xref: /freebsd/sys/kern/subr_trap.c (revision b7b78c1c)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * Copyright (c) 2007, 2022 The FreeBSD Foundation
8  *
9  * This code is derived from software contributed to Berkeley by
10  * the University of Utah, and William Jolitz.
11  *
12  * Portions of this software were developed by A. Joseph Koshy under
13  * sponsorship from the FreeBSD Foundation and Google, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  */
43 
44 #include <sys/cdefs.h>
45 #include "opt_hwpmc_hooks.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/msan.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/ktr.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/syscall.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysent.h>
60 #include <sys/systm.h>
61 #include <sys/vmmeter.h>
62 
63 #include <machine/cpu.h>
64 
65 #ifdef VIMAGE
66 #include <net/vnet.h>
67 #endif
68 
69 #ifdef	HWPMC_HOOKS
70 #include <sys/pmckern.h>
71 #endif
72 
73 #ifdef EPOCH_TRACE
74 #include <sys/epoch.h>
75 #endif
76 
77 volatile uint32_t __read_frequently hpts_that_need_softclock = 0;
78 
79 void	(*tcp_hpts_softclock)(void);
80 
81 /*
82  * Define the code needed before returning to user mode, for trap and
83  * syscall.
84  */
85 void
userret(struct thread * td,struct trapframe * frame)86 userret(struct thread *td, struct trapframe *frame)
87 {
88 	struct proc *p = td->td_proc;
89 
90 	CTR3(KTR_SYSC, "userret: thread %p (pid %d, %s)", td, p->p_pid,
91             td->td_name);
92 	KASSERT((p->p_flag & P_WEXIT) == 0,
93 	    ("Exiting process returns to usermode"));
94 #ifdef DIAGNOSTIC
95 	/*
96 	 * Check that we called signotify() enough.  For
97 	 * multi-threaded processes, where signal distribution might
98 	 * change due to other threads changing sigmask, the check is
99 	 * racy and cannot be performed reliably.
100 	 * If current process is vfork child, indicated by P_PPWAIT, then
101 	 * issignal() ignores stops, so we block the check to avoid
102 	 * classifying pending signals.
103 	 */
104 	if (p->p_numthreads == 1) {
105 		PROC_LOCK(p);
106 		thread_lock(td);
107 		if ((p->p_flag & P_PPWAIT) == 0 &&
108 		    (td->td_pflags & TDP_SIGFASTBLOCK) == 0 &&
109 		    SIGPENDING(td) && !td_ast_pending(td, TDA_AST) &&
110 		    !td_ast_pending(td, TDA_SIG)) {
111 			thread_unlock(td);
112 			panic(
113 			    "failed to set signal flags for ast p %p "
114 			    "td %p td_ast %#x fl %#x",
115 			    p, td, td->td_ast, td->td_flags);
116 		}
117 		thread_unlock(td);
118 		PROC_UNLOCK(p);
119 	}
120 #endif
121 
122 	/*
123 	 * Charge system time if profiling.
124 	 */
125 	if (__predict_false(p->p_flag & P_PROFIL))
126 		addupc_task(td, TRAPF_PC(frame), td->td_pticks * psratio);
127 
128 #ifdef HWPMC_HOOKS
129 	if (PMC_THREAD_HAS_SAMPLES(td))
130 		PMC_CALL_HOOK(td, PMC_FN_THR_USERRET, NULL);
131 #endif
132 	/*
133 	 * Calling tcp_hpts_softclock() here allows us to avoid frequent,
134 	 * expensive callouts that trash the cache and lead to a much higher
135 	 * number of interrupts and context switches.  Testing on busy web
136 	 * servers at Netflix has shown that this improves CPU use by 7% over
137 	 * relying only on callouts to drive HPTS, and also results in idle
138 	 * power savings on mostly idle servers.
139 	 * This was inspired by the paper "Soft Timers: Efficient Microsecond
140 	 * Software Timer Support for Network Processing"
141 	 * by Mohit Aron and Peter Druschel.
142 	 */
143 	tcp_hpts_softclock();
144 	/*
145 	 * Let the scheduler adjust our priority etc.
146 	 */
147 	sched_userret(td);
148 
149 	/*
150 	 * Check for misbehavior.
151 	 *
152 	 * In case there is a callchain tracing ongoing because of
153 	 * hwpmc(4), skip the scheduler pinning check.
154 	 * hwpmc(4) subsystem, infact, will collect callchain informations
155 	 * at ast() checkpoint, which is past userret().
