1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <sys/cdefs.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 
41 #include <rdma/ib_verbs.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 
ib_umem_notifier_start_account(struct ib_umem * item)45 static void ib_umem_notifier_start_account(struct ib_umem *item)
46 {
47 	mutex_lock(&item->odp_data->umem_mutex);
48 
49 	/* Only update private counters for this umem if it has them.
50 	 * Otherwise skip it. All page faults will be delayed for this umem. */
51 	if (item->odp_data->mn_counters_active) {
52 		int notifiers_count = item->odp_data->notifiers_count++;
53 
54 		if (notifiers_count == 0)
55 			/* Initialize the completion object for waiting on
56 			 * notifiers. Since notifier_count is zero, no one
57 			 * should be waiting right now. */
58 			reinit_completion(&item->odp_data->notifier_completion);
59 	}
60 	mutex_unlock(&item->odp_data->umem_mutex);
61 }
62 
ib_umem_notifier_end_account(struct ib_umem * item)63 static void ib_umem_notifier_end_account(struct ib_umem *item)
64 {
65 	mutex_lock(&item->odp_data->umem_mutex);
66 
67 	/* Only update private counters for this umem if it has them.
68 	 * Otherwise skip it. All page faults will be delayed for this umem. */
69 	if (item->odp_data->mn_counters_active) {
70 		/*
71 		 * This sequence increase will notify the QP page fault that
72 		 * the page that is going to be mapped in the spte could have
73 		 * been freed.
74 		 */
75 		++item->odp_data->notifiers_seq;
76 		if (--item->odp_data->notifiers_count == 0)
77 			complete_all(&item->odp_data->notifier_completion);
78 	}
79 	mutex_unlock(&item->odp_data->umem_mutex);
80 }
81 
82 /* Account for a new mmu notifier in an ib_ucontext. */
ib_ucontext_notifier_start_account(struct ib_ucontext * context)83 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
84 {
85 	atomic_inc(&context->notifier_count);
86 }
87 
88 /* Account for a terminating mmu notifier in an ib_ucontext.
89  *
90  * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
91  * the function takes the semaphore itself. */
ib_ucontext_notifier_end_account(struct ib_ucontext * context)92 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
93 {
94 	int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
95 
96 	if (zero_notifiers &&
97 	    !list_empty(&context->no_private_counters)) {
98 		/* No currently running mmu notifiers. Now is the chance to
99 		 * add private accounting to all previously added umems. */
100 		struct ib_umem_odp *odp_data, *next;
101 
102 		/* Prevent concurrent mmu notifiers from working on the
103 		 * no_private_counters list. */
104 		down_write(&context->umem_rwsem);
105 
106 		/* Read the notifier_count again, with the umem_rwsem
107 		 * semaphore taken for write. */
108 		if (!atomic_read(&context->notifier_count)) {
109 			list_for_each_entry_safe(odp_data, next,
110 						 &context->no_private_counters,
111 						 no_private_counters) {
112 				mutex_lock(&odp_data->umem_mutex);
113 				odp_data->mn_counters_active = true;
114 				list_del(&odp_data->no_private_counters);
115 				complete_all(&odp_data->notifier_completion);
116 				mutex_unlock(&odp_data->umem_mutex);
117 			}
118 		}
119 
120 		up_write(&context->umem_rwsem);
121 	}
122 }
123 
ib_umem_notifier_release_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)124 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
125 					       u64 end, void *cookie) {
126 	/*
127 	 * Increase the number of notifiers running, to
128 	 * prevent any further fault handling on this MR.
