xref: /freebsd/sys/dev/xen/netback/netback.c (revision 3e5e0e2f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2011 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Alan Somers         (Spectra Logic Corporation)
34  *          John Suykerbuyk     (Spectra Logic Corporation)
35  */
36 
37 #include <sys/cdefs.h>
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 
50 #include <sys/bus.h>
51 #include <sys/module.h>
52 #include <sys/rman.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/if_ether.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip_icmp.h>
70 #include <netinet/udp.h>
71 #include <machine/in_cksum.h>
72 
73 #include <vm/vm.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 
78 #include <machine/_inttypes.h>
79 
80 #include <xen/xen-os.h>
81 #include <xen/hypervisor.h>
82 #include <xen/xen_intr.h>
83 #include <contrib/xen/io/netif.h>
84 #include <xen/xenbus/xenbusvar.h>
85 
86 /*--------------------------- Compile-time Tunables --------------------------*/
87 
88 /*---------------------------------- Macros ----------------------------------*/
89 /**
90  * Custom malloc type for all driver allocations.
91  */
92 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
93 
94 #define	XNB_SG	1	/* netback driver supports feature-sg */
95 #define	XNB_GSO_TCPV4 0	/* netback driver supports feature-gso-tcpv4 */
96 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
97 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
98 
99 #undef XNB_DEBUG
100 #define	XNB_DEBUG /* hardcode on during development */
101 
102 #ifdef XNB_DEBUG
103 #define	DPRINTF(fmt, args...) \
104 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
105 #else
106 #define	DPRINTF(fmt, args...) do {} while (0)
107 #endif
108 
109 /* Default length for stack-allocated grant tables */
110 #define	GNTTAB_LEN	(64)
111 
112 /* Features supported by all backends.  TSO and LRO can be negotiated */
113 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
114 
115 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
116 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
117 
118 /**
119  * Two argument version of the standard macro.  Second argument is a tentative
120  * value of req_cons
121  */
122 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
123 	unsigned int req = (_r)->sring->req_prod - cons;          	\
124 	unsigned int rsp = RING_SIZE(_r) -                              \
125 	(cons - (_r)->rsp_prod_pvt);                          		\
126 	req < rsp ? req : rsp;                                          \
127 })
128 
129 #define	virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
130 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
131 
132 /**
133  * Predefined array type of grant table copy descriptors.  Used to pass around
134  * statically allocated memory structures.
135  */
136 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
137 
138 /*--------------------------- Forward Declarations ---------------------------*/
139 struct xnb_softc;
140 struct xnb_pkt;
141 
142 static void	xnb_attach_failed(struct xnb_softc *xnb,
143 				  int err, const char *fmt, ...)
144 				  __printflike(3,4);
145 static int	xnb_shutdown(struct xnb_softc *xnb);
146 static int	create_netdev(device_t dev);
147 static int	xnb_detach(device_t dev);
148 static int	xnb_ifmedia_upd(if_t ifp);
149 static void	xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr);
150 static void 	xnb_intr(void *arg);
151 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
152 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
153 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
154 			 struct mbuf **mbufc, if_t ifnet,
155 			 gnttab_copy_table gnttab);
156 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
157 			     const netif_tx_back_ring_t *tx_ring,
158 			     RING_IDX start);
159 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
160 			      netif_tx_back_ring_t *ring, int error);
161 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp);
162 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
163 				 struct mbuf *mbufc,
164 				 gnttab_copy_table gnttab,
165 				 const netif_tx_back_ring_t *txb,
166 				 domid_t otherend_id);
167 static void	xnb_update_mbufc(struct mbuf *mbufc,
168 				 const gnttab_copy_table gnttab, int n_entries);
169 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
170 			      struct xnb_pkt *pkt,
171 			      RING_IDX start, int space);
172 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
173 				 const struct mbuf *mbufc,
174 				 gnttab_copy_table gnttab,
175 				 const netif_rx_back_ring_t *rxb,
176 				 domid_t otherend_id);
177 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
178 			      const gnttab_copy_table gnttab, int n_entries,
179 			      netif_rx_back_ring_t *ring);
180 static void	xnb_stop(struct xnb_softc*);
181 static int	xnb_ioctl(if_t, u_long, caddr_t);
182 static void	xnb_start_locked(if_t);
183 static void	xnb_start(if_t);
184 static void	xnb_ifinit_locked(struct xnb_softc*);
185 static void	xnb_ifinit(void*);
186 #ifdef XNB_DEBUG
187 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
188 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
189 #endif
190 #if defined(INET) || defined(INET6)
191 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
192 #endif
193 /*------------------------------ Data Structures -----------------------------*/
194 
195 /**
196  * Representation of a xennet packet.  Simplified version of a packet as
197  * stored in the Xen tx ring.  Applicable to both RX and TX packets
198  */
199 struct xnb_pkt{
200 	/**
201 	 * Array index of the first data-bearing (eg, not extra info) entry
202 	 * for this packet
203 	 */
204 	RING_IDX	car;
205 
206 	/**
207 	 * Array index of the second data-bearing entry for this packet.
208 	 * Invalid if the packet has only one data-bearing entry.  If the
209 	 * packet has more than two data-bearing entries, then the second
210 	 * through the last will be sequential modulo the ring size
211 	 */
212 	RING_IDX	cdr;
213 
214 	/**
215 	 * Optional extra info.  Only valid if flags contains
216 	 * NETTXF_extra_info.  Note that extra.type will always be
217 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
218 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
219 	 */
220 	netif_extra_info_t extra;
221 
222 	/** Size of entire packet in bytes.       */
223 	uint16_t	size;
224 
225 	/** The size of the first entry's data in bytes */
226 	uint16_t	car_size;
227 
228 	/**
229 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
230 	 * not the same for TX and RX packets
231 	 */
232 	uint16_t	flags;
233 
234 	/**
235 	 * The number of valid data-bearing entries (either netif_tx_request's
236 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
237 	 * entire packet is invalid.
238 	 */
239 	uint16_t	list_len;
240 
241 	/** There was an error processing the packet */
242 	uint8_t		error;
243 };
244 
245 /** xnb_pkt method: initialize it */
246 static inline void
xnb_pkt_initialize(struct xnb_pkt * pxnb)247 xnb_pkt_initialize(struct xnb_pkt *pxnb)
248 {
249 	bzero(pxnb, sizeof(*pxnb));
250 }
251 
252 /** xnb_pkt method: mark the packet as valid */
253 static inline void
xnb_pkt_validate(struct xnb_pkt * pxnb)254 xnb_pkt_validate(struct xnb_pkt *pxnb)
255 {
256 	pxnb->error = 0;
257 };
258 
259 /** xnb_pkt method: mark the packet as invalid */
260 static inline void
xnb_pkt_invalidate(struct xnb_pkt * pxnb)261 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
262 {
263 	pxnb->error = 1;
264 };
265 
266 /** xnb_pkt method: Check whether the packet is valid */
267 static inline int
xnb_pkt_is_valid(const struct xnb_pkt * pxnb)268 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
269 {
270 	return (! pxnb->error);
271 }
272 
273 #ifdef XNB_DEBUG
274 /** xnb_pkt method: print the packet's contents in human-readable format*/
275 static void __unused
xnb_dump_pkt(const struct xnb_pkt * pkt)276 xnb_dump_pkt(const struct xnb_pkt *pkt) {
277 	if (pkt == NULL) {
278 	  DPRINTF("Was passed a null pointer.\n");
279 	  return;
280 	}
281 	DPRINTF("pkt address= %p\n", pkt);
282 	DPRINTF("pkt->size=%d\n", pkt->size);
283 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
284 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
285 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
286 	/* DPRINTF("pkt->extra");	TODO */
287 	DPRINTF("pkt->car=%d\n", pkt->car);
288 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
289 	DPRINTF("pkt->error=%d\n", pkt->error);
290 }
291 #endif /* XNB_DEBUG */
292 
293 static void
xnb_dump_txreq(RING_IDX idx,const struct netif_tx_request * txreq)294 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
295 {
296 	if (txreq != NULL) {
297 		DPRINTF("netif_tx_request index =%u\n", idx);
298 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
299 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
300 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
301 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
302 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
303 	}
304 }
305 
306 /**
307  * \brief Configuration data for a shared memory request ring
308  *        used to communicate with the front-end client of this
309  *        this driver.
310  */
311 struct xnb_ring_config {
312 	/**
313 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
314 	 * use different data structures, and that cannot be changed since it
315 	 * is part of the interdomain protocol.
316 	 */
317 	union{
318 		netif_rx_back_ring_t	  rx_ring;
319 		netif_tx_back_ring_t	  tx_ring;
320 	} back_ring;
321 
322 	/**
323 	 * The device bus address returned by the hypervisor when
324 	 * mapping the ring and required to unmap it when a connection
325 	 * is torn down.
326 	 */
327 	uint64_t	bus_addr;
328 
329 	/** The pseudo-physical address where ring memory is mapped.*/
330 	uint64_t	gnt_addr;
331 
332 	/** KVA address where ring memory is mapped. */
333 	vm_offset_t	va;
334 
335 	/**
336 	 * Grant table handles, one per-ring page, returned by the
337 	 * hyperpervisor upon mapping of the ring and required to
338 	 * unmap it when a connection is torn down.
339 	 */
340 	grant_handle_t	handle;
341 
342 	/** The number of ring pages mapped for the current connection. */
343 	unsigned	ring_pages;
344 
345 	/**
346 	 * The grant references, one per-ring page, supplied by the
347 	 * front-end, allowing us to reference the ring pages in the
348 	 * front-end's domain and to map these pages into our own domain.
349 	 */
350 	grant_ref_t	ring_ref;
351 };
352 
353 /**
354  * Per-instance connection state flags.
355  */
356 typedef enum
357 {
358 	/** Communication with the front-end has been established. */
359 	XNBF_RING_CONNECTED    = 0x01,
360 
361 	/**
362 	 * Front-end requests exist in the ring and are waiting for
363 	 * xnb_xen_req objects to free up.
