xref: /freebsd/sys/net/bpf_zerocopy.c (revision 685dc743)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007 Seccuris Inc.
5  * All rights reserved.
6  *
7  * This software was developed by Robert N. M. Watson under contract to
8  * Seccuris Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_bpf.h"
34 
35 #include <sys/param.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sf_buf.h>
42 #include <sys/socket.h>
43 #include <sys/uio.h>
44 
45 #include <machine/atomic.h>
46 
47 #include <net/if.h>
48 #include <net/bpf.h>
49 #include <net/bpf_zerocopy.h>
50 #include <net/bpfdesc.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_page.h>
58 
59 /*
60  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
61  * are mapped into the kernel address space using sf_bufs and used directly
62  * by BPF.  Memory is wired since page faults cannot be tolerated in the
63  * contexts where the buffers are copied to (locks held, interrupt context,
64  * etc).  Access to shared memory buffers is synchronized using a header on
65  * each buffer, allowing the number of system calls to go to zero as BPF
66  * reaches saturation (buffers filled as fast as they can be drained by the
67  * user process).  Full details of the protocol for communicating between the
68  * user process and BPF may be found in bpf(4).
69  */
70 
71 /*
72  * Maximum number of pages per buffer.  Since all BPF devices use two, the
73  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
74  * sf_bufs may be an issue, so do not set this too high.  On older systems,
75  * kernel address space limits may also be an issue.
76  */
77 #define	BPF_MAX_PAGES	512
78 
79 /*
80  * struct zbuf describes a memory buffer loaned by a user process to the
81  * kernel.  We represent this as a series of pages managed using an array of
82  * sf_bufs.  Even though the memory is contiguous in user space, it may not
83  * be mapped contiguously in the kernel (i.e., a set of physically
84  * non-contiguous pages in the direct map region) so we must implement
85  * scatter-gather copying.  One significant mitigating factor is that on
86  * systems with a direct memory map, we can avoid TLB misses.
87  *
88  * At the front of the shared memory region is a bpf_zbuf_header, which
89  * contains shared control data to allow user space and the kernel to
90  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
91  * knows that the space is not available.
92  */
93 struct zbuf {
94 	vm_offset_t	 zb_uaddr;	/* User address at time of setup. */
95 	size_t		 zb_size;	/* Size of buffer, incl. header. */
96 	u_int		 zb_numpages;	/* Number of pages. */
97 	int		 zb_flags;	/* Flags on zbuf. */
98 	struct sf_buf	**zb_pages;	/* Pages themselves. */
99 	struct bpf_zbuf_header	*zb_header;	/* Shared header. */
100 };
101 
102 /*
103  * When a buffer has been assigned to userspace, flag it as such, as the
104  * buffer may remain in the store position as a result of the user process
105  * not yet having acknowledged the buffer in the hold position yet.
106  */
107 #define	ZBUF_FLAG_ASSIGNED	0x00000001	/* Set when owned by user. */
108 
109 /*
110  * Release a page we've previously wired.
111  */
112 static void
zbuf_page_free(vm_page_t pp)113 zbuf_page_free(vm_page_t pp)
114 {
115 
116 	vm_page_unwire(pp, PQ_INACTIVE);
117 }
118 
119 /*
120  * Free an sf_buf with attached page.
121  */
122 static void
zbuf_sfbuf_free(struct sf_buf * sf)123 zbuf_sfbuf_free(struct sf_buf *sf)
124 {
125 	vm_page_t pp;
126 
127 	pp = sf_buf_page(sf);
128 	sf_buf_free(sf);
129 	zbuf_page_free(pp);
130 }
131 
132 /*
133  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
134  * allocated zbufs to be freed so that it may be used even during a zbuf
135  * setup.
136  */
137 static void
zbuf_free(struct zbuf * zb)138 zbuf_free(struct zbuf *zb)
139 {
140 	int i;
141 
142 	for (i = 0; i < zb->zb_numpages; i++) {
143 		if (zb->zb_pages[i] != NULL)
144 			zbuf_sfbuf_free(zb->zb_pages[i]);
145 	}
146 	free(zb->zb_pages, M_BPF);
147 	free(zb, M_BPF);
148 }
149 
150 /*
151  * Given a user pointer to a page of user memory, return an sf_buf for the
152  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
153  * deadlock and use SFB_NOWAIT.
