xref: /freebsd/sys/x86/x86/tsc.c (revision ecaab0fb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_clock.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpu.h>
36 #include <sys/eventhandler.h>
37 #include <sys/limits.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/sched.h>
41 #include <sys/sysctl.h>
42 #include <sys/time.h>
43 #include <sys/timetc.h>
44 #include <sys/kernel.h>
45 #include <sys/smp.h>
46 #include <sys/vdso.h>
47 #include <machine/clock.h>
48 #include <machine/cputypes.h>
49 #include <machine/fpu.h>
50 #include <machine/md_var.h>
51 #include <machine/specialreg.h>
52 #include <x86/vmware.h>
53 #include <dev/acpica/acpi_hpet.h>
54 #include <contrib/dev/acpica/include/acpi.h>
55 
56 #include "cpufreq_if.h"
57 
58 uint64_t	tsc_freq;
59 int		tsc_is_invariant;
60 int		tsc_perf_stat;
61 static int	tsc_early_calib_exact;
62 
63 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
64 
65 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
66     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
67 
68 #ifdef SMP
69 int	smp_tsc;
70 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
71     "Indicates whether the TSC is safe to use in SMP mode");
72 
73 int	smp_tsc_adjust = 0;
74 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
75     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
76 #endif
77 
78 static int	tsc_shift = 1;
79 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
80     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
81 
82 static int	tsc_disabled;
83 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
84     "Disable x86 Time Stamp Counter");
85 
86 static int	tsc_skip_calibration;
87 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
88     &tsc_skip_calibration, 0,
89     "Disable early TSC frequency calibration");
90 
91 static void tsc_freq_changed(void *arg, const struct cf_level *level,
92     int status);
93 static void tsc_freq_changing(void *arg, const struct cf_level *level,
94     int *status);
95 static u_int tsc_get_timecount(struct timecounter *tc);
96 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
97 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
98 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
99 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
100 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
101 static u_int tscp_get_timecount(struct timecounter *tc);
102 static u_int tscp_get_timecount_low(struct timecounter *tc);
103 static void tsc_levels_changed(void *arg, int unit);
104 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
105     struct timecounter *tc);
106 #ifdef COMPAT_FREEBSD32
107 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
108     struct timecounter *tc);
109 #endif
110 
111 static struct timecounter tsc_timecounter = {
112 	.tc_get_timecount =		tsc_get_timecount,
113 	.tc_counter_mask =		~0u,
114 	.tc_name =			"TSC",
115 	.tc_quality =			800,	/* adjusted in code */
116 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
117 #ifdef COMPAT_FREEBSD32
118 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
119 #endif
120 };
121 
122 static int
tsc_freq_cpuid_vm(void)123 tsc_freq_cpuid_vm(void)
124 {
125 	u_int regs[4];
126 
127 	if (vm_guest == VM_GUEST_NO)
128 		return (false);
129 	if (hv_high < 0x40000010)
130 		return (false);
131 	do_cpuid(0x40000010, regs);
132 	tsc_freq = (uint64_t)(regs[0]) * 1000;
133 	tsc_early_calib_exact = 1;
134 	return (true);
135 }
136 
137 static void
tsc_freq_vmware(void)138 tsc_freq_vmware(void)
139 {
140 	u_int regs[4];
141 
142 	vmware_hvcall(0, VMW_HVCMD_GETHZ, VMW_HVCMD_DEFAULT_PARAM, regs);
143 	if (regs[1] != UINT_MAX)
144 		tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
145 	tsc_early_calib_exact = 1;
146 }
147 
148 static void
tsc_freq_xen(void)149 tsc_freq_xen(void)
150 {
151 	u_int regs[4];
152 
153 	/*
154 	 * Must run *after* generic tsc_freq_cpuid_vm, so that when Xen is
155 	 * emulating Viridian support the Viridian leaf is used instead.