364 	 */
365 	XNBF_RESOURCE_SHORTAGE = 0x02,
366 
367 	/** Connection teardown has started. */
368 	XNBF_SHUTDOWN          = 0x04,
369 
370 	/** A thread is already performing shutdown processing. */
371 	XNBF_IN_SHUTDOWN       = 0x08
372 } xnb_flag_t;
373 
374 /**
375  * Types of rings.  Used for array indices and to identify a ring's control
376  * data structure type
377  */
378 typedef enum{
379 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
380 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
381 	XNB_NUM_RING_TYPES
382 } xnb_ring_type_t;
383 
384 /**
385  * Per-instance configuration data.
386  */
387 struct xnb_softc {
388 	/** NewBus device corresponding to this instance. */
389 	device_t		dev;
390 
391 	/* Media related fields */
392 
393 	/** Generic network media state */
394 	struct ifmedia		sc_media;
395 
396 	/** Media carrier info */
397 	if_t			xnb_ifp;
398 
399 	/** Our own private carrier state */
400 	unsigned carrier;
401 
402 	/** Device MAC Address */
403 	uint8_t			mac[ETHER_ADDR_LEN];
404 
405 	/* Xen related fields */
406 
407 	/**
408 	 * \brief The netif protocol abi in effect.
409 	 *
410 	 * There are situations where the back and front ends can
411 	 * have a different, native abi (e.g. intel x86_64 and
412 	 * 32bit x86 domains on the same machine).  The back-end
413 	 * always accommodates the front-end's native abi.  That
414 	 * value is pulled from the XenStore and recorded here.
415 	 */
416 	int			abi;
417 
418 	/**
419 	 * Name of the bridge to which this VIF is connected, if any
420 	 * This field is dynamically allocated by xenbus and must be free()ed
421 	 * when no longer needed
422 	 */
423 	char			*bridge;
424 
425 	/** The interrupt driven even channel used to signal ring events. */
426 	evtchn_port_t		evtchn;
427 
428 	/** Xen device handle.*/
429 	long 			handle;
430 
431 	/** Handle to the communication ring event channel. */
432 	xen_intr_handle_t	xen_intr_handle;
433 
434 	/**
435 	 * \brief Cached value of the front-end's domain id.
436 	 *
437 	 * This value is used at once for each mapped page in
438 	 * a transaction.  We cache it to avoid incuring the
439 	 * cost of an ivar access every time this is needed.
440 	 */
441 	domid_t			otherend_id;
442 
443 	/**
444 	 * Undocumented frontend feature.  Has something to do with
445 	 * scatter/gather IO
446 	 */
447 	uint8_t			can_sg;
448 	/** Undocumented frontend feature */
449 	uint8_t			gso;
450 	/** Undocumented frontend feature */
451 	uint8_t			gso_prefix;
452 	/** Can checksum TCP/UDP over IPv4 */
453 	uint8_t			ip_csum;
454 
455 	/* Implementation related fields */
456 	/**
457 	 * Preallocated grant table copy descriptor for RX operations.
458 	 * Access must be protected by rx_lock
459 	 */
460 	gnttab_copy_table	rx_gnttab;
461 
462 	/**
463 	 * Preallocated grant table copy descriptor for TX operations.
464 	 * Access must be protected by tx_lock
465 	 */
466 	gnttab_copy_table	tx_gnttab;
467 
468 	/**
469 	 * Resource representing allocated physical address space
470 	 * associated with our per-instance kva region.
471 	 */
472 	struct resource		*pseudo_phys_res;
473 
474 	/** Resource id for allocated physical address space. */
475 	int			pseudo_phys_res_id;
476 
477 	/** Ring mapping and interrupt configuration data. */
478 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
479 
480 	/**
481 	 * Global pool of kva used for mapping remote domain ring
482 	 * and I/O transaction data.
483 	 */
484 	vm_offset_t		kva;
485 
486 	/** Pseudo-physical address corresponding to kva. */
487 	uint64_t		gnt_base_addr;
488 
489 	/** Various configuration and state bit flags. */
490 	xnb_flag_t		flags;
491 
492 	/** Mutex protecting per-instance data in the receive path. */
493 	struct mtx		rx_lock;
494 
495 	/** Mutex protecting per-instance data in the softc structure. */
496 	struct mtx		sc_lock;
497 
498 	/** Mutex protecting per-instance data in the transmit path. */
499 	struct mtx		tx_lock;
500 
501 	/** The size of the global kva pool. */
502 	int			kva_size;
503 
504 	/** Name of the interface */
505 	char			 if_name[IFNAMSIZ];
506 };
507 
508 /*---------------------------- Debugging functions ---------------------------*/
509 #ifdef XNB_DEBUG
510 static void __unused
xnb_dump_gnttab_copy(const struct gnttab_copy * entry)511 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
512 {
513 	if (entry == NULL) {
514 		printf("NULL grant table pointer\n");
515 		return;
516 	}
517 
518 	if (entry->flags & GNTCOPY_dest_gref)
519 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
520 	else
521 		printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
522 		       entry->dest.u.gmfn);
523 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
524 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
525 	if (entry->flags & GNTCOPY_source_gref)
526 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
527 	else
528 		printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
529 		       entry->source.u.gmfn);
530 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
531 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
532 	printf("gnttab len=\t%hu\n", entry->len);
533 	printf("gnttab flags=\t%hu\n", entry->flags);
534 	printf("gnttab status=\t%hd\n", entry->status);
535 }
536 
537 static int
xnb_dump_rings(SYSCTL_HANDLER_ARGS)538 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
539 {
540 	static char results[720];
541 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
542 	netif_rx_back_ring_t const* rxb =
543 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
544 	netif_tx_back_ring_t const* txb =
545 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
546 
547 	/* empty the result strings */
548 	results[0] = 0;
549 
550 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
551 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
552 
553 	snprintf(results, 720,
554 	    "\n\t%35s %18s\n"	/* TX, RX */
555 	    "\t%16s %18d %18d\n"	/* req_cons */
556 	    "\t%16s %18d %18d\n"	/* nr_ents */
557 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
558 	    "\t%16s %18p %18p\n"	/* sring */
559 	    "\t%16s %18d %18d\n"	/* req_prod */
560 	    "\t%16s %18d %18d\n"	/* req_event */
561 	    "\t%16s %18d %18d\n"	/* rsp_prod */
562 	    "\t%16s %18d %18d\n",	/* rsp_event */
563 	    "TX", "RX",
564 	    "req_cons", txb->req_cons, rxb->req_cons,
565 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
566 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
567 	    "sring", txb->sring, rxb->sring,
568 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
569 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
570 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
571 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
572 
573 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
574 }
575 
576 static void __unused
xnb_dump_mbuf(const struct mbuf * m)577 xnb_dump_mbuf(const struct mbuf *m)
578 {
579 	int len;
580 	uint8_t *d;
581 	if (m == NULL)
582 		return;
583 
584 	printf("xnb_dump_mbuf:\n");
585 	if (m->m_flags & M_PKTHDR) {
586 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
587 		       "tso_segsz=%5hd\n",
588 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
589 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
590 		printf("    rcvif=%16p,  len=%19d\n",
591 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
592 	}
593 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
594 	       m->m_next, m->m_nextpkt, m->m_data);
595 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
596 	       m->m_len, m->m_flags, m->m_type);
597 
598 	len = m->m_len;
599 	d = mtod(m, uint8_t*);
600 	while (len > 0) {
601 		int i;
602 		printf("                ");
603 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
604 			printf("%02hhx ", *(d++));
605 		}
606 		printf("\n");
607 	}
608 }
609 #endif /* XNB_DEBUG */
610 
611 /*------------------------ Inter-Domain Communication ------------------------*/
612 /**
613  * Free dynamically allocated KVA or pseudo-physical address allocations.
614  *
615  * \param xnb  Per-instance xnb configuration structure.
616  */
617 static void
xnb_free_communication_mem(struct xnb_softc * xnb)618 xnb_free_communication_mem(struct xnb_softc *xnb)
619 {
620 	if (xnb->kva != 0) {
621 		if (xnb->pseudo_phys_res != NULL) {
622 			xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
623 			    xnb->pseudo_phys_res);
624 			xnb->pseudo_phys_res = NULL;
625 		}
626 	}
627 	xnb->kva = 0;
628 	xnb->gnt_base_addr = 0;
629 }
630 
631 /**
632  * Cleanup all inter-domain communication mechanisms.
633  *
634  * \param xnb  Per-instance xnb configuration structure.
635  */
636 static int
xnb_disconnect(struct xnb_softc * xnb)637 xnb_disconnect(struct xnb_softc *xnb)
638 {
639 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
640 	int error __diagused;
641 	int i;
642 
643 	if (xnb->xen_intr_handle != NULL)
644 		xen_intr_unbind(&xnb->xen_intr_handle);
645 
646 	/*
647 	 * We may still have another thread currently processing requests.  We
648 	 * must acquire the rx and tx locks to make sure those threads are done,
649 	 * but we can release those locks as soon as we acquire them, because no
650 	 * more interrupts will be arriving.
651 	 */
652 	mtx_lock(&xnb->tx_lock);
653 	mtx_unlock(&xnb->tx_lock);
654 	mtx_lock(&xnb->rx_lock);
655 	mtx_unlock(&xnb->rx_lock);
656 
657 	mtx_lock(&xnb->sc_lock);
658 	/* Free malloc'd softc member variables */
659 	if (xnb->bridge != NULL) {
660 		free(xnb->bridge, M_XENSTORE);
661 		xnb->bridge = NULL;
662 	}
663 
664 	/* All request processing has stopped, so unmap the rings */
665 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
666 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
667 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
668 		gnts[i].handle = xnb->ring_configs[i].handle;
669 	}
670 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
671 					  XNB_NUM_RING_TYPES);
672 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
673 
674 	xnb_free_communication_mem(xnb);
675 	/*
676 	 * Zero the ring config structs because the pointers, handles, and
677 	 * grant refs contained therein are no longer valid.
