xref: /freebsd/sys/dev/fxp/if_fxp.c (revision e28a4053)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On the Alpha, we have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits.
110  * The actual configuration is performed in fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5,	/* 21 */
140 	0x0,	/* 22 */
141 	0x0,	/* 23 */
142 	0x0,	/* 24 */
143 	0x0,	/* 25 */
144 	0x0,	/* 26 */
145 	0x0,	/* 27 */
146 	0x0,	/* 28 */
147 	0x0,	/* 29 */
148 	0x0,	/* 30 */
149 	0x0	/* 31 */
150 };
151 
152 /*
153  * Claim various Intel PCI device identifiers for this driver.  The
154  * sub-vendor and sub-device field are extensively used to identify
155  * particular variants, but we don't currently differentiate between
156  * them.
157  */
158 static struct fxp_ident fxp_ident_table[] = {
159     { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160     { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161     { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163     { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175     { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176     { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177     { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178     { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179     { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180     { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181     { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182     { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183     { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184     { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185     { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186     { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187     { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188     { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189     { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191     { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192     { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193     { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194     { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196     { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197     { 0x1229,	0x0d,	0, "Intel 82550 Pro/100 Ethernet" },
198     { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200     { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201     { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202     { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203     { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204     { 0,	-1,	0, NULL },
205 };
206 
207 #ifdef FXP_IP_CSUM_WAR
208 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209 #else
210 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211 #endif
212 
213 static int		fxp_probe(device_t dev);
214 static int		fxp_attach(device_t dev);
215 static int		fxp_detach(device_t dev);
216 static int		fxp_shutdown(device_t dev);
217 static int		fxp_suspend(device_t dev);
218 static int		fxp_resume(device_t dev);
219 
220 static struct fxp_ident	*fxp_find_ident(device_t dev);
221 static void		fxp_intr(void *xsc);
222 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223 			    struct mbuf *m, uint16_t status, int pos);
224 static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225 			    uint8_t statack, int count);
226 static void 		fxp_init(void *xsc);
227 static void 		fxp_init_body(struct fxp_softc *sc);
228 static void 		fxp_tick(void *xsc);
229 static void 		fxp_start(struct ifnet *ifp);
230 static void 		fxp_start_body(struct ifnet *ifp);
231 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232 static void		fxp_txeof(struct fxp_softc *sc);
233 static void		fxp_stop(struct fxp_softc *sc);
234 static void 		fxp_release(struct fxp_softc *sc);
235 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236 			    caddr_t data);
237 static void 		fxp_watchdog(struct fxp_softc *sc);
238 static void		fxp_add_rfabuf(struct fxp_softc *sc,
239     			    struct fxp_rx *rxp);
240 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241     			    struct fxp_rx *rxp);
242 static int		fxp_new_rfabuf(struct fxp_softc *sc,
243     			    struct fxp_rx *rxp);
244 static int		fxp_mc_addrs(struct fxp_softc *sc);
245 static void		fxp_mc_setup(struct fxp_softc *sc);
246 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247 			    int autosize);
248 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249 			    uint16_t data);
250 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
252 			    int offset, int words);
253 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
254 			    int offset, int words);
255 static int		fxp_ifmedia_upd(struct ifnet *ifp);
256 static void		fxp_ifmedia_sts(struct ifnet *ifp,
257 			    struct ifmediareq *ifmr);
258 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
259 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
260 			    struct ifmediareq *ifmr);
261 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
262 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
263 			    int value);
264 static void		fxp_load_ucode(struct fxp_softc *sc);
265 static void		fxp_update_stats(struct fxp_softc *sc);
266 static void		fxp_sysctl_node(struct fxp_softc *sc);
267 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
268 			    int low, int high);
269 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
270 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
271 static void 		fxp_scb_wait(struct fxp_softc *sc);
272 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
273 static void		fxp_dma_wait(struct fxp_softc *sc,
274     			    volatile uint16_t *status, bus_dma_tag_t dmat,
275 			    bus_dmamap_t map);
276 
277 static device_method_t fxp_methods[] = {
278 	/* Device interface */
279 	DEVMETHOD(device_probe,		fxp_probe),
280 	DEVMETHOD(device_attach,	fxp_attach),
281 	DEVMETHOD(device_detach,	fxp_detach),
282 	DEVMETHOD(device_shutdown,	fxp_shutdown),
283 	DEVMETHOD(device_suspend,	fxp_suspend),
284 	DEVMETHOD(device_resume,	fxp_resume),
285 
286 	/* MII interface */
287 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
288 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
289 
290 	{ 0, 0 }
291 };
292 
293 static driver_t fxp_driver = {
294 	"fxp",
295 	fxp_methods,
296 	sizeof(struct fxp_softc),
297 };
298 
299 static devclass_t fxp_devclass;
300 
301 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
302 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
303 
304 static struct resource_spec fxp_res_spec_mem[] = {
305 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
306 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
307 	{ -1, 0 }
308 };
309 
310 static struct resource_spec fxp_res_spec_io[] = {
311 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
312 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
313 	{ -1, 0 }
314 };
315 
316 /*
317  * Wait for the previous command to be accepted (but not necessarily
318  * completed).
319  */
320 static void
321 fxp_scb_wait(struct fxp_softc *sc)
322 {
323 	union {
324 		uint16_t w;
325 		uint8_t b[2];
326 	} flowctl;
327 	int i = 10000;
328 
329 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
330 		DELAY(2);
331 	if (i == 0) {
332 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
333 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
334 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
335 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
336 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
337 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
338 	}
339 }
340 
341 static void
342 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
343 {
344 
345 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
346 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
347 		fxp_scb_wait(sc);
348 	}
349 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
350 }
351 
352 static void
353 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
354     bus_dma_tag_t dmat, bus_dmamap_t map)
355 {
356 	int i;
357 
358 	for (i = 10000; i > 0; i--) {
359 		DELAY(2);
360 		bus_dmamap_sync(dmat, map,
361 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
362 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
363 			break;
364 	}
365 	if (i == 0)
366 		device_printf(sc->dev, "DMA timeout\n");
367 }
368 
369 static struct fxp_ident *
370 fxp_find_ident(device_t dev)
371 {
372 	uint16_t devid;
373 	uint8_t revid;
374 	struct fxp_ident *ident;
375 
376 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
377 		devid = pci_get_device(dev);
378 		revid = pci_get_revid(dev);
379 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
380 			if (ident->devid == devid &&
381 			    (ident->revid == revid || ident->revid == -1)) {
382 				return (ident);
383 			}
384 		}
385 	}
386 	return (NULL);
387 }
388 
389 /*
390  * Return identification string if this device is ours.
391  */
392 static int
393 fxp_probe(device_t dev)
394 {
395 	struct fxp_ident *ident;
396 
397 	ident = fxp_find_ident(dev);
398 	if (ident != NULL) {
399 		device_set_desc(dev, ident->name);
400 		return (BUS_PROBE_DEFAULT);
401 	}
402 	return (ENXIO);
403 }
404 
405 static void
406 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
407 {
408 	uint32_t *addr;
409 
410 	if (error)
411 		return;
412 
413 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
414 	addr = arg;
415 	*addr = segs->ds_addr;
416 }
417 
418 static int
419 fxp_attach(device_t dev)
420 {
421 	struct fxp_softc *sc;
422 	struct fxp_cb_tx *tcbp;
423 	struct fxp_tx *txp;
424 	struct fxp_rx *rxp;
425 	struct ifnet *ifp;
426 	uint32_t val;
427 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
428 	u_char eaddr[ETHER_ADDR_LEN];
429 	int i, pmc, prefer_iomap;
430 	int error;
431 
432 	error = 0;
433 	sc = device_get_softc(dev);
434 	sc->dev = dev;
435 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
436 	    MTX_DEF);
437 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
438 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
439 	    fxp_serial_ifmedia_sts);
440 
441 	ifp = sc->ifp = if_alloc(IFT_ETHER);
442 	if (ifp == NULL) {
443 		device_printf(dev, "can not if_alloc()\n");
444 		error = ENOSPC;
445 		goto fail;
446 	}
447 
448 	/*
449 	 * Enable bus mastering.
450 	 */
451 	pci_enable_busmaster(dev);
452 	val = pci_read_config(dev, PCIR_COMMAND, 2);
453 
454 	/*
455 	 * Figure out which we should try first - memory mapping or i/o mapping?
456 	 * We default to memory mapping. Then we accept an override from the
457 	 * command line. Then we check to see which one is enabled.
458 	 */
459 	prefer_iomap = 0;
460 	resource_int_value(device_get_name(dev), device_get_unit(dev),
461 	    "prefer_iomap", &prefer_iomap);
462 	if (prefer_iomap)
463 		sc->fxp_spec = fxp_res_spec_io;
464 	else
465 		sc->fxp_spec = fxp_res_spec_mem;
466 
467 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
468 	if (error) {
469 		if (sc->fxp_spec == fxp_res_spec_mem)
470 			sc->fxp_spec = fxp_res_spec_io;
471 		else
472 			sc->fxp_spec = fxp_res_spec_mem;
473 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
474 	}
475 	if (error) {
476 		device_printf(dev, "could not allocate resources\n");
477 		error = ENXIO;
478 		goto fail;
479 	}
480 
481 	if (bootverbose) {
482 		device_printf(dev, "using %s space register mapping\n",
483 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
484 	}
485 
486 	/*
487 	 * Put CU/RU idle state and prepare full reset.
488 	 */
489 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
490 	DELAY(10);
491 	/* Full reset and disable interrupts. */
492 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
493 	DELAY(10);
494 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
495 
496 	/*
497 	 * Find out how large of an SEEPROM we have.
498 	 */
499 	fxp_autosize_eeprom(sc);
500 
501 	/*
502 	 * Find out the chip revision; lump all 82557 revs together.
503 	 */
504 	sc->ident = fxp_find_ident(dev);
505 	if (sc->ident->ich > 0) {
506 		/* Assume ICH controllers are 82559. */
507 		sc->revision = FXP_REV_82559_A0;
508 	} else {
509 		fxp_read_eeprom(sc, &data, 5, 1);
510 		if ((data >> 8) == 1)
511 			sc->revision = FXP_REV_82557;
512 		else
513 			sc->revision = pci_get_revid(dev);
514 	}
515 
516 	/*
517 	 * Check availability of WOL. 82559ER does not support WOL.
518 	 */
519 	if (sc->revision >= FXP_REV_82558_A4 &&
520 	    sc->revision != FXP_REV_82559S_A) {
521 		fxp_read_eeprom(sc, &data, 10, 1);
522 		if ((data & 0x20) != 0 &&
523 		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
524 			sc->flags |= FXP_FLAG_WOLCAP;
525 	}
526 
527 	/* Receiver lock-up workaround detection. */
528 	fxp_read_eeprom(sc, &data, 3, 1);
529 	if ((data & 0x03) != 0x03) {
530 		sc->flags |= FXP_FLAG_RXBUG;
531 		device_printf(dev, "Enabling Rx lock-up workaround\n");
532 	}
533 
534 	/*
535 	 * Determine whether we must use the 503 serial interface.