156 	 */
157 	KASSERT(hv_high >= 0x40000003, ("Invalid max hypervisor leaf on Xen"));
158 	cpuid_count(0x40000003, 0, regs);
159 	tsc_freq = (uint64_t)(regs[2]) * 1000;
160 	tsc_early_calib_exact = 1;
161 }
162 
163 /*
164  * Calculate TSC frequency using information from the CPUID leaf 0x15 'Time
165  * Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15 is not
166  * functional, as it is on Skylake/Kabylake, try 0x16 'Processor Frequency
167  * Information'.  Leaf 0x16 is described in the SDM as informational only, but
168  * we can use this value until late calibration is complete.
169  */
170 static bool
tsc_freq_cpuid(uint64_t * res)171 tsc_freq_cpuid(uint64_t *res)
172 {
173 	u_int regs[4];
174 
175 	if (cpu_high < 0x15)
176 		return (false);
177 	do_cpuid(0x15, regs);
178 	if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
179 		*res = (uint64_t)regs[2] * regs[1] / regs[0];
180 		return (true);
181 	}
182 
183 	if (cpu_high < 0x16)
184 		return (false);
185 	do_cpuid(0x16, regs);
186 	if (regs[0] != 0) {
187 		*res = (uint64_t)regs[0] * 1000000;
188 		return (true);
189 	}
190 
191 	return (false);
192 }
193 
194 static bool
tsc_freq_intel_brand(uint64_t * res)195 tsc_freq_intel_brand(uint64_t *res)
196 {
197 	char brand[48];
198 	u_int regs[4];
199 	uint64_t freq;
200 	char *p;
201 	u_int i;
202 
203 	/*
204 	 * Intel Processor Identification and the CPUID Instruction
205 	 * Application Note 485.
206 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
207 	 */
208 	if (cpu_exthigh >= 0x80000004) {
209 		p = brand;
210 		for (i = 0x80000002; i < 0x80000005; i++) {
211 			do_cpuid(i, regs);
212 			memcpy(p, regs, sizeof(regs));
213 			p += sizeof(regs);
214 		}
215 		p = NULL;
216 		for (i = 0; i < sizeof(brand) - 1; i++)
217 			if (brand[i] == 'H' && brand[i + 1] == 'z')
218 				p = brand + i;
219 		if (p != NULL) {
220 			p -= 5;
221 			switch (p[4]) {
222 			case 'M':
223 				i = 1;
224 				break;
225 			case 'G':
226 				i = 1000;
227 				break;
228 			case 'T':
229 				i = 1000000;
230 				break;
231 			default:
232 				return (false);
233 			}
234 #define	C2D(c)	((c) - '0')
235 			if (p[1] == '.') {
236 				freq = C2D(p[0]) * 1000;
237 				freq += C2D(p[2]) * 100;
238 				freq += C2D(p[3]) * 10;
239 				freq *= i * 1000;
240 			} else {
241 				freq = C2D(p[0]) * 1000;
242 				freq += C2D(p[1]) * 100;
243 				freq += C2D(p[2]) * 10;
244 				freq += C2D(p[3]);
245 				freq *= i * 1000000;
246 			}
247 #undef C2D
248 			*res = freq;
249 			return (true);
250 		}
251 	}
252 	return (false);
253 }
254 
255 static void
tsc_freq_tc(uint64_t * res)256 tsc_freq_tc(uint64_t *res)
257 {
258 	uint64_t tsc1, tsc2;
259 	int64_t overhead;
260 	int count, i;
261 
262 	overhead = 0;
263 	for (i = 0, count = 8; i < count; i++) {
264 		tsc1 = rdtsc_ordered();
265 		DELAY(0);
266 		tsc2 = rdtsc_ordered();
267 		if (i > 0)
268 			overhead += tsc2 - tsc1;
269 	}
270 	overhead /= count;
271 
272 	tsc1 = rdtsc_ordered();
273 	DELAY(100000);
274 	tsc2 = rdtsc_ordered();
275 	tsc_freq = (tsc2 - tsc1 - overhead) * 10;
276 }
277 
278 /*
279  * Try to determine the TSC frequency using CPUID or hypercalls.  If successful,
280  * this lets use the TSC for early DELAY() calls instead of the 8254 timer,
281  * which may be unreliable or entirely absent on contemporary systems.  However,
282  * avoid calibrating using the 8254 here so as to give hypervisors a chance to
283  * register a timecounter that can be used instead.
