xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 2a371643)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1995, David Greenman
5  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/module.h>
50 #include <sys/mutex.h>
51 #include <sys/rman.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/tcp.h>
70 #include <netinet/udp.h>
71 
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 #include <machine/resource.h>
75 
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/fxp/if_fxpreg.h>
83 #include <dev/fxp/if_fxpvar.h>
84 #include <dev/fxp/rcvbundl.h>
85 
86 MODULE_DEPEND(fxp, pci, 1, 1, 1);
87 MODULE_DEPEND(fxp, ether, 1, 1, 1);
88 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89 #include "miibus_if.h"
90 
91 /*
92  * NOTE!  On !x86 we typically have an alignment constraint.  The
93  * card DMAs the packet immediately following the RFA.  However,
94  * the first thing in the packet is a 14-byte Ethernet header.
95  * This means that the packet is misaligned.  To compensate,
96  * we actually offset the RFA 2 bytes into the cluster.  This
97  * alignes the packet after the Ethernet header at a 32-bit
98  * boundary.  HOWEVER!  This means that the RFA is misaligned!
99  */
100 #define	RFA_ALIGNMENT_FUDGE	2
101 
102 /*
103  * Set initial transmit threshold at 64 (512 bytes). This is
104  * increased by 64 (512 bytes) at a time, to maximum of 192
105  * (1536 bytes), if an underrun occurs.
106  */
107 static int tx_threshold = 64;
108 
109 /*
110  * The configuration byte map has several undefined fields which
111  * must be one or must be zero.  Set up a template for these bits.
112  * The actual configuration is performed in fxp_init_body.
113  *
114  * See struct fxp_cb_config for the bit definitions.
115  */
116 static const u_char fxp_cb_config_template[] = {
117 	0x0, 0x0,		/* cb_status */
118 	0x0, 0x0,		/* cb_command */
119 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120 	0x0,	/*  0 */
121 	0x0,	/*  1 */
122 	0x0,	/*  2 */
123 	0x0,	/*  3 */
124 	0x0,	/*  4 */
125 	0x0,	/*  5 */
126 	0x32,	/*  6 */
127 	0x0,	/*  7 */
128 	0x0,	/*  8 */
129 	0x0,	/*  9 */
130 	0x6,	/* 10 */
131 	0x0,	/* 11 */
132 	0x0,	/* 12 */
133 	0x0,	/* 13 */
134 	0xf2,	/* 14 */
135 	0x48,	/* 15 */
136 	0x0,	/* 16 */
137 	0x40,	/* 17 */
138 	0xf0,	/* 18 */
139 	0x0,	/* 19 */
140 	0x3f,	/* 20 */
141 	0x5,	/* 21 */
142 	0x0,	/* 22 */
143 	0x0,	/* 23 */
144 	0x0,	/* 24 */
145 	0x0,	/* 25 */
146 	0x0,	/* 26 */
147 	0x0,	/* 27 */
148 	0x0,	/* 28 */
149 	0x0,	/* 29 */
150 	0x0,	/* 30 */
151 	0x0	/* 31 */
152 };
153 
154 /*
155  * Claim various Intel PCI device identifiers for this driver.  The
156  * sub-vendor and sub-device field are extensively used to identify
157  * particular variants, but we don't currently differentiate between
158  * them.
159  */
160 static const struct fxp_ident fxp_ident_table[] = {
161     { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
162     { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
163     { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
164     { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
165     { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166     { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167     { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
169     { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170     { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
171     { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172     { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174     { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175     { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
176     { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
177     { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
178     { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
179     { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
180     { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
181     { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
182     { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
183     { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
184     { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
185     { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
186     { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
187     { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
188     { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
189     { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
191     { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
192     { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
193     { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
194     { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
196     { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
197     { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
198     { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
200     { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
201     { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
202     { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
203     { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
204     { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
205     { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
206     { 0,      0,	-1,	0, NULL },
207 };
208 
209 #ifdef FXP_IP_CSUM_WAR
210 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
211 #else
212 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
213 #endif
214 
215 static int		fxp_probe(device_t dev);
216 static int		fxp_attach(device_t dev);
217 static int		fxp_detach(device_t dev);
218 static int		fxp_shutdown(device_t dev);
219 static int		fxp_suspend(device_t dev);
220 static int		fxp_resume(device_t dev);
221 
222 static const struct fxp_ident *fxp_find_ident(device_t dev);
223 static void		fxp_intr(void *xsc);
224 static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
225 			    struct mbuf *m, uint16_t status, int pos);
226 static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
227 			    uint8_t statack, int count);
228 static void 		fxp_init(void *xsc);
229 static void 		fxp_init_body(struct fxp_softc *sc, int);
230 static void 		fxp_tick(void *xsc);
231 static void 		fxp_start(if_t ifp);
232 static void 		fxp_start_body(if_t ifp);
233 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
234 static void		fxp_txeof(struct fxp_softc *sc);
235 static void		fxp_stop(struct fxp_softc *sc);
236 static void 		fxp_release(struct fxp_softc *sc);
237 static int		fxp_ioctl(if_t ifp, u_long command,
238 			    caddr_t data);
239 static void 		fxp_watchdog(struct fxp_softc *sc);
240 static void		fxp_add_rfabuf(struct fxp_softc *sc,
241 			    struct fxp_rx *rxp);
242 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static int		fxp_new_rfabuf(struct fxp_softc *sc,
245 			    struct fxp_rx *rxp);
246 static void		fxp_mc_addrs(struct fxp_softc *sc);
247 static void		fxp_mc_setup(struct fxp_softc *sc);
248 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
249 			    int autosize);
250 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
251 			    uint16_t data);
252 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
253 static void		fxp_load_eeprom(struct fxp_softc *sc);
254 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
255 			    int offset, int words);
256 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
257 			    int offset, int words);
258 static int		fxp_ifmedia_upd(if_t ifp);
259 static void		fxp_ifmedia_sts(if_t ifp,
260 			    struct ifmediareq *ifmr);
261 static int		fxp_serial_ifmedia_upd(if_t ifp);
262 static void		fxp_serial_ifmedia_sts(if_t ifp,
263 			    struct ifmediareq *ifmr);
264 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
265 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
266 			    int value);
267 static void		fxp_miibus_statchg(device_t dev);
268 static void		fxp_load_ucode(struct fxp_softc *sc);
269 static void		fxp_update_stats(struct fxp_softc *sc);
270 static void		fxp_sysctl_node(struct fxp_softc *sc);
271 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
272 			    int low, int high);
273 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
274 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
275 static void 		fxp_scb_wait(struct fxp_softc *sc);
276 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
277 static void		fxp_dma_wait(struct fxp_softc *sc,
278 			    volatile uint16_t *status, bus_dma_tag_t dmat,
279 			    bus_dmamap_t map);
280 
281 static device_method_t fxp_methods[] = {
282 	/* Device interface */
283 	DEVMETHOD(device_probe,		fxp_probe),
284 	DEVMETHOD(device_attach,	fxp_attach),
285 	DEVMETHOD(device_detach,	fxp_detach),
286 	DEVMETHOD(device_shutdown,	fxp_shutdown),
287 	DEVMETHOD(device_suspend,	fxp_suspend),
288 	DEVMETHOD(device_resume,	fxp_resume),
289 
290 	/* MII interface */
291 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
292 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
293 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
294 
295 	DEVMETHOD_END
296 };
297 
298 static driver_t fxp_driver = {
299 	"fxp",
300 	fxp_methods,
301 	sizeof(struct fxp_softc),
302 };
303 
304 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY);
305 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
306     nitems(fxp_ident_table) - 1);
307 DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL);
308 
309 static struct resource_spec fxp_res_spec_mem[] = {
310 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
311 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
312 	{ -1, 0 }
313 };
314 
315 static struct resource_spec fxp_res_spec_io[] = {
316 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
317 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
318 	{ -1, 0 }
319 };
320 
321 /*
322  * Wait for the previous command to be accepted (but not necessarily
323  * completed).
324  */
325 static void
fxp_scb_wait(struct fxp_softc * sc)326 fxp_scb_wait(struct fxp_softc *sc)
327 {
328 	union {
329 		uint16_t w;
330 		uint8_t b[2];
331 	} flowctl;
332 	int i = 10000;
333 
334 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
335 		DELAY(2);
336 	if (i == 0) {
337 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
338 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
339 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
340 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
341 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
342 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
343 	}
344 }
345 
346 static void
fxp_scb_cmd(struct fxp_softc * sc,int cmd)347 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
348 {
349 
350 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
351 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
352 		fxp_scb_wait(sc);
353 	}
354 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
355 }
356 
357 static void
fxp_dma_wait(struct fxp_softc * sc,volatile uint16_t * status,bus_dma_tag_t dmat,bus_dmamap_t map)358 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
359     bus_dma_tag_t dmat, bus_dmamap_t map)
360 {
361 	int i;
362 
363 	for (i = 10000; i > 0; i--) {
364 		DELAY(2);
365 		bus_dmamap_sync(dmat, map,
366 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
367 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
368 			break;
369 	}
370 	if (i == 0)
371 		device_printf(sc->dev, "DMA timeout\n");
372 }
373 
374 static const struct fxp_ident *
fxp_find_ident(device_t dev)375 fxp_find_ident(device_t dev)
376 {
377 	uint16_t vendor;
378 	uint16_t device;
379 	uint8_t revid;
380 	const struct fxp_ident *ident;
381 
382 	vendor = pci_get_vendor(dev);
383 	device = pci_get_device(dev);
384 	revid = pci_get_revid(dev);
385 	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
386 		if (ident->vendor == vendor && ident->device == device &&
387 		    (ident->revid == revid || ident->revid == -1)) {
388 			return (ident);
389 		}
390 	}
391 	return (NULL);
392 }
393 
394 /*
395  * Return identification string if this device is ours.
396  */
397 static int
fxp_probe(device_t dev)398 fxp_probe(device_t dev)
399 {
400 	const struct fxp_ident *ident;
401 
402 	ident = fxp_find_ident(dev);
403 	if (ident != NULL) {
404 		device_set_desc(dev, ident->name);
405 		return (BUS_PROBE_DEFAULT);
406 	}
407 	return (ENXIO);
408 }
409 
410 static void
fxp_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nseg,int error)411 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
412 {
413 	uint32_t *addr;
414 
415 	if (error)
416 		return;
417 
418 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
419 	addr = arg;
420 	*addr = segs->ds_addr;
421 }
422 
423 static int
fxp_attach(device_t dev)424 fxp_attach(device_t dev)
425 {
426 	struct fxp_softc *sc;
427 	struct fxp_cb_tx *tcbp;
428 	struct fxp_tx *txp;
429 	struct fxp_rx *rxp;
430 	if_t ifp;
431 	uint32_t val;
432 	uint16_t data;
433 	u_char eaddr[ETHER_ADDR_LEN];
434 	int error, flags, i, pmc, prefer_iomap;
435 
436 	error = 0;
437 	sc = device_get_softc(dev);
438 	sc->dev = dev;
439 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
440 	    MTX_DEF);
441 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
442 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
443 	    fxp_serial_ifmedia_sts);
444 
445 	ifp = sc->ifp = if_gethandle(IFT_ETHER);
446 	if (ifp == (void *)NULL) {
447 		device_printf(dev, "can not if_alloc()\n");
448 		error = ENOSPC;
449 		goto fail;
450 	}
451 
452 	/*
453 	 * Enable bus mastering.
454 	 */
455 	pci_enable_busmaster(dev);
456 
457 	/*
458 	 * Figure out which we should try first - memory mapping or i/o mapping?
459 	 * We default to memory mapping. Then we accept an override from the
460 	 * command line. Then we check to see which one is enabled.