154  */
155 static struct sf_buf *
zbuf_sfbuf_get(struct vm_map * map,vm_offset_t uaddr)156 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
157 {
158 	struct sf_buf *sf;
159 	vm_page_t pp;
160 
161 	if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
162 	    VM_PROT_WRITE, &pp, 1) < 0)
163 		return (NULL);
164 	sf = sf_buf_alloc(pp, SFB_NOWAIT);
165 	if (sf == NULL) {
166 		zbuf_page_free(pp);
167 		return (NULL);
168 	}
169 	return (sf);
170 }
171 
172 /*
173  * Create a zbuf describing a range of user address space memory.  Validate
174  * page alignment, size requirements, etc.
175  */
176 static int
zbuf_setup(struct thread * td,vm_offset_t uaddr,size_t len,struct zbuf ** zbp)177 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
178     struct zbuf **zbp)
179 {
180 	struct zbuf *zb;
181 	struct vm_map *map;
182 	int error, i;
183 
184 	*zbp = NULL;
185 
186 	/*
187 	 * User address must be page-aligned.
188 	 */
189 	if (uaddr & PAGE_MASK)
190 		return (EINVAL);
191 
192 	/*
193 	 * Length must be an integer number of full pages.
194 	 */
195 	if (len & PAGE_MASK)
196 		return (EINVAL);
197 
198 	/*
199 	 * Length must not exceed per-buffer resource limit.
200 	 */
201 	if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
202 		return (EINVAL);
203 
204 	/*
205 	 * Allocate the buffer and set up each page with is own sf_buf.
206 	 */
207 	error = 0;
208 	zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
209 	zb->zb_uaddr = uaddr;
210 	zb->zb_size = len;
211 	zb->zb_numpages = len / PAGE_SIZE;
212 	zb->zb_pages = malloc(sizeof(struct sf_buf *) *
213 	    zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
214 	map = &td->td_proc->p_vmspace->vm_map;
215 	for (i = 0; i < zb->zb_numpages; i++) {
216 		zb->zb_pages[i] = zbuf_sfbuf_get(map,
217 		    uaddr + (i * PAGE_SIZE));
218 		if (zb->zb_pages[i] == NULL) {
219 			error = EFAULT;
220 			goto error;
221 		}
222 	}
223 	zb->zb_header =
224 	    (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
225 	bzero(zb->zb_header, sizeof(*zb->zb_header));
226 	*zbp = zb;
227 	return (0);
228 
229 error:
230 	zbuf_free(zb);
231 	return (error);
232 }
233 
234 /*
235  * Copy bytes from a source into the specified zbuf.  The caller is
236  * responsible for performing bounds checking, etc.
237  */
238 void
bpf_zerocopy_append_bytes(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)239 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
240     void *src, u_int len)
241 {
242 	u_int count, page, poffset;
243 	u_char *src_bytes;
244 	struct zbuf *zb;
245 
246 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
247 	    ("bpf_zerocopy_append_bytes: not in zbuf mode"));
248 	KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
249 
250 	src_bytes = (u_char *)src;
251 	zb = (struct zbuf *)buf;
252 
253 	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
254 	    ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
255 
256 	/*
257 	 * Scatter-gather copy to user pages mapped into kernel address space
258 	 * using sf_bufs: copy up to a page at a time.
259 	 */
260 	offset += sizeof(struct bpf_zbuf_header);
261 	page = offset / PAGE_SIZE;
262 	poffset = offset % PAGE_SIZE;
263 	while (len > 0) {
264 		KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
265 		   " page overflow (%d p %d np)\n", page, zb->zb_numpages));
266 
267 		count = min(len, PAGE_SIZE - poffset);
268 		bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
269 		    poffset, count);
270 		poffset += count;
271 		if (poffset == PAGE_SIZE) {
272 			poffset = 0;
273 			page++;
274 		}
275 		KASSERT(poffset < PAGE_SIZE,
276 		    ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
277 		    poffset));
278 		len -= count;
279 		src_bytes += count;
280 	}
281 }
282 
283 /*
284  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
285  * scatter-gather both from mbufs, which may be fragmented over memory, and
286  * to pages, which may not be contiguously mapped in kernel address space.
287  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
288  * checking that this will not exceed the buffer limit.