284  */
285 static void
probe_tsc_freq_early(void)286 probe_tsc_freq_early(void)
287 {
288 #ifdef __i386__
289 	/* The TSC is known to be broken on certain CPUs. */
290 	switch (cpu_vendor_id) {
291 	case CPU_VENDOR_AMD:
292 		switch (cpu_id & 0xFF0) {
293 		case 0x500:
294 			/* K5 Model 0 */
295 			tsc_disabled = 1;
296 			return;
297 		}
298 		break;
299 	case CPU_VENDOR_CENTAUR:
300 		switch (cpu_id & 0xff0) {
301 		case 0x540:
302 			/*
303 			 * http://www.centtech.com/c6_data_sheet.pdf
304 			 *
305 			 * I-12 RDTSC may return incoherent values in EDX:EAX
306 			 * I-13 RDTSC hangs when certain event counters are used
307 			 */
308 			tsc_disabled = 1;
309 			return;
310 		}
311 		break;
312 	case CPU_VENDOR_NSC:
313 		switch (cpu_id & 0xff0) {
314 		case 0x540:
315 			if ((cpu_id & CPUID_STEPPING) == 0) {
316 				tsc_disabled = 1;
317 				return;
318 			}
319 			break;
320 		}
321 		break;
322 	}
323 #endif
324 
325 	switch (cpu_vendor_id) {
326 	case CPU_VENDOR_AMD:
327 	case CPU_VENDOR_HYGON:
328 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
329 		    (vm_guest == VM_GUEST_NO &&
330 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
331 			tsc_is_invariant = 1;
332 		if (cpu_feature & CPUID_SSE2) {
333 			tsc_timecounter.tc_get_timecount =
334 			    tsc_get_timecount_mfence;
335 		}
336 		break;
337 	case CPU_VENDOR_INTEL:
338 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
339 		    (vm_guest == VM_GUEST_NO &&
340 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
341 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
342 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
343 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
344 			tsc_is_invariant = 1;
345 		if (cpu_feature & CPUID_SSE2) {
346 			tsc_timecounter.tc_get_timecount =
347 			    tsc_get_timecount_lfence;
348 		}
349 		break;
350 	case CPU_VENDOR_CENTAUR:
351 		if (vm_guest == VM_GUEST_NO &&
352 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
353 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
354 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
355 			tsc_is_invariant = 1;
356 		if (cpu_feature & CPUID_SSE2) {
357 			tsc_timecounter.tc_get_timecount =
358 			    tsc_get_timecount_lfence;
359 		}
360 		break;
361 	}
362 
363 	if (tsc_freq_cpuid_vm()) {
364 		if (bootverbose)
365 			printf(
366 		    "Early TSC frequency %juHz derived from hypervisor CPUID\n",
367 			    (uintmax_t)tsc_freq);
368 	} else if (vm_guest == VM_GUEST_VMWARE) {
369 		tsc_freq_vmware();
370 		if (bootverbose)
371 			printf(
372 		    "Early TSC frequency %juHz derived from VMWare hypercall\n",
373 			    (uintmax_t)tsc_freq);
374 	} else if (vm_guest == VM_GUEST_XEN) {
375 		tsc_freq_xen();
376 		if (bootverbose)
377 			printf(
378 			"Early TSC frequency %juHz derived from Xen CPUID\n",
379 			    (uintmax_t)tsc_freq);
380 	} else if (tsc_freq_cpuid(&tsc_freq)) {
381 		/*
382 		 * If possible, use the value obtained from CPUID as the initial
383 		 * frequency.  This will be refined later during boot but is
384 		 * good enough for now.  The 8254 PIT is not functional on some
385 		 * newer platforms anyway, so don't delay our boot for what
386 		 * might be a garbage result.  Late calibration is required if
387 		 * the initial frequency was obtained from CPUID.16H, as the
388 		 * derived value may be off by as much as 1%.