678 	 */
679 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
680 	    sizeof(struct xnb_ring_config));
681 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
682 	    sizeof(struct xnb_ring_config));
683 
684 	xnb->flags &= ~XNBF_RING_CONNECTED;
685 	mtx_unlock(&xnb->sc_lock);
686 
687 	return (0);
688 }
689 
690 /**
691  * Map a single shared memory ring into domain local address space and
692  * initialize its control structure
693  *
694  * \param xnb	Per-instance xnb configuration structure
695  * \param ring_type	Array index of this ring in the xnb's array of rings
696  * \return 	An errno
697  */
698 static int
xnb_connect_ring(struct xnb_softc * xnb,xnb_ring_type_t ring_type)699 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
700 {
701 	struct gnttab_map_grant_ref gnt;
702 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
703 	int error;
704 
705 	/* TX ring type = 0, RX =1 */
706 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
707 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
708 
709 	gnt.host_addr = ring->gnt_addr;
710 	gnt.flags     = GNTMAP_host_map;
711 	gnt.ref       = ring->ring_ref;
712 	gnt.dom       = xnb->otherend_id;
713 
714 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
715 	if (error != 0)
716 		panic("netback: Ring page grant table op failed (%d)", error);
717 
718 	if (gnt.status != 0) {
719 		ring->va = 0;
720 		error = EACCES;
721 		xenbus_dev_fatal(xnb->dev, error,
722 				 "Ring shared page mapping failed. "
723 				 "Status %d.", gnt.status);
724 	} else {
725 		ring->handle = gnt.handle;
726 		ring->bus_addr = gnt.dev_bus_addr;
727 
728 		if (ring_type == XNB_RING_TYPE_TX) {
729 			BACK_RING_INIT(&ring->back_ring.tx_ring,
730 			    (netif_tx_sring_t*)ring->va,
731 			    ring->ring_pages * PAGE_SIZE);
732 		} else if (ring_type == XNB_RING_TYPE_RX) {
733 			BACK_RING_INIT(&ring->back_ring.rx_ring,
734 			    (netif_rx_sring_t*)ring->va,
735 			    ring->ring_pages * PAGE_SIZE);
736 		} else {
737 			xenbus_dev_fatal(xnb->dev, error,
738 				 "Unknown ring type %d", ring_type);
739 		}
740 	}
741 
742 	return error;
743 }
744 
745 /**
746  * Setup the shared memory rings and bind an interrupt to the event channel
747  * used to notify us of ring changes.
748  *
749  * \param xnb  Per-instance xnb configuration structure.
750  */
751 static int
xnb_connect_comms(struct xnb_softc * xnb)752 xnb_connect_comms(struct xnb_softc *xnb)
753 {
754 	int	error;
755 	xnb_ring_type_t i;
756 
757 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
758 		return (0);
759 
760 	/*
761 	 * Kva for our rings are at the tail of the region of kva allocated
762 	 * by xnb_alloc_communication_mem().
763 	 */
764 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
765 		error = xnb_connect_ring(xnb, i);
766 		if (error != 0)
767 	  		return error;
768 	}
769 
770 	xnb->flags |= XNBF_RING_CONNECTED;
771 
772 	error = xen_intr_bind_remote_port(xnb->dev,
773 					  xnb->otherend_id,
774 					  xnb->evtchn,
775 					  /*filter*/NULL,
776 					  xnb_intr, /*arg*/xnb,
777 					  INTR_TYPE_NET | INTR_MPSAFE,
778 					  &xnb->xen_intr_handle);
779 	if (error != 0) {
780 		(void)xnb_disconnect(xnb);
781 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
782 		return (error);
783 	}
784 
785 	DPRINTF("rings connected!\n");
786 
787 	return (0);
788 }
789 
790 /**
791  * Size KVA and pseudo-physical address allocations based on negotiated
792  * values for the size and number of I/O requests, and the size of our
793  * communication ring.
794  *
795  * \param xnb  Per-instance xnb configuration structure.
796  *
797  * These address spaces are used to dynamically map pages in the
798  * front-end's domain into our own.
799  */
800 static int
xnb_alloc_communication_mem(struct xnb_softc * xnb)801 xnb_alloc_communication_mem(struct xnb_softc *xnb)
802 {
803 	xnb_ring_type_t i;
804 
805 	xnb->kva_size = 0;
806 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
807 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
808 	}
809 
810 	/*
811 	 * Reserve a range of pseudo physical memory that we can map
812 	 * into kva.  These pages will only be backed by machine
813 	 * pages ("real memory") during the lifetime of front-end requests
814 	 * via grant table operations.  We will map the netif tx and rx rings
815 	 * into this space.
816 	 */
817 	xnb->pseudo_phys_res_id = 0;
818 	xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
819 	    xnb->kva_size);
820 	if (xnb->pseudo_phys_res == NULL) {
821 		xnb->kva = 0;
822 		return (ENOMEM);
823 	}
824 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
825 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
826 	return (0);
827 }
828 
829 /**
830  * Collect information from the XenStore related to our device and its frontend
831  *
832  * \param xnb  Per-instance xnb configuration structure.
833  */
834 static int
xnb_collect_xenstore_info(struct xnb_softc * xnb)835 xnb_collect_xenstore_info(struct xnb_softc *xnb)
836 {
837 	/**
838 	 * \todo Linux collects the following info.  We should collect most
839 	 * of this, too:
840 	 * "feature-rx-notify"
841 	 */
842 	const char *otherend_path;
843 	const char *our_path;
844 	int err;
845 	unsigned int rx_copy, bridge_len;
846 	uint8_t no_csum_offload;
847 
848 	otherend_path = xenbus_get_otherend_path(xnb->dev);
849 	our_path = xenbus_get_node(xnb->dev);
850 
851 	/* Collect the critical communication parameters */
852 	err = xs_gather(XST_NIL, otherend_path,
853 	    "tx-ring-ref", "%l" PRIu32,
854 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
855 	    "rx-ring-ref", "%l" PRIu32,
856 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
857 	    "event-channel", "%" PRIu32, &xnb->evtchn,
858 	    NULL);
859 	if (err != 0) {
860 		xenbus_dev_fatal(xnb->dev, err,
861 				 "Unable to retrieve ring information from "
862 				 "frontend %s.  Unable to connect.",
863 				 otherend_path);
864 		return (err);
865 	}
866 
867 	/* Collect the handle from xenstore */
868 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
869 	if (err != 0) {
870 		xenbus_dev_fatal(xnb->dev, err,
871 		    "Error reading handle from frontend %s.  "
872 		    "Unable to connect.", otherend_path);
873 	}
874 
875 	/*
876 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
877 	 * throw it away
878 	 */
879 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
880 		      (void**)&xnb->bridge);
881 	if (err != 0)
882 		xnb->bridge = NULL;
883 
884 	/*
885 	 * Does the frontend request that we use rx copy?  If not, return an
886 	 * error because this driver only supports rx copy.
887 	 */
888 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
889 		       "%" PRIu32, &rx_copy);
890 	if (err == ENOENT) {
891 		err = 0;
892 	 	rx_copy = 0;
893 	}
894 	if (err < 0) {
895 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
896 				 otherend_path);
897 		return err;
898 	}
899 	/**
900 	 * \todo: figure out the exact meaning of this feature, and when
901 	 * the frontend will set it to true.  It should be set to true
902 	 * at some point
903 	 */
904 /*        if (!rx_copy)*/
905 /*          return EOPNOTSUPP;*/
906 
907 	/** \todo Collect the rx notify feature */
908 
909 	/*  Collect the feature-sg. */
910 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
911 		     "%hhu", &xnb->can_sg) < 0)
912 		xnb->can_sg = 0;
913 
914 	/* Collect remaining frontend features */
915 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
916 		     "%hhu", &xnb->gso) < 0)
917 		xnb->gso = 0;
918 
919 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
920 		     "%hhu", &xnb->gso_prefix) < 0)
921 		xnb->gso_prefix = 0;
922 
923 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
924 		     "%hhu", &no_csum_offload) < 0)
925 		no_csum_offload = 0;
926 	xnb->ip_csum = (no_csum_offload == 0);
927 
928 	return (0);
929 }
930 
931 /**
932  * Supply information about the physical device to the frontend
933  * via XenBus.
934  *
935  * \param xnb  Per-instance xnb configuration structure.
936  */
937 static int
xnb_publish_backend_info(struct xnb_softc * xnb)938 xnb_publish_backend_info(struct xnb_softc *xnb)
939 {
940 	struct xs_transaction xst;
941 	const char *our_path;
942 	int error;
943 
944 	our_path = xenbus_get_node(xnb->dev);
945 
946 	do {
947 		error = xs_transaction_start(&xst);
948 		if (error != 0) {
949 			xenbus_dev_fatal(xnb->dev, error,
950 					 "Error publishing backend info "
951 					 "(start transaction)");
952 			break;
953 		}
954 
955 		error = xs_printf(xst, our_path, "feature-sg",
956 				  "%d", XNB_SG);
957 		if (error != 0)
958 			break;
959 
960 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
961 				  "%d", XNB_GSO_TCPV4);
962 		if (error != 0)
963 			break;
964 
965 		error = xs_printf(xst, our_path, "feature-rx-copy",
966 				  "%d", XNB_RX_COPY);
967 		if (error != 0)
968 			break;
969 
970 		error = xs_printf(xst, our_path, "feature-rx-flip",
971 				  "%d", XNB_RX_FLIP);
972 		if (error != 0)
973 			break;
974 
975 		error = xs_transaction_end(xst, 0);
976 		if (error != 0 && error != EAGAIN) {
977 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
978 			break;
979 		}
980 
981 	} while (error == EAGAIN);
982 
983 	return (error);
984 }
985 
986 /**
987  * Connect to our netfront peer now that it has completed publishing
988  * its configuration into the XenStore.
989  *
990  * \param xnb  Per-instance xnb configuration structure.
