1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <linux/types.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/vmalloc.h>
42 
43 #include <rdma/ib_verbs.h>
44 #include <rdma/ib_umem.h>
45 #include <rdma/ib_umem_odp.h>
46 
47 static void ib_umem_notifier_start_account(struct ib_umem *item)
48 {
49 	mutex_lock(&item->odp_data->umem_mutex);
50 
51 	/* Only update private counters for this umem if it has them.
52 	 * Otherwise skip it. All page faults will be delayed for this umem. */
53 	if (item->odp_data->mn_counters_active) {
54 		int notifiers_count = item->odp_data->notifiers_count++;
55 
56 		if (notifiers_count == 0)
57 			/* Initialize the completion object for waiting on
58 			 * notifiers. Since notifier_count is zero, no one
59 			 * should be waiting right now. */
60 			reinit_completion(&item->odp_data->notifier_completion);
61 	}
62 	mutex_unlock(&item->odp_data->umem_mutex);
63 }
64 
65 static void ib_umem_notifier_end_account(struct ib_umem *item)
66 {
67 	mutex_lock(&item->odp_data->umem_mutex);
68 
69 	/* Only update private counters for this umem if it has them.
70 	 * Otherwise skip it. All page faults will be delayed for this umem. */
71 	if (item->odp_data->mn_counters_active) {
72 		/*
73 		 * This sequence increase will notify the QP page fault that
74 		 * the page that is going to be mapped in the spte could have
75 		 * been freed.
76 		 */
77 		++item->odp_data->notifiers_seq;
78 		if (--item->odp_data->notifiers_count == 0)
79 			complete_all(&item->odp_data->notifier_completion);
80 	}
81 	mutex_unlock(&item->odp_data->umem_mutex);
82 }
83 
84 /* Account for a new mmu notifier in an ib_ucontext. */
85 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
86 {
87 	atomic_inc(&context->notifier_count);
88 }
89 
90 /* Account for a terminating mmu notifier in an ib_ucontext.
91  *
92  * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
93  * the function takes the semaphore itself. */
94 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
95 {
96 	int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
97 
98 	if (zero_notifiers &&
99 	    !list_empty(&context->no_private_counters)) {
100 		/* No currently running mmu notifiers. Now is the chance to
101 		 * add private accounting to all previously added umems. */
102 		struct ib_umem_odp *odp_data, *next;
103 
104 		/* Prevent concurrent mmu notifiers from working on the
105 		 * no_private_counters list. */
106 		down_write(&context->umem_rwsem);
107 
108 		/* Read the notifier_count again, with the umem_rwsem
109 		 * semaphore taken for write. */
110 		if (!atomic_read(&context->notifier_count)) {
111 			list_for_each_entry_safe(odp_data, next,
112 						 &context->no_private_counters,
113 						 no_private_counters) {
114 				mutex_lock(&odp_data->umem_mutex);
115 				odp_data->mn_counters_active = true;
116 				list_del(&odp_data->no_private_counters);
117 				complete_all(&odp_data->notifier_completion);
118 				mutex_unlock(&odp_data->umem_mutex);
119 			}
120 		}
121 
122 		up_write(&context->umem_rwsem);
123 	}
124 }
125 
126 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
127 					       u64 end, void *cookie) {
128 	/*
129 	 * Increase the number of notifiers running, to
130 	 * prevent any further fault handling on this MR.