389 		 */
390 		if (bootverbose)
391 			printf("Early TSC frequency %juHz derived from CPUID\n",
392 			    (uintmax_t)tsc_freq);
393 	}
394 }
395 
396 /*
397  * If we were unable to determine the TSC frequency via CPU registers, try
398  * to calibrate against a known clock.
399  */
400 static void
probe_tsc_freq_late(void)401 probe_tsc_freq_late(void)
402 {
403 	if (tsc_freq != 0)
404 		return;
405 
406 	if (tsc_skip_calibration) {
407 		/*
408 		 * Try to parse the brand string to obtain the nominal TSC
409 		 * frequency.
410 		 */
411 		if (cpu_vendor_id == CPU_VENDOR_INTEL &&
412 		    tsc_freq_intel_brand(&tsc_freq)) {
413 			if (bootverbose)
414 				printf(
415 		    "Early TSC frequency %juHz derived from brand string\n",
416 				    (uintmax_t)tsc_freq);
417 		} else {
418 			tsc_disabled = 1;
419 		}
420 	} else {
421 		/*
422 		 * Calibrate against a timecounter or the 8254 PIT.  This
423 		 * estimate will be refined later in tsc_calib().
424 		 */
425 		tsc_freq_tc(&tsc_freq);
426 		if (bootverbose)
427 			printf(
428 		    "Early TSC frequency %juHz calibrated from 8254 PIT\n",
429 			    (uintmax_t)tsc_freq);
430 	}
431 }
432 
433 void
start_TSC(void)434 start_TSC(void)
435 {
436 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
437 		return;
438 
439 	probe_tsc_freq_late();
440 
441 	if (cpu_power_ecx & CPUID_PERF_STAT) {
442 		/*
443 		 * XXX Some emulators expose host CPUID without actual support
444 		 * for these MSRs.  We must test whether they really work.
445 		 */
446 		wrmsr(MSR_MPERF, 0);
447 		wrmsr(MSR_APERF, 0);
448 		DELAY(10);
449 		if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
450 			tsc_perf_stat = 1;
451 	}
452 
453 	/*
454 	 * Inform CPU accounting about our boot-time clock rate.  This will
455 	 * be updated if someone loads a cpufreq driver after boot that
456 	 * discovers a new max frequency.
457 	 *
458 	 * The frequency may also be updated after late calibration is complete;
459 	 * however, we register the TSC as the ticker now to avoid switching
460 	 * counters after much of the kernel has already booted and potentially
461 	 * sampled the CPU clock.
462 	 */
463 	if (tsc_freq != 0)
464 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
465 
466 	if (tsc_is_invariant)
467 		return;
468 
469 	/* Register to find out about changes in CPU frequency. */
470 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
471 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
472 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
473 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
474 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
475 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
476 }
477 
478 #ifdef SMP
479 
480 /*
481  * RDTSC is not a serializing instruction, and does not drain
482  * instruction stream, so we need to drain the stream before executing
483  * it.  It could be fixed by use of RDTSCP, except the instruction is
484  * not available everywhere.
485  *
486  * Use CPUID for draining in the boot-time SMP constistency test.  The
487  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
488  * and VIA) when SSE2 is present, and nothing on older machines which
489  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
490  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
491  *
492  * Do not use do_cpuid(), since we do not need CPUID results, which
493  * have to be written into memory with do_cpuid().