991  */
992 static void
xnb_connect(struct xnb_softc * xnb)993 xnb_connect(struct xnb_softc *xnb)
994 {
995 	int	error;
996 
997 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
998 		return;
999 
1000 	if (xnb_collect_xenstore_info(xnb) != 0)
1001 		return;
1002 
1003 	xnb->flags &= ~XNBF_SHUTDOWN;
1004 
1005 	/* Read front end configuration. */
1006 
1007 	/* Allocate resources whose size depends on front-end configuration. */
1008 	error = xnb_alloc_communication_mem(xnb);
1009 	if (error != 0) {
1010 		xenbus_dev_fatal(xnb->dev, error,
1011 				 "Unable to allocate communication memory");
1012 		return;
1013 	}
1014 
1015 	/*
1016 	 * Connect communication channel.
1017 	 */
1018 	error = xnb_connect_comms(xnb);
1019 	if (error != 0) {
1020 		/* Specific errors are reported by xnb_connect_comms(). */
1021 		return;
1022 	}
1023 	xnb->carrier = 1;
1024 
1025 	/* Ready for I/O. */
1026 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1027 }
1028 
1029 /*-------------------------- Device Teardown Support -------------------------*/
1030 /**
1031  * Perform device shutdown functions.
1032  *
1033  * \param xnb  Per-instance xnb configuration structure.
1034  *
1035  * Mark this instance as shutting down, wait for any active requests
1036  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1037  * a thread invoking our detach method) that detach can now proceed.
1038  */
1039 static int
xnb_shutdown(struct xnb_softc * xnb)1040 xnb_shutdown(struct xnb_softc *xnb)
1041 {
1042 	/*
1043 	 * Due to the need to drop our mutex during some
1044 	 * xenbus operations, it is possible for two threads
1045 	 * to attempt to close out shutdown processing at
1046 	 * the same time.  Tell the caller that hits this
1047 	 * race to try back later.
1048 	 */
1049 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1050 		return (EAGAIN);
1051 
1052 	xnb->flags |= XNBF_SHUTDOWN;
1053 
1054 	xnb->flags |= XNBF_IN_SHUTDOWN;
1055 
1056 	mtx_unlock(&xnb->sc_lock);
1057 	/* Free the network interface */
1058 	xnb->carrier = 0;
1059 	if (xnb->xnb_ifp != NULL) {
1060 		ether_ifdetach(xnb->xnb_ifp);
1061 		if_free(xnb->xnb_ifp);
1062 		xnb->xnb_ifp = NULL;
1063 	}
1064 
1065 	xnb_disconnect(xnb);
1066 
1067 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1068 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1069 	mtx_lock(&xnb->sc_lock);
1070 
1071 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1072 
1073 	/* Indicate to xnb_detach() that is it safe to proceed. */
1074 	wakeup(xnb);
1075 
1076 	return (0);
1077 }
1078 
1079 /**
1080  * Report an attach time error to the console and Xen, and cleanup
1081  * this instance by forcing immediate detach processing.
1082  *
1083  * \param xnb  Per-instance xnb configuration structure.
1084  * \param err  Errno describing the error.
1085  * \param fmt  Printf style format and arguments
1086  */
1087 static void
xnb_attach_failed(struct xnb_softc * xnb,int err,const char * fmt,...)1088 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1089 {
1090 	va_list ap;
1091 	va_list ap_hotplug;
1092 
1093 	va_start(ap, fmt);
1094 	va_copy(ap_hotplug, ap);
1095 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1096 		  "hotplug-error", fmt, ap_hotplug);
1097 	va_end(ap_hotplug);
1098 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1099 		  "hotplug-status", "error");
1100 
1101 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1102 	va_end(ap);
1103 
1104 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0");
1105 	xnb_detach(xnb->dev);
1106 }
1107 
1108 /*---------------------------- NewBus Entrypoints ----------------------------*/
1109 /**
1110  * Inspect a XenBus device and claim it if is of the appropriate type.
1111  *
1112  * \param dev  NewBus device object representing a candidate XenBus device.
1113  *
1114  * \return  0 for success, errno codes for failure.
1115  */
1116 static int
xnb_probe(device_t dev)1117 xnb_probe(device_t dev)
1118 {
1119 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1120 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1121 		    devclass_get_name(device_get_devclass(dev)));
1122 		device_set_desc(dev, "Backend Virtual Network Device");
1123 		device_quiet(dev);
1124 		return (0);
1125 	}
1126 	return (ENXIO);
1127 }
1128 
1129 /**
1130  * Setup sysctl variables to control various Network Back parameters.
1131  *
1132  * \param xnb  Xen Net Back softc.
1133  *
1134  */
1135 static void
xnb_setup_sysctl(struct xnb_softc * xnb)1136 xnb_setup_sysctl(struct xnb_softc *xnb)
1137 {
1138 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1139 	struct sysctl_oid      *sysctl_tree = NULL;
1140 
1141 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1142 	if (sysctl_ctx == NULL)
1143 		return;
1144 
1145 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1146 	if (sysctl_tree == NULL)
1147 		return;
1148 
1149 #ifdef XNB_DEBUG
1150 	SYSCTL_ADD_PROC(sysctl_ctx,
1151 			SYSCTL_CHILDREN(sysctl_tree),
1152 			OID_AUTO,
1153 			"unit_test_results",
1154 			CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1155 			xnb,
1156 			0,
1157 			xnb_unit_test_main,
1158 			"A",
1159 			"Results of builtin unit tests");
1160 
1161 	SYSCTL_ADD_PROC(sysctl_ctx,
1162 			SYSCTL_CHILDREN(sysctl_tree),
1163 			OID_AUTO,
1164 			"dump_rings",
1165 			CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1166 			xnb,
1167 			0,
1168 			xnb_dump_rings,
1169 			"A",
1170 			"Xennet Back Rings");
1171 #endif /* XNB_DEBUG */
1172 }
1173 
1174 /**
1175  * Create a network device.
1176  * @param handle device handle
1177  */
1178 int
create_netdev(device_t dev)1179 create_netdev(device_t dev)
1180 {
1181 	if_t ifp;
1182 	struct xnb_softc *xnb;
1183 	int err = 0;
1184 	uint32_t handle;
1185 
1186 	xnb = device_get_softc(dev);
1187 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1188 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1189 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1190 
1191 	xnb->dev = dev;
1192 
1193 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1194 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1195 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1196 
1197 	/*
1198 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1199 	 * if the MAC address of the host-facing interface is set
1200 	 * to the same as the guest-facing one (the value found in
1201 	 * xenstore), the bridge would stop delivering packets to
1202 	 * us because it would see that the destination address of
1203 	 * the packet is the same as the interface, and so the bridge
1204 	 * would expect the packet has already been delivered locally
1205 	 * (and just drop it).
1206 	 */
1207 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1208 
1209 	/* The interface will be named using the following nomenclature:
1210 	 *
1211 	 * xnb<domid>.<handle>
1212 	 *
1213 	 * Where handle is the oder of the interface referred to the guest.
1214 	 */
1215 	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1216 		       "%" PRIu32, &handle);
1217 	if (err != 0)
1218 		return (err);
1219 	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1220 	    xenbus_get_otherend_id(dev), handle);
1221 
1222 	if (err == 0) {
1223 		/* Set up ifnet structure */
1224 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1225 		if_setsoftc(ifp, xnb);
1226 		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1227 		if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1228 		if_setioctlfn(ifp, xnb_ioctl);
1229 		if_setstartfn(ifp, xnb_start);
1230 		if_setinitfn(ifp, xnb_ifinit);
1231 		if_setmtu(ifp, ETHERMTU);
1232 		if_setsendqlen(ifp, NET_RX_RING_SIZE - 1);
1233 
1234 		if_sethwassist(ifp, XNB_CSUM_FEATURES);
1235 		if_setcapabilities(ifp, IFCAP_HWCSUM);
1236 		if_setcapenable(ifp, IFCAP_HWCSUM);
1237 
1238 		ether_ifattach(ifp, xnb->mac);
1239 		xnb->carrier = 0;
1240 	}
1241 
1242 	return err;
1243 }
1244 
1245 /**
1246  * Attach to a XenBus device that has been claimed by our probe routine.
1247  *
1248  * \param dev  NewBus device object representing this Xen Net Back instance.
1249  *
1250  * \return  0 for success, errno codes for failure.
1251  */
1252 static int
xnb_attach(device_t dev)1253 xnb_attach(device_t dev)
1254 {
1255 	struct xnb_softc *xnb;
1256 	int	error;
1257 	xnb_ring_type_t	i;
1258 
1259 	error = create_netdev(dev);
1260 	if (error != 0) {
1261 		xenbus_dev_fatal(dev, error, "creating netdev");
1262 		return (error);
1263 	}
1264 
1265 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1266 
1267 	/*
1268 	 * Basic initialization.
1269 	 * After this block it is safe to call xnb_detach()
1270 	 * to clean up any allocated data for this instance.
1271 	 */
1272 	xnb = device_get_softc(dev);
1273 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1274 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1275 		xnb->ring_configs[i].ring_pages = 1;
1276 	}
1277 
1278 	/*
1279 	 * Setup sysctl variables.
1280 	 */
1281 	xnb_setup_sysctl(xnb);
1282 
1283 	/* Update hot-plug status to satisfy xend. */
1284 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1285 			  "hotplug-status", "connected");
1286 	if (error != 0) {
1287 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1288 				  xenbus_get_node(xnb->dev));
1289 		return (error);
1290 	}
1291 
1292 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1293 		/*
1294 		 * If we can't publish our data, we cannot participate
1295 		 * in this connection, and waiting for a front-end state
1296 		 * change will not help the situation.
1297 		 */
1298 		xnb_attach_failed(xnb, error,
1299 		    "Publishing backend status for %s",
1300 				  xenbus_get_node(xnb->dev));
1301 		return error;
1302 	}
1303 
1304 	/* Tell the front end that we are ready to connect. */
1305 	xenbus_set_state(dev, XenbusStateInitWait);
1306 
1307 	return (0);
1308 }
1309 
1310 /**
1311  * Detach from a net back device instance.