131 	 */
132 	ib_umem_notifier_start_account(item);
133 	item->odp_data->dying = 1;
134 	/* Make sure that the fact the umem is dying is out before we release
135 	 * all pending page faults. */
136 	smp_wmb();
137 	complete_all(&item->odp_data->notifier_completion);
138 	item->context->invalidate_range(item, ib_umem_start(item),
139 					ib_umem_end(item));
140 	return 0;
141 }
142 
143 static void ib_umem_notifier_release(struct mmu_notifier *mn,
144 				     struct mm_struct *mm)
145 {
146 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
147 
148 	if (!context->invalidate_range)
149 		return;
150 
151 	ib_ucontext_notifier_start_account(context);
152 	down_read(&context->umem_rwsem);
153 	rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
154 				      ULLONG_MAX,
155 				      ib_umem_notifier_release_trampoline,
156 				      NULL);
157 	up_read(&context->umem_rwsem);
158 }
159 
160 static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
161 				      u64 end, void *cookie)
162 {
163 	ib_umem_notifier_start_account(item);
164 	item->context->invalidate_range(item, start, start + PAGE_SIZE);
165 	ib_umem_notifier_end_account(item);
166 	return 0;
167 }
168 
169 static void ib_umem_notifier_invalidate_page(struct mmu_notifier *mn,
170 					     struct mm_struct *mm,
171 					     unsigned long address)
172 {
173 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
174 
175 	if (!context->invalidate_range)
176 		return;
177 
178 	ib_ucontext_notifier_start_account(context);
179 	down_read(&context->umem_rwsem);
180 	rbt_ib_umem_for_each_in_range(&context->umem_tree, address,
181 				      address + PAGE_SIZE,
182 				      invalidate_page_trampoline, NULL);
183 	up_read(&context->umem_rwsem);
184 	ib_ucontext_notifier_end_account(context);
185 }
186 
187 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
188 					     u64 end, void *cookie)
189 {
190 	ib_umem_notifier_start_account(item);
191 	item->context->invalidate_range(item, start, end);
192 	return 0;
193 }
194 
195 static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
196 						    struct mm_struct *mm,
197 						    unsigned long start,
198 						    unsigned long end)
199 {
200 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
201 
202 	if (!context->invalidate_range)
203 		return;
204 
205 	ib_ucontext_notifier_start_account(context);
206 	down_read(&context->umem_rwsem);
207 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
208 				      end,
209 				      invalidate_range_start_trampoline, NULL);
210 	up_read(&context->umem_rwsem);
211 }
212 
213 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
214 					   u64 end, void *cookie)
215 {
216 	ib_umem_notifier_end_account(item);
217 	return 0;
218 }
219 
220 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
221 						  struct mm_struct *mm,
222 						  unsigned long start,
223 						  unsigned long end)
224 {
225 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
226 
227 	if (!context->invalidate_range)
228 		return;
229 
230 	down_read(&context->umem_rwsem);
231 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
232 				      end,
233 				      invalidate_range_end_trampoline, NULL);
234 	up_read(&context->umem_rwsem);
235 	ib_ucontext_notifier_end_account(context);
236 }
237 
238 static const struct mmu_notifier_ops ib_umem_notifiers = {
239 	.release                    = ib_umem_notifier_release,
240 	.invalidate_page            = ib_umem_notifier_invalidate_page,
241 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
242 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
243 };
244 
245 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem)
246 {
247 	int ret_val;
248 	pid_t our_pid;
249 	struct mm_struct *mm = get_task_mm(current);
250 
251 	if (!mm)
252 		return -EINVAL;
253 
254 	/* Prevent creating ODP MRs in child processes */
255 	rcu_read_lock();
256 	our_pid = get_pid(task_pid_group_leader(current));
257 	rcu_read_unlock();
258 	put_pid(our_pid);
259 	if (context->tgid != our_pid) {
260 		ret_val = -EINVAL;
261 		goto out_mm;
262 	}
263 
264 	umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
265 	if (!umem->odp_data) {
266 		ret_val = -ENOMEM;
267 		goto out_mm;
268 	}
269 	umem->odp_data->umem = umem;
270 
271 	mutex_init(&umem->odp_data->umem_mutex);
272 
273 	init_completion(&umem->odp_data->notifier_completion);
274 
275 	umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) *
276 					    sizeof(*umem->odp_data->page_list));
277 	if (!umem->odp_data->page_list) {
278 		ret_val = -ENOMEM;
279 		goto out_odp_data;
280 	}
281 
282 	umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) *
283 					  sizeof(*umem->odp_data->dma_list));
284 	if (!umem->odp_data->dma_list) {
285 		ret_val = -ENOMEM;
286 		goto out_page_list;
287 	}
288 
289 	/*
290 	 * When using MMU notifiers, we will get a
291 	 * notification before the "current" task (and MM) is
292 	 * destroyed. We use the umem_rwsem semaphore to synchronize.
293 	 */
294 	down_write(&context->umem_rwsem);
295 	context->odp_mrs_count++;
296 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
297 		rbt_ib_umem_insert(&umem->odp_data->interval_tree,
298 				   &context->umem_tree);
299 	if (likely(!atomic_read(&context->notifier_count)) ||
300 	    context->odp_mrs_count == 1)
301 		umem->odp_data->mn_counters_active = true;
302 	else
303 		list_add(&umem->odp_data->no_private_counters,
304 			 &context->no_private_counters);
305 	downgrade_write(&context->umem_rwsem);
306 
307 	if (context->odp_mrs_count == 1) {
308 		/*
309 		 * Note that at this point, no MMU notifier is running
310 		 * for this context!