536 	 */
537 	fxp_read_eeprom(sc, &data, 6, 1);
538 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
539 	    && (data & FXP_PHY_SERIAL_ONLY))
540 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
541 
542 	fxp_sysctl_node(sc);
543 	/*
544 	 * Enable workarounds for certain chip revision deficiencies.
545 	 *
546 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
547 	 * some systems based a normal 82559 design, have a defect where
548 	 * the chip can cause a PCI protocol violation if it receives
549 	 * a CU_RESUME command when it is entering the IDLE state.  The
550 	 * workaround is to disable Dynamic Standby Mode, so the chip never
551 	 * deasserts CLKRUN#, and always remains in an active state.
552 	 *
553 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
554 	 */
555 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
556 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
557 		fxp_read_eeprom(sc, &data, 10, 1);
558 		if (data & 0x02) {			/* STB enable */
559 			uint16_t cksum;
560 			int i;
561 
562 			device_printf(dev,
563 			    "Disabling dynamic standby mode in EEPROM\n");
564 			data &= ~0x02;
565 			fxp_write_eeprom(sc, &data, 10, 1);
566 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
567 			cksum = 0;
568 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
569 				fxp_read_eeprom(sc, &data, i, 1);
570 				cksum += data;
571 			}
572 			i = (1 << sc->eeprom_size) - 1;
573 			cksum = 0xBABA - cksum;
574 			fxp_read_eeprom(sc, &data, i, 1);
575 			fxp_write_eeprom(sc, &cksum, i, 1);
576 			device_printf(dev,
577 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
578 			    i, data, cksum);
579 #if 1
580 			/*
581 			 * If the user elects to continue, try the software
582 			 * workaround, as it is better than nothing.
583 			 */
584 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
585 #endif
586 		}
587 	}
588 
589 	/*
590 	 * If we are not a 82557 chip, we can enable extended features.
591 	 */
592 	if (sc->revision != FXP_REV_82557) {
593 		/*
594 		 * If MWI is enabled in the PCI configuration, and there
595 		 * is a valid cacheline size (8 or 16 dwords), then tell
596 		 * the board to turn on MWI.
597 		 */
598 		if (val & PCIM_CMD_MWRICEN &&
599 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
600 			sc->flags |= FXP_FLAG_MWI_ENABLE;
601 
602 		/* turn on the extended TxCB feature */
603 		sc->flags |= FXP_FLAG_EXT_TXCB;
604 
605 		/* enable reception of long frames for VLAN */
606 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
607 	} else {
608 		/* a hack to get long VLAN frames on a 82557 */
609 		sc->flags |= FXP_FLAG_SAVE_BAD;
610 	}
611 
612 	/* For 82559 or later chips, Rx checksum offload is supported. */
613 	if (sc->revision >= FXP_REV_82559_A0) {
614 		/* 82559ER does not support Rx checksum offloading. */
615 		if (sc->ident->devid != 0x1209)
616 			sc->flags |= FXP_FLAG_82559_RXCSUM;
617 	}
618 	/*
619 	 * Enable use of extended RFDs and TCBs for 82550
620 	 * and later chips. Note: we need extended TXCB support
621 	 * too, but that's already enabled by the code above.
622 	 * Be careful to do this only on the right devices.
623 	 */
624 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
625 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
626 	    || sc->revision == FXP_REV_82551_10) {
627 		sc->rfa_size = sizeof (struct fxp_rfa);
628 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
629 		sc->flags |= FXP_FLAG_EXT_RFA;
630 		/* Use extended RFA instead of 82559 checksum mode. */
631 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
632 	} else {
633 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
634 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
635 	}
636 
637 	/*
638 	 * Allocate DMA tags and DMA safe memory.
639 	 */
640 	sc->maxtxseg = FXP_NTXSEG;
641 	sc->maxsegsize = MCLBYTES;
642 	if (sc->flags & FXP_FLAG_EXT_RFA) {
643 		sc->maxtxseg--;
644 		sc->maxsegsize = FXP_TSO_SEGSIZE;
645 	}
646 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
647 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
648 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
649 	    sc->maxtxseg, sc->maxsegsize, 0,
650 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
651 	if (error) {
652 		device_printf(dev, "could not create TX DMA tag\n");
653 		goto fail;
654 	}
655 
656 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
657 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
658 	    MCLBYTES, 1, MCLBYTES, 0,
659 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
660 	if (error) {
661 		device_printf(dev, "could not create RX DMA tag\n");
662 		goto fail;
663 	}
664 
665 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
666 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
667 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
668 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
669 	if (error) {
670 		device_printf(dev, "could not create stats DMA tag\n");
671 		goto fail;
672 	}
673 
674 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
675 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
676 	if (error) {
677 		device_printf(dev, "could not allocate stats DMA memory\n");
678 		goto fail;
679 	}
680 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
681 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
682 	if (error) {
683 		device_printf(dev, "could not load the stats DMA buffer\n");
684 		goto fail;
685 	}
686 
687 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
688 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
689 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
690 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
691 	if (error) {
692 		device_printf(dev, "could not create TxCB DMA tag\n");
693 		goto fail;
694 	}
695 
696 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
697 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
698 	if (error) {
699 		device_printf(dev, "could not allocate TxCB DMA memory\n");
700 		goto fail;
701 	}
702 
703 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
704 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
705 	    &sc->fxp_desc.cbl_addr, 0);
706 	if (error) {
707 		device_printf(dev, "could not load TxCB DMA buffer\n");
708 		goto fail;
709 	}
710 
711 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
712 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
713 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
714 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
715 	if (error) {
716 		device_printf(dev,
717 		    "could not create multicast setup DMA tag\n");
718 		goto fail;
719 	}
720 
721 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
722 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->mcs_map);
723 	if (error) {
724 		device_printf(dev,
725 		    "could not allocate multicast setup DMA memory\n");
726 		goto fail;
727 	}
728 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
729 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
730 	if (error) {
731 		device_printf(dev,
732 		    "can't load the multicast setup DMA buffer\n");
733 		goto fail;
734 	}
735 
736 	/*
737 	 * Pre-allocate the TX DMA maps and setup the pointers to
738 	 * the TX command blocks.
739 	 */
740 	txp = sc->fxp_desc.tx_list;
741 	tcbp = sc->fxp_desc.cbl_list;
742 	for (i = 0; i < FXP_NTXCB; i++) {
743 		txp[i].tx_cb = tcbp + i;
744 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
745 		if (error) {
746 			device_printf(dev, "can't create DMA map for TX\n");
747 			goto fail;
748 		}
749 	}
750 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
751 	if (error) {
752 		device_printf(dev, "can't create spare DMA map\n");
753 		goto fail;
754 	}
755 
756 	/*
757 	 * Pre-allocate our receive buffers.
758 	 */
759 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
760 	for (i = 0; i < FXP_NRFABUFS; i++) {
761 		rxp = &sc->fxp_desc.rx_list[i];
762 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
763 		if (error) {
764 			device_printf(dev, "can't create DMA map for RX\n");
765 			goto fail;
766 		}
767 		if (fxp_new_rfabuf(sc, rxp) != 0) {
768 			error = ENOMEM;
769 			goto fail;
770 		}
771 		fxp_add_rfabuf(sc, rxp);
772 	}
773 
774 	/*
775 	 * Read MAC address.
776 	 */
777 	fxp_read_eeprom(sc, myea, 0, 3);
778 	eaddr[0] = myea[0] & 0xff;
779 	eaddr[1] = myea[0] >> 8;
780 	eaddr[2] = myea[1] & 0xff;
781 	eaddr[3] = myea[1] >> 8;
782 	eaddr[4] = myea[2] & 0xff;
783 	eaddr[5] = myea[2] >> 8;
784 	if (bootverbose) {
785 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
786 		    pci_get_vendor(dev), pci_get_device(dev),
787 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
788 		    pci_get_revid(dev));
789 		fxp_read_eeprom(sc, &data, 10, 1);
790 		device_printf(dev, "Dynamic Standby mode is %s\n",
791 		    data & 0x02 ? "enabled" : "disabled");
792 	}
793 
794 	/*
795 	 * If this is only a 10Mbps device, then there is no MII, and
796 	 * the PHY will use a serial interface instead.
797 	 *
798 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
799 	 * doesn't have a programming interface of any sort.  The
800 	 * media is sensed automatically based on how the link partner
801 	 * is configured.  This is, in essence, manual configuration.
802 	 */
803 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
804 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
805 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
806 	} else {
807 		/*
808 		 * i82557 wedge when isolating all of their PHYs.
809 		 */
810 		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
811 		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
812 		    MII_OFFSET_ANY, MIIF_NOISOLATE);
813 		if (error != 0) {
814 	                device_printf(dev, "attaching PHYs failed\n");
815 			goto fail;
816 		}
817 	}
818 
819 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
820 	ifp->if_init = fxp_init;
821 	ifp->if_softc = sc;
822 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823 	ifp->if_ioctl = fxp_ioctl;
824 	ifp->if_start = fxp_start;
825 
826 	ifp->if_capabilities = ifp->if_capenable = 0;
827 
828 	/* Enable checksum offload/TSO for 82550 or better chips */
829 	if (sc->flags & FXP_FLAG_EXT_RFA) {
830 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
831 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
832 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
833 	}
834 
835 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
836 		ifp->if_capabilities |= IFCAP_RXCSUM;
837 		ifp->if_capenable |= IFCAP_RXCSUM;
838 	}
839 
840 	if (sc->flags & FXP_FLAG_WOLCAP) {
841 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
842 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
843 	}
844 
845 #ifdef DEVICE_POLLING
846 	/* Inform the world we support polling. */
847 	ifp->if_capabilities |= IFCAP_POLLING;
848 #endif
849 
850 	/*
851 	 * Attach the interface.
852 	 */
853 	ether_ifattach(ifp, eaddr);
854 
855 	/*
856 	 * Tell the upper layer(s) we support long frames.
857 	 * Must appear after the call to ether_ifattach() because
858 	 * ether_ifattach() sets ifi_hdrlen to the default value.
859 	 */
860 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
861 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
862 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
863 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
864 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
865 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
866 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
867 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
868 	}
869 
870 	/*
871 	 * Let the system queue as many packets as we have available
872 	 * TX descriptors.
873 	 */
874 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
875 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
876 	IFQ_SET_READY(&ifp->if_snd);
877 
878 	/*
879 	 * Hook our interrupt after all initialization is complete.
880 	 */
881 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
882 			       NULL, fxp_intr, sc, &sc->ih);
883 	if (error) {
884 		device_printf(dev, "could not setup irq\n");
885 		ether_ifdetach(sc->ifp);
886 		goto fail;
887 	}
888 
889 	/*
890 	 * Configure hardware to reject magic frames otherwise
891 	 * system will hang on recipt of magic frames.
892 	 */
893 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
894 		FXP_LOCK(sc);
895 		/* Clear wakeup events. */
896 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
897 		fxp_init_body(sc);
898 		fxp_stop(sc);
899 		FXP_UNLOCK(sc);
900 	}
901 
902 fail:
903 	if (error)
904 		fxp_release(sc);
905 	return (error);
906 }
907 
908 /*
909  * Release all resources.  The softc lock should not be held and the
910  * interrupt should already be torn down.