1312  *
1313  * \param dev  NewBus device object representing this Xen Net Back instance.
1314  *
1315  * \return  0 for success, errno codes for failure.
1316  *
1317  * \note A net back device may be detached at any time in its life-cycle,
1318  *       including part way through the attach process.  For this reason,
1319  *       initialization order and the initialization state checks in this
1320  *       routine must be carefully coupled so that attach time failures
1321  *       are gracefully handled.
1322  */
1323 static int
xnb_detach(device_t dev)1324 xnb_detach(device_t dev)
1325 {
1326 	struct xnb_softc *xnb;
1327 
1328 	DPRINTF("\n");
1329 
1330 	xnb = device_get_softc(dev);
1331 	mtx_lock(&xnb->sc_lock);
1332 	while (xnb_shutdown(xnb) == EAGAIN) {
1333 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1334 		       "xnb_shutdown", 0);
1335 	}
1336 	mtx_unlock(&xnb->sc_lock);
1337 	DPRINTF("\n");
1338 
1339 	mtx_destroy(&xnb->tx_lock);
1340 	mtx_destroy(&xnb->rx_lock);
1341 	mtx_destroy(&xnb->sc_lock);
1342 	return (0);
1343 }
1344 
1345 /**
1346  * Prepare this net back device for suspension of this VM.
1347  *
1348  * \param dev  NewBus device object representing this Xen net Back instance.
1349  *
1350  * \return  0 for success, errno codes for failure.
1351  */
1352 static int
xnb_suspend(device_t dev)1353 xnb_suspend(device_t dev)
1354 {
1355 	return (0);
1356 }
1357 
1358 /**
1359  * Perform any processing required to recover from a suspended state.
1360  *
1361  * \param dev  NewBus device object representing this Xen Net Back instance.
1362  *
1363  * \return  0 for success, errno codes for failure.
1364  */
1365 static int
xnb_resume(device_t dev)1366 xnb_resume(device_t dev)
1367 {
1368 	return (0);
1369 }
1370 
1371 /**
1372  * Handle state changes expressed via the XenStore by our front-end peer.
1373  *
1374  * \param dev             NewBus device object representing this Xen
1375  *                        Net Back instance.
1376  * \param frontend_state  The new state of the front-end.
1377  *
1378  * \return  0 for success, errno codes for failure.
1379  */
1380 static void
xnb_frontend_changed(device_t dev,XenbusState frontend_state)1381 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1382 {
1383 	struct xnb_softc *xnb;
1384 
1385 	xnb = device_get_softc(dev);
1386 
1387 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1388 	        xenbus_strstate(frontend_state),
1389 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1390 
1391 	switch (frontend_state) {
1392 	case XenbusStateInitialising:
1393 	case XenbusStateInitialised:
1394 		break;
1395 	case XenbusStateConnected:
1396 		xnb_connect(xnb);
1397 		break;
1398 	case XenbusStateClosing:
1399 	case XenbusStateClosed:
1400 		mtx_lock(&xnb->sc_lock);
1401 		xnb_shutdown(xnb);
1402 		mtx_unlock(&xnb->sc_lock);
1403 		if (frontend_state == XenbusStateClosed)
1404 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1405 		break;
1406 	default:
1407 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1408 				 frontend_state);
1409 		break;
1410 	}
1411 }
1412 
1413 /*---------------------------- Request Processing ----------------------------*/
1414 /**
1415  * Interrupt handler bound to the shared ring's event channel.
1416  * Entry point for the xennet transmit path in netback
1417  * Transfers packets from the Xen ring to the host's generic networking stack
1418  *
1419  * \param arg  Callback argument registerd during event channel
1420  *             binding - the xnb_softc for this instance.
1421  */
1422 static void
xnb_intr(void * arg)1423 xnb_intr(void *arg)
1424 {
1425 	struct xnb_softc *xnb;
1426 	if_t ifp;
1427 	netif_tx_back_ring_t *txb;
1428 	RING_IDX req_prod_local;
1429 
1430 	xnb = (struct xnb_softc *)arg;
1431 	ifp = xnb->xnb_ifp;
1432 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1433 
1434 	mtx_lock(&xnb->tx_lock);
1435 	do {
1436 		int notify;
1437 		req_prod_local = txb->sring->req_prod;
1438 		xen_rmb();
1439 
1440 		for (;;) {
1441 			struct mbuf *mbufc;
1442 			int err;
1443 
1444 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1445 			    	       xnb->tx_gnttab);
1446 			if (err || (mbufc == NULL))
1447 				break;
1448 
1449 			/* Send the packet to the generic network stack */
1450 			if_input(xnb->xnb_ifp, mbufc);
1451 		}
1452 
1453 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1454 		if (notify != 0)
1455 			xen_intr_signal(xnb->xen_intr_handle);
1456 
1457 		txb->sring->req_event = txb->req_cons + 1;
1458 		xen_mb();
1459 	} while (txb->sring->req_prod != req_prod_local) ;
1460 	mtx_unlock(&xnb->tx_lock);
1461 
1462 	xnb_start(ifp);
1463 }
1464 
1465 /**
1466  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1467  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1468  * \param[out]	pkt	The returned packet.  If there is an error building
1469  * 			the packet, pkt.list_len will be set to 0.
1470  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1471  * \param[in]	start	The ring index of the first potential request
1472  * \return		The number of requests consumed to build this packet
1473  */
1474 static int
xnb_ring2pkt(struct xnb_pkt * pkt,const netif_tx_back_ring_t * tx_ring,RING_IDX start)1475 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1476 	     RING_IDX start)
1477 {
1478 	/*
1479 	 * Outline:
1480 	 * 1) Initialize pkt
1481 	 * 2) Read the first request of the packet
1482 	 * 3) Read the extras
1483 	 * 4) Set cdr
1484 	 * 5) Loop on the remainder of the packet
1485 	 * 6) Finalize pkt (stuff like car_size and list_len)
1486 	 */
1487 	int idx = start;
1488 	int discard = 0;	/* whether to discard the packet */
1489 	int more_data = 0;	/* there are more request past the last one */
1490 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1491 
1492 	xnb_pkt_initialize(pkt);
1493 
1494 	/* Read the first request */
1495 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1496 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1497 		pkt->size = tx->size;
1498 		pkt->flags = tx->flags & ~NETTXF_more_data;
1499 		more_data = tx->flags & NETTXF_more_data;
1500 		pkt->list_len++;
1501 		pkt->car = idx;
1502 		idx++;
1503 	}
1504 
1505 	/* Read the extra info */
1506 	if ((pkt->flags & NETTXF_extra_info) &&
1507 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1508 		netif_extra_info_t *ext =
1509 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1510 		pkt->extra.type = ext->type;
1511 		switch (pkt->extra.type) {
1512 			case XEN_NETIF_EXTRA_TYPE_GSO:
1513 				pkt->extra.u.gso = ext->u.gso;
1514 				break;
1515 			default:
1516 				/*
1517 				 * The reference Linux netfront driver will
1518 				 * never set any other extra.type.  So we don't
1519 				 * know what to do with it.  Let's print an
1520 				 * error, then consume and discard the packet
1521 				 */
1522 				printf("xnb(%s:%d): Unknown extra info type %d."
1523 				       "  Discarding packet\n",
1524 				       __func__, __LINE__, pkt->extra.type);
1525 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1526 				    start));
1527 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1528 				    idx));
1529 				discard = 1;
1530 				break;
1531 		}
1532 
1533 		pkt->extra.flags = ext->flags;
1534 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1535 			/*
1536 			 * The reference linux netfront driver never sets this
1537 			 * flag (nor does any other known netfront).  So we
1538 			 * will discard the packet.
1539 			 */
1540 			printf("xnb(%s:%d): Request sets "
1541 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1542 			    "that\n", __func__, __LINE__);
1543 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1544 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1545 			discard = 1;
1546 		}
1547 
1548 		idx++;
1549 	}
1550 
1551 	/* Set cdr.  If there is not more data, cdr is invalid */
1552 	pkt->cdr = idx;
1553 
1554 	/* Loop on remainder of packet */
1555 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1556 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1557 		pkt->list_len++;
1558 		cdr_size += tx->size;
1559 		if (tx->flags & ~NETTXF_more_data) {
1560 			/* There should be no other flags set at this point */
1561 			printf("xnb(%s:%d): Request sets unknown flags %d "
1562 			    "after the 1st request in the packet.\n",
1563 			    __func__, __LINE__, tx->flags);
1564 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1565 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1566 		}
1567 
1568 		more_data = tx->flags & NETTXF_more_data;
1569 		idx++;
1570 	}
1571 
1572 	/* Finalize packet */
1573 	if (more_data != 0) {
1574 		/* The ring ran out of requests before finishing the packet */
1575 		xnb_pkt_invalidate(pkt);
1576 		idx = start;	/* tell caller that we consumed no requests */
1577 	} else {
1578 		/* Calculate car_size */
1579 		pkt->car_size = pkt->size - cdr_size;
1580 	}
1581 	if (discard != 0) {
1582 		xnb_pkt_invalidate(pkt);
1583 	}
1584 
1585 	return idx - start;
1586 }
1587 
1588 /**
1589  * Respond to all the requests that constituted pkt.  Builds the responses and
1590  * writes them to the ring, but doesn't push them to the shared ring.
1591  * \param[in] pkt	the packet that needs a response
1592  * \param[in] error	true if there was an error handling the packet, such
1593  * 			as in the hypervisor copy op or mbuf allocation
1594  * \param[out] ring	Responses go here
1595  */
1596 static void
xnb_txpkt2rsp(const struct xnb_pkt * pkt,netif_tx_back_ring_t * ring,int error)1597 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1598 	      int error)
1599 {
1600 	/*
1601 	 * Outline:
1602 	 * 1) Respond to the first request
1603 	 * 2) Respond to the extra info reques
1604 	 * Loop through every remaining request in the packet, generating
1605 	 * responses that copy those requests' ids and sets the status
1606 	 * appropriately.