494  */
495 #define	TSC_READ(x)							\
496 static void								\
497 tsc_read_##x(void *arg)							\
498 {									\
499 	uint64_t *tsc = arg;						\
500 	u_int cpu = PCPU_GET(cpuid);					\
501 									\
502 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
503 	tsc[cpu * 3 + x] = rdtsc();					\
504 }
505 TSC_READ(0)
506 TSC_READ(1)
507 TSC_READ(2)
508 #undef TSC_READ
509 
510 #define	N	1000
511 
512 static void
comp_smp_tsc(void * arg)513 comp_smp_tsc(void *arg)
514 {
515 	uint64_t *tsc;
516 	int64_t d1, d2;
517 	u_int cpu = PCPU_GET(cpuid);
518 	u_int i, j, size;
519 
520 	size = (mp_maxid + 1) * 3;
521 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
522 		CPU_FOREACH(j) {
523 			if (j == cpu)
524 				continue;
525 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
526 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
527 			if (d1 <= 0 || d2 <= 0) {
528 				smp_tsc = 0;
529 				return;
530 			}
531 		}
532 }
533 
534 static void
adj_smp_tsc(void * arg)535 adj_smp_tsc(void *arg)
536 {
537 	uint64_t *tsc;
538 	int64_t d, min, max;
539 	u_int cpu = PCPU_GET(cpuid);
540 	u_int first, i, size;
541 
542 	first = CPU_FIRST();
543 	if (cpu == first)
544 		return;
545 	min = INT64_MIN;
546 	max = INT64_MAX;
547 	size = (mp_maxid + 1) * 3;
548 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
549 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
550 		if (d > min)
551 			min = d;
552 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
553 		if (d > min)
554 			min = d;
555 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
556 		if (d < max)
557 			max = d;
558 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
559 		if (d < max)
560 			max = d;
561 	}
562 	if (min > max)
563 		return;
564 	d = min / 2 + max / 2;
565 	__asm __volatile (
566 		"movl $0x10, %%ecx\n\t"
567 		"rdmsr\n\t"
568 		"addl %%edi, %%eax\n\t"
569 		"adcl %%esi, %%edx\n\t"
570 		"wrmsr\n"
571 		: /* No output */
572 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
573 		: "ax", "cx", "dx", "cc"
574 	);
575 }
576 
577 static int
test_tsc(int adj_max_count)578 test_tsc(int adj_max_count)
579 {
580 	uint64_t *data, *tsc;
581 	u_int i, size, adj;
582 
583 	if ((!smp_tsc && !tsc_is_invariant))
584 		return (-100);
585 	/*
586 	 * Misbehavior of TSC under VirtualBox has been observed.  In
587 	 * particular, threads doing small (~1 second) sleeps may miss their
588 	 * wakeup and hang around in sleep state, causing hangs on shutdown.
589 	 */
590 	if (vm_guest == VM_GUEST_VBOX)
591 		return (0);
592 
593 	TSENTER();
594 	size = (mp_maxid + 1) * 3;
595 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
596 	adj = 0;
597 retry:
598 	for (i = 0, tsc = data; i < N; i++, tsc += size)
599 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
600 	smp_tsc = 1;	/* XXX */
601 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
602 	    smp_no_rendezvous_barrier, data);
603 	if (!smp_tsc && adj < adj_max_count) {
604 		adj++;
605 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
606 		    smp_no_rendezvous_barrier, data);
607 		goto retry;
608 	}
609 	free(data, M_TEMP);
610 	if (bootverbose)
611 		printf("SMP: %sed TSC synchronization test%s\n",
612 		    smp_tsc ? "pass" : "fail",
613 		    adj > 0 ? " after adjustment" : "");
614 	TSEXIT();
615 	if (smp_tsc && tsc_is_invariant) {
616 		switch (cpu_vendor_id) {
617 		case CPU_VENDOR_AMD:
618 		case CPU_VENDOR_HYGON:
619 			/*
620 			 * Processor Programming Reference (PPR) for AMD
621 			 * Family 17h states that the TSC uses a common
622 			 * reference for all sockets, cores and threads.