461 	 */
462 	prefer_iomap = 0;
463 	resource_int_value(device_get_name(dev), device_get_unit(dev),
464 	    "prefer_iomap", &prefer_iomap);
465 	if (prefer_iomap)
466 		sc->fxp_spec = fxp_res_spec_io;
467 	else
468 		sc->fxp_spec = fxp_res_spec_mem;
469 
470 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
471 	if (error) {
472 		if (sc->fxp_spec == fxp_res_spec_mem)
473 			sc->fxp_spec = fxp_res_spec_io;
474 		else
475 			sc->fxp_spec = fxp_res_spec_mem;
476 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
477 	}
478 	if (error) {
479 		device_printf(dev, "could not allocate resources\n");
480 		error = ENXIO;
481 		goto fail;
482 	}
483 
484 	if (bootverbose) {
485 		device_printf(dev, "using %s space register mapping\n",
486 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
487 	}
488 
489 	/*
490 	 * Put CU/RU idle state and prepare full reset.
491 	 */
492 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
493 	DELAY(10);
494 	/* Full reset and disable interrupts. */
495 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
496 	DELAY(10);
497 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
498 
499 	/*
500 	 * Find out how large of an SEEPROM we have.
501 	 */
502 	fxp_autosize_eeprom(sc);
503 	fxp_load_eeprom(sc);
504 
505 	/*
506 	 * Find out the chip revision; lump all 82557 revs together.
507 	 */
508 	sc->ident = fxp_find_ident(dev);
509 	if (sc->ident->ich > 0) {
510 		/* Assume ICH controllers are 82559. */
511 		sc->revision = FXP_REV_82559_A0;
512 	} else {
513 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
514 		if ((data >> 8) == 1)
515 			sc->revision = FXP_REV_82557;
516 		else
517 			sc->revision = pci_get_revid(dev);
518 	}
519 
520 	/*
521 	 * Check availability of WOL. 82559ER does not support WOL.
522 	 */
523 	if (sc->revision >= FXP_REV_82558_A4 &&
524 	    sc->revision != FXP_REV_82559S_A) {
525 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
526 		if ((data & 0x20) != 0 &&
527 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
528 			sc->flags |= FXP_FLAG_WOLCAP;
529 	}
530 
531 	if (sc->revision == FXP_REV_82550_C) {
532 		/*
533 		 * 82550C with server extension requires microcode to
534 		 * receive fragmented UDP datagrams.  However if the
535 		 * microcode is used for client-only featured 82550C
536 		 * it locks up controller.
537 		 */
538 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
539 		if ((data & 0x0400) == 0)
540 			sc->flags |= FXP_FLAG_NO_UCODE;
541 	}
542 
543 	/* Receiver lock-up workaround detection. */
544 	if (sc->revision < FXP_REV_82558_A4) {
545 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
546 		if ((data & 0x03) != 0x03) {
547 			sc->flags |= FXP_FLAG_RXBUG;
548 			device_printf(dev, "Enabling Rx lock-up workaround\n");
549 		}
550 	}
551 
552 	/*
553 	 * Determine whether we must use the 503 serial interface.
554 	 */
555 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
556 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
557 	    && (data & FXP_PHY_SERIAL_ONLY))
558 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
559 
560 	fxp_sysctl_node(sc);
561 	/*
562 	 * Enable workarounds for certain chip revision deficiencies.
563 	 *
564 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
565 	 * some systems based a normal 82559 design, have a defect where
566 	 * the chip can cause a PCI protocol violation if it receives
567 	 * a CU_RESUME command when it is entering the IDLE state.  The
568 	 * workaround is to disable Dynamic Standby Mode, so the chip never
569 	 * deasserts CLKRUN#, and always remains in an active state.
570 	 *
571 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
572 	 */
573 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
574 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
575 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
576 		if (data & 0x02) {			/* STB enable */
577 			uint16_t cksum;
578 			int i;
579 
580 			device_printf(dev,
581 			    "Disabling dynamic standby mode in EEPROM\n");
582 			data &= ~0x02;
583 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
584 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
585 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
586 			cksum = 0;
587 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
588 				cksum += sc->eeprom[i];
589 			i = (1 << sc->eeprom_size) - 1;
590 			cksum = 0xBABA - cksum;
591 			fxp_write_eeprom(sc, &cksum, i, 1);
592 			device_printf(dev,
593 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
594 			    i, sc->eeprom[i], cksum);
595 			sc->eeprom[i] = cksum;
596 			/*
597 			 * If the user elects to continue, try the software
598 			 * workaround, as it is better than nothing.
599 			 */
600 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
601 		}
602 	}
603 
604 	/*
605 	 * If we are not a 82557 chip, we can enable extended features.
606 	 */
607 	if (sc->revision != FXP_REV_82557) {
608 		/*
609 		 * If MWI is enabled in the PCI configuration, and there
610 		 * is a valid cacheline size (8 or 16 dwords), then tell
611 		 * the board to turn on MWI.
612 		 */
613 		val = pci_read_config(dev, PCIR_COMMAND, 2);
614 		if (val & PCIM_CMD_MWRICEN &&
615 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
616 			sc->flags |= FXP_FLAG_MWI_ENABLE;
617 
618 		/* turn on the extended TxCB feature */
619 		sc->flags |= FXP_FLAG_EXT_TXCB;
620 
621 		/* enable reception of long frames for VLAN */
622 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
623 	} else {
624 		/* a hack to get long VLAN frames on a 82557 */
625 		sc->flags |= FXP_FLAG_SAVE_BAD;
626 	}
627 
628 	/* For 82559 or later chips, Rx checksum offload is supported. */
629 	if (sc->revision >= FXP_REV_82559_A0) {
630 		/* 82559ER does not support Rx checksum offloading. */
631 		if (sc->ident->device != 0x1209)
632 			sc->flags |= FXP_FLAG_82559_RXCSUM;
633 	}
634 	/*
635 	 * Enable use of extended RFDs and TCBs for 82550
636 	 * and later chips. Note: we need extended TXCB support
637 	 * too, but that's already enabled by the code above.
638 	 * Be careful to do this only on the right devices.
639 	 */
640 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
641 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
642 	    || sc->revision == FXP_REV_82551_10) {
643 		sc->rfa_size = sizeof (struct fxp_rfa);
644 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
645 		sc->flags |= FXP_FLAG_EXT_RFA;
646 		/* Use extended RFA instead of 82559 checksum mode. */
647 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
648 	} else {
649 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
650 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
651 	}
652 
653 	/*
654 	 * Allocate DMA tags and DMA safe memory.
655 	 */
656 	sc->maxtxseg = FXP_NTXSEG;
657 	sc->maxsegsize = MCLBYTES;
658 	if (sc->flags & FXP_FLAG_EXT_RFA) {
659 		sc->maxtxseg--;
660 		sc->maxsegsize = FXP_TSO_SEGSIZE;
661 	}
662 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
663 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
664 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
665 	    sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag);
666 	if (error) {
667 		device_printf(dev, "could not create TX DMA tag\n");
668 		goto fail;
669 	}
670 
671 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
672 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
673 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag);
674 	if (error) {
675 		device_printf(dev, "could not create RX DMA tag\n");
676 		goto fail;
677 	}
678 
679 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
680 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
681 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
682 	    NULL, NULL, &sc->fxp_stag);
683 	if (error) {
684 		device_printf(dev, "could not create stats DMA tag\n");
685 		goto fail;
686 	}
687 
688 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
689 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
690 	if (error) {
691 		device_printf(dev, "could not allocate stats DMA memory\n");
692 		goto fail;
693 	}
694 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
695 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
696 	    BUS_DMA_NOWAIT);
697 	if (error) {
698 		device_printf(dev, "could not load the stats DMA buffer\n");
699 		goto fail;
700 	}
701 
702 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
703 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
704 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag);
705 	if (error) {
706 		device_printf(dev, "could not create TxCB DMA tag\n");
707 		goto fail;
708 	}
709 
710 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
711 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
712 	if (error) {
713 		device_printf(dev, "could not allocate TxCB DMA memory\n");
714 		goto fail;
715 	}
716 
717 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
718 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
719 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
720 	if (error) {
721 		device_printf(dev, "could not load TxCB DMA buffer\n");
722 		goto fail;
723 	}
724 
725 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
726 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
727 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
728 	    NULL, NULL, &sc->mcs_tag);
729 	if (error) {
730 		device_printf(dev,
731 		    "could not create multicast setup DMA tag\n");
732 		goto fail;
733 	}
734 
735 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
736 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
737 	if (error) {
738 		device_printf(dev,
739 		    "could not allocate multicast setup DMA memory\n");
740 		goto fail;
741 	}
742 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
743 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
744 	    BUS_DMA_NOWAIT);
745 	if (error) {
746 		device_printf(dev,
747 		    "can't load the multicast setup DMA buffer\n");
748 		goto fail;
749 	}
750 
751 	/*
752 	 * Pre-allocate the TX DMA maps and setup the pointers to
753 	 * the TX command blocks.
754 	 */
755 	txp = sc->fxp_desc.tx_list;
756 	tcbp = sc->fxp_desc.cbl_list;
757 	for (i = 0; i < FXP_NTXCB; i++) {
758 		txp[i].tx_cb = tcbp + i;
759 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
760 		if (error) {
761 			device_printf(dev, "can't create DMA map for TX\n");
762 			goto fail;
763 		}
764 	}
765 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
766 	if (error) {
767 		device_printf(dev, "can't create spare DMA map\n");
768 		goto fail;
769 	}
770 
771 	/*
772 	 * Pre-allocate our receive buffers.
773 	 */
774 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
775 	for (i = 0; i < FXP_NRFABUFS; i++) {
776 		rxp = &sc->fxp_desc.rx_list[i];
777 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
778 		if (error) {
779 			device_printf(dev, "can't create DMA map for RX\n");
780 			goto fail;
781 		}
782 		if (fxp_new_rfabuf(sc, rxp) != 0) {
783 			error = ENOMEM;
784 			goto fail;
785 		}
786 		fxp_add_rfabuf(sc, rxp);
787 	}
788 
789 	/*
790 	 * Read MAC address.
791 	 */
792 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
793 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
794 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
795 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
796 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
797 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
798 	if (bootverbose) {
799 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
800 		    pci_get_vendor(dev), pci_get_device(dev),
801 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
802 		    pci_get_revid(dev));
803 		device_printf(dev, "Dynamic Standby mode is %s\n",
804 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
805 		    "disabled");
806 	}
807 
808 	/*
809 	 * If this is only a 10Mbps device, then there is no MII, and
810 	 * the PHY will use a serial interface instead.
811 	 *
812 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
813 	 * doesn't have a programming interface of any sort.  The
814 	 * media is sensed automatically based on how the link partner
815 	 * is configured.  This is, in essence, manual configuration.
816 	 */
817 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
818 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
819 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
820 	} else {
821 		/*
822 		 * i82557 wedge when isolating all of their PHYs.
823 		 */
824 		flags = MIIF_NOISOLATE;
825 		if (sc->revision >= FXP_REV_82558_A4)
826 			flags |= MIIF_DOPAUSE;
827 		error = mii_attach(dev, &sc->miibus, ifp,
828 		    (ifm_change_cb_t)fxp_ifmedia_upd,
829 		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
830 		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
831 		if (error != 0) {
832 			device_printf(dev, "attaching PHYs failed\n");
833 			goto fail;
834 		}
835 	}
836 
837 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
838 	if_setdev(ifp, dev);
839 	if_setinitfn(ifp, fxp_init);
840 	if_setsoftc(ifp, sc);
841 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
842 	if_setioctlfn(ifp, fxp_ioctl);
843 	if_setstartfn(ifp, fxp_start);
844 
845 	if_setcapabilities(ifp, 0);
846 	if_setcapenable(ifp, 0);
847 
848 	/* Enable checksum offload/TSO for 82550 or better chips */
849 	if (sc->flags & FXP_FLAG_EXT_RFA) {
850 		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
851 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
852 		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
853 	}
854 
855 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
856 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
857 		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
858 	}
859 
860 	if (sc->flags & FXP_FLAG_WOLCAP) {
861 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
862 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
863 	}
864 
865 #ifdef DEVICE_POLLING
866 	/* Inform the world we support polling. */
867 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
868 #endif
869 
870 	/*
871 	 * Attach the interface.