311 		 */
312 		atomic_set(&context->notifier_count, 0);
313 		INIT_HLIST_NODE(&context->mn.hlist);
314 		context->mn.ops = &ib_umem_notifiers;
315 		/*
316 		 * Lock-dep detects a false positive for mmap_sem vs.
317 		 * umem_rwsem, due to not grasping downgrade_write correctly.
318 		 */
319 		ret_val = mmu_notifier_register(&context->mn, mm);
320 		if (ret_val) {
321 			pr_err("Failed to register mmu_notifier %d\n", ret_val);
322 			ret_val = -EBUSY;
323 			goto out_mutex;
324 		}
325 	}
326 
327 	up_read(&context->umem_rwsem);
328 
329 	/*
330 	 * Note that doing an mmput can cause a notifier for the relevant mm.
331 	 * If the notifier is called while we hold the umem_rwsem, this will
332 	 * cause a deadlock. Therefore, we release the reference only after we
333 	 * released the semaphore.
334 	 */
335 	mmput(mm);
336 	return 0;
337 
338 out_mutex:
339 	up_read(&context->umem_rwsem);
340 	vfree(umem->odp_data->dma_list);
341 out_page_list:
342 	vfree(umem->odp_data->page_list);
343 out_odp_data:
344 	kfree(umem->odp_data);
345 out_mm:
346 	mmput(mm);
347 	return ret_val;
348 }
349 
350 void ib_umem_odp_release(struct ib_umem *umem)
351 {
352 	struct ib_ucontext *context = umem->context;
353 
354 	/*
355 	 * Ensure that no more pages are mapped in the umem.
356 	 *
357 	 * It is the driver's responsibility to ensure, before calling us,
358 	 * that the hardware will not attempt to access the MR any more.
359 	 */
360 	ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
361 				    ib_umem_end(umem));
362 
363 	down_write(&context->umem_rwsem);
364 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
365 		rbt_ib_umem_remove(&umem->odp_data->interval_tree,
366 				   &context->umem_tree);
367 	context->odp_mrs_count--;
368 	if (!umem->odp_data->mn_counters_active) {
369 		list_del(&umem->odp_data->no_private_counters);
370 		complete_all(&umem->odp_data->notifier_completion);
371 	}
372 
373 	/*
374 	 * Downgrade the lock to a read lock. This ensures that the notifiers
375 	 * (who lock the mutex for reading) will be able to finish, and we
376 	 * will be able to enventually obtain the mmu notifiers SRCU. Note
377 	 * that since we are doing it atomically, no other user could register
378 	 * and unregister while we do the check.
379 	 */
380 	downgrade_write(&context->umem_rwsem);
381 	if (!context->odp_mrs_count) {
382 		struct task_struct *owning_process = NULL;
383 		struct mm_struct *owning_mm        = NULL;
384 
385 		owning_process = get_pid_task(context->tgid,
386 					      PIDTYPE_PID);
387 		if (owning_process == NULL)
388 			/*
389 			 * The process is already dead, notifier were removed
390 			 * already.
391 			 */
392 			goto out;
393 
394 		owning_mm = get_task_mm(owning_process);
395 		if (owning_mm == NULL)
396 			/*
397 			 * The process' mm is already dead, notifier were
398 			 * removed already.
399 			 */
400 			goto out_put_task;
401 		mmu_notifier_unregister(&context->mn, owning_mm);
402 
403 		mmput(owning_mm);
404 
405 out_put_task:
406 		put_task_struct(owning_process);
407 	}
408 out:
409 	up_read(&context->umem_rwsem);
410 
411 	vfree(umem->odp_data->dma_list);
412 	vfree(umem->odp_data->page_list);
413 	kfree(umem->odp_data);
414 	kfree(umem);
415 }
416 
417 /*
418  * Map for DMA and insert a single page into the on-demand paging page tables.
419  *
420  * @umem: the umem to insert the page to.
421  * @page_index: index in the umem to add the page to.
422  * @page: the page struct to map and add.
423  * @access_mask: access permissions needed for this page.
424  * @current_seq: sequence number for synchronization with invalidations.