623 			 */
624 			if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
625 				return (1000);
626 			/*
627 			 * Starting with Family 15h processors, TSC clock
628 			 * source is in the north bridge.  Check whether
629 			 * we have a single-socket/multi-core platform.
630 			 * XXX Need more work for complex cases.
631 			 */
632 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
633 			    (amd_feature2 & AMDID2_CMP) == 0 ||
634 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
635 				break;
636 			return (1000);
637 		case CPU_VENDOR_INTEL:
638 			/*
639 			 * XXX Assume Intel platforms have synchronized TSCs.
640 			 */
641 			return (1000);
642 		}
643 		return (800);
644 	}
645 	return (-100);
646 }
647 
648 #undef N
649 
650 #endif /* SMP */
651 
652 static void
init_TSC_tc(void)653 init_TSC_tc(void)
654 {
655 	uint64_t max_freq;
656 	int shift;
657 
658 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
659 		return;
660 
661 	/*
662 	 * Limit timecounter frequency to fit in an int and prevent it from
663 	 * overflowing too fast.
664 	 */
665 	max_freq = UINT_MAX;
666 
667 	/*
668 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
669 	 * in either C2 or C3.  Disable use of C2 and C3 while using
670 	 * the TSC as the timecounter.  The timecounter can be changed
671 	 * to enable C2 and C3.
672 	 *
673 	 * Note that the TSC is used as the cputicker for computing
674 	 * thread runtime regardless of the timecounter setting, so
675 	 * using an alternate timecounter and enabling C2 or C3 can
676 	 * result incorrect runtimes for kernel idle threads (but not
677 	 * for any non-idle threads).
678 	 */
679 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
680 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
681 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
682 		if (bootverbose)
683 			printf("TSC timecounter disables C2 and C3.\n");
684 	}
685 
686 	/*
687 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
688 	 * are synchronized.  If the user is sure that the system has
689 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
690 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
691 	 * environments, so it is set to a negative quality in those cases.
692 	 */
693 #ifdef SMP
694 	if (mp_ncpus > 1)
695 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
696 	else
697 #endif /* SMP */
698 	if (tsc_is_invariant)
699 		tsc_timecounter.tc_quality = 1000;
700 	max_freq >>= tsc_shift;
701 
702 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
703 		;
704 
705 	/*
706 	 * Timecounter implementation selection, top to bottom:
707 	 * - If RDTSCP is available, use RDTSCP.
708 	 * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
709 	 *   on Intel, and MFENCE;RDTSC on AMD.
710 	 * - For really old CPUs, just use RDTSC.
711 	 */
712 	if ((amd_feature & AMDID_RDTSCP) != 0) {
713 		tsc_timecounter.tc_get_timecount = shift > 0 ?
714 		    tscp_get_timecount_low : tscp_get_timecount;
715 	} else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
716 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
717 		    cpu_vendor_id == CPU_VENDOR_HYGON) {
718 			tsc_timecounter.tc_get_timecount = shift > 0 ?
719 			    tsc_get_timecount_low_mfence :
720 			    tsc_get_timecount_mfence;
721 		} else {
722 			tsc_timecounter.tc_get_timecount = shift > 0 ?
723 			    tsc_get_timecount_low_lfence :
724 			    tsc_get_timecount_lfence;
725 		}
726 	} else {
727 		tsc_timecounter.tc_get_timecount = shift > 0 ?
728 		    tsc_get_timecount_low : tsc_get_timecount;
729 	}
730 	if (shift > 0) {
731 		tsc_timecounter.tc_name = "TSC-low";
732 		if (bootverbose)
733 			printf("TSC timecounter discards lower %d bit(s)\n",
734 			    shift);
735 	}
736 	if (tsc_freq != 0) {
737 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
738 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
739 
740 		/*
741 		 * Timecounter registration is deferred until after late
742 		 * calibration is finished.