872 	 */
873 	ether_ifattach(ifp, eaddr);
874 
875 	/*
876 	 * Tell the upper layer(s) we support long frames.
877 	 * Must appear after the call to ether_ifattach() because
878 	 * ether_ifattach() sets ifi_hdrlen to the default value.
879 	 */
880 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
881 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
882 	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
883 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
884 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
885 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
886 		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
887 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
888 	}
889 
890 	/*
891 	 * Let the system queue as many packets as we have available
892 	 * TX descriptors.
893 	 */
894 	if_setsendqlen(ifp, FXP_NTXCB - 1);
895 	if_setsendqready(ifp);
896 
897 	/*
898 	 * Hook our interrupt after all initialization is complete.
899 	 */
900 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
901 			       NULL, fxp_intr, sc, &sc->ih);
902 	if (error) {
903 		device_printf(dev, "could not setup irq\n");
904 		ether_ifdetach(sc->ifp);
905 		goto fail;
906 	}
907 
908 	/*
909 	 * Configure hardware to reject magic frames otherwise
910 	 * system will hang on recipt of magic frames.
911 	 */
912 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
913 		FXP_LOCK(sc);
914 		/* Clear wakeup events. */
915 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
916 		fxp_init_body(sc, 0);
917 		fxp_stop(sc);
918 		FXP_UNLOCK(sc);
919 	}
920 
921 fail:
922 	if (error)
923 		fxp_release(sc);
924 	return (error);
925 }
926 
927 /*
928  * Release all resources.  The softc lock should not be held and the
929  * interrupt should already be torn down.
930  */
931 static void
fxp_release(struct fxp_softc * sc)932 fxp_release(struct fxp_softc *sc)
933 {
934 	struct fxp_rx *rxp;
935 	struct fxp_tx *txp;
936 	int i;
937 
938 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
939 	KASSERT(sc->ih == NULL,
940 	    ("fxp_release() called with intr handle still active"));
941 	if (sc->miibus)
942 		device_delete_child(sc->dev, sc->miibus);
943 	bus_generic_detach(sc->dev);
944 	ifmedia_removeall(&sc->sc_media);
945 	if (sc->fxp_desc.cbl_list) {
946 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
947 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
948 		    sc->cbl_map);
949 	}
950 	if (sc->fxp_stats) {
951 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
952 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
953 	}
954 	if (sc->mcsp) {
955 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
956 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
957 	}
958 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
959 	if (sc->fxp_rxmtag) {
960 		for (i = 0; i < FXP_NRFABUFS; i++) {
961 			rxp = &sc->fxp_desc.rx_list[i];
962 			if (rxp->rx_mbuf != NULL) {
963 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
964 				    BUS_DMASYNC_POSTREAD);
965 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
966 				m_freem(rxp->rx_mbuf);
967 			}
968 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
969 		}
970 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
971 		bus_dma_tag_destroy(sc->fxp_rxmtag);
972 	}
973 	if (sc->fxp_txmtag) {
974 		for (i = 0; i < FXP_NTXCB; i++) {
975 			txp = &sc->fxp_desc.tx_list[i];
976 			if (txp->tx_mbuf != NULL) {
977 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
978 				    BUS_DMASYNC_POSTWRITE);
979 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
980 				m_freem(txp->tx_mbuf);
981 			}
982 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
983 		}
984 		bus_dma_tag_destroy(sc->fxp_txmtag);
985 	}
986 	if (sc->fxp_stag)
987 		bus_dma_tag_destroy(sc->fxp_stag);
988 	if (sc->cbl_tag)
989 		bus_dma_tag_destroy(sc->cbl_tag);
990 	if (sc->mcs_tag)
991 		bus_dma_tag_destroy(sc->mcs_tag);
992 	if (sc->ifp)
993 		if_free(sc->ifp);
994 
995 	mtx_destroy(&sc->sc_mtx);
996 }
997 
998 /*
999  * Detach interface.
1000  */
1001 static int
fxp_detach(device_t dev)1002 fxp_detach(device_t dev)
1003 {
1004 	struct fxp_softc *sc = device_get_softc(dev);
1005 
1006 #ifdef DEVICE_POLLING
1007 	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1008 		ether_poll_deregister(sc->ifp);
1009 #endif
1010 
1011 	FXP_LOCK(sc);
1012 	/*
1013 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1014 	 */
1015 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1016 	fxp_stop(sc);
1017 	FXP_UNLOCK(sc);
1018 	callout_drain(&sc->stat_ch);
1019 
1020 	/*
1021 	 * Close down routes etc.
1022 	 */
1023 	ether_ifdetach(sc->ifp);
1024 
1025 	/*
1026 	 * Unhook interrupt before dropping lock. This is to prevent
1027 	 * races with fxp_intr().
1028 	 */
1029 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1030 	sc->ih = NULL;
1031 
1032 	/* Release our allocated resources. */
1033 	fxp_release(sc);
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Device shutdown routine. Called at system shutdown after sync. The
1039  * main purpose of this routine is to shut off receiver DMA so that
1040  * kernel memory doesn't get clobbered during warmboot.
1041  */
1042 static int
fxp_shutdown(device_t dev)1043 fxp_shutdown(device_t dev)
1044 {
1045 
1046 	/*
1047 	 * Make sure that DMA is disabled prior to reboot. Not doing
1048 	 * do could allow DMA to corrupt kernel memory during the
1049 	 * reboot before the driver initializes.
1050 	 */
1051 	return (fxp_suspend(dev));
1052 }
1053 
1054 /*
1055  * Device suspend routine.  Stop the interface and save some PCI
1056  * settings in case the BIOS doesn't restore them properly on
1057  * resume.
1058  */
1059 static int
fxp_suspend(device_t dev)1060 fxp_suspend(device_t dev)
1061 {
1062 	struct fxp_softc *sc = device_get_softc(dev);
1063 	if_t ifp;
1064 	int pmc;
1065 	uint16_t pmstat;
1066 
1067 	FXP_LOCK(sc);
1068 
1069 	ifp = sc->ifp;
1070 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1071 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1072 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1073 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1074 			/* Request PME. */
1075 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1076 			sc->flags |= FXP_FLAG_WOL;
1077 			/* Reconfigure hardware to accept magic frames. */
1078 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1079 			fxp_init_body(sc, 0);
1080 		}
1081 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1082 	}
1083 	fxp_stop(sc);
1084 
1085 	sc->suspended = 1;
1086 
1087 	FXP_UNLOCK(sc);
1088 	return (0);
1089 }
1090 
1091 /*
1092  * Device resume routine. re-enable busmastering, and restart the interface if
1093  * appropriate.
1094  */
1095 static int
fxp_resume(device_t dev)1096 fxp_resume(device_t dev)
1097 {
1098 	struct fxp_softc *sc = device_get_softc(dev);
1099 	if_t ifp = sc->ifp;
1100 	int pmc;
1101 	uint16_t pmstat;
1102 
1103 	FXP_LOCK(sc);
1104 
1105 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1106 		sc->flags &= ~FXP_FLAG_WOL;
1107 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1108 		/* Disable PME and clear PME status. */
1109 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1110 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1111 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1112 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1113 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1114 	}
1115 
1116 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1117 	DELAY(10);
1118 
1119 	/* reinitialize interface if necessary */
1120 	if (if_getflags(ifp) & IFF_UP)
1121 		fxp_init_body(sc, 1);
1122 
1123 	sc->suspended = 0;
1124 
1125 	FXP_UNLOCK(sc);
1126 	return (0);
1127 }
1128 
1129 static void
fxp_eeprom_shiftin(struct fxp_softc * sc,int data,int length)1130 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1131 {
1132 	uint16_t reg;
1133 	int x;
1134 
1135 	/*
1136 	 * Shift in data.
1137 	 */
1138 	for (x = 1 << (length - 1); x; x >>= 1) {
1139 		if (data & x)
1140 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1141 		else
1142 			reg = FXP_EEPROM_EECS;
1143 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1144 		DELAY(1);
1145 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1146 		DELAY(1);
1147 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1148 		DELAY(1);
1149 	}
1150 }
1151 
1152 /*
1153  * Read from the serial EEPROM. Basically, you manually shift in
1154  * the read opcode (one bit at a time) and then shift in the address,
1155  * and then you shift out the data (all of this one bit at a time).
1156  * The word size is 16 bits, so you have to provide the address for
1157  * every 16 bits of data.
1158  */
1159 static uint16_t
fxp_eeprom_getword(struct fxp_softc * sc,int offset,int autosize)1160 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1161 {
1162 	uint16_t reg, data;
1163 	int x;
1164 
1165 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1166 	/*
1167 	 * Shift in read opcode.
1168 	 */
1169 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1170 	/*
1171 	 * Shift in address.
1172 	 */
1173 	data = 0;
1174 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1175 		if (offset & x)
1176 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1177 		else
1178 			reg = FXP_EEPROM_EECS;
1179 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1180 		DELAY(1);
1181 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1182 		DELAY(1);
1183 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1184 		DELAY(1);
1185 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1186 		data++;
1187 		if (autosize && reg == 0) {
1188 			sc->eeprom_size = data;
1189 			break;
1190 		}
1191 	}
1192 	/*
1193 	 * Shift out data.
1194 	 */
1195 	data = 0;
1196 	reg = FXP_EEPROM_EECS;
1197 	for (x = 1 << 15; x; x >>= 1) {
1198 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1199 		DELAY(1);
1200 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1201 			data |= x;
1202 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1203 		DELAY(1);
1204 	}
1205 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1206 	DELAY(1);
1207 
1208 	return (data);
1209 }
1210 
1211 static void
fxp_eeprom_putword(struct fxp_softc * sc,int offset,uint16_t data)1212 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1213 {
1214 	int i;
1215 
1216 	/*
1217 	 * Erase/write enable.
1218 	 */
1219 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1220 	fxp_eeprom_shiftin(sc, 0x4, 3);
1221 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1222 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1223 	DELAY(1);
1224 	/*
1225 	 * Shift in write opcode, address, data.
1226 	 */
1227 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1228 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1229 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1230 	fxp_eeprom_shiftin(sc, data, 16);
1231 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1232 	DELAY(1);
1233 	/*
1234 	 * Wait for EEPROM to finish up.
1235 	 */
1236 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1237 	DELAY(1);
1238 	for (i = 0; i < 1000; i++) {
1239 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1240 			break;
1241 		DELAY(50);
1242 	}
1243 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1244 	DELAY(1);
1245 	/*
1246 	 * Erase/write disable.
1247 	 */
1248 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1249 	fxp_eeprom_shiftin(sc, 0x4, 3);
1250 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1251 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1252 	DELAY(1);
1253 }
1254 
1255 /*
1256  * From NetBSD:
1257  *
1258  * Figure out EEPROM size.
1259  *
1260  * 559's can have either 64-word or 256-word EEPROMs, the 558
1261  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1262  * talks about the existence of 16 to 256 word EEPROMs.
1263  *
1264  * The only known sizes are 64 and 256, where the 256 version is used
1265  * by CardBus cards to store CIS information.
1266  *
1267  * The address is shifted in msb-to-lsb, and after the last
1268  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1269  * after which follows the actual data. We try to detect this zero, by
1270  * probing the data-out bit in the EEPROM control register just after
1271  * having shifted in a bit. If the bit is zero, we assume we've
1272  * shifted enough address bits. The data-out should be tri-state,
1273  * before this, which should translate to a logical one.