911  */
912 static void
913 fxp_release(struct fxp_softc *sc)
914 {
915 	struct fxp_rx *rxp;
916 	struct fxp_tx *txp;
917 	int i;
918 
919 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
920 	KASSERT(sc->ih == NULL,
921 	    ("fxp_release() called with intr handle still active"));
922 	if (sc->miibus)
923 		device_delete_child(sc->dev, sc->miibus);
924 	bus_generic_detach(sc->dev);
925 	ifmedia_removeall(&sc->sc_media);
926 	if (sc->fxp_desc.cbl_list) {
927 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
928 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
929 		    sc->cbl_map);
930 	}
931 	if (sc->fxp_stats) {
932 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
933 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
934 	}
935 	if (sc->mcsp) {
936 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
937 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
938 	}
939 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
940 	if (sc->fxp_rxmtag) {
941 		for (i = 0; i < FXP_NRFABUFS; i++) {
942 			rxp = &sc->fxp_desc.rx_list[i];
943 			if (rxp->rx_mbuf != NULL) {
944 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
945 				    BUS_DMASYNC_POSTREAD);
946 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
947 				m_freem(rxp->rx_mbuf);
948 			}
949 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
950 		}
951 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
952 		bus_dma_tag_destroy(sc->fxp_rxmtag);
953 	}
954 	if (sc->fxp_txmtag) {
955 		for (i = 0; i < FXP_NTXCB; i++) {
956 			txp = &sc->fxp_desc.tx_list[i];
957 			if (txp->tx_mbuf != NULL) {
958 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
959 				    BUS_DMASYNC_POSTWRITE);
960 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
961 				m_freem(txp->tx_mbuf);
962 			}
963 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
964 		}
965 		bus_dma_tag_destroy(sc->fxp_txmtag);
966 	}
967 	if (sc->fxp_stag)
968 		bus_dma_tag_destroy(sc->fxp_stag);
969 	if (sc->cbl_tag)
970 		bus_dma_tag_destroy(sc->cbl_tag);
971 	if (sc->mcs_tag)
972 		bus_dma_tag_destroy(sc->mcs_tag);
973 	if (sc->ifp)
974 		if_free(sc->ifp);
975 
976 	mtx_destroy(&sc->sc_mtx);
977 }
978 
979 /*
980  * Detach interface.
981  */
982 static int
983 fxp_detach(device_t dev)
984 {
985 	struct fxp_softc *sc = device_get_softc(dev);
986 
987 #ifdef DEVICE_POLLING
988 	if (sc->ifp->if_capenable & IFCAP_POLLING)
989 		ether_poll_deregister(sc->ifp);
990 #endif
991 
992 	FXP_LOCK(sc);
993 	/*
994 	 * Stop DMA and drop transmit queue, but disable interrupts first.
995 	 */
996 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
997 	fxp_stop(sc);
998 	FXP_UNLOCK(sc);
999 	callout_drain(&sc->stat_ch);
1000 
1001 	/*
1002 	 * Close down routes etc.
1003 	 */
1004 	ether_ifdetach(sc->ifp);
1005 
1006 	/*
1007 	 * Unhook interrupt before dropping lock. This is to prevent
1008 	 * races with fxp_intr().
1009 	 */
1010 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1011 	sc->ih = NULL;
1012 
1013 	/* Release our allocated resources. */
1014 	fxp_release(sc);
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Device shutdown routine. Called at system shutdown after sync. The
1020  * main purpose of this routine is to shut off receiver DMA so that
1021  * kernel memory doesn't get clobbered during warmboot.
1022  */
1023 static int
1024 fxp_shutdown(device_t dev)
1025 {
1026 
1027 	/*
1028 	 * Make sure that DMA is disabled prior to reboot. Not doing
1029 	 * do could allow DMA to corrupt kernel memory during the
1030 	 * reboot before the driver initializes.
1031 	 */
1032 	return (fxp_suspend(dev));
1033 }
1034 
1035 /*
1036  * Device suspend routine.  Stop the interface and save some PCI
1037  * settings in case the BIOS doesn't restore them properly on
1038  * resume.
1039  */
1040 static int
1041 fxp_suspend(device_t dev)
1042 {
1043 	struct fxp_softc *sc = device_get_softc(dev);
1044 	struct ifnet *ifp;
1045 	int pmc;
1046 	uint16_t pmstat;
1047 
1048 	FXP_LOCK(sc);
1049 
1050 	ifp = sc->ifp;
1051 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1052 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1053 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1054 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1055 			/* Request PME. */
1056 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1057 			sc->flags |= FXP_FLAG_WOL;
1058 			/* Reconfigure hardware to accept magic frames. */
1059 			fxp_init_body(sc);
1060 		}
1061 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1062 	}
1063 	fxp_stop(sc);
1064 
1065 	sc->suspended = 1;
1066 
1067 	FXP_UNLOCK(sc);
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Device resume routine. re-enable busmastering, and restart the interface if
1073  * appropriate.
1074  */
1075 static int
1076 fxp_resume(device_t dev)
1077 {
1078 	struct fxp_softc *sc = device_get_softc(dev);
1079 	struct ifnet *ifp = sc->ifp;
1080 	int pmc;
1081 	uint16_t pmstat;
1082 
1083 	FXP_LOCK(sc);
1084 
1085 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1086 		sc->flags &= ~FXP_FLAG_WOL;
1087 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1088 		/* Disable PME and clear PME status. */
1089 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1090 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1091 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1092 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1093 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1094 	}
1095 
1096 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1097 	DELAY(10);
1098 
1099 	/* reinitialize interface if necessary */
1100 	if (ifp->if_flags & IFF_UP)
1101 		fxp_init_body(sc);
1102 
1103 	sc->suspended = 0;
1104 
1105 	FXP_UNLOCK(sc);
1106 	return (0);
1107 }
1108 
1109 static void
1110 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1111 {
1112 	uint16_t reg;
1113 	int x;
1114 
1115 	/*
1116 	 * Shift in data.
1117 	 */
1118 	for (x = 1 << (length - 1); x; x >>= 1) {
1119 		if (data & x)
1120 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1121 		else
1122 			reg = FXP_EEPROM_EECS;
1123 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1124 		DELAY(1);
1125 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1126 		DELAY(1);
1127 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1128 		DELAY(1);
1129 	}
1130 }
1131 
1132 /*
1133  * Read from the serial EEPROM. Basically, you manually shift in
1134  * the read opcode (one bit at a time) and then shift in the address,
1135  * and then you shift out the data (all of this one bit at a time).
1136  * The word size is 16 bits, so you have to provide the address for
1137  * every 16 bits of data.
1138  */
1139 static uint16_t
1140 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1141 {
1142 	uint16_t reg, data;
1143 	int x;
1144 
1145 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1146 	/*
1147 	 * Shift in read opcode.
1148 	 */
1149 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1150 	/*
1151 	 * Shift in address.
1152 	 */
1153 	data = 0;
1154 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1155 		if (offset & x)
1156 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1157 		else
1158 			reg = FXP_EEPROM_EECS;
1159 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1160 		DELAY(1);
1161 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1162 		DELAY(1);
1163 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1164 		DELAY(1);
1165 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1166 		data++;
1167 		if (autosize && reg == 0) {
1168 			sc->eeprom_size = data;
1169 			break;
1170 		}
1171 	}
1172 	/*
1173 	 * Shift out data.
1174 	 */
1175 	data = 0;
1176 	reg = FXP_EEPROM_EECS;
1177 	for (x = 1 << 15; x; x >>= 1) {
1178 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1179 		DELAY(1);
1180 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1181 			data |= x;
1182 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1183 		DELAY(1);
1184 	}
1185 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1186 	DELAY(1);
1187 
1188 	return (data);
1189 }
1190 
1191 static void
1192 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1193 {
1194 	int i;
1195 
1196 	/*
1197 	 * Erase/write enable.
1198 	 */
1199 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1200 	fxp_eeprom_shiftin(sc, 0x4, 3);
1201 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1202 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1203 	DELAY(1);
1204 	/*
1205 	 * Shift in write opcode, address, data.
1206 	 */
1207 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1208 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1209 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1210 	fxp_eeprom_shiftin(sc, data, 16);
1211 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1212 	DELAY(1);
1213 	/*
1214 	 * Wait for EEPROM to finish up.
1215 	 */
1216 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1217 	DELAY(1);
1218 	for (i = 0; i < 1000; i++) {
1219 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1220 			break;
1221 		DELAY(50);
1222 	}
1223 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1224 	DELAY(1);
1225 	/*
1226 	 * Erase/write disable.
1227 	 */
1228 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1229 	fxp_eeprom_shiftin(sc, 0x4, 3);
1230 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1231 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1232 	DELAY(1);
1233 }
1234 
1235 /*
1236  * From NetBSD:
1237  *
1238  * Figure out EEPROM size.
1239  *
1240  * 559's can have either 64-word or 256-word EEPROMs, the 558
1241  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1242  * talks about the existance of 16 to 256 word EEPROMs.
1243  *
1244  * The only known sizes are 64 and 256, where the 256 version is used
1245  * by CardBus cards to store CIS information.
1246  *
1247  * The address is shifted in msb-to-lsb, and after the last
1248  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1249  * after which follows the actual data. We try to detect this zero, by
1250  * probing the data-out bit in the EEPROM control register just after
1251  * having shifted in a bit. If the bit is zero, we assume we've
1252  * shifted enough address bits. The data-out should be tri-state,
1253  * before this, which should translate to a logical one.
1254  */
1255 static void
1256 fxp_autosize_eeprom(struct fxp_softc *sc)
1257 {
1258 
1259 	/* guess maximum size of 256 words */
1260 	sc->eeprom_size = 8;
1261 
1262 	/* autosize */
1263 	(void) fxp_eeprom_getword(sc, 0, 1);
1264 }
1265 
1266 static void
1267 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1268 {
1269 	int i;
1270 
1271 	for (i = 0; i < words; i++)
1272 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1273 }
1274 
1275 static void
1276 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1277 {
1278 	int i;
1279 
1280 	for (i = 0; i < words; i++)
1281 		fxp_eeprom_putword(sc, offset + i, data[i]);
1282 }
1283 
1284 /*
1285  * Grab the softc lock and call the real fxp_start_body() routine
1286  */
1287 static void
1288 fxp_start(struct ifnet *ifp)
1289 {
1290 	struct fxp_softc *sc = ifp->if_softc;
1291 
1292 	FXP_LOCK(sc);
1293 	fxp_start_body(ifp);
1294 	FXP_UNLOCK(sc);
1295 }
1296 
1297 /*
1298  * Start packet transmission on the interface.
1299  * This routine must be called with the softc lock held, and is an
1300  * internal entry point only.
1301  */
1302 static void
1303 fxp_start_body(struct ifnet *ifp)
1304 {
1305 	struct fxp_softc *sc = ifp->if_softc;
1306 	struct mbuf *mb_head;
1307 	int txqueued;
1308 
1309 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1310 
1311 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1312 	    IFF_DRV_RUNNING)
1313 		return;
1314 
1315 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1316 		fxp_txeof(sc);
1317 	/*
1318 	 * We're finished if there is nothing more to add to the list or if
1319 	 * we're all filled up with buffers to transmit.
1320 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1321 	 *       a NOP command when needed.