1607 	 */
1608 	netif_tx_request_t *tx;
1609 	netif_tx_response_t *rsp;
1610 	int i;
1611 	uint16_t status;
1612 
1613 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1614 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1615 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1616 	    ("Cannot respond to ring requests out of order"));
1617 
1618 	if (pkt->list_len >= 1) {
1619 		uint16_t id;
1620 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1621 		id = tx->id;
1622 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1623 		rsp->id = id;
1624 		rsp->status = status;
1625 		ring->rsp_prod_pvt++;
1626 
1627 		if (pkt->flags & NETRXF_extra_info) {
1628 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1629 			rsp->status = NETIF_RSP_NULL;
1630 			ring->rsp_prod_pvt++;
1631 		}
1632 	}
1633 
1634 	for (i=0; i < pkt->list_len - 1; i++) {
1635 		uint16_t id;
1636 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1637 		id = tx->id;
1638 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1639 		rsp->id = id;
1640 		rsp->status = status;
1641 		ring->rsp_prod_pvt++;
1642 	}
1643 }
1644 
1645 /**
1646  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1647  * in the mbuf chain, but does not copy the data.  The returned chain must be
1648  * free()'d when no longer needed
1649  * \param[in]	pkt	A packet to model the mbuf chain after
1650  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1651  * 		NULL on failure
1652  */
1653 static struct mbuf*
xnb_pkt2mbufc(const struct xnb_pkt * pkt,if_t ifp)1654 xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp)
1655 {
1656 	/**
1657 	 * \todo consider using a memory pool for mbufs instead of
1658 	 * reallocating them for every packet
1659 	 */
1660 	/** \todo handle extra data */
1661 	struct mbuf *m;
1662 
1663 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1664 
1665 	if (m != NULL) {
1666 		m->m_pkthdr.rcvif = ifp;
1667 		if (pkt->flags & NETTXF_data_validated) {
1668 			/*
1669 			 * We lie to the host OS and always tell it that the
1670 			 * checksums are ok, because the packet is unlikely to
1671 			 * get corrupted going across domains.
1672 			 */
1673 			m->m_pkthdr.csum_flags = (
1674 				CSUM_IP_CHECKED |
1675 				CSUM_IP_VALID   |
1676 				CSUM_DATA_VALID |
1677 				CSUM_PSEUDO_HDR
1678 				);
1679 			m->m_pkthdr.csum_data = 0xffff;
1680 		}
1681 	}
1682 	return m;
1683 }
1684 
1685 /**
1686  * Build a gnttab_copy table that can be used to copy data from a pkt
1687  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1688  * the packet side.
1689  * \param[in]	pkt	pkt's associated requests form the src for
1690  * 			the copy operation
1691  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1692  * \param[out]  gnttab	Storage for the returned grant table
1693  * \param[in]	txb	Pointer to the backend ring structure
1694  * \param[in]	otherend_id	The domain ID of the other end of the copy
1695  * \return 		The number of gnttab entries filled
1696  */
1697 static int
xnb_txpkt2gnttab(const struct xnb_pkt * pkt,struct mbuf * mbufc,gnttab_copy_table gnttab,const netif_tx_back_ring_t * txb,domid_t otherend_id)1698 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1699 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1700 		 domid_t otherend_id)
1701 {
1702 
1703 	struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1704 	int gnt_idx = 0;		/* index into grant table */
1705 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1706 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1707 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1708 	/* size in bytes that still needs to be represented in the table */
1709 	uint16_t size_remaining = pkt->size;
1710 
1711 	while (size_remaining > 0) {
1712 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1713 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1714 		const size_t req_size =
1715 			r_idx == pkt->car ? pkt->car_size : txq->size;
1716 		const size_t pkt_space = req_size - r_ofs;
1717 		/*
1718 		 * space is the largest amount of data that can be copied in the
1719 		 * grant table's next entry
1720 		 */
1721 		const size_t space = MIN(pkt_space, mbuf_space);
1722 
1723 		/* TODO: handle this error condition without panicking */
1724 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1725 
1726 		gnttab[gnt_idx].source.u.ref = txq->gref;
1727 		gnttab[gnt_idx].source.domid = otherend_id;
1728 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1729 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1730 		    mtod(mbuf, vm_offset_t) + m_ofs);
1731 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1732 		    mtod(mbuf, vm_offset_t) + m_ofs);
1733 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1734 		gnttab[gnt_idx].len = space;
1735 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1736 
1737 		gnt_idx++;
1738 		r_ofs += space;
1739 		m_ofs += space;
1740 		size_remaining -= space;
1741 		if (req_size - r_ofs <= 0) {
1742 			/* Must move to the next tx request */
1743 			r_ofs = 0;
1744 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1745 		}
1746 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1747 			/* Must move to the next mbuf */
1748 			m_ofs = 0;
1749 			mbuf = mbuf->m_next;
1750 		}
1751 	}
1752 
1753 	return gnt_idx;
1754 }
1755 
1756 /**
1757  * Check the status of the grant copy operations, and update mbufs various
1758  * non-data fields to reflect the data present.
1759  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1760  * 			the correct length, and data should already be present
1761  * \param[in] gnttab	A grant table for a just completed copy op
1762  * \param[in] n_entries The number of valid entries in the grant table
1763  */
1764 static void
xnb_update_mbufc(struct mbuf * mbufc,const gnttab_copy_table gnttab,int n_entries)1765 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1766     		 int n_entries)
1767 {
1768 	struct mbuf *mbuf = mbufc;
1769 	int i;
1770 	size_t total_size = 0;
1771 
1772 	for (i = 0; i < n_entries; i++) {
1773 		KASSERT(gnttab[i].status == GNTST_okay,
1774 		    ("Some gnttab_copy entry had error status %hd\n",
1775 		    gnttab[i].status));
1776 
1777 		mbuf->m_len += gnttab[i].len;
1778 		total_size += gnttab[i].len;
1779 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1780 			mbuf = mbuf->m_next;
1781 		}
1782 	}
1783 	mbufc->m_pkthdr.len = total_size;
1784 
1785 #if defined(INET) || defined(INET6)
1786 	xnb_add_mbuf_cksum(mbufc);
1787 #endif
1788 }
1789 
1790 /**
1791  * Dequeue at most one packet from the shared ring
1792  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1793  * 			its private indices will be updated.  But the indices
1794  * 			will not be pushed to the shared ring.
1795  * \param[in] ifnet	Interface to which the packet will be sent
1796  * \param[in] otherend	Domain ID of the other end of the ring
1797  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1798  * 			networking stack
1799  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1800  * 			this a function parameter so that we will take less
1801  * 			stack space.
1802  * \return		An error code
1803  */
1804 static int
xnb_recv(netif_tx_back_ring_t * txb,domid_t otherend,struct mbuf ** mbufc,if_t ifnet,gnttab_copy_table gnttab)1805 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1806 	 if_t ifnet, gnttab_copy_table gnttab)
1807 {
1808 	struct xnb_pkt pkt;
1809 	/* number of tx requests consumed to build the last packet */
1810 	int num_consumed;
1811 	int nr_ents;
1812 
1813 	*mbufc = NULL;
1814 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1815 	if (num_consumed == 0)
1816 		return 0;	/* Nothing to receive */
1817 
1818 	/* update statistics independent of errors */
1819 	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1820 
1821 	/*
1822 	 * if we got here, then 1 or more requests was consumed, but the packet
1823 	 * is not necessarily valid.
1824 	 */
1825 	if (xnb_pkt_is_valid(&pkt) == 0) {
1826 		/* got a garbage packet, respond and drop it */
1827 		xnb_txpkt2rsp(&pkt, txb, 1);
1828 		txb->req_cons += num_consumed;
1829 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1830 				num_consumed);
1831 		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1832 		return EINVAL;
1833 	}
1834 
1835 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1836 
1837 	if (*mbufc == NULL) {
1838 		/*
1839 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1840 		 * not consume the requests
1841 		 */
1842 		xnb_txpkt2rsp(&pkt, txb, 1);
1843 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1844 		    num_consumed);
1845 		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1846 		return ENOMEM;
1847 	}
1848 
1849 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1850 
1851 	if (nr_ents > 0) {
1852 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1853 		    gnttab, nr_ents);
1854 		KASSERT(hv_ret == 0,
1855 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1856 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1857 	}
1858 
1859 	xnb_txpkt2rsp(&pkt, txb, 0);
1860 	txb->req_cons += num_consumed;
1861 	return 0;
1862 }
1863 
1864 /**
1865  * Create an xnb_pkt based on the contents of an mbuf chain.
1866  * \param[in] mbufc	mbuf chain to transform into a packet
1867  * \param[out] pkt	Storage for the newly generated xnb_pkt
1868  * \param[in] start	The ring index of the first available slot in the rx
1869  * 			ring
1870  * \param[in] space	The number of free slots in the rx ring
1871  * \retval 0		Success
1872  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1873  * \retval EAGAIN	There was not enough space in the ring to queue the
1874  * 			packet
1875  */
1876 static int
xnb_mbufc2pkt(const struct mbuf * mbufc,struct xnb_pkt * pkt,RING_IDX start,int space)1877 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1878 	      RING_IDX start, int space)
1879 {
1880 
1881 	int retval = 0;
1882 
1883 	if ((mbufc == NULL) ||
1884 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1885 	     (mbufc->m_pkthdr.len == 0)) {
1886 		xnb_pkt_invalidate(pkt);
1887 		retval = EINVAL;
1888 	} else {
1889 		int slots_required;
1890 
1891 		xnb_pkt_validate(pkt);
1892 		pkt->flags = 0;
1893 		pkt->size = mbufc->m_pkthdr.len;
1894 		pkt->car = start;
1895 		pkt->car_size = mbufc->m_len;
1896 
1897 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1898 			pkt->flags |= NETRXF_extra_info;
1899 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1900 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1901 			pkt->extra.u.gso.pad = 0;
1902 			pkt->extra.u.gso.features = 0;
1903 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1904 			pkt->extra.flags = 0;
1905 			pkt->cdr = start + 2;
1906 		} else {
1907 			pkt->cdr = start + 1;
1908 		}
1909 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1910 			pkt->flags |=
1911 			    (NETRXF_csum_blank | NETRXF_data_validated);
1912 		}
1913 
1914 		/*
1915 		 * Each ring response can have up to PAGE_SIZE of data.