156 	 */
157 	WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
158 	KASSERT(td->td_critnest == 0,
159 	    ("userret: Returning in a critical section"));
160 	KASSERT(td->td_locks == 0,
161 	    ("userret: Returning with %d locks held", td->td_locks));
162 	KASSERT(td->td_rw_rlocks == 0,
163 	    ("userret: Returning with %d rwlocks held in read mode",
164 	    td->td_rw_rlocks));
165 	KASSERT(td->td_sx_slocks == 0,
166 	    ("userret: Returning with %d sx locks held in shared mode",
167 	    td->td_sx_slocks));
168 	KASSERT(td->td_lk_slocks == 0,
169 	    ("userret: Returning with %d lockmanager locks held in shared mode",
170 	    td->td_lk_slocks));
171 	KASSERT((td->td_pflags & TDP_NOFAULTING) == 0,
172 	    ("userret: Returning with pagefaults disabled"));
173 	if (__predict_false(!THREAD_CAN_SLEEP())) {
174 #ifdef EPOCH_TRACE
175 		epoch_trace_list(curthread);
176 #endif
177 		KASSERT(0, ("userret: Returning with sleep disabled"));
178 	}
179 	KASSERT(td->td_pinned == 0 || (td->td_pflags & TDP_CALLCHAIN) != 0,
180 	    ("userret: Returning with pinned thread"));
181 	KASSERT(td->td_vp_reserved == NULL,
182 	    ("userret: Returning with preallocated vnode"));
183 	KASSERT((td->td_flags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
184 	    ("userret: Returning with stop signals deferred"));
185 	KASSERT(td->td_vslock_sz == 0,
186 	    ("userret: Returning with vslock-wired space"));
187 #ifdef VIMAGE
188 	/* Unfortunately td_vnet_lpush needs VNET_DEBUG. */
189 	VNET_ASSERT(curvnet == NULL,
190 	    ("%s: Returning on td %p (pid %d, %s) with vnet %p set in %s",
191 	    __func__, td, p->p_pid, td->td_name, curvnet,
192 	    (td->td_vnet_lpush != NULL) ? td->td_vnet_lpush : "N/A"));
193 #endif
194 }
195 
196 static void
ast_prep(struct thread * td,int tda __unused)197 ast_prep(struct thread *td, int tda __unused)
198 {
199 	VM_CNT_INC(v_trap);
200 	td->td_pticks = 0;
201 	if (td->td_cowgen != atomic_load_int(&td->td_proc->p_cowgen))
202 		thread_cow_update(td);
203 
204 }
205 
206 struct ast_entry {
207 	int	ae_flags;
208 	int	ae_tdp;
209 	void	(*ae_f)(struct thread *td, int ast);
210 };
211 
212 _Static_assert(TDAI(TDA_MAX) <= UINT_MAX, "Too many ASTs");
213 
214 static struct ast_entry ast_entries[TDA_MAX] __read_mostly = {
215 	[TDA_AST] = { .ae_f = ast_prep, .ae_flags = ASTR_UNCOND},
216 };
217 
218 void
ast_register(int ast,int flags,int tdp,void (* f)(struct thread *,int asts))219 ast_register(int ast, int flags, int tdp,
220     void (*f)(struct thread *, int asts))
221 {
222 	struct ast_entry *ae;
223 
224 	MPASS(ast < TDA_MAX);
225 	MPASS((flags & ASTR_TDP) == 0 || ((flags & ASTR_ASTF_REQUIRED) != 0
226 	    && __bitcount(tdp) == 1));
227 	ae = &ast_entries[ast];
228 	MPASS(ae->ae_f == NULL);
229 	ae->ae_flags = flags;
230 	ae->ae_tdp = tdp;
231 	atomic_interrupt_fence();
232 	ae->ae_f = f;
233 }
234 
235 /*
236  * XXXKIB Note that the deregistration of an AST handler does not
237  * drain threads possibly executing it, which affects unloadable
238  * modules.  The issue is either handled by the subsystem using
239  * handlers, or simply ignored.  Fixing the problem is considered not
240  * worth the overhead.