1322 	 */
1323 	txqueued = 0;
1324 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1325 	    sc->tx_queued < FXP_NTXCB - 1) {
1326 
1327 		/*
1328 		 * Grab a packet to transmit.
1329 		 */
1330 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1331 		if (mb_head == NULL)
1332 			break;
1333 
1334 		if (fxp_encap(sc, &mb_head)) {
1335 			if (mb_head == NULL)
1336 				break;
1337 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1338 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1339 		}
1340 		txqueued++;
1341 		/*
1342 		 * Pass packet to bpf if there is a listener.
1343 		 */
1344 		BPF_MTAP(ifp, mb_head);
1345 	}
1346 
1347 	/*
1348 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1349 	 * going again if suspended.
1350 	 */
1351 	if (txqueued > 0) {
1352 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1353 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1354 		fxp_scb_wait(sc);
1355 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1356 		/*
1357 		 * Set a 5 second timer just in case we don't hear
1358 		 * from the card again.
1359 		 */
1360 		sc->watchdog_timer = 5;
1361 	}
1362 }
1363 
1364 static int
1365 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1366 {
1367 	struct ifnet *ifp;
1368 	struct mbuf *m;
1369 	struct fxp_tx *txp;
1370 	struct fxp_cb_tx *cbp;
1371 	struct tcphdr *tcp;
1372 	bus_dma_segment_t segs[FXP_NTXSEG];
1373 	int error, i, nseg, tcp_payload;
1374 
1375 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1376 	ifp = sc->ifp;
1377 
1378 	tcp_payload = 0;
1379 	tcp = NULL;
1380 	/*
1381 	 * Get pointer to next available tx desc.
1382 	 */
1383 	txp = sc->fxp_desc.tx_last->tx_next;
1384 
1385 	/*
1386 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1387 	 * Ethernet Controller Family Open Source Software
1388 	 * Developer Manual says:
1389 	 *   Using software parsing is only allowed with legal
1390 	 *   TCP/IP or UDP/IP packets.
1391 	 *   ...
1392 	 *   For all other datagrams, hardware parsing must
1393 	 *   be used.
1394 	 * Software parsing appears to truncate ICMP and
1395 	 * fragmented UDP packets that contain one to three
1396 	 * bytes in the second (and final) mbuf of the packet.
1397 	 */
1398 	if (sc->flags & FXP_FLAG_EXT_RFA)
1399 		txp->tx_cb->ipcb_ip_activation_high =
1400 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1401 
1402 	m = *m_head;
1403 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1404 		/*
1405 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1406 		 * contained in the first active transmit buffer.
1407 		 */
1408 		struct ether_header *eh;
1409 		struct ip *ip;
1410 		uint32_t ip_off, poff;
1411 
1412 		if (M_WRITABLE(*m_head) == 0) {
1413 			/* Get a writable copy. */
1414 			m = m_dup(*m_head, M_DONTWAIT);
1415 			m_freem(*m_head);
1416 			if (m == NULL) {
1417 				*m_head = NULL;
1418 				return (ENOBUFS);
1419 			}
1420 			*m_head = m;
1421 		}
1422 		ip_off = sizeof(struct ether_header);
1423 		m = m_pullup(*m_head, ip_off);
1424 		if (m == NULL) {
1425 			*m_head = NULL;
1426 			return (ENOBUFS);
1427 		}
1428 		eh = mtod(m, struct ether_header *);
1429 		/* Check the existence of VLAN tag. */
1430 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1431 			ip_off = sizeof(struct ether_vlan_header);
1432 			m = m_pullup(m, ip_off);
1433 			if (m == NULL) {
1434 				*m_head = NULL;
1435 				return (ENOBUFS);
1436 			}
1437 		}
1438 		m = m_pullup(m, ip_off + sizeof(struct ip));
1439 		if (m == NULL) {
1440 			*m_head = NULL;
1441 			return (ENOBUFS);
1442 		}
1443 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1444 		poff = ip_off + (ip->ip_hl << 2);
1445 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1446 		if (m == NULL) {
1447 			*m_head = NULL;
1448 			return (ENOBUFS);
1449 		}
1450 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1451 		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1452 		if (m == NULL) {
1453 			*m_head = NULL;
1454 			return (ENOBUFS);
1455 		}
1456 
1457 		/*
1458 		 * Since 82550/82551 doesn't modify IP length and pseudo
1459 		 * checksum in the first frame driver should compute it.
1460 		 */
1461 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1462 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1463 		ip->ip_sum = 0;
1464 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1465 		    (tcp->th_off << 2));
1466 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1467 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1468 		    m->m_pkthdr.tso_segsz));
1469 		/* Compute total TCP payload. */
1470 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1471 		tcp_payload -= tcp->th_off << 2;
1472 		*m_head = m;
1473 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1474 		/*
1475 		 * Deal with TCP/IP checksum offload. Note that
1476 		 * in order for TCP checksum offload to work,
1477 		 * the pseudo header checksum must have already
1478 		 * been computed and stored in the checksum field
1479 		 * in the TCP header. The stack should have
1480 		 * already done this for us.
1481 		 */
1482 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1483 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1484 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1485 
1486 #ifdef FXP_IP_CSUM_WAR
1487 		/*
1488 		 * XXX The 82550 chip appears to have trouble
1489 		 * dealing with IP header checksums in very small
1490 		 * datagrams, namely fragments from 1 to 3 bytes
1491 		 * in size. For example, say you want to transmit
1492 		 * a UDP packet of 1473 bytes. The packet will be
1493 		 * fragmented over two IP datagrams, the latter
1494 		 * containing only one byte of data. The 82550 will
1495 		 * botch the header checksum on the 1-byte fragment.
1496 		 * As long as the datagram contains 4 or more bytes
1497 		 * of data, you're ok.
1498 		 *
1499                  * The following code attempts to work around this
1500 		 * problem: if the datagram is less than 38 bytes
1501 		 * in size (14 bytes ether header, 20 bytes IP header,
1502 		 * plus 4 bytes of data), we punt and compute the IP
1503 		 * header checksum by hand. This workaround doesn't
1504 		 * work very well, however, since it can be fooled
1505 		 * by things like VLAN tags and IP options that make
1506 		 * the header sizes/offsets vary.
1507 		 */
1508 
1509 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1510 			if (m->m_pkthdr.len < 38) {
1511 				struct ip *ip;
1512 				m->m_data += ETHER_HDR_LEN;
1513 				ip = mtod(m, struct ip *);
1514 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1515 				m->m_data -= ETHER_HDR_LEN;
1516 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1517 			} else {
1518 				txp->tx_cb->ipcb_ip_activation_high =
1519 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1520 				txp->tx_cb->ipcb_ip_schedule |=
1521 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1522 			}
1523 		}
1524 #endif
1525 	}
1526 
1527 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1528 	    segs, &nseg, 0);
1529 	if (error == EFBIG) {
1530 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1531 		if (m == NULL) {
1532 			m_freem(*m_head);
1533 			*m_head = NULL;
1534 			return (ENOMEM);
1535 		}
1536 		*m_head = m;
1537 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1538 	    	    *m_head, segs, &nseg, 0);
1539 		if (error != 0) {
1540 			m_freem(*m_head);
1541 			*m_head = NULL;
1542 			return (ENOMEM);
1543 		}
1544 	} else if (error != 0)
1545 		return (error);
1546 	if (nseg == 0) {
1547 		m_freem(*m_head);
1548 		*m_head = NULL;
1549 		return (EIO);
1550 	}
1551 
1552 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1553 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1554 
1555 	cbp = txp->tx_cb;
1556 	for (i = 0; i < nseg; i++) {
1557 		/*
1558 		 * If this is an 82550/82551, then we're using extended
1559 		 * TxCBs _and_ we're using checksum offload. This means
1560 		 * that the TxCB is really an IPCB. One major difference
1561 		 * between the two is that with plain extended TxCBs,
1562 		 * the bottom half of the TxCB contains two entries from
1563 		 * the TBD array, whereas IPCBs contain just one entry:
1564 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1565 		 * checksum offload control bits. So to make things work
1566 		 * right, we have to start filling in the TBD array
1567 		 * starting from a different place depending on whether
1568 		 * the chip is an 82550/82551 or not.
1569 		 */
1570 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1571 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1572 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1573 		} else {
1574 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1575 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1576 		}
1577 	}
1578 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1579 		/* Configure dynamic TBD for 82550/82551. */
1580 		cbp->tbd_number = 0xFF;
1581 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1582 	} else
1583 		cbp->tbd_number = nseg;
1584 	/* Configure TSO. */
1585 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1586 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1587 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1588 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1589 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1590 		    FXP_IPCB_TCP_PACKET |
1591 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1592 	}
1593 	/* Configure VLAN hardware tag insertion. */
1594 	if ((m->m_flags & M_VLANTAG) != 0) {
1595 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1596 		txp->tx_cb->ipcb_ip_activation_high |=
1597 		    FXP_IPCB_INSERTVLAN_ENABLE;
1598 	}
1599 
1600 	txp->tx_mbuf = m;
1601 	txp->tx_cb->cb_status = 0;
1602 	txp->tx_cb->byte_count = 0;
1603 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1604 		txp->tx_cb->cb_command =
1605 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1606 		    FXP_CB_COMMAND_S);
1607 	else
1608 		txp->tx_cb->cb_command =
1609 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1610 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1611 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1612 		txp->tx_cb->tx_threshold = tx_threshold;
1613 
1614 	/*
1615 	 * Advance the end of list forward.
1616 	 */
1617 
1618 #ifdef __alpha__
1619 	/*
1620 	 * On platforms which can't access memory in 16-bit
1621 	 * granularities, we must prevent the card from DMA'ing
1622 	 * up the status while we update the command field.
1623 	 * This could cause us to overwrite the completion status.
1624 	 * XXX This is probably bogus and we're _not_ looking
1625 	 * for atomicity here.
1626 	 */
1627 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1628 	    htole16(FXP_CB_COMMAND_S));
1629 #else
1630 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1631 #endif /*__alpha__*/
1632 	sc->fxp_desc.tx_last = txp;
1633 
1634 	/*
1635 	 * Advance the beginning of the list forward if there are
1636 	 * no other packets queued (when nothing is queued, tx_first
1637 	 * sits on the last TxCB that was sent out).
1638 	 */
1639 	if (sc->tx_queued == 0)
1640 		sc->fxp_desc.tx_first = txp;
1641 
1642 	sc->tx_queued++;
1643 
1644 	return (0);
1645 }
1646 
1647 #ifdef DEVICE_POLLING
1648 static poll_handler_t fxp_poll;
1649 
1650 static int
1651 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1652 {
1653 	struct fxp_softc *sc = ifp->if_softc;
1654 	uint8_t statack;
1655 	int rx_npkts = 0;
1656 
1657 	FXP_LOCK(sc);
1658 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1659 		FXP_UNLOCK(sc);
1660 		return (rx_npkts);
1661 	}
1662 
1663 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1664 	    FXP_SCB_STATACK_FR;
1665 	if (cmd == POLL_AND_CHECK_STATUS) {
1666 		uint8_t tmp;
1667 
1668 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1669 		if (tmp == 0xff || tmp == 0) {
1670 			FXP_UNLOCK(sc);
1671 			return (rx_npkts); /* nothing to do */
1672 		}
1673 		tmp &= ~statack;
1674 		/* ack what we can */
1675 		if (tmp != 0)
1676 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1677 		statack |= tmp;
1678 	}
1679 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1680 	FXP_UNLOCK(sc);
1681 	return (rx_npkts);
1682 }
1683 #endif /* DEVICE_POLLING */
1684 
1685 /*
1686  * Process interface interrupts.