1916 		 * Assume that we can defragment the mbuf chain efficiently
1917 		 * into responses so that each response but the last uses all
1918 		 * PAGE_SIZE bytes.
1919 		 */
1920 		pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1921 
1922 		if (pkt->list_len > 1) {
1923 			pkt->flags |= NETRXF_more_data;
1924 		}
1925 
1926 		slots_required = pkt->list_len +
1927 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1928 		if (slots_required > space) {
1929 			xnb_pkt_invalidate(pkt);
1930 			retval = EAGAIN;
1931 		}
1932 	}
1933 
1934 	return retval;
1935 }
1936 
1937 /**
1938  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1939  * to the frontend's shared buffers.  Does not actually perform the copy.
1940  * Always uses gref's on the other end's side.
1941  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1942  * 			operatoin
1943  * \param[in]	mbufc	The source for the copy operation
1944  * \param[out]	gnttab	Storage for the returned grant table
1945  * \param[in]	rxb	Pointer to the backend ring structure
1946  * \param[in]	otherend_id	The domain ID of the other end of the copy
1947  * \return 		The number of gnttab entries filled
1948  */
1949 static int
xnb_rxpkt2gnttab(const struct xnb_pkt * pkt,const struct mbuf * mbufc,gnttab_copy_table gnttab,const netif_rx_back_ring_t * rxb,domid_t otherend_id)1950 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1951 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1952 		 domid_t otherend_id)
1953 {
1954 
1955 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1956 	int gnt_idx = 0;		/* index into grant table */
1957 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1958 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1959 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1960 	/* size in bytes that still needs to be represented in the table */
1961 	uint16_t size_remaining;
1962 
1963 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1964 
1965 	while (size_remaining > 0) {
1966 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1967 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1968 		/* Xen shared pages have an implied size of PAGE_SIZE */
1969 		const size_t req_size = PAGE_SIZE;
1970 		const size_t pkt_space = req_size - r_ofs;
1971 		/*
1972 		 * space is the largest amount of data that can be copied in the
1973 		 * grant table's next entry
1974 		 */
1975 		const size_t space = MIN(pkt_space, mbuf_space);
1976 
1977 		/* TODO: handle this error condition without panicing */
1978 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1979 
1980 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1981 		gnttab[gnt_idx].dest.domid = otherend_id;
1982 		gnttab[gnt_idx].dest.offset = r_ofs;
1983 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1984 		    mtod(mbuf, vm_offset_t) + m_ofs);
1985 		gnttab[gnt_idx].source.offset = virt_to_offset(
1986 		    mtod(mbuf, vm_offset_t) + m_ofs);
1987 		gnttab[gnt_idx].source.domid = DOMID_SELF;
1988 		gnttab[gnt_idx].len = space;
1989 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1990 
1991 		gnt_idx++;
1992 
1993 		r_ofs += space;
1994 		m_ofs += space;
1995 		size_remaining -= space;
1996 		if (req_size - r_ofs <= 0) {
1997 			/* Must move to the next rx request */
1998 			r_ofs = 0;
1999 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2000 		}
2001 		if (mbuf->m_len - m_ofs <= 0) {
2002 			/* Must move to the next mbuf */
2003 			m_ofs = 0;
2004 			mbuf = mbuf->m_next;
2005 		}
2006 	}
2007 
2008 	return gnt_idx;
2009 }
2010 
2011 /**
2012  * Generates responses for all the requests that constituted pkt.  Builds
2013  * responses and writes them to the ring, but doesn't push the shared ring
2014  * indices.
2015  * \param[in] pkt	the packet that needs a response
2016  * \param[in] gnttab	The grant copy table corresponding to this packet.
2017  * 			Used to determine how many rsp->netif_rx_response_t's to
2018  * 			generate.
2019  * \param[in] n_entries	Number of relevant entries in the grant table
2020  * \param[out] ring	Responses go here
2021  * \return		The number of RX requests that were consumed to generate
2022  * 			the responses
2023  */
2024 static int
xnb_rxpkt2rsp(const struct xnb_pkt * pkt,const gnttab_copy_table gnttab,int n_entries,netif_rx_back_ring_t * ring)2025 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2026     	      int n_entries, netif_rx_back_ring_t *ring)
2027 {
2028 	/*
2029 	 * This code makes the following assumptions:
2030 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2031 	 *	* The entries in gnttab are grouped by their grefs: any two
2032 	 *	   entries with the same gref must be adjacent
2033 	 */
2034 	int error = 0;
2035 	int gnt_idx, i;
2036 	int n_responses = 0;
2037 	grant_ref_t last_gref = GRANT_REF_INVALID;
2038 	RING_IDX r_idx;
2039 
2040 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2041 
2042 	/*
2043 	 * In the event of an error, we only need to send one response to the
2044 	 * netfront.  In that case, we musn't write any data to the responses
2045 	 * after the one we send.  So we must loop all the way through gnttab
2046 	 * looking for errors before we generate any responses
2047 	 *
2048 	 * Since we're looping through the grant table anyway, we'll count the
2049 	 * number of different gref's in it, which will tell us how many
2050 	 * responses to generate
2051 	 */
2052 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2053 		int16_t status = gnttab[gnt_idx].status;
2054 		if (status != GNTST_okay) {
2055 			DPRINTF(
2056 			    "Got error %d for hypervisor gnttab_copy status\n",
2057 			    status);
2058 			error = 1;
2059 			break;
2060 		}
2061 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2062 			n_responses++;
2063 			last_gref = gnttab[gnt_idx].dest.u.ref;
2064 		}
2065 	}
2066 
2067 	if (error != 0) {
2068 		uint16_t id;
2069 		netif_rx_response_t *rsp;
2070 
2071 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2072 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2073 		rsp->id = id;
2074 		rsp->status = NETIF_RSP_ERROR;
2075 		n_responses = 1;
2076 	} else {
2077 		gnt_idx = 0;
2078 		const int has_extra = pkt->flags & NETRXF_extra_info;
2079 		if (has_extra != 0)
2080 			n_responses++;
2081 
2082 		for (i = 0; i < n_responses; i++) {
2083 			netif_rx_request_t rxq;
2084 			netif_rx_response_t *rsp;
2085 
2086 			r_idx = ring->rsp_prod_pvt + i;
2087 			/*
2088 			 * We copy the structure of rxq instead of making a
2089 			 * pointer because it shares the same memory as rsp.
2090 			 */
2091 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2092 			rsp = RING_GET_RESPONSE(ring, r_idx);
2093 			if (has_extra && (i == 1)) {
2094 				netif_extra_info_t *ext =
2095 					(netif_extra_info_t*)rsp;
2096 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2097 				ext->flags = 0;
2098 				ext->u.gso.size = pkt->extra.u.gso.size;
2099 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2100 				ext->u.gso.pad = 0;
2101 				ext->u.gso.features = 0;
2102 			} else {
2103 				rsp->id = rxq.id;
2104 				rsp->status = GNTST_okay;
2105 				rsp->offset = 0;
2106 				rsp->flags = 0;
2107 				if (i < pkt->list_len - 1)
2108 					rsp->flags |= NETRXF_more_data;
2109 				if ((i == 0) && has_extra)
2110 					rsp->flags |= NETRXF_extra_info;
2111 				if ((i == 0) &&
2112 					(pkt->flags & NETRXF_data_validated)) {
2113 					rsp->flags |= NETRXF_data_validated;
2114 					rsp->flags |= NETRXF_csum_blank;
2115 				}
2116 				rsp->status = 0;
2117 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2118 				    gnt_idx++) {
2119 					rsp->status += gnttab[gnt_idx].len;
2120 				}
2121 			}
2122 		}
2123 	}
2124 
2125 	ring->req_cons += n_responses;
2126 	ring->rsp_prod_pvt += n_responses;
2127 	return n_responses;
2128 }
2129 
2130 #if defined(INET) || defined(INET6)
2131 /**
2132  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2133  * in the chain must start with a struct ether_header.
2134  *
2135  * XXX This function will perform incorrectly on UDP packets that are split up
2136  * into multiple ethernet frames.