743 		 */
744 	}
745 }
746 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
747 
748 static void
tsc_update_freq(uint64_t new_freq)749 tsc_update_freq(uint64_t new_freq)
750 {
751 	atomic_store_rel_64(&tsc_freq, new_freq);
752 	atomic_store_rel_64(&tsc_timecounter.tc_frequency,
753 	    new_freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
754 }
755 
756 void
tsc_init(void)757 tsc_init(void)
758 {
759 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
760 		return;
761 
762 	probe_tsc_freq_early();
763 }
764 
765 /*
766  * Perform late calibration of the TSC frequency once ACPI-based timecounters
767  * are available.  At this point timehands are not set up, so we read the
768  * highest-quality timecounter directly rather than using (s)binuptime().
769  */
770 void
tsc_calibrate(void)771 tsc_calibrate(void)
772 {
773 	uint64_t freq;
774 
775 	if (tsc_disabled)
776 		return;
777 	if (tsc_early_calib_exact)
778 		goto calibrated;
779 
780 	fpu_kern_enter(curthread, NULL, FPU_KERN_NOCTX);
781 	freq = clockcalib(rdtsc_ordered, "TSC");
782 	fpu_kern_leave(curthread, NULL);
783 	tsc_update_freq(freq);
784 
785 calibrated:
786 	tc_init(&tsc_timecounter);
787 	set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
788 }
789 
790 void
resume_TSC(void)791 resume_TSC(void)
792 {
793 #ifdef SMP
794 	int quality;
795 
796 	/* If TSC was not good on boot, it is unlikely to become good now. */
797 	if (tsc_timecounter.tc_quality < 0)
798 		return;
799 	/* Nothing to do with UP. */
800 	if (mp_ncpus < 2)
801 		return;
802 
803 	/*
804 	 * If TSC was good, a single synchronization should be enough,
805 	 * but honour smp_tsc_adjust if it's set.
806 	 */
807 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
808 	if (quality != tsc_timecounter.tc_quality) {
809 		printf("TSC timecounter quality changed: %d -> %d\n",
810 		    tsc_timecounter.tc_quality, quality);
811 		tsc_timecounter.tc_quality = quality;
812 	}
813 #endif /* SMP */
814 }
815 
816 /*
817  * When cpufreq levels change, find out about the (new) max frequency.  We
818  * use this to update CPU accounting in case it got a lower estimate at boot.
819  */
820 static void
tsc_levels_changed(void * arg,int unit)821 tsc_levels_changed(void *arg, int unit)
822 {
823 	device_t cf_dev;
824 	struct cf_level *levels;
825 	int count, error;
826 	uint64_t max_freq;
827 
828 	/* Only use values from the first CPU, assuming all are equal. */
829 	if (unit != 0)
830 		return;
831 
832 	/* Find the appropriate cpufreq device instance. */
833 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
834 	if (cf_dev == NULL) {
835 		printf("tsc_levels_changed() called but no cpufreq device?\n");
836 		return;
837 	}
838 
839 	/* Get settings from the device and find the max frequency. */
840 	count = 64;
841 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
842 	if (levels == NULL)
843 		return;
844 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
845 	if (error == 0 && count != 0) {
846 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
847 		set_cputicker(rdtsc, max_freq, true);
848 	} else
849 		printf("tsc_levels_changed: no max freq found\n");
850 	free(levels, M_TEMP);
851 }
852 
853 /*
854  * If the TSC timecounter is in use, veto the pending change.  It may be
855  * possible in the future to handle a dynamically-changing timecounter rate.