1687  */
1688 static void
1689 fxp_intr(void *xsc)
1690 {
1691 	struct fxp_softc *sc = xsc;
1692 	struct ifnet *ifp = sc->ifp;
1693 	uint8_t statack;
1694 
1695 	FXP_LOCK(sc);
1696 	if (sc->suspended) {
1697 		FXP_UNLOCK(sc);
1698 		return;
1699 	}
1700 
1701 #ifdef DEVICE_POLLING
1702 	if (ifp->if_capenable & IFCAP_POLLING) {
1703 		FXP_UNLOCK(sc);
1704 		return;
1705 	}
1706 #endif
1707 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1708 		/*
1709 		 * It should not be possible to have all bits set; the
1710 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1711 		 * all bits are set, this may indicate that the card has
1712 		 * been physically ejected, so ignore it.
1713 		 */
1714 		if (statack == 0xff) {
1715 			FXP_UNLOCK(sc);
1716 			return;
1717 		}
1718 
1719 		/*
1720 		 * First ACK all the interrupts in this pass.
1721 		 */
1722 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1723 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1724 			fxp_intr_body(sc, ifp, statack, -1);
1725 	}
1726 	FXP_UNLOCK(sc);
1727 }
1728 
1729 static void
1730 fxp_txeof(struct fxp_softc *sc)
1731 {
1732 	struct ifnet *ifp;
1733 	struct fxp_tx *txp;
1734 
1735 	ifp = sc->ifp;
1736 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1737 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1738 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1739 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1740 	    txp = txp->tx_next) {
1741 		if (txp->tx_mbuf != NULL) {
1742 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1743 			    BUS_DMASYNC_POSTWRITE);
1744 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1745 			m_freem(txp->tx_mbuf);
1746 			txp->tx_mbuf = NULL;
1747 			/* clear this to reset csum offload bits */
1748 			txp->tx_cb->tbd[0].tb_addr = 0;
1749 		}
1750 		sc->tx_queued--;
1751 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1752 	}
1753 	sc->fxp_desc.tx_first = txp;
1754 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1755 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1756 	if (sc->tx_queued == 0)
1757 		sc->watchdog_timer = 0;
1758 }
1759 
1760 static void
1761 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1762     uint16_t status, int pos)
1763 {
1764 	struct ether_header *eh;
1765 	struct ip *ip;
1766 	struct udphdr *uh;
1767 	int32_t hlen, len, pktlen, temp32;
1768 	uint16_t csum, *opts;
1769 
1770 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1771 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1772 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1773 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1774 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1775 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1776 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1777 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1778 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1779 				    CSUM_PSEUDO_HDR;
1780 				m->m_pkthdr.csum_data = 0xffff;
1781 			}
1782 		}
1783 		return;
1784 	}
1785 
1786 	pktlen = m->m_pkthdr.len;
1787 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1788 		return;
1789 	eh = mtod(m, struct ether_header *);
1790 	if (eh->ether_type != htons(ETHERTYPE_IP))
1791 		return;
1792 	ip = (struct ip *)(eh + 1);
1793 	if (ip->ip_v != IPVERSION)
1794 		return;
1795 
1796 	hlen = ip->ip_hl << 2;
1797 	pktlen -= sizeof(struct ether_header);
1798 	if (hlen < sizeof(struct ip))
1799 		return;
1800 	if (ntohs(ip->ip_len) < hlen)
1801 		return;
1802 	if (ntohs(ip->ip_len) != pktlen)
1803 		return;
1804 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1805 		return;	/* can't handle fragmented packet */
1806 
1807 	switch (ip->ip_p) {
1808 	case IPPROTO_TCP:
1809 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1810 			return;
1811 		break;
1812 	case IPPROTO_UDP:
1813 		if (pktlen < (hlen + sizeof(struct udphdr)))
1814 			return;
1815 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1816 		if (uh->uh_sum == 0)
1817 			return; /* no checksum */
1818 		break;
1819 	default:
1820 		return;
1821 	}
1822 	/* Extract computed checksum. */
1823 	csum = be16dec(mtod(m, char *) + pos);
1824 	/* checksum fixup for IP options */
1825 	len = hlen - sizeof(struct ip);
1826 	if (len > 0) {
1827 		opts = (uint16_t *)(ip + 1);
1828 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1829 			temp32 = csum - *opts;
1830 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1831 			csum = temp32 & 65535;
1832 		}
1833 	}
1834 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1835 	m->m_pkthdr.csum_data = csum;
1836 }
1837 
1838 static int
1839 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1840     int count)
1841 {
1842 	struct mbuf *m;
1843 	struct fxp_rx *rxp;
1844 	struct fxp_rfa *rfa;
1845 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1846 	int rx_npkts;
1847 	uint16_t status;
1848 
1849 	rx_npkts = 0;
1850 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1851 
1852 	if (rnr)
1853 		sc->rnr++;
1854 #ifdef DEVICE_POLLING
1855 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1856 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1857 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1858 		rnr = 1;
1859 	}
1860 #endif
1861 
1862 	/*
1863 	 * Free any finished transmit mbuf chains.
1864 	 *
1865 	 * Handle the CNA event likt a CXTNO event. It used to
1866 	 * be that this event (control unit not ready) was not
1867 	 * encountered, but it is now with the SMPng modifications.
1868 	 * The exact sequence of events that occur when the interface
1869 	 * is brought up are different now, and if this event
1870 	 * goes unhandled, the configuration/rxfilter setup sequence
1871 	 * can stall for several seconds. The result is that no
1872 	 * packets go out onto the wire for about 5 to 10 seconds
1873 	 * after the interface is ifconfig'ed for the first time.
1874 	 */
1875 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1876 		fxp_txeof(sc);
1877 
1878 	/*
1879 	 * Try to start more packets transmitting.
1880 	 */
1881 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1882 		fxp_start_body(ifp);
1883 
1884 	/*
1885 	 * Just return if nothing happened on the receive side.
1886 	 */
1887 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1888 		return (rx_npkts);
1889 
1890 	/*
1891 	 * Process receiver interrupts. If a no-resource (RNR)
1892 	 * condition exists, get whatever packets we can and
1893 	 * re-start the receiver.
1894 	 *
1895 	 * When using polling, we do not process the list to completion,
1896 	 * so when we get an RNR interrupt we must defer the restart
1897 	 * until we hit the last buffer with the C bit set.
1898 	 * If we run out of cycles and rfa_headm has the C bit set,
1899 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1900 	 * that the info will be used in the subsequent polling cycle.
1901 	 */
1902 	for (;;) {
1903 		rxp = sc->fxp_desc.rx_head;
1904 		m = rxp->rx_mbuf;
1905 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1906 		    RFA_ALIGNMENT_FUDGE);
1907 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1908 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1909 
1910 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1911 		if (count >= 0 && count-- == 0) {
1912 			if (rnr) {
1913 				/* Defer RNR processing until the next time. */
1914 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1915 				rnr = 0;
1916 			}
1917 			break;
1918 		}
1919 #endif /* DEVICE_POLLING */
1920 
1921 		status = le16toh(rfa->rfa_status);
1922 		if ((status & FXP_RFA_STATUS_C) == 0)
1923 			break;
1924 
1925 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1926 			rnr++;
1927 		/*
1928 		 * Advance head forward.
1929 		 */
1930 		sc->fxp_desc.rx_head = rxp->rx_next;
1931 
1932 		/*
1933 		 * Add a new buffer to the receive chain.
1934 		 * If this fails, the old buffer is recycled
1935 		 * instead.
1936 		 */
1937 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1938 			int total_len;
1939 
1940 			/*
1941 			 * Fetch packet length (the top 2 bits of
1942 			 * actual_size are flags set by the controller
1943 			 * upon completion), and drop the packet in case
1944 			 * of bogus length or CRC errors.
1945 			 */
1946 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1947 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1948 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1949 				/* Adjust for appended checksum bytes. */
1950 				total_len -= 2;
1951 			}
1952 			if (total_len < sizeof(struct ether_header) ||
1953 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1954 			    sc->rfa_size) ||
1955 			    status & (FXP_RFA_STATUS_CRC |
1956 			    FXP_RFA_STATUS_ALIGN)) {
1957 				m_freem(m);
1958 				fxp_add_rfabuf(sc, rxp);
1959 				continue;
1960 			}
1961 
1962 			m->m_pkthdr.len = m->m_len = total_len;
1963 			m->m_pkthdr.rcvif = ifp;
1964 
1965                         /* Do IP checksum checking. */
1966 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1967 				fxp_rxcsum(sc, ifp, m, status, total_len);
1968 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1969 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1970 				m->m_pkthdr.ether_vtag =
1971 				    ntohs(rfa->rfax_vlan_id);
1972 				m->m_flags |= M_VLANTAG;
1973 			}
1974 			/*
1975 			 * Drop locks before calling if_input() since it
1976 			 * may re-enter fxp_start() in the netisr case.
1977 			 * This would result in a lock reversal.  Better
1978 			 * performance might be obtained by chaining all
1979 			 * packets received, dropping the lock, and then
1980 			 * calling if_input() on each one.
1981 			 */
1982 			FXP_UNLOCK(sc);
1983 			(*ifp->if_input)(ifp, m);
1984 			FXP_LOCK(sc);
1985 			rx_npkts++;
1986 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1987 				return (rx_npkts);
1988 		} else {
1989 			/* Reuse RFA and loaded DMA map. */
1990 			ifp->if_iqdrops++;
1991 			fxp_discard_rfabuf(sc, rxp);
1992 		}
1993 		fxp_add_rfabuf(sc, rxp);
1994 	}
1995 	if (rnr) {
1996 		fxp_scb_wait(sc);
1997 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1998 		    sc->fxp_desc.rx_head->rx_addr);
1999 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2000 	}
2001 	return (rx_npkts);
2002 }
2003 
2004 static void
2005 fxp_update_stats(struct fxp_softc *sc)
2006 {
2007 	struct ifnet *ifp = sc->ifp;
2008 	struct fxp_stats *sp = sc->fxp_stats;
2009 	struct fxp_hwstats *hsp;
2010 	uint32_t *status;
2011 
2012 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2013 
2014 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2015 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2016 	/* Update statistical counters. */
2017 	if (sc->revision >= FXP_REV_82559_A0)
2018 		status = &sp->completion_status;
2019 	else if (sc->revision >= FXP_REV_82558_A4)
2020 		status = (uint32_t *)&sp->tx_tco;
2021 	else
2022 		status = &sp->tx_pause;
2023 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2024 		hsp = &sc->fxp_hwstats;
2025 		hsp->tx_good += le32toh(sp->tx_good);
2026 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2027 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2028 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2029 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2030 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2031 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2032 		hsp->tx_multiple_collisions +=
2033 		    le32toh(sp->tx_multiple_collisions);
2034 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2035 		hsp->rx_good += le32toh(sp->rx_good);
2036 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2037 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2038 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2039 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2040 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2041 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2042 		hsp->tx_pause += le32toh(sp->tx_pause);
2043 		hsp->rx_pause += le32toh(sp->rx_pause);
2044 		hsp->rx_controls += le32toh(sp->rx_controls);
2045 		hsp->tx_tco += le16toh(sp->tx_tco);
2046 		hsp->rx_tco += le16toh(sp->rx_tco);
2047 
2048 		ifp->if_opackets += le32toh(sp->tx_good);
2049 		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2050 		if (sp->rx_good) {
2051 			ifp->if_ipackets += le32toh(sp->rx_good);
2052 			sc->rx_idle_secs = 0;
2053 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2054 			/*
2055 			 * Receiver's been idle for another second.