2137  */
2138 static void
xnb_add_mbuf_cksum(struct mbuf * mbufc)2139 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2140 {
2141 	struct ether_header *eh;
2142 	struct ip *iph;
2143 	uint16_t ether_type;
2144 
2145 	eh = mtod(mbufc, struct ether_header*);
2146 	ether_type = ntohs(eh->ether_type);
2147 	if (ether_type != ETHERTYPE_IP) {
2148 		/* Nothing to calculate */
2149 		return;
2150 	}
2151 
2152 	iph = (struct ip*)(eh + 1);
2153 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2154 		iph->ip_sum = 0;
2155 		iph->ip_sum = in_cksum_hdr(iph);
2156 	}
2157 
2158 	switch (iph->ip_p) {
2159 	case IPPROTO_TCP:
2160 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2161 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2162 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2163 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2164 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2165 			th->th_sum = in_cksum_skip(mbufc,
2166 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2167 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2168 		}
2169 		break;
2170 	case IPPROTO_UDP:
2171 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2172 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2173 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2174 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2175 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2176 			uh->uh_sum = in_cksum_skip(mbufc,
2177 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2178 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2179 		}
2180 		break;
2181 	default:
2182 		break;
2183 	}
2184 }
2185 #endif /* INET || INET6 */
2186 
2187 static void
xnb_stop(struct xnb_softc * xnb)2188 xnb_stop(struct xnb_softc *xnb)
2189 {
2190 	if_t ifp;
2191 
2192 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2193 	ifp = xnb->xnb_ifp;
2194 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2195 	if_link_state_change(ifp, LINK_STATE_DOWN);
2196 }
2197 
2198 static int
xnb_ioctl(if_t ifp,u_long cmd,caddr_t data)2199 xnb_ioctl(if_t ifp, u_long cmd, caddr_t data)
2200 {
2201 	struct xnb_softc *xnb = if_getsoftc(ifp);
2202 	struct ifreq *ifr = (struct ifreq*) data;
2203 #ifdef INET
2204 	struct ifaddr *ifa = (struct ifaddr*)data;
2205 #endif
2206 	int error = 0;
2207 
2208 	switch (cmd) {
2209 		case SIOCSIFFLAGS:
2210 			mtx_lock(&xnb->sc_lock);
2211 			if (if_getflags(ifp) & IFF_UP) {
2212 				xnb_ifinit_locked(xnb);
2213 			} else {
2214 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2215 					xnb_stop(xnb);
2216 				}
2217 			}
2218 			/*
2219 			 * Note: netfront sets a variable named xn_if_flags
2220 			 * here, but that variable is never read
2221 			 */
2222 			mtx_unlock(&xnb->sc_lock);
2223 			break;
2224 		case SIOCSIFADDR:
2225 #ifdef INET
2226 			mtx_lock(&xnb->sc_lock);
2227 			if (ifa->ifa_addr->sa_family == AF_INET) {
2228 				if_setflagbits(ifp, IFF_UP, 0);
2229 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2230 					if_setdrvflagbits(ifp, 0,
2231 					    IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2232 					if_link_state_change(ifp,
2233 							LINK_STATE_DOWN);
2234 					if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2235 					if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2236 					if_link_state_change(ifp,
2237 					    LINK_STATE_UP);
2238 				}
2239 				arp_ifinit(ifp, ifa);
2240 				mtx_unlock(&xnb->sc_lock);
2241 			} else {
2242 				mtx_unlock(&xnb->sc_lock);
2243 #endif
2244 				error = ether_ioctl(ifp, cmd, data);
2245 #ifdef INET
2246 			}
2247 #endif
2248 			break;
2249 		case SIOCSIFCAP:
2250 			mtx_lock(&xnb->sc_lock);
2251 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2252 				if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2253 				if_sethwassistbits(ifp, XNB_CSUM_FEATURES, 0);
2254 			} else {
2255 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2256 				if_sethwassistbits(ifp, 0, XNB_CSUM_FEATURES);
2257 			}
2258 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2259 				if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
2260 			} else {
2261 				if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
2262 			}
2263 			/*
2264 			 * TODO enable TSO4 and LRO once we no longer need
2265 			 * to calculate checksums in software
2266 			 */
2267 #if 0
2268 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2269 				if (IFCAP_TXCSUM & if_getcapenable(ifp)) {
2270 					printf("xnb: Xen netif requires that "
2271 						"TXCSUM be enabled in order "
2272 						"to use TSO4\n");
2273 					error = EINVAL;
2274 				} else {
2275 					if_setcapenablebit(ifp, IFCAP_TSO4, 0);
2276 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2277 				}
2278 			} else {
2279 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2280 				if_sethwassistbits(ifp, 0, (CSUM_TSO));
2281 			}
2282 			if (ifr->ifreqcap |= IFCAP_LRO) {
2283 				if_setcapenablebit(ifp, IFCAP_LRO, 0);
2284 			} else {
2285 				if_setcapenablebit(ifp, 0, IFCAP_LRO);
2286 			}
2287 #endif
2288 			mtx_unlock(&xnb->sc_lock);
2289 			break;
2290 		case SIOCSIFMTU:
2291 			if_setmtu(ifp, ifr->ifr_mtu);
2292 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2293 			xnb_ifinit(xnb);
2294 			break;
2295 		case SIOCADDMULTI:
2296 		case SIOCDELMULTI:
2297 			break;
2298 		case SIOCSIFMEDIA:
2299 		case SIOCGIFMEDIA:
2300 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2301 			break;
2302 		default:
2303 			error = ether_ioctl(ifp, cmd, data);
2304 			break;
2305 	}
2306 	return (error);
2307 }
2308 
2309 static void
xnb_start_locked(if_t ifp)2310 xnb_start_locked(if_t ifp)
2311 {
2312 	netif_rx_back_ring_t *rxb;
2313 	struct xnb_softc *xnb;
2314 	struct mbuf *mbufc;
2315 	RING_IDX req_prod_local;
2316 
2317 	xnb = if_getsoftc(ifp);
2318 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2319 
2320 	if (!xnb->carrier)
2321 		return;
2322 
2323 	do {
2324 		int out_of_space = 0;
2325 		int notify;
2326 		req_prod_local = rxb->sring->req_prod;
2327 		xen_rmb();
2328 		for (;;) {
2329 			int error;
2330 
2331 			mbufc = if_dequeue(ifp);
2332 			if (mbufc == NULL)
2333 				break;
2334 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2335 			    		 xnb->rx_gnttab);
2336 			switch (error) {
2337 				case EAGAIN:
2338 					/*
2339 					 * Insufficient space in the ring.
2340 					 * Requeue pkt and send when space is
2341 					 * available.
2342 					 */
2343 					if_sendq_prepend(ifp, mbufc);
2344 					/*
2345 					 * Perhaps the frontend missed an IRQ
2346 					 * and went to sleep.  Notify it to wake
2347 					 * it up.
2348 					 */
2349 					out_of_space = 1;
2350 					break;
2351 
2352 				case EINVAL:
2353 					/* OS gave a corrupt packet.  Drop it.*/
2354 					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2355 					/* FALLTHROUGH */
2356 				default:
2357 					/* Send succeeded, or packet had error.
2358 					 * Free the packet */
2359 					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2360 					if (mbufc)
2361 						m_freem(mbufc);
2362 					break;
2363 			}
2364 			if (out_of_space != 0)
2365 				break;
2366 		}
2367 
2368 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2369 		if ((notify != 0) || (out_of_space != 0))
2370 			xen_intr_signal(xnb->xen_intr_handle);
2371 		rxb->sring->req_event = req_prod_local + 1;
2372 		xen_mb();
2373 	} while (rxb->sring->req_prod != req_prod_local) ;
2374 }
2375 
2376 /**
2377  * Sends one packet to the ring.  Blocks until the packet is on the ring
2378  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2379  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2380  * 			otherend will not be notified.
2381  * \param[in]	otherend The domain ID of the other end of the connection
2382  * \retval	EAGAIN	The ring did not have enough space for the packet.
2383  * 			The ring has not been modified
2384  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2385  * 			this a function parameter so that we will take less
2386  * 			stack space.
2387  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2388  */
2389 static int
xnb_send(netif_rx_back_ring_t * ring,domid_t otherend,const struct mbuf * mbufc,gnttab_copy_table gnttab)2390 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2391 	 gnttab_copy_table gnttab)
2392 {
2393 	struct xnb_pkt pkt;
2394 	int error, n_entries;
2395 	RING_IDX space;
2396 
2397 	space = ring->sring->req_prod - ring->req_cons;
2398 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2399 	if (error != 0)
2400 		return error;
2401 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2402 	if (n_entries != 0) {
2403 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2404 		    gnttab, n_entries);
2405 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2406 		    hv_ret));
2407 	}
2408 
2409 	xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2410 
2411 	return 0;
2412 }
2413 
2414 static void
xnb_start(if_t ifp)2415 xnb_start(if_t ifp)
2416 {
2417 	struct xnb_softc *xnb;
2418 
2419 	xnb = if_getsoftc(ifp);
2420 	mtx_lock(&xnb->rx_lock);
2421 	xnb_start_locked(ifp);
2422 	mtx_unlock(&xnb->rx_lock);
2423 }
2424 
2425 /* equivalent of network_open() in Linux */
2426 static void
xnb_ifinit_locked(struct xnb_softc * xnb)2427 xnb_ifinit_locked(struct xnb_softc *xnb)
2428 {
2429 	if_t ifp;
2430 
2431 	ifp = xnb->xnb_ifp;
2432 
2433 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2434 
2435 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2436 		return;
2437 
2438 	xnb_stop(xnb);
2439 
2440 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2441 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2442 	if_link_state_change(ifp, LINK_STATE_UP);
2443 }
2444 
2445 static void
xnb_ifinit(void * xsc)2446 xnb_ifinit(void *xsc)
2447 {
2448 	struct xnb_softc *xnb = xsc;
2449 
2450 	mtx_lock(&xnb->sc_lock);
2451 	xnb_ifinit_locked(xnb);
2452 	mtx_unlock(&xnb->sc_lock);
2453 }
2454 
2455 /**
2456  * Callback used by the generic networking code to tell us when our carrier
2457  * state has changed.  Since we don't have a physical carrier, we don't care
2458  */
2459 static int
xnb_ifmedia_upd(if_t ifp)2460 xnb_ifmedia_upd(if_t ifp)
2461 {
2462 	return (0);
2463 }
2464 
2465 /**
2466  * Callback used by the generic networking code to ask us what our carrier
2467  * state is.  Since we don't have a physical carrier, this is very simple
2468  */
2469 static void
xnb_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2470 xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2471 {
2472 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2473 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2474 }
2475 
2476 /*---------------------------- NewBus Registration ---------------------------*/
2477 static device_method_t xnb_methods[] = {
2478 	/* Device interface */
2479 	DEVMETHOD(device_probe,		xnb_probe),
2480 	DEVMETHOD(device_attach,	xnb_attach),
2481 	DEVMETHOD(device_detach,	xnb_detach),
2482 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2483 	DEVMETHOD(device_suspend,	xnb_suspend),
2484 	DEVMETHOD(device_resume,	xnb_resume),
2485 
2486 	/* Xenbus interface */
2487 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2488 
2489 	DEVMETHOD_END
2490 };
2491 
2492 static driver_t xnb_driver = {
2493 	"xnb",
2494 	xnb_methods,
2495 	sizeof(struct xnb_softc),
2496 };
2497 
2498 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, 0, 0);
2499 
2500 /*-------------------------- Unit Tests -------------------------------------*/
2501 #ifdef XNB_DEBUG
2502 #include "netback_unit_tests.c"
2503 #endif
2504