241  */
242 void
ast_deregister(int ast)243 ast_deregister(int ast)
244 {
245 	struct ast_entry *ae;
246 
247 	MPASS(ast < TDA_MAX);
248 	ae = &ast_entries[ast];
249 	MPASS(ae->ae_f != NULL);
250 	ae->ae_f = NULL;
251 	atomic_interrupt_fence();
252 	ae->ae_flags = 0;
253 	ae->ae_tdp = 0;
254 }
255 
256 void
ast_sched_locked(struct thread * td,int tda)257 ast_sched_locked(struct thread *td, int tda)
258 {
259 	THREAD_LOCK_ASSERT(td, MA_OWNED);
260 	MPASS(tda < TDA_MAX);
261 
262 	td->td_ast |= TDAI(tda);
263 }
264 
265 void
ast_unsched_locked(struct thread * td,int tda)266 ast_unsched_locked(struct thread *td, int tda)
267 {
268 	THREAD_LOCK_ASSERT(td, MA_OWNED);
269 	MPASS(tda < TDA_MAX);
270 
271 	td->td_ast &= ~TDAI(tda);
272 }
273 
274 void
ast_sched(struct thread * td,int tda)275 ast_sched(struct thread *td, int tda)
276 {
277 	thread_lock(td);
278 	ast_sched_locked(td, tda);
279 	thread_unlock(td);
280 }
281 
282 void
ast_sched_mask(struct thread * td,int ast)283 ast_sched_mask(struct thread *td, int ast)
284 {
285 	thread_lock(td);
286 	td->td_ast |= ast;
287 	thread_unlock(td);
288 }
289 
290 static bool
ast_handler_calc_tdp_run(struct thread * td,const struct ast_entry * ae)291 ast_handler_calc_tdp_run(struct thread *td, const struct ast_entry *ae)
292 {
293 	return ((ae->ae_flags & ASTR_TDP) == 0 ||
294 	    (td->td_pflags & ae->ae_tdp) != 0);
295 }
296 
297 /*
298  * Process an asynchronous software trap.
299  */
300 static void
ast_handler(struct thread * td,struct trapframe * framep,bool dtor)301 ast_handler(struct thread *td, struct trapframe *framep, bool dtor)
302 {
303 	struct ast_entry *ae;
304 	void (*f)(struct thread *td, int asts);
305 	int a, td_ast;
306 	bool run;
307 
308 	if (framep != NULL) {
309 		kmsan_mark(framep, sizeof(*framep), KMSAN_STATE_INITED);
310 		td->td_frame = framep;
311 	}
312 
313 	if (__predict_true(!dtor)) {
314 		WITNESS_WARN(WARN_PANIC, NULL, "Returning to user mode");
315 		mtx_assert(&Giant, MA_NOTOWNED);
316 		THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
317 
318 		/*
319 		 * This updates the td_ast for the checks below in one
320 		 * atomic operation with turning off all scheduled AST's.
321 		 * If another AST is triggered while we are handling the
322 		 * AST's saved in td_ast, the td_ast is again non-zero and
323 		 * ast() will be called again.
324 		 */
325 		thread_lock(td);
326 		td_ast = td->td_ast;
327 		td->td_ast = 0;
328 		thread_unlock(td);
329 	} else {
330 		/*
331 		 * The td thread's td_lock is not guaranteed to exist,
332 		 * the thread might be not initialized enough when it's
333 		 * destructor is called.  It is safe to read and
334 		 * update td_ast without locking since the thread is
335 		 * not runnable or visible to other threads.
336 		 */
337 		td_ast = td->td_ast;
338 		td->td_ast = 0;
339 	}
340 
341 	CTR3(KTR_SYSC, "ast: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
342             td->td_proc->p_comm);
343 	KASSERT(framep == NULL || TRAPF_USERMODE(framep),
344 	    ("ast in kernel mode"));
345 
346 	for (a = 0; a < nitems(ast_entries); a++) {
347 		ae = &ast_entries[a];
348 		f = ae->ae_f;
349 		if (f == NULL)
350 			continue;
351 		atomic_interrupt_fence();
352 
353 		run = false;
354 		if (__predict_false(framep == NULL)) {
355 			if ((ae->ae_flags & ASTR_KCLEAR) != 0)
356 				run = ast_handler_calc_tdp_run(td, ae);
357 		} else {
358 			if ((ae->ae_flags & ASTR_UNCOND) != 0)
359 				run = true;
360 			else if ((ae->ae_flags & ASTR_ASTF_REQUIRED) != 0 &&
361 			    (td_ast & TDAI(a)) != 0)
362 				run = ast_handler_calc_tdp_run(td, ae);
363 		}
364 		if (run)
365 			f(td, td_ast);
366 	}
367 }
368 
369 void
ast(struct trapframe * framep)370 ast(struct trapframe *framep)
371 {
372 	struct thread *td;
373 
374 	td = curthread;
375 	ast_handler(td, framep, false);
376 	userret(td, framep);
377 }
378 
379 void
ast_kclear(struct thread * td)380 ast_kclear(struct thread *td)
381 {
382 	ast_handler(td, NULL, td != curthread);
383 }
384 
385 const char *
syscallname(struct proc * p,u_int code)386 syscallname(struct proc *p, u_int code)
387 {
388 	static const char unknown[] = "unknown";
389 	struct sysentvec *sv;
390 
391 	sv = p->p_sysent;
392 	if (sv->sv_syscallnames == NULL || code >= sv->sv_size)
393 		return (unknown);
394 	return (sv->sv_syscallnames[code]);
395 }
396