2056 			 */
2057 			sc->rx_idle_secs++;
2058 		}
2059 		ifp->if_ierrors +=
2060 		    le32toh(sp->rx_crc_errors) +
2061 		    le32toh(sp->rx_alignment_errors) +
2062 		    le32toh(sp->rx_rnr_errors) +
2063 		    le32toh(sp->rx_overrun_errors);
2064 		/*
2065 		 * If any transmit underruns occured, bump up the transmit
2066 		 * threshold by another 512 bytes (64 * 8).
2067 		 */
2068 		if (sp->tx_underruns) {
2069 			ifp->if_oerrors += le32toh(sp->tx_underruns);
2070 			if (tx_threshold < 192)
2071 				tx_threshold += 64;
2072 		}
2073 		*status = 0;
2074 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2075 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2076 	}
2077 }
2078 
2079 /*
2080  * Update packet in/out/collision statistics. The i82557 doesn't
2081  * allow you to access these counters without doing a fairly
2082  * expensive DMA to get _all_ of the statistics it maintains, so
2083  * we do this operation here only once per second. The statistics
2084  * counters in the kernel are updated from the previous dump-stats
2085  * DMA and then a new dump-stats DMA is started. The on-chip
2086  * counters are zeroed when the DMA completes. If we can't start
2087  * the DMA immediately, we don't wait - we just prepare to read
2088  * them again next time.
2089  */
2090 static void
2091 fxp_tick(void *xsc)
2092 {
2093 	struct fxp_softc *sc = xsc;
2094 	struct ifnet *ifp = sc->ifp;
2095 
2096 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2097 
2098 	/* Update statistical counters. */
2099 	fxp_update_stats(sc);
2100 
2101 	/*
2102 	 * Release any xmit buffers that have completed DMA. This isn't
2103 	 * strictly necessary to do here, but it's advantagous for mbufs
2104 	 * with external storage to be released in a timely manner rather
2105 	 * than being defered for a potentially long time. This limits
2106 	 * the delay to a maximum of one second.
2107 	 */
2108 	fxp_txeof(sc);
2109 
2110 	/*
2111 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2112 	 * then assume the receiver has locked up and attempt to clear
2113 	 * the condition by reprogramming the multicast filter. This is
2114 	 * a work-around for a bug in the 82557 where the receiver locks
2115 	 * up if it gets certain types of garbage in the syncronization
2116 	 * bits prior to the packet header. This bug is supposed to only
2117 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2118 	 * mode as well (perhaps due to a 10/100 speed transition).
2119 	 */
2120 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2121 		sc->rx_idle_secs = 0;
2122 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2123 			fxp_init_body(sc);
2124 		return;
2125 	}
2126 	/*
2127 	 * If there is no pending command, start another stats
2128 	 * dump. Otherwise punt for now.
2129 	 */
2130 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2131 		/*
2132 		 * Start another stats dump.
2133 		 */
2134 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2135 	}
2136 	if (sc->miibus != NULL)
2137 		mii_tick(device_get_softc(sc->miibus));
2138 
2139 	/*
2140 	 * Check that chip hasn't hung.
2141 	 */
2142 	fxp_watchdog(sc);
2143 
2144 	/*
2145 	 * Schedule another timeout one second from now.
2146 	 */
2147 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2148 }
2149 
2150 /*
2151  * Stop the interface. Cancels the statistics updater and resets
2152  * the interface.
2153  */
2154 static void
2155 fxp_stop(struct fxp_softc *sc)
2156 {
2157 	struct ifnet *ifp = sc->ifp;
2158 	struct fxp_tx *txp;
2159 	int i;
2160 
2161 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2162 	sc->watchdog_timer = 0;
2163 
2164 	/*
2165 	 * Cancel stats updater.
2166 	 */
2167 	callout_stop(&sc->stat_ch);
2168 
2169 	/*
2170 	 * Preserve PCI configuration, configure, IA/multicast
2171 	 * setup and put RU and CU into idle state.
2172 	 */
2173 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2174 	DELAY(50);
2175 	/* Disable interrupts. */
2176 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2177 
2178 	fxp_update_stats(sc);
2179 
2180 	/*
2181 	 * Release any xmit buffers.
2182 	 */
2183 	txp = sc->fxp_desc.tx_list;
2184 	if (txp != NULL) {
2185 		for (i = 0; i < FXP_NTXCB; i++) {
2186  			if (txp[i].tx_mbuf != NULL) {
2187 				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2188 				    BUS_DMASYNC_POSTWRITE);
2189 				bus_dmamap_unload(sc->fxp_txmtag,
2190 				    txp[i].tx_map);
2191 				m_freem(txp[i].tx_mbuf);
2192 				txp[i].tx_mbuf = NULL;
2193 				/* clear this to reset csum offload bits */
2194 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2195 			}
2196 		}
2197 	}
2198 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2199 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2200 	sc->tx_queued = 0;
2201 }
2202 
2203 /*
2204  * Watchdog/transmission transmit timeout handler. Called when a
2205  * transmission is started on the interface, but no interrupt is
2206  * received before the timeout. This usually indicates that the
2207  * card has wedged for some reason.
2208  */
2209 static void
2210 fxp_watchdog(struct fxp_softc *sc)
2211 {
2212 
2213 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2214 
2215 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2216 		return;
2217 
2218 	device_printf(sc->dev, "device timeout\n");
2219 	sc->ifp->if_oerrors++;
2220 
2221 	fxp_init_body(sc);
2222 }
2223 
2224 /*
2225  * Acquire locks and then call the real initialization function.  This
2226  * is necessary because ether_ioctl() calls if_init() and this would
2227  * result in mutex recursion if the mutex was held.
2228  */
2229 static void
2230 fxp_init(void *xsc)
2231 {
2232 	struct fxp_softc *sc = xsc;
2233 
2234 	FXP_LOCK(sc);
2235 	fxp_init_body(sc);
2236 	FXP_UNLOCK(sc);
2237 }
2238 
2239 /*
2240  * Perform device initialization. This routine must be called with the
2241  * softc lock held.
2242  */
2243 static void
2244 fxp_init_body(struct fxp_softc *sc)
2245 {
2246 	struct ifnet *ifp = sc->ifp;
2247 	struct fxp_cb_config *cbp;
2248 	struct fxp_cb_ias *cb_ias;
2249 	struct fxp_cb_tx *tcbp;
2250 	struct fxp_tx *txp;
2251 	int i, prm;
2252 
2253 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2254 	/*
2255 	 * Cancel any pending I/O
2256 	 */
2257 	fxp_stop(sc);
2258 
2259 	/*
2260 	 * Issue software reset, which also unloads the microcode.
2261 	 */
2262 	sc->flags &= ~FXP_FLAG_UCODE;
2263 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2264 	DELAY(50);
2265 
2266 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2267 
2268 	/*
2269 	 * Initialize base of CBL and RFA memory. Loading with zero
2270 	 * sets it up for regular linear addressing.
2271 	 */
2272 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2273 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2274 
2275 	fxp_scb_wait(sc);
2276 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2277 
2278 	/*
2279 	 * Initialize base of dump-stats buffer.
2280 	 */
2281 	fxp_scb_wait(sc);
2282 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2283 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2284 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2285 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2286 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2287 
2288 	/*
2289 	 * Attempt to load microcode if requested.
2290 	 * For ICH based controllers do not load microcode.
2291 	 */
2292 	if (sc->ident->ich == 0) {
2293 		if (ifp->if_flags & IFF_LINK0 &&
2294 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2295 			fxp_load_ucode(sc);
2296 	}
2297 
2298 	/*
2299 	 * Set IFF_ALLMULTI status. It's needed in configure action
2300 	 * command.
2301 	 */
2302 	fxp_mc_addrs(sc);
2303 
2304 	/*
2305 	 * We temporarily use memory that contains the TxCB list to
2306 	 * construct the config CB. The TxCB list memory is rebuilt
2307 	 * later.
2308 	 */
2309 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2310 
2311 	/*
2312 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2313 	 * zero and must be one bits in this structure and this is the easiest
2314 	 * way to initialize them all to proper values.
2315 	 */
2316 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2317 
2318 	cbp->cb_status =	0;
2319 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2320 	    FXP_CB_COMMAND_EL);
2321 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2322 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2323 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2324 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2325 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2326 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2327 	cbp->type_enable =	0;	/* actually reserved */
2328 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2329 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2330 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2331 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2332 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2333 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2334 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2335 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2336 	cbp->ci_int =		1;	/* interrupt on CU idle */
2337 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2338 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2339 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2340 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2341 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2342 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2343 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2344 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2345 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2346 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2347 	cbp->csma_dis =		0;	/* (don't) disable link */
2348 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2349 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2350 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2351 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2352 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2353 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2354 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2355 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2356 	cbp->loopback =		0;	/* (don't) loopback */
2357 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2358 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2359 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2360 	cbp->promiscuous =	prm;	/* promiscuous mode */
2361 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2362 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2363 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2364 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2365 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2366 
2367 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2368 	cbp->padding =		1;	/* (do) pad short tx packets */
2369 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2370 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2371 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2372 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2373 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2374 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2375 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2376 	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2377 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2378 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2379 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2380 
2381 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2382 		/*
2383 		 * The 82557 has no hardware flow control, the values
2384 		 * below are the defaults for the chip.
2385 		 */
2386 		cbp->fc_delay_lsb =	0;
2387 		cbp->fc_delay_msb =	0x40;
2388 		cbp->pri_fc_thresh =	3;
2389 		cbp->tx_fc_dis =	0;
2390 		cbp->rx_fc_restop =	0;
2391 		cbp->rx_fc_restart =	0;
2392 		cbp->fc_filter =	0;
2393 		cbp->pri_fc_loc =	1;
2394 	} else {
2395 		cbp->fc_delay_lsb =	0x1f;
2396 		cbp->fc_delay_msb =	0x01;
2397 		cbp->pri_fc_thresh =	3;
2398 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2399 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2400 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2401 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2402 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2403 	}
2404 
2405 	/* Enable 82558 and 82559 extended statistics functionality. */
2406 	if (sc->revision >= FXP_REV_82558_A4) {
2407 		if (sc->revision >= FXP_REV_82559_A0) {
2408 			/*
2409 			 * Extend configuration table size to 32
2410 			 * to include TCO configuration.