425  *               the sequence number is taken from
426  *               umem->odp_data->notifiers_seq.
427  *
428  * The function returns -EFAULT if the DMA mapping operation fails. It returns
429  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
430  *
431  * The page is released via put_page even if the operation failed. For
432  * on-demand pinning, the page is released whenever it isn't stored in the
433  * umem.
434  */
435 static int ib_umem_odp_map_dma_single_page(
436 		struct ib_umem *umem,
437 		int page_index,
438 		u64 base_virt_addr,
439 		struct page *page,
440 		u64 access_mask,
441 		unsigned long current_seq)
442 {
443 	struct ib_device *dev = umem->context->device;
444 	dma_addr_t dma_addr;
445 	int stored_page = 0;
446 	int remove_existing_mapping = 0;
447 	int ret = 0;
448 
449 	/*
450 	 * Note: we avoid writing if seq is different from the initial seq, to
451 	 * handle case of a racing notifier. This check also allows us to bail
452 	 * early if we have a notifier running in parallel with us.
453 	 */
454 	if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
455 		ret = -EAGAIN;
456 		goto out;
457 	}
458 	if (!(umem->odp_data->dma_list[page_index])) {
459 		dma_addr = ib_dma_map_page(dev,
460 					   page,
461 					   0, PAGE_SIZE,
462 					   DMA_BIDIRECTIONAL);
463 		if (ib_dma_mapping_error(dev, dma_addr)) {
464 			ret = -EFAULT;
465 			goto out;
466 		}
467 		umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
468 		umem->odp_data->page_list[page_index] = page;
469 		stored_page = 1;
470 	} else if (umem->odp_data->page_list[page_index] == page) {
471 		umem->odp_data->dma_list[page_index] |= access_mask;
472 	} else {
473 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
474 		       umem->odp_data->page_list[page_index], page);
475 		/* Better remove the mapping now, to prevent any further
476 		 * damage. */
477 		remove_existing_mapping = 1;
478 	}
479 
480 out:
481 	/* On Demand Paging - avoid pinning the page */
482 	if (umem->context->invalidate_range || !stored_page)
483 		put_page(page);
484 
485 	if (remove_existing_mapping && umem->context->invalidate_range) {
486 		invalidate_page_trampoline(
487 			umem,
488 			base_virt_addr + (page_index * PAGE_SIZE),
489 			base_virt_addr + ((page_index+1)*PAGE_SIZE),
490 			NULL);
491 		ret = -EAGAIN;
492 	}
493 
494 	return ret;
495 }
496 
497 /**
498  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
499  *
500  * Pins the range of pages passed in the argument, and maps them to
501  * DMA addresses. The DMA addresses of the mapped pages is updated in
502  * umem->odp_data->dma_list.
503  *
504  * Returns the number of pages mapped in success, negative error code
505  * for failure.
506  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
507  * the function from completing its task.
508  *
509  * @umem: the umem to map and pin
510  * @user_virt: the address from which we need to map.
511  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
512  *        bigger due to alignment, and may also be smaller in case of an error
513  *        pinning or mapping a page. The actual pages mapped is returned in
514  *        the return value.
515  * @access_mask: bit mask of the requested access permissions for the given
516  *               range.
517  * @current_seq: the MMU notifiers sequance value for synchronization with
518  *               invalidations. the sequance number is read from
519  *               umem->odp_data->notifiers_seq before calling this function
520  */
521 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
522 			      u64 access_mask, unsigned long current_seq)
523 {
524 	struct task_struct *owning_process  = NULL;
525 	struct mm_struct   *owning_mm       = NULL;
526 	struct page       **local_page_list = NULL;
527 	u64 off;
528 	int j, k, ret = 0, start_idx, npages = 0;
529 	u64 base_virt_addr;
530 	unsigned int flags = 0;
531 
532 	if (access_mask == 0)
533 		return -EINVAL;
534 
535 	if (user_virt < ib_umem_start(umem) ||
536 	    user_virt + bcnt > ib_umem_end(umem))
537 		return -EFAULT;
538 
539 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
540 	if (!local_page_list)
541 		return -ENOMEM;
542 
543 	off = user_virt & (~PAGE_MASK);
544 	user_virt = user_virt & PAGE_MASK;
545 	base_virt_addr = user_virt;
546 	bcnt += off; /* Charge for the first page offset as well. */
547 
548 	owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
549 	if (owning_process == NULL) {
550 		ret = -EINVAL;
551 		goto out_no_task;
552 	}
553 
554 	owning_mm = get_task_mm(owning_process);
555 	if (owning_mm == NULL) {
556 		ret = -EINVAL;
557 		goto out_put_task;
558 	}
559 
560 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
561 		flags |= FOLL_WRITE;
562 
563 	start_idx = (user_virt - ib_umem_start(umem)) >> PAGE_SHIFT;
564 	k = start_idx;
565 
566 	while (bcnt > 0) {
567 		const size_t gup_num_pages =
568 			min_t(size_t, ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE,
569 			      PAGE_SIZE / sizeof(struct page *));
570 
571 		down_read(&owning_mm->mmap_sem);
572 		/*
573 		 * Note: this might result in redundent page getting. We can
574 		 * avoid this by checking dma_list to be 0 before calling
575 		 * get_user_pages. However, this make the code much more
576 		 * complex (and doesn't gain us much performance in most use
577 		 * cases).