1274  */
1275 static void
fxp_autosize_eeprom(struct fxp_softc * sc)1276 fxp_autosize_eeprom(struct fxp_softc *sc)
1277 {
1278 
1279 	/* guess maximum size of 256 words */
1280 	sc->eeprom_size = 8;
1281 
1282 	/* autosize */
1283 	(void) fxp_eeprom_getword(sc, 0, 1);
1284 }
1285 
1286 static void
fxp_read_eeprom(struct fxp_softc * sc,u_short * data,int offset,int words)1287 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1288 {
1289 	int i;
1290 
1291 	for (i = 0; i < words; i++)
1292 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1293 }
1294 
1295 static void
fxp_write_eeprom(struct fxp_softc * sc,u_short * data,int offset,int words)1296 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1297 {
1298 	int i;
1299 
1300 	for (i = 0; i < words; i++)
1301 		fxp_eeprom_putword(sc, offset + i, data[i]);
1302 }
1303 
1304 static void
fxp_load_eeprom(struct fxp_softc * sc)1305 fxp_load_eeprom(struct fxp_softc *sc)
1306 {
1307 	int i;
1308 	uint16_t cksum;
1309 
1310 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1311 	cksum = 0;
1312 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1313 		cksum += sc->eeprom[i];
1314 	cksum = 0xBABA - cksum;
1315 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1316 		device_printf(sc->dev,
1317 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1318 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1319 }
1320 
1321 /*
1322  * Grab the softc lock and call the real fxp_start_body() routine
1323  */
1324 static void
fxp_start(if_t ifp)1325 fxp_start(if_t ifp)
1326 {
1327 	struct fxp_softc *sc = if_getsoftc(ifp);
1328 
1329 	FXP_LOCK(sc);
1330 	fxp_start_body(ifp);
1331 	FXP_UNLOCK(sc);
1332 }
1333 
1334 /*
1335  * Start packet transmission on the interface.
1336  * This routine must be called with the softc lock held, and is an
1337  * internal entry point only.
1338  */
1339 static void
fxp_start_body(if_t ifp)1340 fxp_start_body(if_t ifp)
1341 {
1342 	struct fxp_softc *sc = if_getsoftc(ifp);
1343 	struct mbuf *mb_head;
1344 	int txqueued;
1345 
1346 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1347 
1348 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1349 	    IFF_DRV_RUNNING)
1350 		return;
1351 
1352 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1353 		fxp_txeof(sc);
1354 	/*
1355 	 * We're finished if there is nothing more to add to the list or if
1356 	 * we're all filled up with buffers to transmit.
1357 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1358 	 *       a NOP command when needed.
1359 	 */
1360 	txqueued = 0;
1361 	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1362 
1363 		/*
1364 		 * Grab a packet to transmit.
1365 		 */
1366 		mb_head = if_dequeue(ifp);
1367 		if (mb_head == NULL)
1368 			break;
1369 
1370 		if (fxp_encap(sc, &mb_head)) {
1371 			if (mb_head == NULL)
1372 				break;
1373 			if_sendq_prepend(ifp, mb_head);
1374 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1375 		}
1376 		txqueued++;
1377 		/*
1378 		 * Pass packet to bpf if there is a listener.
1379 		 */
1380 		bpf_mtap_if(ifp, mb_head);
1381 	}
1382 
1383 	/*
1384 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1385 	 * going again if suspended.
1386 	 */
1387 	if (txqueued > 0) {
1388 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1389 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1390 		fxp_scb_wait(sc);
1391 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1392 		/*
1393 		 * Set a 5 second timer just in case we don't hear
1394 		 * from the card again.
1395 		 */
1396 		sc->watchdog_timer = 5;
1397 	}
1398 }
1399 
1400 static int
fxp_encap(struct fxp_softc * sc,struct mbuf ** m_head)1401 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1402 {
1403 	struct mbuf *m;
1404 	struct fxp_tx *txp;
1405 	struct fxp_cb_tx *cbp;
1406 	struct tcphdr *tcp;
1407 	bus_dma_segment_t segs[FXP_NTXSEG];
1408 	int error, i, nseg, tcp_payload;
1409 
1410 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1411 
1412 	tcp_payload = 0;
1413 	tcp = NULL;
1414 	/*
1415 	 * Get pointer to next available tx desc.
1416 	 */
1417 	txp = sc->fxp_desc.tx_last->tx_next;
1418 
1419 	/*
1420 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1421 	 * Ethernet Controller Family Open Source Software
1422 	 * Developer Manual says:
1423 	 *   Using software parsing is only allowed with legal
1424 	 *   TCP/IP or UDP/IP packets.
1425 	 *   ...
1426 	 *   For all other datagrams, hardware parsing must
1427 	 *   be used.
1428 	 * Software parsing appears to truncate ICMP and
1429 	 * fragmented UDP packets that contain one to three
1430 	 * bytes in the second (and final) mbuf of the packet.
1431 	 */
1432 	if (sc->flags & FXP_FLAG_EXT_RFA)
1433 		txp->tx_cb->ipcb_ip_activation_high =
1434 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1435 
1436 	m = *m_head;
1437 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1438 		/*
1439 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1440 		 * contained in the first active transmit buffer.
1441 		 */
1442 		struct ether_header *eh;
1443 		struct ip *ip;
1444 		uint32_t ip_off, poff;
1445 
1446 		if (M_WRITABLE(*m_head) == 0) {
1447 			/* Get a writable copy. */
1448 			m = m_dup(*m_head, M_NOWAIT);
1449 			m_freem(*m_head);
1450 			if (m == NULL) {
1451 				*m_head = NULL;
1452 				return (ENOBUFS);
1453 			}
1454 			*m_head = m;
1455 		}
1456 		ip_off = sizeof(struct ether_header);
1457 		m = m_pullup(*m_head, ip_off);
1458 		if (m == NULL) {
1459 			*m_head = NULL;
1460 			return (ENOBUFS);
1461 		}
1462 		eh = mtod(m, struct ether_header *);
1463 		/* Check the existence of VLAN tag. */
1464 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1465 			ip_off = sizeof(struct ether_vlan_header);
1466 			m = m_pullup(m, ip_off);
1467 			if (m == NULL) {
1468 				*m_head = NULL;
1469 				return (ENOBUFS);
1470 			}
1471 		}
1472 		m = m_pullup(m, ip_off + sizeof(struct ip));
1473 		if (m == NULL) {
1474 			*m_head = NULL;
1475 			return (ENOBUFS);
1476 		}
1477 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1478 		poff = ip_off + (ip->ip_hl << 2);
1479 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1480 		if (m == NULL) {
1481 			*m_head = NULL;
1482 			return (ENOBUFS);
1483 		}
1484 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1485 		m = m_pullup(m, poff + (tcp->th_off << 2));
1486 		if (m == NULL) {
1487 			*m_head = NULL;
1488 			return (ENOBUFS);
1489 		}
1490 
1491 		/*
1492 		 * Since 82550/82551 doesn't modify IP length and pseudo
1493 		 * checksum in the first frame driver should compute it.
1494 		 */
1495 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1496 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1497 		ip->ip_sum = 0;
1498 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1499 		    (tcp->th_off << 2));
1500 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1501 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1502 		    m->m_pkthdr.tso_segsz));
1503 		/* Compute total TCP payload. */
1504 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1505 		tcp_payload -= tcp->th_off << 2;
1506 		*m_head = m;
1507 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1508 		/*
1509 		 * Deal with TCP/IP checksum offload. Note that
1510 		 * in order for TCP checksum offload to work,
1511 		 * the pseudo header checksum must have already
1512 		 * been computed and stored in the checksum field
1513 		 * in the TCP header. The stack should have
1514 		 * already done this for us.
1515 		 */
1516 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1517 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1518 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1519 
1520 #ifdef FXP_IP_CSUM_WAR
1521 		/*
1522 		 * XXX The 82550 chip appears to have trouble
1523 		 * dealing with IP header checksums in very small
1524 		 * datagrams, namely fragments from 1 to 3 bytes
1525 		 * in size. For example, say you want to transmit
1526 		 * a UDP packet of 1473 bytes. The packet will be
1527 		 * fragmented over two IP datagrams, the latter
1528 		 * containing only one byte of data. The 82550 will
1529 		 * botch the header checksum on the 1-byte fragment.
1530 		 * As long as the datagram contains 4 or more bytes
1531 		 * of data, you're ok.
1532 		 *
1533                  * The following code attempts to work around this
1534 		 * problem: if the datagram is less than 38 bytes
1535 		 * in size (14 bytes ether header, 20 bytes IP header,
1536 		 * plus 4 bytes of data), we punt and compute the IP
1537 		 * header checksum by hand. This workaround doesn't
1538 		 * work very well, however, since it can be fooled
1539 		 * by things like VLAN tags and IP options that make
1540 		 * the header sizes/offsets vary.
1541 		 */
1542 
1543 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1544 			if (m->m_pkthdr.len < 38) {
1545 				struct ip *ip;
1546 				m->m_data += ETHER_HDR_LEN;
1547 				ip = mtod(m, struct ip *);
1548 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1549 				m->m_data -= ETHER_HDR_LEN;
1550 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1551 			} else {
1552 				txp->tx_cb->ipcb_ip_activation_high =
1553 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1554 				txp->tx_cb->ipcb_ip_schedule |=
1555 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1556 			}
1557 		}
1558 #endif
1559 	}
1560 
1561 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1562 	    segs, &nseg, 0);
1563 	if (error == EFBIG) {
1564 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1565 		if (m == NULL) {
1566 			m_freem(*m_head);
1567 			*m_head = NULL;
1568 			return (ENOMEM);
1569 		}
1570 		*m_head = m;
1571 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1572 		    *m_head, segs, &nseg, 0);
1573 		if (error != 0) {
1574 			m_freem(*m_head);
1575 			*m_head = NULL;
1576 			return (ENOMEM);
1577 		}
1578 	} else if (error != 0)
1579 		return (error);
1580 	if (nseg == 0) {
1581 		m_freem(*m_head);
1582 		*m_head = NULL;
1583 		return (EIO);
1584 	}
1585 
1586 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1587 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1588 
1589 	cbp = txp->tx_cb;
1590 	for (i = 0; i < nseg; i++) {
1591 		/*
1592 		 * If this is an 82550/82551, then we're using extended
1593 		 * TxCBs _and_ we're using checksum offload. This means
1594 		 * that the TxCB is really an IPCB. One major difference
1595 		 * between the two is that with plain extended TxCBs,
1596 		 * the bottom half of the TxCB contains two entries from
1597 		 * the TBD array, whereas IPCBs contain just one entry:
1598 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1599 		 * checksum offload control bits. So to make things work
1600 		 * right, we have to start filling in the TBD array
1601 		 * starting from a different place depending on whether
1602 		 * the chip is an 82550/82551 or not.
1603 		 */
1604 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1605 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1606 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1607 		} else {
1608 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1609 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1610 		}
1611 	}
1612 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1613 		/* Configure dynamic TBD for 82550/82551. */
1614 		cbp->tbd_number = 0xFF;
1615 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1616 	} else
1617 		cbp->tbd_number = nseg;
1618 	/* Configure TSO. */
1619 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1620 		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1621 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1622 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1623 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1624 		    FXP_IPCB_TCP_PACKET |
1625 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1626 	}
1627 	/* Configure VLAN hardware tag insertion. */
1628 	if ((m->m_flags & M_VLANTAG) != 0) {
1629 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1630 		txp->tx_cb->ipcb_ip_activation_high |=
1631 		    FXP_IPCB_INSERTVLAN_ENABLE;
1632 	}
1633 
1634 	txp->tx_mbuf = m;
1635 	txp->tx_cb->cb_status = 0;
1636 	txp->tx_cb->byte_count = 0;
1637 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1638 		txp->tx_cb->cb_command =
1639 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1640 		    FXP_CB_COMMAND_S);
1641 	else
1642 		txp->tx_cb->cb_command =
1643 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1644 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1645 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1646 		txp->tx_cb->tx_threshold = tx_threshold;
1647 
1648 	/*
1649 	 * Advance the end of list forward.
1650 	 */
1651 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1652 	sc->fxp_desc.tx_last = txp;
1653 
1654 	/*
1655 	 * Advance the beginning of the list forward if there are
1656 	 * no other packets queued (when nothing is queued, tx_first
1657 	 * sits on the last TxCB that was sent out).