129 	 */
130 	ib_umem_notifier_start_account(item);
131 	item->odp_data->dying = 1;
132 	/* Make sure that the fact the umem is dying is out before we release
133 	 * all pending page faults. */
134 	smp_wmb();
135 	complete_all(&item->odp_data->notifier_completion);
136 	item->context->invalidate_range(item, ib_umem_start(item),
137 					ib_umem_end(item));
138 	return 0;
139 }
140 
ib_umem_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)141 static void ib_umem_notifier_release(struct mmu_notifier *mn,
142 				     struct mm_struct *mm)
143 {
144 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
145 
146 	if (!context->invalidate_range)
147 		return;
148 
149 	ib_ucontext_notifier_start_account(context);
150 	down_read(&context->umem_rwsem);
151 	rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
152 				      ULLONG_MAX,
153 				      ib_umem_notifier_release_trampoline,
154 				      NULL);
155 	up_read(&context->umem_rwsem);
156 }
157 
invalidate_page_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)158 static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
159 				      u64 end, void *cookie)
160 {
161 	ib_umem_notifier_start_account(item);
162 	item->context->invalidate_range(item, start, start + PAGE_SIZE);
163 	ib_umem_notifier_end_account(item);
164 	return 0;
165 }
166 
ib_umem_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)167 static void ib_umem_notifier_invalidate_page(struct mmu_notifier *mn,
168 					     struct mm_struct *mm,
169 					     unsigned long address)
170 {
171 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
172 
173 	if (!context->invalidate_range)
174 		return;
175 
176 	ib_ucontext_notifier_start_account(context);
177 	down_read(&context->umem_rwsem);
178 	rbt_ib_umem_for_each_in_range(&context->umem_tree, address,
179 				      address + PAGE_SIZE,
180 				      invalidate_page_trampoline, NULL);
181 	up_read(&context->umem_rwsem);
182 	ib_ucontext_notifier_end_account(context);
183 }
184 
invalidate_range_start_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)185 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
186 					     u64 end, void *cookie)
187 {
188 	ib_umem_notifier_start_account(item);
189 	item->context->invalidate_range(item, start, end);
190 	return 0;
191 }
192 
ib_umem_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)193 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
194 						    struct mm_struct *mm,
195 						    unsigned long start,
196 						    unsigned long end)
197 {
198 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
199 
200 	if (!context->invalidate_range)
201 		return;
202 
203 	ib_ucontext_notifier_start_account(context);
204 	down_read(&context->umem_rwsem);
205 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
206 				      end,
207 				      invalidate_range_start_trampoline, NULL);
208 	up_read(&context->umem_rwsem);
209 }
210 
invalidate_range_end_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)211 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
212 					   u64 end, void *cookie)
213 {
214 	ib_umem_notifier_end_account(item);
215 	return 0;
216 }
217 
ib_umem_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)218 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
219 						  struct mm_struct *mm,
220 						  unsigned long start,
221 						  unsigned long end)
222 {
223 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
224 
225 	if (!context->invalidate_range)
226 		return;
227 
228 	down_read(&context->umem_rwsem);
229 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
230 				      end,
231 				      invalidate_range_end_trampoline, NULL);
232 	up_read(&context->umem_rwsem);
233 	ib_ucontext_notifier_end_account(context);
234 }
235 
236 static const struct mmu_notifier_ops ib_umem_notifiers = {
237 	.release                    = ib_umem_notifier_release,
238 	.invalidate_page            = ib_umem_notifier_invalidate_page,
239 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
240 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
241 };
242 
ib_umem_odp_get(struct ib_ucontext * context,struct ib_umem * umem)243 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem)
244 {
245 	int ret_val;
246 	pid_t our_pid;
247 	struct mm_struct *mm = get_task_mm(current);
248 
249 	if (!mm)
250 		return -EINVAL;
251 
252 	/* Prevent creating ODP MRs in child processes */
253 	rcu_read_lock();
254 	our_pid = get_pid(task_pid_group_leader(current));
255 	rcu_read_unlock();
256 	put_pid(our_pid);
257 	if (context->tgid != our_pid) {
258 		ret_val = -EINVAL;
259 		goto out_mm;
260 	}
261 
262 	umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
263 	if (!umem->odp_data) {
264 		ret_val = -ENOMEM;
265 		goto out_mm;
266 	}
267 	umem->odp_data->umem = umem;
268 
269 	mutex_init(&umem->odp_data->umem_mutex);
270 
271 	init_completion(&umem->odp_data->notifier_completion);
272 
273 	umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) *
274 					    sizeof(*umem->odp_data->page_list));
275 	if (!umem->odp_data->page_list) {
276 		ret_val = -ENOMEM;
277 		goto out_odp_data;
278 	}
279 
280 	umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) *
281 					  sizeof(*umem->odp_data->dma_list));
282 	if (!umem->odp_data->dma_list) {
283 		ret_val = -ENOMEM;
284 		goto out_page_list;
285 	}
286 
287 	/*
288 	 * When using MMU notifiers, we will get a
289 	 * notification before the "current" task (and MM) is
290 	 * destroyed. We use the umem_rwsem semaphore to synchronize.
291 	 */
292 	down_write(&context->umem_rwsem);
293 	context->odp_mrs_count++;
294 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
295 		rbt_ib_umem_insert(&umem->odp_data->interval_tree,
296 				   &context->umem_tree);
297 	if (likely(!atomic_read(&context->notifier_count)) ||
298 	    context->odp_mrs_count == 1)
299 		umem->odp_data->mn_counters_active = true;
300 	else
301 		list_add(&umem->odp_data->no_private_counters,
302 			 &context->no_private_counters);
303 	downgrade_write(&context->umem_rwsem);
304 
305 	if (context->odp_mrs_count == 1) {
306 		/*
307 		 * Note that at this point, no MMU notifier is running
308 		 * for this context!