856  */
857 static void
tsc_freq_changing(void * arg,const struct cf_level * level,int * status)858 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
859 {
860 
861 	if (*status != 0 || timecounter != &tsc_timecounter)
862 		return;
863 
864 	printf("timecounter TSC must not be in use when "
865 	    "changing frequencies; change denied\n");
866 	*status = EBUSY;
867 }
868 
869 /* Update TSC freq with the value indicated by the caller. */
870 static void
tsc_freq_changed(void * arg,const struct cf_level * level,int status)871 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
872 {
873 	uint64_t freq;
874 
875 	/* If there was an error during the transition, don't do anything. */
876 	if (tsc_disabled || status != 0)
877 		return;
878 
879 	/* Total setting for this level gives the new frequency in MHz. */
880 	freq = (uint64_t)level->total_set.freq * 1000000;
881 	tsc_update_freq(freq);
882 }
883 
884 static int
sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)885 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
886 {
887 	int error;
888 	uint64_t freq;
889 
890 	freq = atomic_load_acq_64(&tsc_freq);
891 	if (freq == 0)
892 		return (EOPNOTSUPP);
893 	error = sysctl_handle_64(oidp, &freq, 0, req);
894 	if (error == 0 && req->newptr != NULL)
895 		tsc_update_freq(freq);
896 	return (error);
897 }
898 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
899     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE,
900     0, 0, sysctl_machdep_tsc_freq, "QU",
901     "Time Stamp Counter frequency");
902 
903 static u_int
tsc_get_timecount(struct timecounter * tc __unused)904 tsc_get_timecount(struct timecounter *tc __unused)
905 {
906 
907 	return (rdtsc32());
908 }
909 
910 static u_int
tscp_get_timecount(struct timecounter * tc __unused)911 tscp_get_timecount(struct timecounter *tc __unused)
912 {
913 
914 	return (rdtscp32());
915 }
916 
917 static inline u_int
tsc_get_timecount_low(struct timecounter * tc)918 tsc_get_timecount_low(struct timecounter *tc)
919 {
920 	uint32_t rv;
921 
922 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
923 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
924 	return (rv);
925 }
926 
927 static u_int
tscp_get_timecount_low(struct timecounter * tc)928 tscp_get_timecount_low(struct timecounter *tc)
929 {
930 	uint32_t rv;
931 
932 	__asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
933 	    : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
934 	return (rv);
935 }
936 
937 static u_int
tsc_get_timecount_lfence(struct timecounter * tc __unused)938 tsc_get_timecount_lfence(struct timecounter *tc __unused)
939 {
940 
941 	lfence();
942 	return (rdtsc32());
943 }
944 
945 static u_int
tsc_get_timecount_low_lfence(struct timecounter * tc)946 tsc_get_timecount_low_lfence(struct timecounter *tc)
947 {
948 
949 	lfence();
950 	return (tsc_get_timecount_low(tc));
951 }
952 
953 static u_int
tsc_get_timecount_mfence(struct timecounter * tc __unused)954 tsc_get_timecount_mfence(struct timecounter *tc __unused)
955 {
956 
957 	mfence();
958 	return (rdtsc32());
959 }
960 
961 static u_int
tsc_get_timecount_low_mfence(struct timecounter * tc)962 tsc_get_timecount_low_mfence(struct timecounter *tc)
963 {
964 
965 	mfence();
966 	return (tsc_get_timecount_low(tc));
967 }
968 
969 static uint32_t
x86_tsc_vdso_timehands(struct vdso_timehands * vdso_th,struct timecounter * tc)970 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
971 {
972 
973 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
974 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
975 	vdso_th->th_x86_hpet_idx = 0xffffffff;
976 	vdso_th->th_x86_pvc_last_systime = 0;
977 	vdso_th->th_x86_pvc_stable_mask = 0;
978 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
979 	return (1);
980 }
981 
982 #ifdef COMPAT_FREEBSD32
983 static uint32_t
x86_tsc_vdso_timehands32(struct vdso_timehands32 * vdso_th32,struct timecounter * tc)984 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
985     struct timecounter *tc)
986 {
987 
988 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
989 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
990 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
991 	vdso_th32->th_x86_pvc_last_systime[0] = 0;
992 	vdso_th32->th_x86_pvc_last_systime[1] = 0;
993 	vdso_th32->th_x86_pvc_stable_mask = 0;
994 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
995 	return (1);
996 }
997 #endif
998