1658 	 */
1659 	if (sc->tx_queued == 0)
1660 		sc->fxp_desc.tx_first = txp;
1661 
1662 	sc->tx_queued++;
1663 
1664 	return (0);
1665 }
1666 
1667 #ifdef DEVICE_POLLING
1668 static poll_handler_t fxp_poll;
1669 
1670 static int
fxp_poll(if_t ifp,enum poll_cmd cmd,int count)1671 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1672 {
1673 	struct fxp_softc *sc = if_getsoftc(ifp);
1674 	uint8_t statack;
1675 	int rx_npkts = 0;
1676 
1677 	FXP_LOCK(sc);
1678 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1679 		FXP_UNLOCK(sc);
1680 		return (rx_npkts);
1681 	}
1682 
1683 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1684 	    FXP_SCB_STATACK_FR;
1685 	if (cmd == POLL_AND_CHECK_STATUS) {
1686 		uint8_t tmp;
1687 
1688 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1689 		if (tmp == 0xff || tmp == 0) {
1690 			FXP_UNLOCK(sc);
1691 			return (rx_npkts); /* nothing to do */
1692 		}
1693 		tmp &= ~statack;
1694 		/* ack what we can */
1695 		if (tmp != 0)
1696 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1697 		statack |= tmp;
1698 	}
1699 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1700 	FXP_UNLOCK(sc);
1701 	return (rx_npkts);
1702 }
1703 #endif /* DEVICE_POLLING */
1704 
1705 /*
1706  * Process interface interrupts.
1707  */
1708 static void
fxp_intr(void * xsc)1709 fxp_intr(void *xsc)
1710 {
1711 	struct fxp_softc *sc = xsc;
1712 	if_t ifp = sc->ifp;
1713 	uint8_t statack;
1714 
1715 	FXP_LOCK(sc);
1716 	if (sc->suspended) {
1717 		FXP_UNLOCK(sc);
1718 		return;
1719 	}
1720 
1721 #ifdef DEVICE_POLLING
1722 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1723 		FXP_UNLOCK(sc);
1724 		return;
1725 	}
1726 #endif
1727 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1728 		/*
1729 		 * It should not be possible to have all bits set; the
1730 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1731 		 * all bits are set, this may indicate that the card has
1732 		 * been physically ejected, so ignore it.
1733 		 */
1734 		if (statack == 0xff) {
1735 			FXP_UNLOCK(sc);
1736 			return;
1737 		}
1738 
1739 		/*
1740 		 * First ACK all the interrupts in this pass.
1741 		 */
1742 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1743 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1744 			fxp_intr_body(sc, ifp, statack, -1);
1745 	}
1746 	FXP_UNLOCK(sc);
1747 }
1748 
1749 static void
fxp_txeof(struct fxp_softc * sc)1750 fxp_txeof(struct fxp_softc *sc)
1751 {
1752 	if_t ifp;
1753 	struct fxp_tx *txp;
1754 
1755 	ifp = sc->ifp;
1756 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1757 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1758 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1759 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1760 	    txp = txp->tx_next) {
1761 		if (txp->tx_mbuf != NULL) {
1762 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1763 			    BUS_DMASYNC_POSTWRITE);
1764 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1765 			m_freem(txp->tx_mbuf);
1766 			txp->tx_mbuf = NULL;
1767 			/* clear this to reset csum offload bits */
1768 			txp->tx_cb->tbd[0].tb_addr = 0;
1769 		}
1770 		sc->tx_queued--;
1771 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1772 	}
1773 	sc->fxp_desc.tx_first = txp;
1774 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1775 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1776 	if (sc->tx_queued == 0)
1777 		sc->watchdog_timer = 0;
1778 }
1779 
1780 static void
fxp_rxcsum(struct fxp_softc * sc,if_t ifp,struct mbuf * m,uint16_t status,int pos)1781 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1782     uint16_t status, int pos)
1783 {
1784 	struct ether_header *eh;
1785 	struct ip *ip;
1786 	struct udphdr *uh;
1787 	int32_t hlen, len, pktlen, temp32;
1788 	uint16_t csum, *opts;
1789 
1790 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1791 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1792 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1793 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1794 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1795 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1796 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1797 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1798 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1799 				    CSUM_PSEUDO_HDR;
1800 				m->m_pkthdr.csum_data = 0xffff;
1801 			}
1802 		}
1803 		return;
1804 	}
1805 
1806 	pktlen = m->m_pkthdr.len;
1807 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1808 		return;
1809 	eh = mtod(m, struct ether_header *);
1810 	if (eh->ether_type != htons(ETHERTYPE_IP))
1811 		return;
1812 	ip = (struct ip *)(eh + 1);
1813 	if (ip->ip_v != IPVERSION)
1814 		return;
1815 
1816 	hlen = ip->ip_hl << 2;
1817 	pktlen -= sizeof(struct ether_header);
1818 	if (hlen < sizeof(struct ip))
1819 		return;
1820 	if (ntohs(ip->ip_len) < hlen)
1821 		return;
1822 	if (ntohs(ip->ip_len) != pktlen)
1823 		return;
1824 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1825 		return;	/* can't handle fragmented packet */
1826 
1827 	switch (ip->ip_p) {
1828 	case IPPROTO_TCP:
1829 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1830 			return;
1831 		break;
1832 	case IPPROTO_UDP:
1833 		if (pktlen < (hlen + sizeof(struct udphdr)))
1834 			return;
1835 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1836 		if (uh->uh_sum == 0)
1837 			return; /* no checksum */
1838 		break;
1839 	default:
1840 		return;
1841 	}
1842 	/* Extract computed checksum. */
1843 	csum = be16dec(mtod(m, char *) + pos);
1844 	/* checksum fixup for IP options */
1845 	len = hlen - sizeof(struct ip);
1846 	if (len > 0) {
1847 		opts = (uint16_t *)(ip + 1);
1848 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1849 			temp32 = csum - *opts;
1850 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1851 			csum = temp32 & 65535;
1852 		}
1853 	}
1854 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1855 	m->m_pkthdr.csum_data = csum;
1856 }
1857 
1858 static int
fxp_intr_body(struct fxp_softc * sc,if_t ifp,uint8_t statack,int count)1859 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1860     int count)
1861 {
1862 	struct mbuf *m;
1863 	struct fxp_rx *rxp;
1864 	struct fxp_rfa *rfa;
1865 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1866 	int rx_npkts;
1867 	uint16_t status;
1868 
1869 	rx_npkts = 0;
1870 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1871 
1872 	if (rnr)
1873 		sc->rnr++;
1874 #ifdef DEVICE_POLLING
1875 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1876 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1877 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1878 		rnr = 1;
1879 	}
1880 #endif
1881 
1882 	/*
1883 	 * Free any finished transmit mbuf chains.
1884 	 *
1885 	 * Handle the CNA event likt a CXTNO event. It used to
1886 	 * be that this event (control unit not ready) was not
1887 	 * encountered, but it is now with the SMPng modifications.
1888 	 * The exact sequence of events that occur when the interface
1889 	 * is brought up are different now, and if this event
1890 	 * goes unhandled, the configuration/rxfilter setup sequence
1891 	 * can stall for several seconds. The result is that no
1892 	 * packets go out onto the wire for about 5 to 10 seconds
1893 	 * after the interface is ifconfig'ed for the first time.
1894 	 */
1895 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1896 		fxp_txeof(sc);
1897 
1898 	/*
1899 	 * Try to start more packets transmitting.
1900 	 */
1901 	if (!if_sendq_empty(ifp))
1902 		fxp_start_body(ifp);
1903 
1904 	/*
1905 	 * Just return if nothing happened on the receive side.
1906 	 */
1907 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1908 		return (rx_npkts);
1909 
1910 	/*
1911 	 * Process receiver interrupts. If a no-resource (RNR)
1912 	 * condition exists, get whatever packets we can and
1913 	 * re-start the receiver.
1914 	 *
1915 	 * When using polling, we do not process the list to completion,
1916 	 * so when we get an RNR interrupt we must defer the restart
1917 	 * until we hit the last buffer with the C bit set.
1918 	 * If we run out of cycles and rfa_headm has the C bit set,
1919 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1920 	 * that the info will be used in the subsequent polling cycle.
1921 	 */
1922 	for (;;) {
1923 		rxp = sc->fxp_desc.rx_head;
1924 		m = rxp->rx_mbuf;
1925 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1926 		    RFA_ALIGNMENT_FUDGE);
1927 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1928 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1929 
1930 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1931 		if (count >= 0 && count-- == 0) {
1932 			if (rnr) {
1933 				/* Defer RNR processing until the next time. */
1934 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1935 				rnr = 0;
1936 			}
1937 			break;
1938 		}
1939 #endif /* DEVICE_POLLING */
1940 
1941 		status = le16toh(rfa->rfa_status);
1942 		if ((status & FXP_RFA_STATUS_C) == 0)
1943 			break;
1944 
1945 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1946 			rnr++;
1947 		/*
1948 		 * Advance head forward.
1949 		 */
1950 		sc->fxp_desc.rx_head = rxp->rx_next;
1951 
1952 		/*
1953 		 * Add a new buffer to the receive chain.
1954 		 * If this fails, the old buffer is recycled
1955 		 * instead.
1956 		 */
1957 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1958 			int total_len;
1959 
1960 			/*
1961 			 * Fetch packet length (the top 2 bits of
1962 			 * actual_size are flags set by the controller
1963 			 * upon completion), and drop the packet in case
1964 			 * of bogus length or CRC errors.
1965 			 */
1966 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1967 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1968 			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1969 				/* Adjust for appended checksum bytes. */
1970 				total_len -= 2;
1971 			}
1972 			if (total_len < (int)sizeof(struct ether_header) ||
1973 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1974 			    sc->rfa_size) ||
1975 			    status & (FXP_RFA_STATUS_CRC |
1976 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1977 				m_freem(m);
1978 				fxp_add_rfabuf(sc, rxp);
1979 				continue;
1980 			}
1981 
1982 			m->m_pkthdr.len = m->m_len = total_len;
1983 			if_setrcvif(m, ifp);
1984 
1985                         /* Do IP checksum checking. */
1986 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1987 				fxp_rxcsum(sc, ifp, m, status, total_len);
1988 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1989 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1990 				m->m_pkthdr.ether_vtag =
1991 				    ntohs(rfa->rfax_vlan_id);
1992 				m->m_flags |= M_VLANTAG;
1993 			}
1994 			/*
1995 			 * Drop locks before calling if_input() since it
1996 			 * may re-enter fxp_start() in the netisr case.
1997 			 * This would result in a lock reversal.  Better
1998 			 * performance might be obtained by chaining all
1999 			 * packets received, dropping the lock, and then
2000 			 * calling if_input() on each one.
2001 			 */
2002 			FXP_UNLOCK(sc);
2003 			if_input(ifp, m);
2004 			FXP_LOCK(sc);
2005 			rx_npkts++;
2006 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2007 				return (rx_npkts);
2008 		} else {
2009 			/* Reuse RFA and loaded DMA map. */
2010 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2011 			fxp_discard_rfabuf(sc, rxp);
2012 		}
2013 		fxp_add_rfabuf(sc, rxp);
2014 	}
2015 	if (rnr) {
2016 		fxp_scb_wait(sc);
2017 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2018 		    sc->fxp_desc.rx_head->rx_addr);
2019 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2020 	}
2021 	return (rx_npkts);
2022 }
2023 
2024 static void
fxp_update_stats(struct fxp_softc * sc)2025 fxp_update_stats(struct fxp_softc *sc)
2026 {
2027 	if_t ifp = sc->ifp;
2028 	struct fxp_stats *sp = sc->fxp_stats;
2029 	struct fxp_hwstats *hsp;
2030 	uint32_t *status;
2031 
2032 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2033 
2034 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2035 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2036 	/* Update statistical counters. */
2037 	if (sc->revision >= FXP_REV_82559_A0)
2038 		status = &sp->completion_status;
2039 	else if (sc->revision >= FXP_REV_82558_A4)
2040 		status = (uint32_t *)&sp->tx_tco;
2041 	else
2042 		status = &sp->tx_pause;
2043 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2044 		hsp = &sc->fxp_hwstats;
2045 		hsp->tx_good += le32toh(sp->tx_good);
2046 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2047 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2048 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2049 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2050 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2051 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2052 		hsp->tx_multiple_collisions +=
2053 		    le32toh(sp->tx_multiple_collisions);
2054 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2055 		hsp->rx_good += le32toh(sp->rx_good);
2056 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2057 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2058 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2059 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2060 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2061 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2062 		hsp->tx_pause += le32toh(sp->tx_pause);
2063 		hsp->rx_pause += le32toh(sp->rx_pause);
2064 		hsp->rx_controls += le32toh(sp->rx_controls);
2065 		hsp->tx_tco += le16toh(sp->tx_tco);
2066 		hsp->rx_tco += le16toh(sp->rx_tco);
2067 
2068 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2069 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2070 		    le32toh(sp->tx_total_collisions));
2071 		if (sp->rx_good) {
2072 			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2073 			    le32toh(sp->rx_good));
2074 			sc->rx_idle_secs = 0;
2075 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2076 			/*
2077 			 * Receiver's been idle for another second.