578 		 */
579 		npages = get_user_pages_remote(owning_process, owning_mm,
580 				user_virt, gup_num_pages,
581 				flags, local_page_list, NULL);
582 		up_read(&owning_mm->mmap_sem);
583 
584 		if (npages < 0)
585 			break;
586 
587 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
588 		user_virt += npages << PAGE_SHIFT;
589 		mutex_lock(&umem->odp_data->umem_mutex);
590 		for (j = 0; j < npages; ++j) {
591 			ret = ib_umem_odp_map_dma_single_page(
592 				umem, k, base_virt_addr, local_page_list[j],
593 				access_mask, current_seq);
594 			if (ret < 0)
595 				break;
596 			k++;
597 		}
598 		mutex_unlock(&umem->odp_data->umem_mutex);
599 
600 		if (ret < 0) {
601 			/* Release left over pages when handling errors. */
602 			for (++j; j < npages; ++j)
603 				put_page(local_page_list[j]);
604 			break;
605 		}
606 	}
607 
608 	if (ret >= 0) {
609 		if (npages < 0 && k == start_idx)
610 			ret = npages;
611 		else
612 			ret = k - start_idx;
613 	}
614 
615 	mmput(owning_mm);
616 out_put_task:
617 	put_task_struct(owning_process);
618 out_no_task:
619 	free_page((unsigned long)local_page_list);
620 	return ret;
621 }
622 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
623 
624 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
625 				 u64 bound)
626 {
627 	int idx;
628 	u64 addr;
629 	struct ib_device *dev = umem->context->device;
630 
631 	virt  = max_t(u64, virt,  ib_umem_start(umem));
632 	bound = min_t(u64, bound, ib_umem_end(umem));
633 	/* Note that during the run of this function, the
634 	 * notifiers_count of the MR is > 0, preventing any racing
635 	 * faults from completion. We might be racing with other
636 	 * invalidations, so we must make sure we free each page only
637 	 * once. */
638 	mutex_lock(&umem->odp_data->umem_mutex);
639 	for (addr = virt; addr < bound; addr += (u64)umem->page_size) {
640 		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
641 		if (umem->odp_data->page_list[idx]) {
642 			struct page *page = umem->odp_data->page_list[idx];
643 			dma_addr_t dma = umem->odp_data->dma_list[idx];
644 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
645 
646 			WARN_ON(!dma_addr);
647 
648 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
649 					  DMA_BIDIRECTIONAL);
650 			if (dma & ODP_WRITE_ALLOWED_BIT) {
651 				struct page *head_page = compound_head(page);
652 				/*
653 				 * set_page_dirty prefers being called with
654 				 * the page lock. However, MMU notifiers are
655 				 * called sometimes with and sometimes without
656 				 * the lock. We rely on the umem_mutex instead
657 				 * to prevent other mmu notifiers from
658 				 * continuing and allowing the page mapping to
659 				 * be removed.
660 				 */
661 				set_page_dirty(head_page);
662 			}
663 			/* on demand pinning support */
664 			if (!umem->context->invalidate_range)
665 				put_page(page);
666 			umem->odp_data->page_list[idx] = NULL;
667 			umem->odp_data->dma_list[idx] = 0;
668 		}
669 	}
670 	mutex_unlock(&umem->odp_data->umem_mutex);
671 }
672 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
673