2411 			 */
2412 			cbp->byte_count = 32;
2413 			cbp->ext_stats_dis = 1;
2414 			/* Enable TCO stats. */
2415 			cbp->tno_int_or_tco_en = 1;
2416 			cbp->gamla_rx = 1;
2417 		} else
2418 			cbp->ext_stats_dis = 0;
2419 	}
2420 
2421 	/*
2422 	 * Start the config command/DMA.
2423 	 */
2424 	fxp_scb_wait(sc);
2425 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2426 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2427 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2428 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2429 	/* ...and wait for it to complete. */
2430 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2431 
2432 	/*
2433 	 * Now initialize the station address. Temporarily use the TxCB
2434 	 * memory area like we did above for the config CB.
2435 	 */
2436 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2437 	cb_ias->cb_status = 0;
2438 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2439 	cb_ias->link_addr = 0xffffffff;
2440 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2441 
2442 	/*
2443 	 * Start the IAS (Individual Address Setup) command/DMA.
2444 	 */
2445 	fxp_scb_wait(sc);
2446 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2447 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2448 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2449 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2450 	/* ...and wait for it to complete. */
2451 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2452 
2453 	/*
2454 	 * Initialize the multicast address list.
2455 	 */
2456 	fxp_mc_setup(sc);
2457 
2458 	/*
2459 	 * Initialize transmit control block (TxCB) list.
2460 	 */
2461 	txp = sc->fxp_desc.tx_list;
2462 	tcbp = sc->fxp_desc.cbl_list;
2463 	bzero(tcbp, FXP_TXCB_SZ);
2464 	for (i = 0; i < FXP_NTXCB; i++) {
2465 		txp[i].tx_mbuf = NULL;
2466 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2467 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2468 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2469 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2470 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2471 			tcbp[i].tbd_array_addr =
2472 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2473 		else
2474 			tcbp[i].tbd_array_addr =
2475 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2476 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2477 	}
2478 	/*
2479 	 * Set the suspend flag on the first TxCB and start the control
2480 	 * unit. It will execute the NOP and then suspend.
2481 	 */
2482 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2483 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2484 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2485 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2486 	sc->tx_queued = 1;
2487 
2488 	fxp_scb_wait(sc);
2489 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2490 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2491 
2492 	/*
2493 	 * Initialize receiver buffer area - RFA.
2494 	 */
2495 	fxp_scb_wait(sc);
2496 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2497 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2498 
2499 	/*
2500 	 * Set current media.
2501 	 */
2502 	if (sc->miibus != NULL)
2503 		mii_mediachg(device_get_softc(sc->miibus));
2504 
2505 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2506 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2507 
2508 	/*
2509 	 * Enable interrupts.
2510 	 */
2511 #ifdef DEVICE_POLLING
2512 	/*
2513 	 * ... but only do that if we are not polling. And because (presumably)
2514 	 * the default is interrupts on, we need to disable them explicitly!
2515 	 */
2516 	if (ifp->if_capenable & IFCAP_POLLING )
2517 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2518 	else
2519 #endif /* DEVICE_POLLING */
2520 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2521 
2522 	/*
2523 	 * Start stats updater.
2524 	 */
2525 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2526 }
2527 
2528 static int
2529 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2530 {
2531 
2532 	return (0);
2533 }
2534 
2535 static void
2536 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2537 {
2538 
2539 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2540 }
2541 
2542 /*
2543  * Change media according to request.
2544  */
2545 static int
2546 fxp_ifmedia_upd(struct ifnet *ifp)
2547 {
2548 	struct fxp_softc *sc = ifp->if_softc;
2549 	struct mii_data *mii;
2550 
2551 	mii = device_get_softc(sc->miibus);
2552 	FXP_LOCK(sc);
2553 	if (mii->mii_instance) {
2554 		struct mii_softc	*miisc;
2555 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2556 			mii_phy_reset(miisc);
2557 	}
2558 	mii_mediachg(mii);
2559 	FXP_UNLOCK(sc);
2560 	return (0);
2561 }
2562 
2563 /*
2564  * Notify the world which media we're using.
2565  */
2566 static void
2567 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2568 {
2569 	struct fxp_softc *sc = ifp->if_softc;
2570 	struct mii_data *mii;
2571 
2572 	mii = device_get_softc(sc->miibus);
2573 	FXP_LOCK(sc);
2574 	mii_pollstat(mii);
2575 	ifmr->ifm_active = mii->mii_media_active;
2576 	ifmr->ifm_status = mii->mii_media_status;
2577 
2578 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2579 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2580 		sc->cu_resume_bug = 1;
2581 	else
2582 		sc->cu_resume_bug = 0;
2583 	FXP_UNLOCK(sc);
2584 }
2585 
2586 /*
2587  * Add a buffer to the end of the RFA buffer list.
2588  * Return 0 if successful, 1 for failure. A failure results in
2589  * reusing the RFA buffer.
2590  * The RFA struct is stuck at the beginning of mbuf cluster and the
2591  * data pointer is fixed up to point just past it.
2592  */
2593 static int
2594 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2595 {
2596 	struct mbuf *m;
2597 	struct fxp_rfa *rfa;
2598 	bus_dmamap_t tmp_map;
2599 	int error;
2600 
2601 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2602 	if (m == NULL)
2603 		return (ENOBUFS);
2604 
2605 	/*
2606 	 * Move the data pointer up so that the incoming data packet
2607 	 * will be 32-bit aligned.
2608 	 */
2609 	m->m_data += RFA_ALIGNMENT_FUDGE;
2610 
2611 	/*
2612 	 * Get a pointer to the base of the mbuf cluster and move
2613 	 * data start past it.
2614 	 */
2615 	rfa = mtod(m, struct fxp_rfa *);
2616 	m->m_data += sc->rfa_size;
2617 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2618 
2619 	rfa->rfa_status = 0;
2620 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2621 	rfa->actual_size = 0;
2622 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2623 	    sc->rfa_size;
2624 
2625 	/*
2626 	 * Initialize the rest of the RFA.  Note that since the RFA
2627 	 * is misaligned, we cannot store values directly.  We're thus
2628 	 * using the le32enc() function which handles endianness and
2629 	 * is also alignment-safe.
2630 	 */
2631 	le32enc(&rfa->link_addr, 0xffffffff);
2632 	le32enc(&rfa->rbd_addr, 0xffffffff);
2633 
2634 	/* Map the RFA into DMA memory. */
2635 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2636 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2637 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2638 	if (error) {
2639 		m_freem(m);
2640 		return (error);
2641 	}
2642 
2643 	if (rxp->rx_mbuf != NULL)
2644 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2645 	tmp_map = sc->spare_map;
2646 	sc->spare_map = rxp->rx_map;
2647 	rxp->rx_map = tmp_map;
2648 	rxp->rx_mbuf = m;
2649 
2650 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2651 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2652 	return (0);
2653 }
2654 
2655 static void
2656 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2657 {
2658 	struct fxp_rfa *p_rfa;
2659 	struct fxp_rx *p_rx;
2660 
2661 	/*
2662 	 * If there are other buffers already on the list, attach this
2663 	 * one to the end by fixing up the tail to point to this one.
2664 	 */
2665 	if (sc->fxp_desc.rx_head != NULL) {
2666 		p_rx = sc->fxp_desc.rx_tail;
2667 		p_rfa = (struct fxp_rfa *)
2668 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2669 		p_rx->rx_next = rxp;
2670 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2671 		p_rfa->rfa_control = 0;
2672 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2673 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2674 	} else {
2675 		rxp->rx_next = NULL;
2676 		sc->fxp_desc.rx_head = rxp;
2677 	}
2678 	sc->fxp_desc.rx_tail = rxp;
2679 }
2680 
2681 static void
2682 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2683 {
2684 	struct mbuf *m;
2685 	struct fxp_rfa *rfa;
2686 
2687 	m = rxp->rx_mbuf;
2688 	m->m_data = m->m_ext.ext_buf;
2689 	/*
2690 	 * Move the data pointer up so that the incoming data packet
2691 	 * will be 32-bit aligned.
2692 	 */
2693 	m->m_data += RFA_ALIGNMENT_FUDGE;
2694 
2695 	/*
2696 	 * Get a pointer to the base of the mbuf cluster and move
2697 	 * data start past it.
2698 	 */
2699 	rfa = mtod(m, struct fxp_rfa *);
2700 	m->m_data += sc->rfa_size;
2701 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2702 
2703 	rfa->rfa_status = 0;
2704 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2705 	rfa->actual_size = 0;
2706 
2707 	/*
2708 	 * Initialize the rest of the RFA.  Note that since the RFA
2709 	 * is misaligned, we cannot store values directly.  We're thus
2710 	 * using the le32enc() function which handles endianness and
2711 	 * is also alignment-safe.
2712 	 */
2713 	le32enc(&rfa->link_addr, 0xffffffff);
2714 	le32enc(&rfa->rbd_addr, 0xffffffff);
2715 
2716 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2717 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2718 }
2719 
2720 static int
2721 fxp_miibus_readreg(device_t dev, int phy, int reg)
2722 {
2723 	struct fxp_softc *sc = device_get_softc(dev);
2724 	int count = 10000;
2725 	int value;
2726 
2727 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2728 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2729 
2730 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2731 	    && count--)
2732 		DELAY(10);
2733 
2734 	if (count <= 0)
2735 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2736 
2737 	return (value & 0xffff);
2738 }
2739 
2740 static int
2741 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2742 {
2743 	struct fxp_softc *sc = device_get_softc(dev);
2744 	int count = 10000;
2745 
2746 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2747 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2748 	    (value & 0xffff));
2749 
2750 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2751 	    count--)
2752 		DELAY(10);
2753 
2754 	if (count <= 0)
2755 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2756 	return (0);
2757 }
2758 
2759 static int
2760 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2761 {
2762 	struct fxp_softc *sc = ifp->if_softc;
2763 	struct ifreq *ifr = (struct ifreq *)data;
2764 	struct mii_data *mii;
2765 	int flag, mask, error = 0, reinit;
2766 
2767 	switch (command) {
2768 	case SIOCSIFFLAGS:
2769 		FXP_LOCK(sc);
2770 		/*
2771 		 * If interface is marked up and not running, then start it.
2772 		 * If it is marked down and running, stop it.
2773 		 * XXX If it's up then re-initialize it. This is so flags
2774 		 * such as IFF_PROMISC are handled.