2078 			 */
2079 			sc->rx_idle_secs++;
2080 		}
2081 		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2082 		    le32toh(sp->rx_crc_errors) +
2083 		    le32toh(sp->rx_alignment_errors) +
2084 		    le32toh(sp->rx_rnr_errors) +
2085 		    le32toh(sp->rx_overrun_errors));
2086 		/*
2087 		 * If any transmit underruns occurred, bump up the transmit
2088 		 * threshold by another 512 bytes (64 * 8).
2089 		 */
2090 		if (sp->tx_underruns) {
2091 			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2092 			    le32toh(sp->tx_underruns));
2093 			if (tx_threshold < 192)
2094 				tx_threshold += 64;
2095 		}
2096 		*status = 0;
2097 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2098 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099 	}
2100 }
2101 
2102 /*
2103  * Update packet in/out/collision statistics. The i82557 doesn't
2104  * allow you to access these counters without doing a fairly
2105  * expensive DMA to get _all_ of the statistics it maintains, so
2106  * we do this operation here only once per second. The statistics
2107  * counters in the kernel are updated from the previous dump-stats
2108  * DMA and then a new dump-stats DMA is started. The on-chip
2109  * counters are zeroed when the DMA completes. If we can't start
2110  * the DMA immediately, we don't wait - we just prepare to read
2111  * them again next time.
2112  */
2113 static void
fxp_tick(void * xsc)2114 fxp_tick(void *xsc)
2115 {
2116 	struct fxp_softc *sc = xsc;
2117 	if_t ifp = sc->ifp;
2118 
2119 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2120 
2121 	/* Update statistical counters. */
2122 	fxp_update_stats(sc);
2123 
2124 	/*
2125 	 * Release any xmit buffers that have completed DMA. This isn't
2126 	 * strictly necessary to do here, but it's advantagous for mbufs
2127 	 * with external storage to be released in a timely manner rather
2128 	 * than being defered for a potentially long time. This limits
2129 	 * the delay to a maximum of one second.
2130 	 */
2131 	fxp_txeof(sc);
2132 
2133 	/*
2134 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2135 	 * then assume the receiver has locked up and attempt to clear
2136 	 * the condition by reprogramming the multicast filter. This is
2137 	 * a work-around for a bug in the 82557 where the receiver locks
2138 	 * up if it gets certain types of garbage in the synchronization
2139 	 * bits prior to the packet header. This bug is supposed to only
2140 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2141 	 * mode as well (perhaps due to a 10/100 speed transition).
2142 	 */
2143 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2144 		sc->rx_idle_secs = 0;
2145 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2146 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2147 			fxp_init_body(sc, 1);
2148 		}
2149 		return;
2150 	}
2151 	/*
2152 	 * If there is no pending command, start another stats
2153 	 * dump. Otherwise punt for now.
2154 	 */
2155 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2156 		/*
2157 		 * Start another stats dump.
2158 		 */
2159 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2160 	}
2161 	if (sc->miibus != NULL)
2162 		mii_tick(device_get_softc(sc->miibus));
2163 
2164 	/*
2165 	 * Check that chip hasn't hung.
2166 	 */
2167 	fxp_watchdog(sc);
2168 
2169 	/*
2170 	 * Schedule another timeout one second from now.
2171 	 */
2172 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2173 }
2174 
2175 /*
2176  * Stop the interface. Cancels the statistics updater and resets
2177  * the interface.
2178  */
2179 static void
fxp_stop(struct fxp_softc * sc)2180 fxp_stop(struct fxp_softc *sc)
2181 {
2182 	if_t ifp = sc->ifp;
2183 	struct fxp_tx *txp;
2184 	int i;
2185 
2186 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2187 	sc->watchdog_timer = 0;
2188 
2189 	/*
2190 	 * Cancel stats updater.
2191 	 */
2192 	callout_stop(&sc->stat_ch);
2193 
2194 	/*
2195 	 * Preserve PCI configuration, configure, IA/multicast
2196 	 * setup and put RU and CU into idle state.
2197 	 */
2198 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2199 	DELAY(50);
2200 	/* Disable interrupts. */
2201 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2202 
2203 	fxp_update_stats(sc);
2204 
2205 	/*
2206 	 * Release any xmit buffers.
2207 	 */
2208 	txp = sc->fxp_desc.tx_list;
2209 	for (i = 0; i < FXP_NTXCB; i++) {
2210 		if (txp[i].tx_mbuf != NULL) {
2211 			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2212 			    BUS_DMASYNC_POSTWRITE);
2213 			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2214 			m_freem(txp[i].tx_mbuf);
2215 			txp[i].tx_mbuf = NULL;
2216 			/* clear this to reset csum offload bits */
2217 			txp[i].tx_cb->tbd[0].tb_addr = 0;
2218 		}
2219 	}
2220 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2221 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2222 	sc->tx_queued = 0;
2223 }
2224 
2225 /*
2226  * Watchdog/transmission transmit timeout handler. Called when a
2227  * transmission is started on the interface, but no interrupt is
2228  * received before the timeout. This usually indicates that the
2229  * card has wedged for some reason.
2230  */
2231 static void
fxp_watchdog(struct fxp_softc * sc)2232 fxp_watchdog(struct fxp_softc *sc)
2233 {
2234 	if_t ifp = sc->ifp;
2235 
2236 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2237 
2238 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2239 		return;
2240 
2241 	device_printf(sc->dev, "device timeout\n");
2242 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2243 
2244 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2245 	fxp_init_body(sc, 1);
2246 }
2247 
2248 /*
2249  * Acquire locks and then call the real initialization function.  This
2250  * is necessary because ether_ioctl() calls if_init() and this would
2251  * result in mutex recursion if the mutex was held.
2252  */
2253 static void
fxp_init(void * xsc)2254 fxp_init(void *xsc)
2255 {
2256 	struct fxp_softc *sc = xsc;
2257 
2258 	FXP_LOCK(sc);
2259 	fxp_init_body(sc, 1);
2260 	FXP_UNLOCK(sc);
2261 }
2262 
2263 /*
2264  * Perform device initialization. This routine must be called with the
2265  * softc lock held.
2266  */
2267 static void
fxp_init_body(struct fxp_softc * sc,int setmedia)2268 fxp_init_body(struct fxp_softc *sc, int setmedia)
2269 {
2270 	if_t ifp = sc->ifp;
2271 	struct mii_data *mii;
2272 	struct fxp_cb_config *cbp;
2273 	struct fxp_cb_ias *cb_ias;
2274 	struct fxp_cb_tx *tcbp;
2275 	struct fxp_tx *txp;
2276 	int i, prm;
2277 
2278 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2279 
2280 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2281 		return;
2282 
2283 	/*
2284 	 * Cancel any pending I/O
2285 	 */
2286 	fxp_stop(sc);
2287 
2288 	/*
2289 	 * Issue software reset, which also unloads the microcode.
2290 	 */
2291 	sc->flags &= ~FXP_FLAG_UCODE;
2292 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2293 	DELAY(50);
2294 
2295 	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2296 
2297 	/*
2298 	 * Initialize base of CBL and RFA memory. Loading with zero
2299 	 * sets it up for regular linear addressing.
2300 	 */
2301 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2302 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2303 
2304 	fxp_scb_wait(sc);
2305 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2306 
2307 	/*
2308 	 * Initialize base of dump-stats buffer.
2309 	 */
2310 	fxp_scb_wait(sc);
2311 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2312 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2313 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2314 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2315 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2316 
2317 	/*
2318 	 * Attempt to load microcode if requested.
2319 	 * For ICH based controllers do not load microcode.
2320 	 */
2321 	if (sc->ident->ich == 0) {
2322 		if (if_getflags(ifp) & IFF_LINK0 &&
2323 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2324 			fxp_load_ucode(sc);
2325 	}
2326 
2327 	/*
2328 	 * Set IFF_ALLMULTI status. It's needed in configure action
2329 	 * command.
2330 	 */
2331 	fxp_mc_addrs(sc);
2332 
2333 	/*
2334 	 * We temporarily use memory that contains the TxCB list to
2335 	 * construct the config CB. The TxCB list memory is rebuilt
2336 	 * later.
2337 	 */
2338 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2339 
2340 	/*
2341 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2342 	 * zero and must be one bits in this structure and this is the easiest
2343 	 * way to initialize them all to proper values.
2344 	 */
2345 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2346 
2347 	cbp->cb_status =	0;
2348 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2349 	    FXP_CB_COMMAND_EL);
2350 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2351 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2352 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2353 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2354 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2355 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2356 	cbp->type_enable =	0;	/* actually reserved */
2357 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2358 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2359 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2360 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2361 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2362 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2363 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2364 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2365 	cbp->ci_int =		1;	/* interrupt on CU idle */
2366 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2367 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2368 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2369 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2370 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2371 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2372 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2373 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2374 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2375 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2376 	cbp->csma_dis =		0;	/* (don't) disable link */
2377 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2378 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2379 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2380 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2381 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2382 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2383 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2384 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2385 	cbp->loopback =		0;	/* (don't) loopback */
2386 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2387 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2388 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2389 	cbp->promiscuous =	prm;	/* promiscuous mode */
2390 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2391 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2392 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2393 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2394 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2395 
2396 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2397 	cbp->padding =		1;	/* (do) pad short tx packets */
2398 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2399 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2400 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2401 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2402 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2403 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2404 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2405 	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2406 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2407 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2408 	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2409 
2410 	if (sc->revision == FXP_REV_82557) {
2411 		/*
2412 		 * The 82557 has no hardware flow control, the values
2413 		 * below are the defaults for the chip.
2414 		 */
2415 		cbp->fc_delay_lsb =	0;
2416 		cbp->fc_delay_msb =	0x40;
2417 		cbp->pri_fc_thresh =	3;
2418 		cbp->tx_fc_dis =	0;
2419 		cbp->rx_fc_restop =	0;
2420 		cbp->rx_fc_restart =	0;
2421 		cbp->fc_filter =	0;
2422 		cbp->pri_fc_loc =	1;
2423 	} else {
2424 		/* Set pause RX FIFO threshold to 1KB. */
2425 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2426 		/* Set pause time. */
2427 		cbp->fc_delay_lsb =	0xff;
2428 		cbp->fc_delay_msb =	0xff;
2429 		cbp->pri_fc_thresh =	3;
2430 		mii = device_get_softc(sc->miibus);
2431 		if ((IFM_OPTIONS(mii->mii_media_active) &
2432 		    IFM_ETH_TXPAUSE) != 0)
2433 			/* enable transmit FC */
2434 			cbp->tx_fc_dis = 0;
2435 		else
2436 			/* disable transmit FC */
2437 			cbp->tx_fc_dis = 1;
2438 		if ((IFM_OPTIONS(mii->mii_media_active) &
2439 		    IFM_ETH_RXPAUSE) != 0) {
2440 			/* enable FC restart/restop frames */
2441 			cbp->rx_fc_restart = 1;
2442 			cbp->rx_fc_restop = 1;
2443 		} else {
2444 			/* disable FC restart/restop frames */
2445 			cbp->rx_fc_restart = 0;
2446 			cbp->rx_fc_restop = 0;
2447 		}
2448 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2449 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2450 	}
2451 
2452 	/* Enable 82558 and 82559 extended statistics functionality. */
2453 	if (sc->revision >= FXP_REV_82558_A4) {
2454 		if (sc->revision >= FXP_REV_82559_A0) {
2455 			/*
2456 			 * Extend configuration table size to 32
2457 			 * to include TCO configuration.