289  */
290 void
bpf_zerocopy_append_mbuf(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)291 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
292     void *src, u_int len)
293 {
294 	u_int count, moffset, page, poffset;
295 	const struct mbuf *m;
296 	struct zbuf *zb;
297 
298 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
299 	    ("bpf_zerocopy_append_mbuf not in zbuf mode"));
300 	KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
301 
302 	m = (struct mbuf *)src;
303 	zb = (struct zbuf *)buf;
304 
305 	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
306 	    ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
307 
308 	/*
309 	 * Scatter gather both from an mbuf chain and to a user page set
310 	 * mapped into kernel address space using sf_bufs.  If we're lucky,
311 	 * each mbuf requires one copy operation, but if page alignment and
312 	 * mbuf alignment work out less well, we'll be doing two copies per
313 	 * mbuf.
314 	 */
315 	offset += sizeof(struct bpf_zbuf_header);
316 	page = offset / PAGE_SIZE;
317 	poffset = offset % PAGE_SIZE;
318 	moffset = 0;
319 	while (len > 0) {
320 		KASSERT(page < zb->zb_numpages,
321 		    ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
322 		    "np)\n", page, zb->zb_numpages));
323 		KASSERT(m != NULL,
324 		    ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
325 
326 		count = min(m->m_len - moffset, len);
327 		count = min(count, PAGE_SIZE - poffset);
328 		bcopy(mtod(m, u_char *) + moffset,
329 		    ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
330 		    count);
331 		poffset += count;
332 		if (poffset == PAGE_SIZE) {
333 			poffset = 0;
334 			page++;
335 		}
336 		KASSERT(poffset < PAGE_SIZE,
337 		    ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
338 		    poffset));
339 		moffset += count;
340 		if (moffset == m->m_len) {
341 			m = m->m_next;
342 			moffset = 0;
343 		}
344 		len -= count;
345 	}
346 }
347 
348 /*
349  * Notification from the BPF framework that a buffer in the store position is
350  * rejecting packets and may be considered full.  We mark the buffer as
351  * immutable and assign to userspace so that it is immediately available for
352  * the user process to access.
353  */
354 void
bpf_zerocopy_buffull(struct bpf_d * d)355 bpf_zerocopy_buffull(struct bpf_d *d)
356 {
357 	struct zbuf *zb;
358 
359 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
360 	    ("bpf_zerocopy_buffull: not in zbuf mode"));
361 
362 	zb = (struct zbuf *)d->bd_sbuf;
363 	KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
364 
365 	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
366 		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
367 		zb->zb_header->bzh_kernel_len = d->bd_slen;
368 		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
369 	}
370 }
371 
372 /*
373  * Notification from the BPF framework that a buffer has moved into the held
374  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
375  * the user process know and flag the buffer as assigned if it hasn't already
376  * been marked assigned due to filling while it was in the store position.
377  *
378  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
379  * on bd_hbuf and bd_hlen.
380  */
381 void
bpf_zerocopy_bufheld(struct bpf_d * d)382 bpf_zerocopy_bufheld(struct bpf_d *d)
383 {
384 	struct zbuf *zb;
385 
386 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
387 	    ("bpf_zerocopy_bufheld: not in zbuf mode"));
388 
389 	zb = (struct zbuf *)d->bd_hbuf;
390 	KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
391 
392 	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
393 		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
394 		zb->zb_header->bzh_kernel_len = d->bd_hlen;
395 		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
396 	}
397 }
398 
399 /*
400  * Notification from the BPF framework that the free buffer has been been
401  * rotated out of the held position to the free position.  This happens when
402  * the user acknowledges the held buffer.
403  */
404 void
bpf_zerocopy_buf_reclaimed(struct bpf_d * d)405 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
406 {
407 	struct zbuf *zb;
408 
409 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
410 	    ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
411 
412 	KASSERT(d->bd_fbuf != NULL,
413 	    ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
414 	zb = (struct zbuf *)d->bd_fbuf;
415 	zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
416 }
417 
418 /*
419  * Query from the BPF framework regarding whether the buffer currently in the
420  * held position can be moved to the free position, which can be indicated by
421  * the user process making their generation number equal to the kernel
422  * generation number.
423  */
424 int
bpf_zerocopy_canfreebuf(struct bpf_d * d)425 bpf_zerocopy_canfreebuf(struct bpf_d *d)
426 {
427 	struct zbuf *zb;
428 
429 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
430 	    ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
431 
432 	zb = (struct zbuf *)d->bd_hbuf;
433 	if (zb == NULL)
434 		return (0);
435 	if (zb->zb_header->bzh_kernel_gen ==
436 	    atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
437 		return (1);
438 	return (0);
439 }
440 
441 /*
442  * Query from the BPF framework as to whether or not the buffer current in
443  * the store position can actually be written to.  This may return false if
444  * the store buffer is assigned to userspace before the hold buffer is
445  * acknowledged.