309 		 */
310 		atomic_set(&context->notifier_count, 0);
311 		INIT_HLIST_NODE(&context->mn.hlist);
312 		context->mn.ops = &ib_umem_notifiers;
313 		/*
314 		 * Lock-dep detects a false positive for mmap_sem vs.
315 		 * umem_rwsem, due to not grasping downgrade_write correctly.
316 		 */
317 		ret_val = mmu_notifier_register(&context->mn, mm);
318 		if (ret_val) {
319 			pr_err("Failed to register mmu_notifier %d\n", ret_val);
320 			ret_val = -EBUSY;
321 			goto out_mutex;
322 		}
323 	}
324 
325 	up_read(&context->umem_rwsem);
326 
327 	/*
328 	 * Note that doing an mmput can cause a notifier for the relevant mm.
329 	 * If the notifier is called while we hold the umem_rwsem, this will
330 	 * cause a deadlock. Therefore, we release the reference only after we
331 	 * released the semaphore.
332 	 */
333 	mmput(mm);
334 	return 0;
335 
336 out_mutex:
337 	up_read(&context->umem_rwsem);
338 	vfree(umem->odp_data->dma_list);
339 out_page_list:
340 	vfree(umem->odp_data->page_list);
341 out_odp_data:
342 	kfree(umem->odp_data);
343 out_mm:
344 	mmput(mm);
345 	return ret_val;
346 }
347 
ib_umem_odp_release(struct ib_umem * umem)348 void ib_umem_odp_release(struct ib_umem *umem)
349 {
350 	struct ib_ucontext *context = umem->context;
351 
352 	/*
353 	 * Ensure that no more pages are mapped in the umem.
354 	 *
355 	 * It is the driver's responsibility to ensure, before calling us,
356 	 * that the hardware will not attempt to access the MR any more.
357 	 */
358 	ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
359 				    ib_umem_end(umem));
360 
361 	down_write(&context->umem_rwsem);
362 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
363 		rbt_ib_umem_remove(&umem->odp_data->interval_tree,
364 				   &context->umem_tree);
365 	context->odp_mrs_count--;
366 	if (!umem->odp_data->mn_counters_active) {
367 		list_del(&umem->odp_data->no_private_counters);
368 		complete_all(&umem->odp_data->notifier_completion);
369 	}
370 
371 	/*
372 	 * Downgrade the lock to a read lock. This ensures that the notifiers
373 	 * (who lock the mutex for reading) will be able to finish, and we
374 	 * will be able to enventually obtain the mmu notifiers SRCU. Note
375 	 * that since we are doing it atomically, no other user could register
376 	 * and unregister while we do the check.
377 	 */
378 	downgrade_write(&context->umem_rwsem);
379 	if (!context->odp_mrs_count) {
380 		struct task_struct *owning_process = NULL;
381 		struct mm_struct *owning_mm        = NULL;
382 
383 		owning_process = get_pid_task(context->tgid,
384 					      PIDTYPE_PID);
385 		if (owning_process == NULL)
386 			/*
387 			 * The process is already dead, notifier were removed
388 			 * already.
389 			 */
390 			goto out;
391 
392 		owning_mm = get_task_mm(owning_process);
393 		if (owning_mm == NULL)
394 			/*
395 			 * The process' mm is already dead, notifier were
396 			 * removed already.
397 			 */
398 			goto out_put_task;
399 		mmu_notifier_unregister(&context->mn, owning_mm);
400 
401 		mmput(owning_mm);
402 
403 out_put_task:
404 		put_task_struct(owning_process);
405 	}
406 out:
407 	up_read(&context->umem_rwsem);
408 
409 	vfree(umem->odp_data->dma_list);
410 	vfree(umem->odp_data->page_list);
411 	kfree(umem->odp_data);
412 	kfree(umem);
413 }
414 
415 /*
416  * Map for DMA and insert a single page into the on-demand paging page tables.
417  *
418  * @umem: the umem to insert the page to.
419  * @page_index: index in the umem to add the page to.
420  * @page: the page struct to map and add.
421  * @access_mask: access permissions needed for this page.
422  * @current_seq: sequence number for synchronization with invalidations.
423  *               the sequence number is taken from
424  *               umem->odp_data->notifiers_seq.