2775 		 */
2776 		if (ifp->if_flags & IFF_UP) {
2777 			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2778 			    ((ifp->if_flags ^ sc->if_flags) &
2779 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2780 				fxp_init_body(sc);
2781 			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2782 				fxp_init_body(sc);
2783 		} else {
2784 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2785 				fxp_stop(sc);
2786 		}
2787 		sc->if_flags = ifp->if_flags;
2788 		FXP_UNLOCK(sc);
2789 		break;
2790 
2791 	case SIOCADDMULTI:
2792 	case SIOCDELMULTI:
2793 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2794 			fxp_init(sc);
2795 		break;
2796 
2797 	case SIOCSIFMEDIA:
2798 	case SIOCGIFMEDIA:
2799 		if (sc->miibus != NULL) {
2800 			mii = device_get_softc(sc->miibus);
2801                         error = ifmedia_ioctl(ifp, ifr,
2802                             &mii->mii_media, command);
2803 		} else {
2804                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2805 		}
2806 		break;
2807 
2808 	case SIOCSIFCAP:
2809 		reinit = 0;
2810 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2811 #ifdef DEVICE_POLLING
2812 		if (mask & IFCAP_POLLING) {
2813 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2814 				error = ether_poll_register(fxp_poll, ifp);
2815 				if (error)
2816 					return(error);
2817 				FXP_LOCK(sc);
2818 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2819 				    FXP_SCB_INTR_DISABLE);
2820 				ifp->if_capenable |= IFCAP_POLLING;
2821 				FXP_UNLOCK(sc);
2822 			} else {
2823 				error = ether_poll_deregister(ifp);
2824 				/* Enable interrupts in any case */
2825 				FXP_LOCK(sc);
2826 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2827 				ifp->if_capenable &= ~IFCAP_POLLING;
2828 				FXP_UNLOCK(sc);
2829 			}
2830 		}
2831 #endif
2832 		FXP_LOCK(sc);
2833 		if ((mask & IFCAP_TXCSUM) != 0 &&
2834 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2835 			ifp->if_capenable ^= IFCAP_TXCSUM;
2836 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2837 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2838 			else
2839 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2840 		}
2841 		if ((mask & IFCAP_RXCSUM) != 0 &&
2842 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2843 			ifp->if_capenable ^= IFCAP_RXCSUM;
2844 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2845 				reinit++;
2846 		}
2847 		if ((mask & IFCAP_TSO4) != 0 &&
2848 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2849 			ifp->if_capenable ^= IFCAP_TSO4;
2850 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2851 				ifp->if_hwassist |= CSUM_TSO;
2852 			else
2853 				ifp->if_hwassist &= ~CSUM_TSO;
2854 		}
2855 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2856 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2857 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2858 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2859 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2860 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2861 			if (sc->revision != FXP_REV_82557)
2862 				flag = FXP_FLAG_LONG_PKT_EN;
2863 			else /* a hack to get long frames on the old chip */
2864 				flag = FXP_FLAG_SAVE_BAD;
2865 			sc->flags ^= flag;
2866 			if (ifp->if_flags & IFF_UP)
2867 				reinit++;
2868 		}
2869 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2870 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2871 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2872 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2873 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2874 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2875 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2876 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2877 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2878 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2879 				ifp->if_capenable &=
2880 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2881 			reinit++;
2882 		}
2883 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2884 			fxp_init_body(sc);
2885 		FXP_UNLOCK(sc);
2886 		VLAN_CAPABILITIES(ifp);
2887 		break;
2888 
2889 	default:
2890 		error = ether_ioctl(ifp, command, data);
2891 	}
2892 	return (error);
2893 }
2894 
2895 /*
2896  * Fill in the multicast address list and return number of entries.
2897  */
2898 static int
2899 fxp_mc_addrs(struct fxp_softc *sc)
2900 {
2901 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2902 	struct ifnet *ifp = sc->ifp;
2903 	struct ifmultiaddr *ifma;
2904 	int nmcasts;
2905 
2906 	nmcasts = 0;
2907 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2908 		if_maddr_rlock(ifp);
2909 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2910 			if (ifma->ifma_addr->sa_family != AF_LINK)
2911 				continue;
2912 			if (nmcasts >= MAXMCADDR) {
2913 				ifp->if_flags |= IFF_ALLMULTI;
2914 				nmcasts = 0;
2915 				break;
2916 			}
2917 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2918 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2919 			nmcasts++;
2920 		}
2921 		if_maddr_runlock(ifp);
2922 	}
2923 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2924 	return (nmcasts);
2925 }
2926 
2927 /*
2928  * Program the multicast filter.
2929  *
2930  * We have an artificial restriction that the multicast setup command
2931  * must be the first command in the chain, so we take steps to ensure
2932  * this. By requiring this, it allows us to keep up the performance of
2933  * the pre-initialized command ring (esp. link pointers) by not actually
2934  * inserting the mcsetup command in the ring - i.e. its link pointer
2935  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2936  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2937  * lead into the regular TxCB ring when it completes.
2938  */
2939 static void
2940 fxp_mc_setup(struct fxp_softc *sc)
2941 {
2942 	struct fxp_cb_mcs *mcsp;
2943 	int count;
2944 
2945 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2946 
2947 	mcsp = sc->mcsp;
2948 	mcsp->cb_status = 0;
2949 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2950 	mcsp->link_addr = 0xffffffff;
2951 	fxp_mc_addrs(sc);
2952 
2953 	/*
2954 	 * Wait until command unit is idle. This should never be the
2955 	 * case when nothing is queued, but make sure anyway.
2956 	 */
2957 	count = 100;
2958 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
2959 	    FXP_SCB_CUS_IDLE && --count)
2960 		DELAY(10);
2961 	if (count == 0) {
2962 		device_printf(sc->dev, "command queue timeout\n");
2963 		return;
2964 	}
2965 
2966 	/*
2967 	 * Start the multicast setup command.
2968 	 */
2969 	fxp_scb_wait(sc);
2970 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2971 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2972 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2973 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2974 	/* ...and wait for it to complete. */
2975 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2976 }
2977 
2978 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2979 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2980 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2981 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2982 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2983 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2984 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2985 
2986 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2987 
2988 struct ucode {
2989 	uint32_t	revision;
2990 	uint32_t	*ucode;
2991 	int		length;
2992 	u_short		int_delay_offset;
2993 	u_short		bundle_max_offset;
2994 } ucode_table[] = {
2995 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2996 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2997 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2998 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2999 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3000 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3001 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3002 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3003 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3004 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3005 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3006 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3007 	{ 0, NULL, 0, 0, 0 }
3008 };
3009 
3010 static void
3011 fxp_load_ucode(struct fxp_softc *sc)
3012 {
3013 	struct ucode *uc;
3014 	struct fxp_cb_ucode *cbp;
3015 	int i;
3016 
3017 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3018 		if (sc->revision == uc->revision)
3019 			break;
3020 	if (uc->ucode == NULL)
3021 		return;
3022 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3023 	cbp->cb_status = 0;
3024 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3025 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3026 	for (i = 0; i < uc->length; i++)
3027 		cbp->ucode[i] = htole32(uc->ucode[i]);
3028 	if (uc->int_delay_offset)
3029 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3030 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3031 	if (uc->bundle_max_offset)
3032 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3033 		    htole16(sc->tunable_bundle_max);
3034 	/*
3035 	 * Download the ucode to the chip.
3036 	 */
3037 	fxp_scb_wait(sc);
3038 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3039 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3040 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3041 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3042 	/* ...and wait for it to complete. */
3043 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3044 	device_printf(sc->dev,
3045 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3046 	    sc->tunable_int_delay,
3047 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3048 	sc->flags |= FXP_FLAG_UCODE;
3049 }
3050 
3051 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3052 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3053 
3054 static void
3055 fxp_sysctl_node(struct fxp_softc *sc)
3056 {
3057 	struct sysctl_ctx_list *ctx;
3058 	struct sysctl_oid_list *child, *parent;
3059 	struct sysctl_oid *tree;
3060 	struct fxp_hwstats *hsp;
3061 
3062 	ctx = device_get_sysctl_ctx(sc->dev);
3063 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3064 
3065 	SYSCTL_ADD_PROC(ctx, child,
3066 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3067 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3068 	    "FXP driver receive interrupt microcode bundling delay");
3069 	SYSCTL_ADD_PROC(ctx, child,
3070 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3071 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3072 	    "FXP driver receive interrupt microcode bundle size limit");
3073 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3074 	    "FXP RNR events");
3075 	SYSCTL_ADD_INT(ctx, child,
3076 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
3077 	    "FXP flow control disabled");
3078 
3079 	/*
3080 	 * Pull in device tunables.
3081 	 */
3082 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3083 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3084 	sc->tunable_noflow = 1;
3085 	(void) resource_int_value(device_get_name(sc->dev),
3086 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3087 	(void) resource_int_value(device_get_name(sc->dev),
3088 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3089 	(void) resource_int_value(device_get_name(sc->dev),
3090 	    device_get_unit(sc->dev), "noflow", &sc->tunable_noflow);
3091 	sc->rnr = 0;
3092 
3093 	hsp = &sc->fxp_hwstats;
3094 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3095 	    NULL, "FXP statistics");
3096 	parent = SYSCTL_CHILDREN(tree);
3097 
3098 	/* Rx MAC statistics. */
3099 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3100 	    NULL, "Rx MAC statistics");
3101 	child = SYSCTL_CHILDREN(tree);
3102 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3103 	    &hsp->rx_good, "Good frames");
3104 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3105 	    &hsp->rx_crc_errors, "CRC errors");
3106 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3107 	    &hsp->rx_alignment_errors, "Alignment errors");
3108 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3109 	    &hsp->rx_rnr_errors, "RNR errors");
3110 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3111 	    &hsp->rx_overrun_errors, "Overrun errors");
3112 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3113 	    &hsp->rx_cdt_errors, "Collision detect errors");
3114 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3115 	    &hsp->rx_shortframes, "Short frame errors");
3116 	if (sc->revision >= FXP_REV_82558_A4) {
3117 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3118 		    &hsp->rx_pause, "Pause frames");
3119 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3120 		    &hsp->rx_controls, "Unsupported control frames");
3121 	}
3122 	if (sc->revision >= FXP_REV_82559_A0)
3123 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3124 		    &hsp->rx_tco, "TCO frames");
3125 
3126 	/* Tx MAC statistics. */
3127 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3128 	    NULL, "Tx MAC statistics");
3129 	child = SYSCTL_CHILDREN(tree);
3130 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3131 	    &hsp->tx_good, "Good frames");
3132 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3133 	    &hsp->tx_maxcols, "Maximum collisions errors");
3134 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3135 	    &hsp->tx_latecols, "Late collisions errors");
3136 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3137 	    &hsp->tx_underruns, "Underrun errors");
3138 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3139 	    &hsp->tx_lostcrs, "Lost carrier sense");
3140 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3141 	    &hsp->tx_deffered, "Deferred");
3142 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3143 	    &hsp->tx_single_collisions, "Single collisions");
3144 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3145 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3146 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3147 	    &hsp->tx_total_collisions, "Total collisions");
3148 	if (sc->revision >= FXP_REV_82558_A4)
3149 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3150 		    &hsp->tx_pause, "Pause frames");
3151 	if (sc->revision >= FXP_REV_82559_A0)
3152 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3153 		    &hsp->tx_tco, "TCO frames");
3154 }
3155 
3156 #undef FXP_SYSCTL_STAT_ADD
3157 
3158 static int
3159 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3160 {
3161 	int error, value;
3162 
3163 	value = *(int *)arg1;
3164 	error = sysctl_handle_int(oidp, &value, 0, req);
3165 	if (error || !req->newptr)
3166 		return (error);
3167 	if (value < low || value > high)
3168 		return (EINVAL);
3169 	*(int *)arg1 = value;
3170 	return (0);
3171 }
3172 
3173 /*
3174  * Interrupt delay is expressed in microseconds, a multiplier is used
3175  * to convert this to the appropriate clock ticks before using.
3176  */
3177 static int
3178 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3179 {
3180 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3181 }
3182 
3183 static int
3184 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3185 {
3186 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3187 }
3188