - 1;
652 	else
653 		prev_cidx = cq->cidx - 1;
654 
655 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
656 		ret = -EOVERFLOW;
657 		cq->error = 1;
658 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
659 		BUG_ON(1);
660 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
661 
662 		/* Ensure CQE is flushed to memory */
663 		rmb();
664 		*cqe = &cq->queue[cq->cidx];
665 		ret = 0;
666 	} else
667 		ret = -ENODATA;
668 	return ret;
669 }
670 
t4_next_sw_cqe(struct t4_cq * cq)671 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
672 {
673 	if (cq->sw_in_use == cq->size) {
674 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
675 			 __func__, cq->cqid);
676 		cq->error = 1;
677 		BUG_ON(1);
678 		return NULL;
679 	}
680 	if (cq->sw_in_use)
681 		return &cq->sw_queue[cq->sw_cidx];
682 	return NULL;
683 }
684 
t4_next_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)685 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
686 {
687 	int ret = 0;
688 
689 	if (cq->error)
690 		ret = -ENODATA;
691 	else if (cq->sw_in_use)
692 		*cqe = &cq->sw_queue[cq->sw_cidx];
693 	else
694 		ret = t4_next_hw_cqe(cq, cqe);
695 	return ret;
696 }
697 
t4_cq_in_error(struct t4_cq * cq)698 static inline int t4_cq_in_error(struct t4_cq *cq)
699 {
700 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
701 }
702 
t4_set_cq_in_error(struct t4_cq * cq)703 static inline void t4_set_cq_in_error(struct t4_cq *cq)
704 {
705 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
706 }
707 struct t4_dev_status_page {
708 	u8 db_off;
709 	u8 wc_supported;
710 	u16 pad2;
711 	u32 pad3;
712 	u64 qp_start;
713 	u64 qp_size;
714 	u64 cq_start;
715 	u64 cq_size;
716 };
717 #endif
718