425  *
426  * The function returns -EFAULT if the DMA mapping operation fails. It returns
427  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
428  *
429  * The page is released via put_page even if the operation failed. For
430  * on-demand pinning, the page is released whenever it isn't stored in the
431  * umem.
432  */
ib_umem_odp_map_dma_single_page(struct ib_umem * umem,int page_index,u64 base_virt_addr,struct page * page,u64 access_mask,unsigned long current_seq)433 static int ib_umem_odp_map_dma_single_page(
434 		struct ib_umem *umem,
435 		int page_index,
436 		u64 base_virt_addr,
437 		struct page *page,
438 		u64 access_mask,
439 		unsigned long current_seq)
440 {
441 	struct ib_device *dev = umem->context->device;
442 	dma_addr_t dma_addr;
443 	int stored_page = 0;
444 	int remove_existing_mapping = 0;
445 	int ret = 0;
446 
447 	/*
448 	 * Note: we avoid writing if seq is different from the initial seq, to
449 	 * handle case of a racing notifier. This check also allows us to bail
450 	 * early if we have a notifier running in parallel with us.
451 	 */
452 	if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
453 		ret = -EAGAIN;
454 		goto out;
455 	}
456 	if (!(umem->odp_data->dma_list[page_index])) {
457 		dma_addr = ib_dma_map_page(dev,
458 					   page,
459 					   0, PAGE_SIZE,
460 					   DMA_BIDIRECTIONAL);
461 		if (ib_dma_mapping_error(dev, dma_addr)) {
462 			ret = -EFAULT;
463 			goto out;
464 		}
465 		umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
466 		umem->odp_data->page_list[page_index] = page;
467 		stored_page = 1;
468 	} else if (umem->odp_data->page_list[page_index] == page) {
469 		umem->odp_data->dma_list[page_index] |= access_mask;
470 	} else {
471 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
472 		       umem->odp_data->page_list[page_index], page);
473 		/* Better remove the mapping now, to prevent any further
474 		 * damage. */
475 		remove_existing_mapping = 1;
476 	}
477 
478 out:
479 	/* On Demand Paging - avoid pinning the page */
480 	if (umem->context->invalidate_range || !stored_page)
481 		put_page(page);
482 
483 	if (remove_existing_mapping && umem->context->invalidate_range) {
484 		invalidate_page_trampoline(
485 			umem,
486 			base_virt_addr + (page_index * PAGE_SIZE),
487 			base_virt_addr + ((page_index+1)*PAGE_SIZE),
488 			NULL);
489 		ret = -EAGAIN;
490 	}
491 
492 	return ret;
493 }
494 
495 /**
496  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
497  *
498  * Pins the range of pages passed in the argument, and maps them to
499  * DMA addresses. The DMA addresses of the mapped pages is updated in
500  * umem->odp_data->dma_list.
501  *
502  * Returns the number of pages mapped in success, negative error code
503  * for failure.
504  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
505  * the function from completing its task.
506  *
507  * @umem: the umem to map and pin
508  * @user_virt: the address from which we need to map.
509  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
510  *        bigger due to alignment, and may also be smaller in case of an error
511  *        pinning or mapping a page. The actual pages mapped is returned in
512  *        the return value.
513  * @access_mask: bit mask of the requested access permissions for the given
514  *               range.
515  * @current_seq: the MMU notifiers sequance value for synchronization with
516  *               invalidations. the sequance number is read from
517  *               umem->odp_data->notifiers_seq before calling this function
518  */
ib_umem_odp_map_dma_pages(struct ib_umem * umem,u64 user_virt,u64 bcnt,u64 access_mask,unsigned long current_seq)519 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
520 			      u64 access_mask, unsigned long current_seq)
521 {
522 	struct task_struct *owning_process  = NULL;
523 	struct mm_struct   *owning_mm       = NULL;
524 	struct page       **local_page_list = NULL;
525 	u64 off;
526 	int j, k, ret = 0, start_idx, npages = 0;
527 	u64 base_virt_addr;
528 	unsigned int flags = 0;
529 
530 	if (access_mask == 0)
531 		return -EINVAL;
532 
533 	if (user_virt < ib_umem_start(umem) ||
534 	    user_virt + bcnt > ib_umem_end(umem))
535 		return -EFAULT;
536 
537 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
538 	if (!local_page_list)
539 		return -ENOMEM;
540 
541 	off = user_virt & (~PAGE_MASK);
542 	user_virt = user_virt & PAGE_MASK;
543 	base_virt_addr = user_virt;
544 	bcnt += off; /* Charge for the first page offset as well. */
545 
546 	owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
547 	if (owning_process == NULL) {
548 		ret = -EINVAL;
549 		goto out_no_task;
550 	}
551 
552 	owning_mm = get_task_mm(owning_process);
553 	if (owning_mm == NULL) {
554 		ret = -EINVAL;
555 		goto out_put_task;
556 	}
557 
558 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
559 		flags |= FOLL_WRITE;
560 
561 	start_idx = (user_virt - ib_umem_start(umem)) >> PAGE_SHIFT;
562 	k = start_idx;
563 
564 	while (bcnt > 0) {
565 		const size_t gup_num_pages =
566 			min_t(size_t, ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE,
567 			      PAGE_SIZE / sizeof(struct page *));
568 
569 		down_read(&owning_mm->mmap_sem);
570 		/*
571 		 * Note: this might result in redundent page getting. We can
572 		 * avoid this by checking dma_list to be 0 before calling
573 		 * get_user_pages. However, this make the code much more
574 		 * complex (and doesn't gain us much performance in most use
575 		 * cases).