2458 			 */
2459 			cbp->byte_count = 32;
2460 			cbp->ext_stats_dis = 1;
2461 			/* Enable TCO stats. */
2462 			cbp->tno_int_or_tco_en = 1;
2463 			cbp->gamla_rx = 1;
2464 		} else
2465 			cbp->ext_stats_dis = 0;
2466 	}
2467 
2468 	/*
2469 	 * Start the config command/DMA.
2470 	 */
2471 	fxp_scb_wait(sc);
2472 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2473 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2474 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2475 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2476 	/* ...and wait for it to complete. */
2477 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2478 
2479 	/*
2480 	 * Now initialize the station address. Temporarily use the TxCB
2481 	 * memory area like we did above for the config CB.
2482 	 */
2483 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2484 	cb_ias->cb_status = 0;
2485 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2486 	cb_ias->link_addr = 0xffffffff;
2487 	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2488 
2489 	/*
2490 	 * Start the IAS (Individual Address Setup) command/DMA.
2491 	 */
2492 	fxp_scb_wait(sc);
2493 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2494 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2495 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2496 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2497 	/* ...and wait for it to complete. */
2498 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2499 
2500 	/*
2501 	 * Initialize the multicast address list.
2502 	 */
2503 	fxp_mc_setup(sc);
2504 
2505 	/*
2506 	 * Initialize transmit control block (TxCB) list.
2507 	 */
2508 	txp = sc->fxp_desc.tx_list;
2509 	tcbp = sc->fxp_desc.cbl_list;
2510 	bzero(tcbp, FXP_TXCB_SZ);
2511 	for (i = 0; i < FXP_NTXCB; i++) {
2512 		txp[i].tx_mbuf = NULL;
2513 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2514 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2515 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2516 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2517 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2518 			tcbp[i].tbd_array_addr =
2519 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2520 		else
2521 			tcbp[i].tbd_array_addr =
2522 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2523 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2524 	}
2525 	/*
2526 	 * Set the suspend flag on the first TxCB and start the control
2527 	 * unit. It will execute the NOP and then suspend.
2528 	 */
2529 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2530 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2531 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2532 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2533 	sc->tx_queued = 1;
2534 
2535 	fxp_scb_wait(sc);
2536 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2537 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2538 
2539 	/*
2540 	 * Initialize receiver buffer area - RFA.
2541 	 */
2542 	fxp_scb_wait(sc);
2543 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2544 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2545 
2546 	if (sc->miibus != NULL && setmedia != 0)
2547 		mii_mediachg(device_get_softc(sc->miibus));
2548 
2549 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2550 
2551 	/*
2552 	 * Enable interrupts.
2553 	 */
2554 #ifdef DEVICE_POLLING
2555 	/*
2556 	 * ... but only do that if we are not polling. And because (presumably)
2557 	 * the default is interrupts on, we need to disable them explicitly!
2558 	 */
2559 	if (if_getcapenable(ifp) & IFCAP_POLLING )
2560 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2561 	else
2562 #endif /* DEVICE_POLLING */
2563 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2564 
2565 	/*
2566 	 * Start stats updater.
2567 	 */
2568 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2569 }
2570 
2571 static int
fxp_serial_ifmedia_upd(if_t ifp)2572 fxp_serial_ifmedia_upd(if_t ifp)
2573 {
2574 
2575 	return (0);
2576 }
2577 
2578 static void
fxp_serial_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2579 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2580 {
2581 
2582 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2583 }
2584 
2585 /*
2586  * Change media according to request.
2587  */
2588 static int
fxp_ifmedia_upd(if_t ifp)2589 fxp_ifmedia_upd(if_t ifp)
2590 {
2591 	struct fxp_softc *sc = if_getsoftc(ifp);
2592 	struct mii_data *mii;
2593 	struct mii_softc	*miisc;
2594 
2595 	mii = device_get_softc(sc->miibus);
2596 	FXP_LOCK(sc);
2597 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2598 		PHY_RESET(miisc);
2599 	mii_mediachg(mii);
2600 	FXP_UNLOCK(sc);
2601 	return (0);
2602 }
2603 
2604 /*
2605  * Notify the world which media we're using.
2606  */
2607 static void
fxp_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2608 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2609 {
2610 	struct fxp_softc *sc = if_getsoftc(ifp);
2611 	struct mii_data *mii;
2612 
2613 	mii = device_get_softc(sc->miibus);
2614 	FXP_LOCK(sc);
2615 	mii_pollstat(mii);
2616 	ifmr->ifm_active = mii->mii_media_active;
2617 	ifmr->ifm_status = mii->mii_media_status;
2618 	FXP_UNLOCK(sc);
2619 }
2620 
2621 /*
2622  * Add a buffer to the end of the RFA buffer list.
2623  * Return 0 if successful, 1 for failure. A failure results in
2624  * reusing the RFA buffer.
2625  * The RFA struct is stuck at the beginning of mbuf cluster and the
2626  * data pointer is fixed up to point just past it.
2627  */
2628 static int
fxp_new_rfabuf(struct fxp_softc * sc,struct fxp_rx * rxp)2629 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2630 {
2631 	struct mbuf *m;
2632 	struct fxp_rfa *rfa;
2633 	bus_dmamap_t tmp_map;
2634 	int error;
2635 
2636 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2637 	if (m == NULL)
2638 		return (ENOBUFS);
2639 
2640 	/*
2641 	 * Move the data pointer up so that the incoming data packet
2642 	 * will be 32-bit aligned.
2643 	 */
2644 	m->m_data += RFA_ALIGNMENT_FUDGE;
2645 
2646 	/*
2647 	 * Get a pointer to the base of the mbuf cluster and move
2648 	 * data start past it.
2649 	 */
2650 	rfa = mtod(m, struct fxp_rfa *);
2651 	m->m_data += sc->rfa_size;
2652 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2653 
2654 	rfa->rfa_status = 0;
2655 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2656 	rfa->actual_size = 0;
2657 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2658 	    sc->rfa_size;
2659 
2660 	/*
2661 	 * Initialize the rest of the RFA.  Note that since the RFA
2662 	 * is misaligned, we cannot store values directly.  We're thus
2663 	 * using the le32enc() function which handles endianness and
2664 	 * is also alignment-safe.
2665 	 */
2666 	le32enc(&rfa->link_addr, 0xffffffff);
2667 	le32enc(&rfa->rbd_addr, 0xffffffff);
2668 
2669 	/* Map the RFA into DMA memory. */
2670 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2671 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2672 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2673 	if (error) {
2674 		m_freem(m);
2675 		return (error);
2676 	}
2677 
2678 	if (rxp->rx_mbuf != NULL)
2679 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2680 	tmp_map = sc->spare_map;
2681 	sc->spare_map = rxp->rx_map;
2682 	rxp->rx_map = tmp_map;
2683 	rxp->rx_mbuf = m;
2684 
2685 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2686 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2687 	return (0);
2688 }
2689 
2690 static void
fxp_add_rfabuf(struct fxp_softc * sc,struct fxp_rx * rxp)2691 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2692 {
2693 	struct fxp_rfa *p_rfa;
2694 	struct fxp_rx *p_rx;
2695 
2696 	/*
2697 	 * If there are other buffers already on the list, attach this
2698 	 * one to the end by fixing up the tail to point to this one.
2699 	 */
2700 	if (sc->fxp_desc.rx_head != NULL) {
2701 		p_rx = sc->fxp_desc.rx_tail;
2702 		p_rfa = (struct fxp_rfa *)
2703 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2704 		p_rx->rx_next = rxp;
2705 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2706 		p_rfa->rfa_control = 0;
2707 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2708 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2709 	} else {
2710 		rxp->rx_next = NULL;
2711 		sc->fxp_desc.rx_head = rxp;
2712 	}
2713 	sc->fxp_desc.rx_tail = rxp;
2714 }
2715 
2716 static void
fxp_discard_rfabuf(struct fxp_softc * sc,struct fxp_rx * rxp)2717 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2718 {
2719 	struct mbuf *m;
2720 	struct fxp_rfa *rfa;
2721 
2722 	m = rxp->rx_mbuf;
2723 	m->m_data = m->m_ext.ext_buf;
2724 	/*
2725 	 * Move the data pointer up so that the incoming data packet
2726 	 * will be 32-bit aligned.
2727 	 */
2728 	m->m_data += RFA_ALIGNMENT_FUDGE;
2729 
2730 	/*
2731 	 * Get a pointer to the base of the mbuf cluster and move
2732 	 * data start past it.
2733 	 */
2734 	rfa = mtod(m, struct fxp_rfa *);
2735 	m->m_data += sc->rfa_size;
2736 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2737 
2738 	rfa->rfa_status = 0;
2739 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2740 	rfa->actual_size = 0;
2741 
2742 	/*
2743 	 * Initialize the rest of the RFA.  Note that since the RFA
2744 	 * is misaligned, we cannot store values directly.  We're thus
2745 	 * using the le32enc() function which handles endianness and
2746 	 * is also alignment-safe.
2747 	 */
2748 	le32enc(&rfa->link_addr, 0xffffffff);
2749 	le32enc(&rfa->rbd_addr, 0xffffffff);
2750 
2751 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2752 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2753 }
2754 
2755 static int
fxp_miibus_readreg(device_t dev,int phy,int reg)2756 fxp_miibus_readreg(device_t dev, int phy, int reg)
2757 {
2758 	struct fxp_softc *sc = device_get_softc(dev);
2759 	int count = 10000;
2760 	int value;
2761 
2762 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2763 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2764 
2765 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2766 	    && count--)
2767 		DELAY(10);
2768 
2769 	if (count <= 0)
2770 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2771 
2772 	return (value & 0xffff);
2773 }
2774 
2775 static int
fxp_miibus_writereg(device_t dev,int phy,int reg,int value)2776 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2777 {
2778 	struct fxp_softc *sc = device_get_softc(dev);
2779 	int count = 10000;
2780 
2781 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2782 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2783 	    (value & 0xffff));
2784 
2785 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2786 	    count--)
2787 		DELAY(10);
2788 
2789 	if (count <= 0)
2790 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2791 	return (0);
2792 }
2793 
2794 static void
fxp_miibus_statchg(device_t dev)2795 fxp_miibus_statchg(device_t dev)
2796 {
2797 	struct fxp_softc *sc;
2798 	struct mii_data *mii;
2799 	if_t ifp;
2800 
2801 	sc = device_get_softc(dev);
2802 	mii = device_get_softc(sc->miibus);
2803 	ifp = sc->ifp;
2804 	if (mii == NULL || ifp == (void *)NULL ||
2805 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2806 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2807 	    (IFM_AVALID | IFM_ACTIVE))
2808 		return;
2809 
2810 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2811 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2812 		sc->cu_resume_bug = 1;
2813 	else
2814 		sc->cu_resume_bug = 0;
2815 	/*
2816 	 * Call fxp_init_body in order to adjust the flow control settings.
2817 	 * Note that the 82557 doesn't support hardware flow control.
2818 	 */
2819 	if (sc->revision == FXP_REV_82557)
2820 		return;
2821 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2822 	fxp_init_body(sc, 0);
2823 }
2824 
2825 static int
fxp_ioctl(if_t ifp,u_long command,caddr_t data)2826 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2827 {
2828 	struct fxp_softc *sc = if_getsoftc(ifp);
2829 	struct ifreq *ifr = (struct ifreq *)data;
2830 	struct mii_data *mii;
2831 	int flag, mask, error = 0, reinit;
2832 
2833 	switch (command) {
2834 	case SIOCSIFFLAGS:
2835 		FXP_LOCK(sc);
2836 		/*
2837 		 * If interface is marked up and not running, then start it.
2838 		 * If it is marked down and running, stop it.
2839 		 * XXX If it's up then re-initialize it. This is so flags
2840 		 * such as IFF_PROMISC are handled.