446  */
447 int
bpf_zerocopy_canwritebuf(struct bpf_d * d)448 bpf_zerocopy_canwritebuf(struct bpf_d *d)
449 {
450 	struct zbuf *zb;
451 
452 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
453 	    ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
454 
455 	zb = (struct zbuf *)d->bd_sbuf;
456 	KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
457 
458 	if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
459 		return (0);
460 	return (1);
461 }
462 
463 /*
464  * Free zero copy buffers at request of descriptor.
465  */
466 void
bpf_zerocopy_free(struct bpf_d * d)467 bpf_zerocopy_free(struct bpf_d *d)
468 {
469 	struct zbuf *zb;
470 
471 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
472 	    ("bpf_zerocopy_free: not in zbuf mode"));
473 
474 	zb = (struct zbuf *)d->bd_sbuf;
475 	if (zb != NULL)
476 		zbuf_free(zb);
477 	zb = (struct zbuf *)d->bd_hbuf;
478 	if (zb != NULL)
479 		zbuf_free(zb);
480 	zb = (struct zbuf *)d->bd_fbuf;
481 	if (zb != NULL)
482 		zbuf_free(zb);
483 }
484 
485 /*
486  * Ioctl to return the maximum buffer size.
487  */
488 int
bpf_zerocopy_ioctl_getzmax(struct thread * td,struct bpf_d * d,size_t * i)489 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
490 {
491 
492 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
493 	    ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
494 
495 	*i = BPF_MAX_PAGES * PAGE_SIZE;
496 	return (0);
497 }
498 
499 /*
500  * Ioctl to force rotation of the two buffers, if there's any data available.
501  * This can be used by user space to implement timeouts when waiting for a
502  * buffer to fill.
503  */
504 int
bpf_zerocopy_ioctl_rotzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)505 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
506     struct bpf_zbuf *bz)
507 {
508 	struct zbuf *bzh;
509 
510 	bzero(bz, sizeof(*bz));
511 	BPFD_LOCK(d);
512 	if (d->bd_hbuf == NULL && d->bd_slen != 0) {
513 		ROTATE_BUFFERS(d);
514 		bzh = (struct zbuf *)d->bd_hbuf;
515 		bz->bz_bufa = (void *)bzh->zb_uaddr;
516 		bz->bz_buflen = d->bd_hlen;
517 	}
518 	BPFD_UNLOCK(d);
519 	return (0);
520 }
521 
522 /*
523  * Ioctl to configure zero-copy buffers -- may be done only once.
524  */
525 int
bpf_zerocopy_ioctl_setzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)526 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
527     struct bpf_zbuf *bz)
528 {
529 	struct zbuf *zba, *zbb;
530 	int error;
531 
532 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
533 	    ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
534 
535 	/*
536 	 * Must set both buffers.  Cannot clear them.
537 	 */
538 	if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
539 		return (EINVAL);
540 
541 	/*
542 	 * Buffers must have a size greater than 0.  Alignment and other size
543 	 * validity checking is done in zbuf_setup().
544 	 */
545 	if (bz->bz_buflen == 0)
546 		return (EINVAL);
547 
548 	/*
549 	 * Allocate new buffers.
550 	 */
551 	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
552 	    &zba);
553 	if (error)
554 		return (error);
555 	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
556 	    &zbb);
557 	if (error) {
558 		zbuf_free(zba);
559 		return (error);
560 	}
561 
562 	/*
563 	 * We only allow buffers to be installed once, so atomically check
564 	 * that no buffers are currently installed and install new buffers.
565 	 */
566 	BPFD_LOCK(d);
567 	if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
568 	    d->bd_bif != NULL) {
569 		BPFD_UNLOCK(d);
570 		zbuf_free(zba);
571 		zbuf_free(zbb);
572 		return (EINVAL);
573 	}
574 
575 	/*
576 	 * Point BPF descriptor at buffers; initialize sbuf as zba so that
577 	 * it is always filled first in the sequence, per bpf(4).
578 	 */
579 	d->bd_fbuf = (caddr_t)zbb;
580 	d->bd_sbuf = (caddr_t)zba;
581 	d->bd_slen = 0;
582 	d->bd_hlen = 0;
583 
584 	/*
585 	 * We expose only the space left in the buffer after the size of the
586 	 * shared management region.
587 	 */
588 	d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
589 	BPFD_UNLOCK(d);
590 	return (0);
591 }
592