576 		 */
577 		npages = get_user_pages_remote(owning_process, owning_mm,
578 				user_virt, gup_num_pages,
579 				flags, local_page_list, NULL);
580 		up_read(&owning_mm->mmap_sem);
581 
582 		if (npages < 0)
583 			break;
584 
585 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
586 		user_virt += npages << PAGE_SHIFT;
587 		mutex_lock(&umem->odp_data->umem_mutex);
588 		for (j = 0; j < npages; ++j) {
589 			ret = ib_umem_odp_map_dma_single_page(
590 				umem, k, base_virt_addr, local_page_list[j],
591 				access_mask, current_seq);
592 			if (ret < 0)
593 				break;
594 			k++;
595 		}
596 		mutex_unlock(&umem->odp_data->umem_mutex);
597 
598 		if (ret < 0) {
599 			/* Release left over pages when handling errors. */
600 			for (++j; j < npages; ++j)
601 				put_page(local_page_list[j]);
602 			break;
603 		}
604 	}
605 
606 	if (ret >= 0) {
607 		if (npages < 0 && k == start_idx)
608 			ret = npages;
609 		else
610 			ret = k - start_idx;
611 	}
612 
613 	mmput(owning_mm);
614 out_put_task:
615 	put_task_struct(owning_process);
616 out_no_task:
617 	free_page((unsigned long)local_page_list);
618 	return ret;
619 }
620 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
621 
ib_umem_odp_unmap_dma_pages(struct ib_umem * umem,u64 virt,u64 bound)622 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
623 				 u64 bound)
624 {
625 	int idx;
626 	u64 addr;
627 	struct ib_device *dev = umem->context->device;
628 
629 	virt  = max_t(u64, virt,  ib_umem_start(umem));
630 	bound = min_t(u64, bound, ib_umem_end(umem));
631 	/* Note that during the run of this function, the
632 	 * notifiers_count of the MR is > 0, preventing any racing
633 	 * faults from completion. We might be racing with other
634 	 * invalidations, so we must make sure we free each page only
635 	 * once. */
636 	mutex_lock(&umem->odp_data->umem_mutex);
637 	for (addr = virt; addr < bound; addr += (u64)umem->page_size) {
638 		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
639 		if (umem->odp_data->page_list[idx]) {
640 			struct page *page = umem->odp_data->page_list[idx];
641 			dma_addr_t dma = umem->odp_data->dma_list[idx];
642 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
643 
644 			WARN_ON(!dma_addr);
645 
646 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
647 					  DMA_BIDIRECTIONAL);
648 			if (dma & ODP_WRITE_ALLOWED_BIT) {
649 				struct page *head_page = compound_head(page);
650 				/*
651 				 * set_page_dirty prefers being called with
652 				 * the page lock. However, MMU notifiers are
653 				 * called sometimes with and sometimes without
654 				 * the lock. We rely on the umem_mutex instead
655 				 * to prevent other mmu notifiers from
656 				 * continuing and allowing the page mapping to
657 				 * be removed.
658 				 */
659 				set_page_dirty(head_page);
660 			}
661 			/* on demand pinning support */
662 			if (!umem->context->invalidate_range)
663 				put_page(page);
664 			umem->odp_data->page_list[idx] = NULL;
665 			umem->odp_data->dma_list[idx] = 0;
666 		}
667 	}
668 	mutex_unlock(&umem->odp_data->umem_mutex);
669 }
670 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
671