2841 		 */
2842 		if (if_getflags(ifp) & IFF_UP) {
2843 			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2844 			    ((if_getflags(ifp) ^ sc->if_flags) &
2845 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2846 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2847 				fxp_init_body(sc, 0);
2848 			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2849 				fxp_init_body(sc, 1);
2850 		} else {
2851 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2852 				fxp_stop(sc);
2853 		}
2854 		sc->if_flags = if_getflags(ifp);
2855 		FXP_UNLOCK(sc);
2856 		break;
2857 
2858 	case SIOCADDMULTI:
2859 	case SIOCDELMULTI:
2860 		FXP_LOCK(sc);
2861 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2862 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2863 			fxp_init_body(sc, 0);
2864 		}
2865 		FXP_UNLOCK(sc);
2866 		break;
2867 
2868 	case SIOCSIFMEDIA:
2869 	case SIOCGIFMEDIA:
2870 		if (sc->miibus != NULL) {
2871 			mii = device_get_softc(sc->miibus);
2872                         error = ifmedia_ioctl(ifp, ifr,
2873                             &mii->mii_media, command);
2874 		} else {
2875                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2876 		}
2877 		break;
2878 
2879 	case SIOCSIFCAP:
2880 		reinit = 0;
2881 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2882 #ifdef DEVICE_POLLING
2883 		if (mask & IFCAP_POLLING) {
2884 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2885 				error = ether_poll_register(fxp_poll, ifp);
2886 				if (error)
2887 					return(error);
2888 				FXP_LOCK(sc);
2889 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2890 				    FXP_SCB_INTR_DISABLE);
2891 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2892 				FXP_UNLOCK(sc);
2893 			} else {
2894 				error = ether_poll_deregister(ifp);
2895 				/* Enable interrupts in any case */
2896 				FXP_LOCK(sc);
2897 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2898 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2899 				FXP_UNLOCK(sc);
2900 			}
2901 		}
2902 #endif
2903 		FXP_LOCK(sc);
2904 		if ((mask & IFCAP_TXCSUM) != 0 &&
2905 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2906 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2907 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2908 				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2909 			else
2910 				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2911 		}
2912 		if ((mask & IFCAP_RXCSUM) != 0 &&
2913 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2914 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2915 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2916 				reinit++;
2917 		}
2918 		if ((mask & IFCAP_TSO4) != 0 &&
2919 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2920 			if_togglecapenable(ifp, IFCAP_TSO4);
2921 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2922 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2923 			else
2924 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2925 		}
2926 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2927 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2928 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2929 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2930 		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2931 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2932 			if (sc->revision != FXP_REV_82557)
2933 				flag = FXP_FLAG_LONG_PKT_EN;
2934 			else /* a hack to get long frames on the old chip */
2935 				flag = FXP_FLAG_SAVE_BAD;
2936 			sc->flags ^= flag;
2937 			if (if_getflags(ifp) & IFF_UP)
2938 				reinit++;
2939 		}
2940 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2941 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2942 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2943 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2944 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2945 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2946 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2947 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2948 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2949 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2950 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2951 				    IFCAP_VLAN_HWCSUM);
2952 			reinit++;
2953 		}
2954 		if (reinit > 0 &&
2955 		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2956 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2957 			fxp_init_body(sc, 0);
2958 		}
2959 		FXP_UNLOCK(sc);
2960 		if_vlancap(ifp);
2961 		break;
2962 
2963 	default:
2964 		error = ether_ioctl(ifp, command, data);
2965 	}
2966 	return (error);
2967 }
2968 
2969 static u_int
fxp_setup_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2970 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2971 {
2972 	struct fxp_softc *sc = arg;
2973 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2974 
2975 	if (mcsp->mc_cnt < MAXMCADDR)
2976 		bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2977 		    ETHER_ADDR_LEN);
2978 	mcsp->mc_cnt++;
2979 	return (1);
2980 }
2981 
2982 /*
2983  * Fill in the multicast address list and return number of entries.
2984  */
2985 static void
fxp_mc_addrs(struct fxp_softc * sc)2986 fxp_mc_addrs(struct fxp_softc *sc)
2987 {
2988 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2989 	if_t ifp = sc->ifp;
2990 
2991 	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2992 		mcsp->mc_cnt = 0;
2993 		if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
2994 		if (mcsp->mc_cnt >= MAXMCADDR) {
2995 			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2996 			mcsp->mc_cnt = 0;
2997 		}
2998 	}
2999 	mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
3000 }
3001 
3002 /*
3003  * Program the multicast filter.
3004  *
3005  * We have an artificial restriction that the multicast setup command
3006  * must be the first command in the chain, so we take steps to ensure
3007  * this. By requiring this, it allows us to keep up the performance of
3008  * the pre-initialized command ring (esp. link pointers) by not actually
3009  * inserting the mcsetup command in the ring - i.e. its link pointer
3010  * points to the TxCB ring, but the mcsetup descriptor itself is not part
3011  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3012  * lead into the regular TxCB ring when it completes.
3013  */
3014 static void
fxp_mc_setup(struct fxp_softc * sc)3015 fxp_mc_setup(struct fxp_softc *sc)
3016 {
3017 	struct fxp_cb_mcs *mcsp;
3018 	int count;
3019 
3020 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3021 
3022 	mcsp = sc->mcsp;
3023 	mcsp->cb_status = 0;
3024 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3025 	mcsp->link_addr = 0xffffffff;
3026 	fxp_mc_addrs(sc);
3027 
3028 	/*
3029 	 * Wait until command unit is idle. This should never be the
3030 	 * case when nothing is queued, but make sure anyway.
3031 	 */
3032 	count = 100;
3033 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3034 	    FXP_SCB_CUS_IDLE && --count)
3035 		DELAY(10);
3036 	if (count == 0) {
3037 		device_printf(sc->dev, "command queue timeout\n");
3038 		return;
3039 	}
3040 
3041 	/*
3042 	 * Start the multicast setup command.
3043 	 */
3044 	fxp_scb_wait(sc);
3045 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3046 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3047 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3048 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3049 	/* ...and wait for it to complete. */
3050 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3051 }
3052 
3053 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3054 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3055 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3056 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3057 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3058 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3059 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3060 
3061 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3062 
3063 static const struct ucode {
3064 	uint32_t	revision;
3065 	uint32_t	*ucode;
3066 	int		length;
3067 	u_short		int_delay_offset;
3068 	u_short		bundle_max_offset;
3069 } ucode_table[] = {
3070 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3071 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3072 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3073 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3074 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3075 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3076 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3077 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3078 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3079 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3080 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3081 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3082 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3083 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3084 	{ 0, NULL, 0, 0, 0 }
3085 };
3086 
3087 static void
fxp_load_ucode(struct fxp_softc * sc)3088 fxp_load_ucode(struct fxp_softc *sc)
3089 {
3090 	const struct ucode *uc;
3091 	struct fxp_cb_ucode *cbp;
3092 	int i;
3093 
3094 	if (sc->flags & FXP_FLAG_NO_UCODE)
3095 		return;
3096 
3097 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3098 		if (sc->revision == uc->revision)
3099 			break;
3100 	if (uc->ucode == NULL)
3101 		return;
3102 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3103 	cbp->cb_status = 0;
3104 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3105 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3106 	for (i = 0; i < uc->length; i++)
3107 		cbp->ucode[i] = htole32(uc->ucode[i]);
3108 	if (uc->int_delay_offset)
3109 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3110 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3111 	if (uc->bundle_max_offset)
3112 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3113 		    htole16(sc->tunable_bundle_max);
3114 	/*
3115 	 * Download the ucode to the chip.
3116 	 */
3117 	fxp_scb_wait(sc);
3118 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3119 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3120 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3121 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3122 	/* ...and wait for it to complete. */
3123 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3124 	device_printf(sc->dev,
3125 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3126 	    sc->tunable_int_delay,
3127 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3128 	sc->flags |= FXP_FLAG_UCODE;
3129 	bzero(cbp, FXP_TXCB_SZ);
3130 }
3131 
3132 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3133 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3134 
3135 static void
fxp_sysctl_node(struct fxp_softc * sc)3136 fxp_sysctl_node(struct fxp_softc *sc)
3137 {
3138 	struct sysctl_ctx_list *ctx;
3139 	struct sysctl_oid_list *child, *parent;
3140 	struct sysctl_oid *tree;
3141 	struct fxp_hwstats *hsp;
3142 
3143 	ctx = device_get_sysctl_ctx(sc->dev);
3144 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3145 
3146 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3147 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3148 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3149 	    "FXP driver receive interrupt microcode bundling delay");
3150 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3151 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3152 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3153 	    "FXP driver receive interrupt microcode bundle size limit");
3154 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3155 	    "FXP RNR events");
3156 
3157 	/*
3158 	 * Pull in device tunables.
3159 	 */
3160 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3161 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3162 	(void) resource_int_value(device_get_name(sc->dev),
3163 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3164 	(void) resource_int_value(device_get_name(sc->dev),
3165 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3166 	sc->rnr = 0;
3167 
3168 	hsp = &sc->fxp_hwstats;
3169 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3170 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3171 	parent = SYSCTL_CHILDREN(tree);
3172 
3173 	/* Rx MAC statistics. */
3174 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3175 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3176 	child = SYSCTL_CHILDREN(tree);
3177 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3178 	    &hsp->rx_good, "Good frames");
3179 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3180 	    &hsp->rx_crc_errors, "CRC errors");
3181 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3182 	    &hsp->rx_alignment_errors, "Alignment errors");
3183 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3184 	    &hsp->rx_rnr_errors, "RNR errors");
3185 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3186 	    &hsp->rx_overrun_errors, "Overrun errors");
3187 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3188 	    &hsp->rx_cdt_errors, "Collision detect errors");
3189 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3190 	    &hsp->rx_shortframes, "Short frame errors");
3191 	if (sc->revision >= FXP_REV_82558_A4) {
3192 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3193 		    &hsp->rx_pause, "Pause frames");
3194 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3195 		    &hsp->rx_controls, "Unsupported control frames");
3196 	}
3197 	if (sc->revision >= FXP_REV_82559_A0)
3198 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3199 		    &hsp->rx_tco, "TCO frames");
3200 
3201 	/* Tx MAC statistics. */
3202 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3203 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3204 	child = SYSCTL_CHILDREN(tree);
3205 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3206 	    &hsp->tx_good, "Good frames");
3207 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3208 	    &hsp->tx_maxcols, "Maximum collisions errors");
3209 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3210 	    &hsp->tx_latecols, "Late collisions errors");
3211 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3212 	    &hsp->tx_underruns, "Underrun errors");
3213 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3214 	    &hsp->tx_lostcrs, "Lost carrier sense");
3215 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3216 	    &hsp->tx_deffered, "Deferred");
3217 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3218 	    &hsp->tx_single_collisions, "Single collisions");
3219 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3220 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3221 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3222 	    &hsp->tx_total_collisions, "Total collisions");
3223 	if (sc->revision >= FXP_REV_82558_A4)
3224 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3225 		    &hsp->tx_pause, "Pause frames");
3226 	if (sc->revision >= FXP_REV_82559_A0)
3227 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3228 		    &hsp->tx_tco, "TCO frames");
3229 }
3230 
3231 #undef FXP_SYSCTL_STAT_ADD
3232 
3233 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)3234 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3235 {
3236 	int error, value;
3237 
3238 	value = *(int *)arg1;
3239 	error = sysctl_handle_int(oidp, &value, 0, req);
3240 	if (error || !req->newptr)
3241 		return (error);
3242 	if (value < low || value > high)
3243 		return (EINVAL);
3244 	*(int *)arg1 = value;
3245 	return (0);
3246 }
3247 
3248 /*
3249  * Interrupt delay is expressed in microseconds, a multiplier is used
3250  * to convert this to the appropriate clock ticks before using.
3251  */
3252 static int
sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)3253 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3254 {
3255 
3256 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3257 }
3258 
3259 static int
sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)3260 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3261 {
3262 
3263 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3264 }
3265